1 Entropy

Definition: Entropy is a measure of uncertainty of a random variable. The entropy of a discrete random variable X with alphabet \mathcal{X} is

$$H(X) = - \sum_{x \in \mathcal{X}} p(x) \log p(x)$$

When the base of the logarithm is 2, entropy is measured in bits.

Example: One can model the temperature in a city (e.g. Amherst) as a random variable, X. Then the entropy of X measures the uncertainty in Amherst temperature. Let Y be a random variable representing the temperature in Northampton. We know that X and Y are not independent (they are usually quite similar). Hence, when Y is given, some uncertainty about X goes away.

Example: Consider a fair die with pmf $p(1) = p(2) = \ldots = p(6) = 1/6$. Its entropy is

$$H(x) = -6 \cdot \frac{1}{6} \log \frac{1}{6} = \log 6$$

Maximum entropy is achieved when all outcomes of a random variable occur with equal probability. (Note: you can prove this by assigning a variable p_i to the probability of outcome i. Then, partially-differentiate the entropy function with respect to each p_i. Set the derivatives to zero and solve for the p_i's. You will see that they are equal.)

In general, for M equally-probable outcomes, the entropy is $H(X) = \log M$.

1.1 Joint Entropy

Definition: For two random variables X and Y, $x \in \mathcal{X}, y \in \mathcal{Y}$, joint entropy is defined as

$$H(X, Y) = - \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x, y)$$

where $p(x, y) = Pr[X = x, Y = y]$ is the joint pmf of X and Y.

1.2 Conditional Entropy

Definition: The conditional entropy of a random variable Y given $X = x$ is

$$H(Y|X = x) = - \sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x)$$

When a particular value of x is not given, we must average over all possible values of X:

$$H(Y|X) = - \sum_{x \in \mathcal{X}} p(x) \left(\sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x) \right)$$

$$= - \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y|x)$$
The conditional entropy of X given Y is

$$H(X|Y) = -\sum_{x \in X} \sum_{y \in Y} p(x, y) \log p(x|y)$$

In general, $H(X|Y) \neq H(Y|X)$.

1.3 Chain Rule for Entropy

The Chain Rule for Entropy states that the entropy of two random variables is the entropy of one plus the conditional entropy of the other:

$$H(X, Y) = H(X) + H(Y|X) \quad (1)$$

Proof:

$$H(X, Y) = -\sum_{x \in X} \sum_{y \in Y} p(x, y) \log \left(p(x)p(y|x) \right)$$

$$= -\sum_{x \in X} \left(\sum_{y \in Y} p(x, y) \right) \log p(x) - \sum_{x \in X} \sum_{y \in Y} p(x, y) \log p(y|x)$$

$$= -\sum_{x \in X} p(x) \log p(x) - \sum_{x \in X} \sum_{y \in Y} p(x, y) \log p(y|x)$$

$$= H(X) + H(Y|X)$$

Similarly, it can also be shown that

$$H(X, Y) = H(Y) + H(X|Y) \quad (2)$$

From (1) and (2), we see that

$$H(X) - H(X|Y) = H(Y) - H(Y|X) = I(X;Y)$$

$I(X;Y)$ is known as **Mutual Information**, which can be thought of as a measure of reduction in uncertainty.

Example: Consider the random variables $X \in \{0,1\}$, $Y \in \{0,1\}$, representing two coin tosses. Their joint distribution is shown in Table 1.

<table>
<thead>
<tr>
<th>Y\X</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/2</td>
<td>1/4</td>
</tr>
<tr>
<td>1</td>
<td>1/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

Table 1: Joint distribution of two coin tosses.

The joint entropy of X and Y is

$$H(X, Y) = -\frac{1}{2} \log \frac{1}{2} - \frac{1}{4} \log \frac{1}{4} - \frac{2}{8} \log \frac{1}{8} = 1.75$$

Note that if all probabilities were equal, we would have

$$H(X, Y) = \log 4 = 2 \text{ bits}, \text{ which is the maximum entropy.}$$
The individual entropies are
\[
H(X) = -\frac{5}{8} \log \frac{5}{8} - \frac{3}{8} \log \frac{3}{8} \approx 0.9544 \\
H(Y) = -\frac{3}{4} \log \frac{3}{4} - \frac{1}{4} \log \frac{1}{4} \approx 0.8113
\]

Question: What is the conditional entropy of \(X\) given \(Y\)?

Answer: One possible way of solving this problem is to compute the conditional distribution of \(X\) given \(Y\), for all possible values of \(X\) and \(Y\). However, since we have already determined the joint and individual entropies, we can instead use the Chain Rule for Entropy: \(H(X,Y) = H(Y) + H(X|Y)\).

\[
H(X|Y) = 1.75 - 0.8113 \approx 0.9387
\]

2 Relative Entropy

Let \(X\) be a random variable with alphabet \(\mathcal{X} = \{0, 1\}\). Consider the following two distributions:

\[
\begin{align*}
p(0) &= \frac{1}{4} & q(0) &= \frac{1}{2} \\
p(1) &= \frac{3}{4} & q(1) &= \frac{1}{2}
\end{align*}
\]

Let \(r\) be another probability distribution, defined below:

\[
\begin{align*}
r(0) &= \frac{1}{8} \\
r(1) &= \frac{7}{8}
\end{align*}
\]

Question: Is \(r\) closer to \(p\) or \(q\)?

Answer: \(r\) is closer to \(p\), because they are both biased toward the outcome \(X = 1\).

How do we measure this similarity? One way is to use relative entropy.

Definition: Relative entropy, also known as Divergence or Kullback-Leibler Distance, is defined by

\[
D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}
\]

Property 1: Relative entropy is not symmetric. In other words, it is not necessarily true that \(D(p||q) = D(q||p)\).

Property 2: Relative entropy is always non-negative: \(D(p||q) \geq 0\). Equality is achieved only if \(p(x) = q(x), \forall x \in \mathcal{X}\). This property is also known as Information Inequality.

Property 3: Relative entropy does not satisfy the triangle inequality.

Because KL-distance does not obey the triangle inequality and is not symmetric, it is not a true metric.

Example: Consider the distributions \(p\) and \(q\) introduced earlier, where \(p, q \in \{0, 1\}, p(0) = 1/4, p(1) = \)
3/4, \(q(0) = 1/2, \ q(1) = 1/2. \)

\[
D(p||q) = \frac{1}{4} \log \left(\frac{1/4}{1/2} \right) + \frac{3}{4} \log \left(\frac{3/4}{1/2} \right) = \frac{3}{4} \log 3 - 1 \approx 0.1887 > 0
\]

\[
D(q||p) = \frac{1}{2} \log \left(\frac{1/2}{1/4} \right) + \frac{1}{2} \log \left(\frac{1/2}{3/4} \right) = \frac{1}{2} \left(1 - \log \frac{3}{2} \right) \approx 0.2973 > 0
\]

Note that \(D(p||q) \neq D(q||p). \)

Proof of Property 2 (Information Inequality): To prove this property, we will use the following fact:

Identity:

\[
\log_2 y \leq \frac{y - 1}{\log_2 e}, \ \forall \ y \in \mathbb{R}
\]

Proof of identity: First, note that the following is true:

\[
1 + x \leq e^x, \ \forall \ x \in \mathbb{R} \tag{3}
\]

![Figure 1: 1 + x and e^x](image)

Taking the natural log of both sides of (3),

\[
\log_e (1 + x) \leq x
\]
Using the fact that \(\log_e T = \log_e 2 \log_2 T \) (change of base formula),
\[
\log_e 2 \log_2 (1 + x) \leq x
\]
\[
\log_2 (1 + x) \leq \frac{x}{\log_e 2}
\]

Let \(y = x + 1 \):
\[
\log_2 y \leq \frac{y - 1}{\log_e 2}
\]

Going back to the proof of Information Inequality,
\[
D(p\|q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}
\]
\[
= - \sum_{x \in \mathcal{X}} p(x) \log \frac{q(x)}{p(x)}
\]
\[
\geq - \sum_{x \in \mathcal{X}} p(x) \left(1 - \frac{q(x)}{p(x)} \right)
\]
\[
= - \frac{1}{\log_e 2} \sum_{x \in \mathcal{X}} (p(x) - q(x)) = 0
\]
\[
\implies D(p\|q) \geq 0
\]

Identity: Let \(X \in \mathcal{X}, |\mathcal{X}| = M \). Then
\[
\log M - H(X) \geq 0
\]

Proof: As stated previously, the maximum value of entropy is \(\log |\mathcal{X}| = \log M \), which occurs when \(X \) is uniformly-distributed. Now we can prove this by KL-distance.
\[
\log M - H(X) = \sum_{x \in \mathcal{X}} p(x) \log M + \sum_{x \in \mathcal{X}} p(x) \log p(x)
\]
\[
= \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{1/M}
\]
\[
= D(p\|\frac{1}{M}) \geq 0
\]

Note that the inequality above is known to us by the non-negativity property of KL-distance.

If the distribution of \(X \) is uniform, where \(p(X = x) = \frac{1}{M} \ \forall \ x \in \mathcal{X} \), then \(D(p\|\frac{1}{M}) = 0 \).

3 Mutual Information

Definition: Mutual information is defined by
\[
I(X;Y) = H(X) - H(X|Y)
\]
\[
= H(Y) - H(Y|X)
\]
\[
\Delta = D\left(p(x, y) \parallel p(x)p(y) \right)
\]
Proof:

\[
D\left(p(x, y) \parallel p(x)p(y)\right) = \sum_{x \in X} \sum_{y \in Y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}
\]

\[
= \sum_{x \in X} \sum_{y \in Y} p(x, y) \log \frac{p(x)p(y|x)}{p(x)p(y)}
\]

\[
= \sum_{x \in X} \sum_{y \in Y} p(x, y) \log \frac{p(y|x)}{p(y)}
\]

\[
= -\sum_{x \in X} \sum_{y \in Y} p(x, y) \log p(y) + \sum_{x \in X} \sum_{y \in Y} p(x, y) \log p(y|x)
\]

\[
= H(Y) - H(Y|X)
\]

If X and Y are independent, $I(X; Y) = 0$.

6