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Anti-entropy

• Entropy = disorder

• Anti-entropy = bringing two replicas up-
to-date

• Allow arbitrary pairwise communication

• Question: what updates to propagate in 
what order?



Design goals

• Arbitrary communication topologies

• Operation over low-bandwidth networks

• Incremental progress

• Eventual consistency

• Efficient storage management

• Propagation through transportable media

• Lightweight replica creation and retirement

• Arbitrary policy choices



Basic setup

• Each replica/server maintains 

• Database

• Write log

• Clients read or write from replicas

• Anti-entropy

• one-way operation between two replicas

• through propagation of writes

• write propagation obeys accept-order



Accept order

• Each write carries an accept stamp = 
(Lamport clock, replica-id)

• Accept stamps define a partial order over all 
writes by a single server

• Prefix Property: If R has write W_i that was 
initially accepted by server X, it has all writes 
X accepted before W_i



Version vectors

• Prefix property enables compact 
representation of a replica’s position

• Each replica R maintains version vector R.V 
such that R.V(X) is largest accept-stamp of 
any write accepted by X and known to R

• Replicas use VVs to bring each other up-to-
date  



Anti-entropy protocol

aati-entmpy(S,R) ( 
Get R.V from receiving server R 
#now send all the writes unknown to R 
w = first write in Swrite-log 
WHILE (w) DO 

IF R.V(w.server-id) c w.accept-stamp THEN 
# w is newfor R 
SendWrhe(R, w) 

w = next write in &write-log 
END 

1 
Figure 1. Basic anti-entropy executed at server S to update receiving server R 

The algorithm is very simple. The sending server gets the timetable [1, 12,211 of which replicas have received what writes, 

version vector from the receiving server; then it traverses its The problem with these approaches is that a single, long- 

write-log and sends the receiving server each write not covered disconnected replica can cause the write-logs at all other replicas 

by that vector. It is worth pointing out that the protocol traverses to grow indefinitely. Satin and Lynch noted this problem and 

the sender’s write-log only once. proposed forcibly removing such sites from the replica set [17], 

A feature of this algorithm is that it allows anti-entropy to be 

incremental. In other words, reconciliation between two replicas 

can make progress independently of where the protocol may get 

interrupted due to network failures or voluntary disconnections. 

When a new write arrives at the receiver it can be immediately 

included in the receiver’s write-log because tbe sending replica 

ensures that the receiving server will hold all writes necessary to 

satisfy the prefix property. If interrupted while sending writes, 

those writes transmitted successmlly to the receiving server can 

thus be processed and stored in the receiver’s write-log. Most 

importantly, during the next execution of the protocol, these 

writes need not be resent and the sending server only propagates 

those writes still unknown to the receiving server. Since the 

ordering in which the writes reach the receiving server is 

important to ensure the prefix property, the anti-entropy protocol 

needs to be implemented over a transport layer that guarantees 

ordered delivery of messages. 

Bayou takes a different approach. In Bayou, each replica can 

independently decide when and how aggressively to prune a 

prefix of its write-log subject to the constraint that only “stable” 

writes get discarded. The notion of write stability is discussed 

below. An important consequence of permitting servers to discard 

writes that may not have fully propagated is that anti-entropy 

between servers that are too far “out of synch” may rcqulre 

transferring the full database state from one server to the other, 

Thus, there is a storage-bandwidth tradeoff based on how 

aggressively replicas prune their logs and how frequently replicas 

perform anti-entropy. This section, after presenting Bayou’s 

actual anti-entropy protocol with support for write-log truncation, 

presents a discussion of this tradeoff. 

3.1. Write Stability 

The basic anti-entropy algorithm has several of the features we 

deem important in a reconciliation protocol: it supports a variety 

communication topologies, it supports a variety of policy choices 

for when and with whom to reconcile, it operates over low 

bandwidth networks, and it makes incremental progress in the 

presence of protocol interruptions. Additionally, as shown in 

section 4, the protocol’s incrementality and pair-wise nature 

make it adaptable for reconciliation through transportable media, 

like floppy disks or PCMCIA storage cards, and an extension of 

the prefix property enables the light-weight management of 

dynamic replica sets. Before discussing these additional 

functionalities we focus on relaxing the algorithm’s reliance of 

ever-growing write-logs. 

A stable write, also called a committed write, is one whose 

position in the write-log will not change and hence never needs to 

be re-executed at that server. Any mechanism that stabilizes the 

position of a write in the log can be used. Details on the benefits 

and drawbacks of several write stabilizing mechanisms have been 

described in a previous publication [20]. 

3. Effective Write-log Management , 

Although very simple, the anti-entropy algorithm presented in 

Figure 1 is based on a generally unreasonable assumption: that 

servers do not discard writes from their write-logs. In practice, 

although disks are continuously becoming cheaper and denser, it 

is unreasonable to assume that replicas can store ever-growing 

logs of operations. In particular, mobile hosts do not have 

unbounded storage. This section shows how servers can 

effectively manage the storage resources of their write-logs. 

Previous work on propagating logged writes observed that a 

write can be discarded from a replica’s log once that write has 

fully propagated to all other replicas. Determining which writes 

have fully propagated can be done by running a’ distributed 

snapshot algorithm to establish a “cutoff’ timestamp [17] or by 

having replicas maintain an acknowledgment vector [4] or 

Bayou uses a primary-commit protocol to stabilize w&es, 

hereby ensuring that the stabilization process does not slow down 

due to lengthy disconnections of some replicas. In this protocol, 

one database replica is designated as the primary replica and its 

role is to stabilize (commit) the position of a write in the log 

when it first receives the write. As the primary commits a write, it 

assigns a monotonically increasing commit sequence number 

(CSN) to the write. The CSN is the most significant factor used to 

determine a write’s position in the log; uncommitted or tentative 

writes have a commit sequence number of infinity. The commit 

sequence numbers and accept-stamps define a new partial order 

over the writes in the system, where write A precedes write B if 

A has a smaller CSN, or if both are uncommitted and were 

accepted by the same server and write A was accepted before 

write B. In this order committed writes are always totally ordered 

amongst themselves, are ordered before any tentative writes, and 

are thereby stable. The CSN information propagates back to all 

other servers through an extension of the anti-entropy algorithm 

described below. When a non-primary replica learns of a write’s 

final CSN, the write becomes stable at that server since the 

replica will previously have learned of all writes with lower 

commit sequence numbers. 

This more complex partial order, called stable-order, preserves 

the prefix property requirement of anti-entropy because: (1) 

servers reconcile uncommitted writes with the primary using the 

same protocol described thus far, hence ensuring that the prefix 
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Write stability

• When to apply a write to database and 
discard from log? What if long-lost replica 
shows up?

• Need a primary to commit writes

• assigns commit sequence number (CSN) 
to writes

• New partial order enforced by (CSN, 
accept-stamp) in that order



Propagating committed writes
anti-entropy(S,R) ( 

Get R.V and R.CSN from receiving server R 

#first send all the committed writes that R does not know about 

IF R.CSN < SCSN THEN 

w = first committed write that R does not know about 

WHILE (w) DO 

IF w.accept-stamp c= R.V(w.sezver-id) THEN 

# R has the write, but does not know it is committed 

SendCommitNotification(R, w.accept-stamp, wserver-id. w.CSN) 

EL-SE 
SendWrite(R, w) 

END 
w = next committed write in S.write-log 

END 

END 
w = first tentative write 

#now send all the tentative writes 

WHILE (w) DO 
IF R.V(w.server-id) c w.accept-stamp THEN 

SendWrite(R. w) 

w = next write in S.write-log 

END 

1 
Figure 2. Anti-entropy with support for committed writes (ran at server S to update R) 

property holds at the time writes are committed, and (2) servers 

always propagate committed writes before tentative writes as 

described below. The next subsections show how the anti-entropy 

protocol changes to support write commitment, and how tbe 

stable-order is used to aggressively truncate writes from servers’ 

logs. 

3.2. Propagation of Committed Writes 

The part of a server’s write-log corresponding to committed or 

stable writes can be represented by either another version vector, 

a commit vector, or by the highest commit sequence number 

known to a server, S.CSN. Since committed writes are totally 

ordered by their commit sequence numbers and they propagate in 

this order, the commit sequence number represents the committed 

portion of the write-log in a concise way. The algorithms in this 

section will therefore use S.CSN for this purpose. 

To propagate the commit information of writes, the anti- 

entropy algorithm cannot just test whether a write is covered by 

the receiving server’s version vector. The receiving server may 

have the write, but not know that it is committed. The sending 

server must therefore first inspect all the committed writes that 

the receiving server may be missing. As shown in Figure 2, the 

algorithm starts by comparing the two servers’ highest commit 

sequence numbers. If the sender holds committed writes that the 

receiver is unaware of, it will send them to the receiver. Notice 

that for writes that the receiver already has in tentative form but 

for which it does not know the commit sequence number, only a 

commit notification is sent. A commit notification only includes 

the write’s accept-stamp, server-id, and new commit sequence 

number instead of the entire write. After the committed portion of 

the write log is processed, the same algorithm as before is used to 

send all the new tentative writes to the receiving server. 

3.3. Write-log Truncation 

The anti-entropy protocol allows replicas to truncate any prefix 

of the stable part of the write-log whenever they desire or need to 

do so. The implication of truncating the write-log is that on 

occasion a replica’s write-log may not hold enough writes to 

allow incremental reconciliation with another replica. That is, the 

sending server may have truncated writes from its write-log that 

are yet unknown to the receiver. This can occur, for example, 

when the sending server has received and later truncated 

committed writes that have not reached the receiving replica 

because the receiving replica has been disconnected for a long 

time. The protocol needs to detect and handle this possibility. 

To test whether a server is missing writes needed for anti- 

entropy, each server maintains another version vector, S.0, that 

characterizes the omitted prefix of the server’s write-log; a 

commit sequence number is also maintained for the omitted part 

of the log. A server can easily detect whether it is missing writes 

needed to execute anti-entropy with another server if its omitted 

sequence number, SOSN, is larger than the other server’s 

commit sequence number, R.CSN. If so, there exist committed 

writes that the sending server truncated from its log, and that the 

receiver has not yet received. Under this circumstance, if the two 

servers still wish to reconcile, a full database transfer has to 

occur. That is, the receiving replica must receive a copy of the 

sender’s database that includes all writes characterized by the 

omitted vector. By sending this database the sender makes sure 

that the receiver knows of all the writes needed to proceed with 

the regular, more incremental part of the algorithm. 

Figure 3 presents the anti-entropy algorithm with support for 

write-log truncation. The protocol starts by checking if the sender 

has truncated any needed writes from its write-log. If it has all the 

entries necessary to only send writes or commit notifications, the 

algorithm continues just as described earlier. However, if there 

are missing writes, it sends the contents of the full database to the 

receiving server in addition to the version vector and the commit- 

stamp that characterize the database being sent. Once the 

receiving server receives the database and the corresponding new 

omitted vector and sequence number, it removes all writes from 

its write-log that are covered by the new omitted vector, but more 

importantly, keeps all the writes not covered by this vector, since 

these may be unknown to the sender. After the database transfer, 

the algorithm transition’s back to incrementally sending the 

remaining commit notifications and writes not yet known to the 

receiving replica. 

A couple of characteristics of this algorithm should be pointed 

out. First, sending the complete database during reconciliation 

may require much more network bandwidth than the incremental, 

per write, part of the algorithm. Second, the database transfer is 
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Write log truncation

• Replica S maintains a version vector S.O 
representing omitted prefix of write log

• S maintains CSN for S.O

• If S.OSN > R.CSN, then S has discarded 
committed writes R is missing

• What to do?



Full database transfer
anti-entropy(S,R) ( 

Request R.V and R.CSN from receiving server R 

#check if R’s write-log does not include all the necessary writes to only send writes or 

#commit notifications 

IF (S.OSN > R.CSN) THEN 

#Execute a full database transfer 

Roll back S’s database to the state corresponding to S.0 

SendDatabase(R, S.DB) 
SendVector(R, SO) #this will be R’s new R.0 vector 

SendCSNIR. S.OSN) # R’s new R.OSN will now be S.OSN 

END ’ ’ . 

#now same algorithm as in Figure 2, send anything that R does not yet know about 

IF R.CSN < S.CSN THEN 

w = first committed write that R does not yet know ahout 

WHILE(w) DO 
IF w.acce.pt-stamp c= R.V(w.server-id) THEN 

SendCommitNotification(R, w.accept-stamp. w.server-id, w,CSN) 

ELSE 

SendWrite(R, w) 

END 
w = next committed write in S.write-log 

END 
END 

w = first tentative write in S.write-log 

WHILE(w) DO 
IF R.V(w.server-id) c w.accept-stamp THEN 

SendWrite(R, w) 
w = next write in S.write-log 

END 

Figure 3. Anti-entropy with support for write-log truncation (run at server S to update server R) 

not incremental; the receiving server must obtain the full database 

and the corresponding version vector and commit sequence 

number for reconciliation to succeed. 

3.4. Storage and Networking Resource Tradeoh 

Truncating a server’s write-log trades off potentially increased 

usage of network resources with increased storage requirements 

by one server to bring another server up-to-date. A server either 

retains sufficient writes to update other servers incrementally, or 

truncates writes aggressively, which may cause occasional full 

database transfers. Avoiding a full database transfer is important 

if servers are synchronizing through low-bandwidth or ‘costly 

networks and the database is large. Thus, the challenge is to 

reduce the server’s storage resources occupied by the write-log 

while keeping the chance of having to perform a full database 

transfer low. 

The choice of when to truncate the write-log is left to each 

server’s discretion. One potentially interesting policy would be 

for the server to maintain running estimates of the rate at which 

writes are committed and of the rate at which writes propagate 

through the system, and to use these estimates to establish when 

and how much of the write-log to truncate. Another, much 

simpler, policy is to truncate the write-log when free disk-space 

at the server falls below a certain threshold. Another, more 

conservative, but potentially more accurate, approach would be to 

maintain an estimate of the maximum commit sequence number 

known to all servers. 

3.5. Rolling Back the Write-log 

The write-log of a server needs to be rolled back, and the effect 

of the writes undone from the database, in two different situations 

during anti-entropy: a sender needs to rollback its write-log if a 

full-database transfer is required, while a receiver has to roll its 

log back to the position of the earliest write it receives. Rollbacks 

at the sender’s side should be rare, since we expect full database 

transfers to be rare. 

On the receiver’s side, the write-log is rolled back at most once 

per anti-entropy session. Two optimizations can further reduce 

the overhead of rollback operations. First, if the replica is 

receiving writes from more than one replica at a time, that is, the 

server is involved in multiple anti-entropy sessions, the write-log 

only needs to be rolled back once to the insertion point of the 

earliest write being received. Second, the receiving server dots 

not need to redo the rolled-back writes until the next read from an 

application. Hence, there is a tradeoff between lowering the cost 

of near consecutive anti-entropy sessions and the latency of the 

next read from a client. A replica could therefore roll its write-log 

forward, that is, redo the rolled-back writes, when a certain time 

threshold has passed since an anti-entropy session. Such I\ 

threshold can be based on the frequency of read operations. 

4. Anti-entropy Protocol Extensions 

So far, the paper has presented a reconciliation protocol that 

supports different networking environments and reconciliation 

policies, is incremental, and allows servers to manage the stomp 

resources and performance of their write-logs to their best 

convenience. As mentioned earlier, the simple anti-entropy 

design also enables additional protocol extensions: server 

reconciliation using transportable media, support for session 

guarantees and eventual consistency, and light-weight 

mechanisms to manage server version vectors when replicas can 

be created or retired at any time. These features are enabled by 

the three basic anti-entropy design choices, pair-wise 

communication, exchange of writes and write propagation 

according to specific write orders. As described in this section, 

they also work well with the changes made to the algorithm for 

more effective storage management. 
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Consistency

• Causally consistent prefix at any time

• Total order enforced by primary

• eventual consistency

• Session guarantees, eg, read your writes, 
monotonic reads/writes, writes follow reads 
depend on causal prefix property



Replica management

• Need mechanism to

• assign unique id to a replica

• determine replica creation/retirement

• Use writes to create/retire! 

• maintains causal prefix property



Replica management 

• S_i creates itself by sending creation write 
to any S_k as <inf, T_{k,i}, S_k>, where T_
{k,i} is accept stamp assigned by S_k

• <T_{k,i}, S_k> becomes S_i’s id, and T_{k,i}
+1 its initial accept stamp

• Creation/retirement propagated just like 
regular writes 



Features enabled
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Figure 6. Anti-entropy execution time breakdown for the propagation of 100 writes 
(standard deviations on all total times are within 2.2% of the reported numbers) 

To further analyze the performance of the algorithm, we broke 

down the executiojl time of anti-entropy sessions that propagate 

100 writes between two replicas. Each of the bars in Figure 6 
corresponds to a different experimental configuration. The labels 
indicate on which platform the receiving replica ran, what 
network connection was used, and which size messages were 
propagated. In all cases the sending replica ran on a 
SPARCstation, which does not affect the performande of anti- 
entropy since, as the cost breakdowns show, the overheads at the 
sending replica are minimal. 

As figure 6 shows, the factors that contribute the most to the 
performance of the anti-entropy interactions are: 
! Network transfer: the most significant overhead of the anti- 

entropy sessions corresponds to the actual transmission of the 
writes. This phase includes the marshalling and unmarshalling 
of the writes being propagated, as well as the time on the 

‘network itself. In the graph, the network transfer time is 
subdivided into four categories: time to marshal1 and 
unmarshall the RPC data, time related to transfer actual 
message information, time to transmit each write’s public key 
and the overhead to transmit the update schema information 

I padding 

. 

and data padding for each write. As mentioned earlier, systems 
with different access control mechanisms and more efficient 

schema and padding implementations could eliminate a 
substantial part of the communication overhead, particularly In 
the modem cases. 
The-figure also shows that the bandwidth over the ethernet 
between the SPARCstations is about double that achieved 
between the laptop and the SPARCStation; the bandwidth in 
the former case varied between 4.6 and UMbps, while the 
laptop’s ethernet connection only achieved 2.4-3,lMbps. The 
observed bandwidth over the modem varied between 23.3 and 

26.2Kbps for the communication of the two sets of 100 writes. 
Anti-entropy setup: during this step the sender locates other 
replicas using the name service, sets up the RPC handle to 
communicate with the receiving replica, and performs the 
challenge response protocol that is used in Bayou to mutually 
authenticate replicas before they engage in the actual 
propagation of writes. The last response of the authentication 
protocol also includes the version vector state information 
from fhe receiving replica. This setup time accounts for most 

of fhe time it takes to transmit one write. For 3000 byte 
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and data padding for each write. As mentioned earlier, systems 
with different access control mechanisms and more efficient 

schema and padding implementations could eliminate a 
substantial part of the communication overhead, particularly In 
the modem cases. 
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the former case varied between 4.6 and UMbps, while the 
laptop’s ethernet connection only achieved 2.4-3,lMbps. The 
observed bandwidth over the modem varied between 23.3 and 

26.2Kbps for the communication of the two sets of 100 writes. 
Anti-entropy setup: during this step the sender locates other 
replicas using the name service, sets up the RPC handle to 
communicate with the receiving replica, and performs the 
challenge response protocol that is used in Bayou to mutually 
authenticate replicas before they engage in the actual 
propagation of writes. The last response of the authentication 
protocol also includes the version vector state information 
from fhe receiving replica. This setup time accounts for most 

of fhe time it takes to transmit one write. For 3000 byte 
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Performance

a. Minimal server IDS b. Maximal server IDS 

Figure 8. Anti-entropy execution time for 100 writes as a function of the number of replicas 

removed from the initial server. For example, a server can 

recreate itself with a smaller identifier if it locates another server 

with a smaller identifier than the one of the server’s original 

creator. This process requires the jssuance of a retirement write, a 

new creation write, and anti-entropy with the new creator; it can 

be optimized to reuse the server’s existing write-log and database. 

7. Related Work 

A number of research and commercial systems have used weak 

consistency replication and propagated updates among replicas in 

a lazy fashion. Each of the individual features of Bayou’s anti- 

entropy protocol have almost certainly appeared in previous 

systems in some form. Interesting differences lie in the 

implementation details about what information gets exchanged 

between replicas, what data structures are used to keep track of 

other replicas and the state of these replicas, what communication 

patterns are allowed between replicas, and so on. Unfortunately, 

detailed information about how other systems reconcile their 

replicas is difficult to obtain, especially for commercial products. 

One contribution of this paper is describing a reconciliation 

protocol in detail along with the design decisions that went into 

it. In this section, we discuss how other systems’ protocols 

compare to Bayou’s based on the sketchy information available. 

Grapevine, one of the earliest weakly replicated systems, 

propagated updates via electronic mail [2]. Electronic mail is not 

completely reliable, however, so the product version of 

Grapevine, called Clearinghouse [15], added a background anti- 

entropy process in addition to mail delivery. It was later realized 

that epidemic style algorithms, like Clearinghouse’s anti-entropy, 

could be used by themselves’to fully propagate updates [3]. Pair- 

wise reconciliation of replicas is currently used in several systems 

besides Bayou, including Notes [IO], Ficus [7], and refdbms, 

which uses Golding’s timestamped anti-entropy protocol [4]. 

Rather than a peer-to-peer model in which any replica can 

contact any other replica to reconcile their data, some systems 

organize replicas into a hierarchy where a replica only exchanges 

updates with its parent or children. Examples of this are the client- 

server reconciliation protocols in file systems like Coda [I 1] and 

distributed object systems like Rover [9], and also the primary- 

secondary or master-snapshot protocols in database management 

systems like Oracle [16] and Sybase [5]. Due to their simplified 

communication patterns, these systems can more easily maintain 

accurate information about the state of the replica(s) with which 

they exchange updates. However, update propagation is more 

affected by communication outages. 

In many systems using lazy replication, the information 

exchanged between replicas is based on data objects with 

associated update timestamps or version vectors. This is true for 

Grapevine [2], Clearinghouse [15], Notes [lo], and Microsoft 

Access [LX]. File systems like Coda [lg] and Ficus [7] exchange 

updated files between servers or between clients and servers. The 

notion of reconciling logs of update operations held at various 

replicas, as is done in Bayou via the anti-entropy protocol, has 

been discussed for some time in the literature [1, 17, 211 and 1s 

used in some commercial database systems [5, 161. Oracle’l, for 

instance, uses asynchronous RPCs to propagate transactions 

between a master and its snapshots or other masters [16]; it does 

not, however, allow these transaction to propagate through 

intermediary servers. Rover also uses operations as lhe unit of 

reconciliation by queuing RPC invocations that are eventually 

applied to the master copy of an object [9]. 

Systems that propagate updated data objects need an additional 

mechanism to handle deleted objects. For example, 

Clearinghouse servers maintained and exchanged ‘death 

certificates” for deleted objects [3, 151. Protocols have been 

devised to decide when replicas can safely discard deleted data 

[17]. When update operations rather than data are used for 

reconciliation, deletions are handled automatically as just another 

type of update operation, and servers can immediately reclaim the 

space used by deleted data items. 

A goal in the design of Bayou’s anti-entropy protocol was to 

ensure that servers can make progress even if the protocol is 

disrupted by the loss of a network connection. That is, a server 

should be able to use and propagate to other replicas any updates 

that it receives even if the protocol does not complctc 

successfully. Some systems run their reconciliation process as an 

atomic transaction and hence lose the incremental property. Coda 

has added a trickle reintegration protocol for use by weakly- 

connected clients; while this protocol is atomic, it includes the 

notion of a chunk size that can be set to a small value to achieve 

incremental reintegration [14]. Also note that systems based on 

queued RPCs, such as Oracle, can make incremental progress 

since each RPC is generally run as a separate transaction [ 161. 

Techniques for changing the set of replicas vary widely among 

systems. In systems with a client-server or primary-secondary 

relationship between replicas, new clients or secondaries can 

generally be created by simply contacting the primary site, In 

peer-to-peer systems, adding or removing replicas often requlrcs 

a system administrator and reconciliation’ between replicas, 

Golding uses a group membership protocol that requires a new 

replica to find some number of sponsor replicas and a rcthing 

replica to wait until notice of its retirement reaches all other 

replicas [4]. Notes [lo] and Microsoft Access [S], as far as we 

can tell, are like Bayou in that they allow replicas to be created 

readily from any existing replica, though it does not appear that 
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