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Motivation

● How do high-performing fine-grained recognition models[1] translate 
to face recognition?

● How well can we do with publicly-available moderate-sized training 
datasets?

● Do deeper architectures in CNNs matter in this setting?

[1]   Bilinear CNN Models for Fine-grained Visual Recognition, 
Tsung-Yu Lin, Aruni RoyChowdhury, Subhransu Maji,  ICCV ‘15 



Face Recognition
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Probe or Query

● Verification (e.g. LFW) has saturated

● Moving on to recognition: actually 
naming the person

● The challenging IARPA Janus A (IJB-A) 
protocol [Klare et al., CVPR ’15] 

Verification: is it the same person?



Bilinear CNN Model
● Achieves state-of-the-art results on fine-

grained recognition datasets.
● Models co-occurrence statistics of 

features, e.g. “brown eyes”
● Translation invariant 
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Experiments

● Dataset:
■ FaceScrub     (513 / 89045)
■ IJB-A Train set  (~333 / ~16900)

● Model: 
○ Stream A and Stream B are identical
○ VGG-M model
○ uses ‘conv5+ReLU ’ layer features

● Linear SVM classifier learned for each person in Gallery

● Max-pooling features or classifier scores to aggregate multiple media

“George W 
Bush”

…

…
pooled 
bilinear 
vector

softmax

convolutional + pooling layers

CNN stream A

CNN stream B

…



Results: Fine-tuning CNN and B-CNN
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Results: Fine-tuning CNN and B-CNN
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Results: Fine-tuning CNN and B-CNN

Low initial accuracy with 
ImageNet pre-trained 
models
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Results: CNN versus B-CNN
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B-CNN consistently outperforms the regular CNN
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Results: Comparison with IJB-A Baselines

B-CNN exceeds best baseline - “GOTS” 
- by a large margin

●  58.8% versus 44.3% 

14.5 %



● CNN pre-trained on massive external 
datasets

○ VGG-Face [Parkhi et al.]
○ [Chen et al.]

● Bilinearization:
○ start with a pre-trained network
○ B-CNN features: sum-pooled outer 

product of penultimate layer outputs

○ Train identity-specific SVMs on 

new B-CNN features

● B-CNN gives a slight improvement over 
VGG-Face CNN

Results: Pre-trained Networks

89.2%86% 89.5%



Results: Filter Visualizations

Traditional facial features such as 
● eyes, 
● eyes+eyebrows 
● partially open mouth
● noses.



Results: Filter Visualizations

Filters correlated with hair, both facial and 
on the head.

Filters correlated with accessories such 
as eyeglasses and earrings.
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