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Motivation

e How do high-performing fine-grained recognition models!'! translate
to face recognition?

e How well can we do with publicly-available moderate-sized training
datasets?

e Do deeper architectures in CNNs matter in this setting?

[1] Bilinear CNN Models for Fine-grained Visual Recognition,
Tsung-Yu Lin, Aruni RoyChowdhury, Subhransu Maji, ICCV ‘15



Face Recognition
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Probe or Query

Verification: is it the same person?
Verification (e.g. LFW) has saturated

Moving on to recognition: actually
naming the person

The challenging IARPA Janus A (IJB-A)
protocol [Klare et al., CVPR ’15]



Bilinear CNN Model

e Achieves state-of-the-art results on fine-
grained recognition datasets.

e Models co-occurrence statistics of
features, e.g. “brown eyes”

e Translation invariant
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Experiments

e Dataset:;

m FaceScrub (513 /89045) CNN stream A
m |JB-A Train set (~333/~16900)

e Model:
o Stream A and Stream B are identical
o VGG-M model |
o uses ‘conv5+ReLU’ layer features R
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e Linear SVM classifier learned for each person in Gallery

e Max-pooling features or classifier scores to aggregate multiple media




Results: Fine-tuning CNN and B-CNN
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Results: Fine-tuning CNN and B-CNN
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Results: Fine-tuning CNN and B-CNN
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when fine-tuning on
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Results: CNN versus B-CNN
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B-CNN consistently outperforms the regular CNN




Results: Comparison with |JB-A Baselines

Retrieval Rate
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B-CNN exceeds best baseline - “GOTS”
0.6 - by a large margin
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Results: Pre-trained Networks

Retrieval Rate
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Chen et al. VGG-Face B-CNN(VGG-Face)
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CNN pre-trained on massive external
datasets
o VGG-Face [Parkhi et al.]

o [Chen et al.]

Bilinearization:
o start with a pre-trained network

o B-CNN features: sum-pooled outer
product of penultimate layer outputs

o Train identity-specific SVMs on

new B-CNN features

B-CNN gives a slight improvement over
VGG-Face CNN



Results: Filter Visualizations
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Traditional facial features such as
e eyes,
e eyesteyebrows
e partially open mouth
® noses.




Results: Filter Visualizations
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Filters correlated with hair, both facial and Filters correlated with accessories such
on the head. as eyeglasses and earrings.
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