
Flexible Update
Propagation for Weakly
Consistent Replication

Karin Petersen, Mike K. Spreitzer, Douglas B. Terry, Marvin M. Theimer
and Alan J. Demers

Anti-entropy

• Entropy = disorder

• Anti-entropy = bringing two replicas up-
to-date

• Allow arbitrary pairwise communication

• Question: what updates to propagate in
what order?

Design goals

• Arbitrary communication topologies

• Operation over low-bandwidth networks

• Incremental progress

• Eventual consistency

• Efficient storage management

• Propagation through transportable media

• Lightweight replica creation and retirement

• Arbitrary policy choices

Basic setup

• Each replica/server maintains

• Database

• Write log

• Clients read or write from replicas

• Anti-entropy

• one-way operation between two replicas

• through propagation of writes

• write propagation obeys accept-order

Accept order

• Each write carries an accept stamp =
(Lamport clock, replica-id)

• Accept stamps define a partial order over all
writes by a single server

• Prefix Property: If R has write W_i that was
initially accepted by server X, it has all writes
X accepted before W_i

Version vectors

• Prefix property enables compact
representation of a replica’s position

• Each replica R maintains version vector R.V
such that R.V(X) is largest accept-stamp of
any write accepted by X and known to R

• Replicas use VVs to bring each other up-to-
date

Anti-entropy protocol

aati-entmpy(S,R) (
Get R.V from receiving server R
#now send all the writes unknown to R
w = first write in Swrite-log
WHILE (w) DO

IF R.V(w.server-id) c w.accept-stamp THEN
w is newfor R
SendWrhe(R, w)

w = next write in &write-log
END

1
Figure 1. Basic anti-entropy executed at server S to update receiving server R

The algorithm is very simple. The sending server gets the timetable [1, 12,211 of which replicas have received what writes,

version vector from the receiving server; then it traverses its The problem with these approaches is that a single, long-

write-log and sends the receiving server each write not covered disconnected replica can cause the write-logs at all other replicas

by that vector. It is worth pointing out that the protocol traverses to grow indefinitely. Satin and Lynch noted this problem and

the sender’s write-log only once. proposed forcibly removing such sites from the replica set [17],

A feature of this algorithm is that it allows anti-entropy to be

incremental. In other words, reconciliation between two replicas

can make progress independently of where the protocol may get

interrupted due to network failures or voluntary disconnections.

When a new write arrives at the receiver it can be immediately

included in the receiver’s write-log because tbe sending replica

ensures that the receiving server will hold all writes necessary to

satisfy the prefix property. If interrupted while sending writes,

those writes transmitted successmlly to the receiving server can

thus be processed and stored in the receiver’s write-log. Most

importantly, during the next execution of the protocol, these

writes need not be resent and the sending server only propagates

those writes still unknown to the receiving server. Since the

ordering in which the writes reach the receiving server is

important to ensure the prefix property, the anti-entropy protocol

needs to be implemented over a transport layer that guarantees

ordered delivery of messages.

Bayou takes a different approach. In Bayou, each replica can

independently decide when and how aggressively to prune a

prefix of its write-log subject to the constraint that only “stable”

writes get discarded. The notion of write stability is discussed

below. An important consequence of permitting servers to discard

writes that may not have fully propagated is that anti-entropy

between servers that are too far “out of synch” may rcqulre

transferring the full database state from one server to the other,

Thus, there is a storage-bandwidth tradeoff based on how

aggressively replicas prune their logs and how frequently replicas

perform anti-entropy. This section, after presenting Bayou’s

actual anti-entropy protocol with support for write-log truncation,

presents a discussion of this tradeoff.

3.1. Write Stability

The basic anti-entropy algorithm has several of the features we

deem important in a reconciliation protocol: it supports a variety

communication topologies, it supports a variety of policy choices

for when and with whom to reconcile, it operates over low

bandwidth networks, and it makes incremental progress in the

presence of protocol interruptions. Additionally, as shown in

section 4, the protocol’s incrementality and pair-wise nature

make it adaptable for reconciliation through transportable media,

like floppy disks or PCMCIA storage cards, and an extension of

the prefix property enables the light-weight management of

dynamic replica sets. Before discussing these additional

functionalities we focus on relaxing the algorithm’s reliance of

ever-growing write-logs.

A stable write, also called a committed write, is one whose

position in the write-log will not change and hence never needs to

be re-executed at that server. Any mechanism that stabilizes the

position of a write in the log can be used. Details on the benefits

and drawbacks of several write stabilizing mechanisms have been

described in a previous publication [20].

3. Effective Write-log Management ,

Although very simple, the anti-entropy algorithm presented in

Figure 1 is based on a generally unreasonable assumption: that

servers do not discard writes from their write-logs. In practice,

although disks are continuously becoming cheaper and denser, it

is unreasonable to assume that replicas can store ever-growing

logs of operations. In particular, mobile hosts do not have

unbounded storage. This section shows how servers can

effectively manage the storage resources of their write-logs.

Previous work on propagating logged writes observed that a

write can be discarded from a replica’s log once that write has

fully propagated to all other replicas. Determining which writes

have fully propagated can be done by running a’ distributed

snapshot algorithm to establish a “cutoff’ timestamp [17] or by

having replicas maintain an acknowledgment vector [4] or

Bayou uses a primary-commit protocol to stabilize w&es,

hereby ensuring that the stabilization process does not slow down

due to lengthy disconnections of some replicas. In this protocol,

one database replica is designated as the primary replica and its

role is to stabilize (commit) the position of a write in the log

when it first receives the write. As the primary commits a write, it

assigns a monotonically increasing commit sequence number

(CSN) to the write. The CSN is the most significant factor used to

determine a write’s position in the log; uncommitted or tentative

writes have a commit sequence number of infinity. The commit

sequence numbers and accept-stamps define a new partial order

over the writes in the system, where write A precedes write B if

A has a smaller CSN, or if both are uncommitted and were

accepted by the same server and write A was accepted before

write B. In this order committed writes are always totally ordered

amongst themselves, are ordered before any tentative writes, and

are thereby stable. The CSN information propagates back to all

other servers through an extension of the anti-entropy algorithm

described below. When a non-primary replica learns of a write’s

final CSN, the write becomes stable at that server since the

replica will previously have learned of all writes with lower

commit sequence numbers.

This more complex partial order, called stable-order, preserves

the prefix property requirement of anti-entropy because: (1)

servers reconcile uncommitted writes with the primary using the

same protocol described thus far, hence ensuring that the prefix

290

Write stability

• When to apply a write to database and
discard from log? What if long-lost replica
shows up?

• Need a primary to commit writes

• assigns commit sequence number (CSN)
to writes

• New partial order enforced by (CSN,
accept-stamp) in that order

Propagating committed writes
anti-entropy(S,R) (

Get R.V and R.CSN from receiving server R

#first send all the committed writes that R does not know about

IF R.CSN < SCSN THEN

w = first committed write that R does not know about

WHILE (w) DO

IF w.accept-stamp c= R.V(w.sezver-id) THEN

R has the write, but does not know it is committed

SendCommitNotification(R, w.accept-stamp, wserver-id. w.CSN)

EL-SE
SendWrite(R, w)

END
w = next committed write in S.write-log

END

END
w = first tentative write

#now send all the tentative writes

WHILE (w) DO
IF R.V(w.server-id) c w.accept-stamp THEN

SendWrite(R. w)

w = next write in S.write-log

END

1
Figure 2. Anti-entropy with support for committed writes (ran at server S to update R)

property holds at the time writes are committed, and (2) servers

always propagate committed writes before tentative writes as

described below. The next subsections show how the anti-entropy

protocol changes to support write commitment, and how tbe

stable-order is used to aggressively truncate writes from servers’

logs.

3.2. Propagation of Committed Writes

The part of a server’s write-log corresponding to committed or

stable writes can be represented by either another version vector,

a commit vector, or by the highest commit sequence number

known to a server, S.CSN. Since committed writes are totally

ordered by their commit sequence numbers and they propagate in

this order, the commit sequence number represents the committed

portion of the write-log in a concise way. The algorithms in this

section will therefore use S.CSN for this purpose.

To propagate the commit information of writes, the anti-

entropy algorithm cannot just test whether a write is covered by

the receiving server’s version vector. The receiving server may

have the write, but not know that it is committed. The sending

server must therefore first inspect all the committed writes that

the receiving server may be missing. As shown in Figure 2, the

algorithm starts by comparing the two servers’ highest commit

sequence numbers. If the sender holds committed writes that the

receiver is unaware of, it will send them to the receiver. Notice

that for writes that the receiver already has in tentative form but

for which it does not know the commit sequence number, only a

commit notification is sent. A commit notification only includes

the write’s accept-stamp, server-id, and new commit sequence

number instead of the entire write. After the committed portion of

the write log is processed, the same algorithm as before is used to

send all the new tentative writes to the receiving server.

3.3. Write-log Truncation

The anti-entropy protocol allows replicas to truncate any prefix

of the stable part of the write-log whenever they desire or need to

do so. The implication of truncating the write-log is that on

occasion a replica’s write-log may not hold enough writes to

allow incremental reconciliation with another replica. That is, the

sending server may have truncated writes from its write-log that

are yet unknown to the receiver. This can occur, for example,

when the sending server has received and later truncated

committed writes that have not reached the receiving replica

because the receiving replica has been disconnected for a long

time. The protocol needs to detect and handle this possibility.

To test whether a server is missing writes needed for anti-

entropy, each server maintains another version vector, S.0, that

characterizes the omitted prefix of the server’s write-log; a

commit sequence number is also maintained for the omitted part

of the log. A server can easily detect whether it is missing writes

needed to execute anti-entropy with another server if its omitted

sequence number, SOSN, is larger than the other server’s

commit sequence number, R.CSN. If so, there exist committed

writes that the sending server truncated from its log, and that the

receiver has not yet received. Under this circumstance, if the two

servers still wish to reconcile, a full database transfer has to

occur. That is, the receiving replica must receive a copy of the

sender’s database that includes all writes characterized by the

omitted vector. By sending this database the sender makes sure

that the receiver knows of all the writes needed to proceed with

the regular, more incremental part of the algorithm.

Figure 3 presents the anti-entropy algorithm with support for

write-log truncation. The protocol starts by checking if the sender

has truncated any needed writes from its write-log. If it has all the

entries necessary to only send writes or commit notifications, the

algorithm continues just as described earlier. However, if there

are missing writes, it sends the contents of the full database to the

receiving server in addition to the version vector and the commit-

stamp that characterize the database being sent. Once the

receiving server receives the database and the corresponding new

omitted vector and sequence number, it removes all writes from

its write-log that are covered by the new omitted vector, but more

importantly, keeps all the writes not covered by this vector, since

these may be unknown to the sender. After the database transfer,

the algorithm transition’s back to incrementally sending the

remaining commit notifications and writes not yet known to the

receiving replica.

A couple of characteristics of this algorithm should be pointed

out. First, sending the complete database during reconciliation

may require much more network bandwidth than the incremental,

per write, part of the algorithm. Second, the database transfer is

291

Write log truncation

• Replica S maintains a version vector S.O
representing omitted prefix of write log

• S maintains CSN for S.O

• If S.OSN > R.CSN, then S has discarded
committed writes R is missing

• What to do?

Full database transfer
anti-entropy(S,R) (

Request R.V and R.CSN from receiving server R

#check if R’s write-log does not include all the necessary writes to only send writes or

#commit notifications

IF (S.OSN > R.CSN) THEN

#Execute a full database transfer

Roll back S’s database to the state corresponding to S.0

SendDatabase(R, S.DB)
SendVector(R, SO) #this will be R’s new R.0 vector

SendCSNIR. S.OSN) # R’s new R.OSN will now be S.OSN

END ’ ’ .

#now same algorithm as in Figure 2, send anything that R does not yet know about

IF R.CSN < S.CSN THEN

w = first committed write that R does not yet know ahout

WHILE(w) DO
IF w.acce.pt-stamp c= R.V(w.server-id) THEN

SendCommitNotification(R, w.accept-stamp. w.server-id, w,CSN)

ELSE

SendWrite(R, w)

END
w = next committed write in S.write-log

END
END

w = first tentative write in S.write-log

WHILE(w) DO
IF R.V(w.server-id) c w.accept-stamp THEN

SendWrite(R, w)
w = next write in S.write-log

END

Figure 3. Anti-entropy with support for write-log truncation (run at server S to update server R)

not incremental; the receiving server must obtain the full database

and the corresponding version vector and commit sequence

number for reconciliation to succeed.

3.4. Storage and Networking Resource Tradeoh

Truncating a server’s write-log trades off potentially increased

usage of network resources with increased storage requirements

by one server to bring another server up-to-date. A server either

retains sufficient writes to update other servers incrementally, or

truncates writes aggressively, which may cause occasional full

database transfers. Avoiding a full database transfer is important

if servers are synchronizing through low-bandwidth or ‘costly

networks and the database is large. Thus, the challenge is to

reduce the server’s storage resources occupied by the write-log

while keeping the chance of having to perform a full database

transfer low.

The choice of when to truncate the write-log is left to each

server’s discretion. One potentially interesting policy would be

for the server to maintain running estimates of the rate at which

writes are committed and of the rate at which writes propagate

through the system, and to use these estimates to establish when

and how much of the write-log to truncate. Another, much

simpler, policy is to truncate the write-log when free disk-space

at the server falls below a certain threshold. Another, more

conservative, but potentially more accurate, approach would be to

maintain an estimate of the maximum commit sequence number

known to all servers.

3.5. Rolling Back the Write-log

The write-log of a server needs to be rolled back, and the effect

of the writes undone from the database, in two different situations

during anti-entropy: a sender needs to rollback its write-log if a

full-database transfer is required, while a receiver has to roll its

log back to the position of the earliest write it receives. Rollbacks

at the sender’s side should be rare, since we expect full database

transfers to be rare.

On the receiver’s side, the write-log is rolled back at most once

per anti-entropy session. Two optimizations can further reduce

the overhead of rollback operations. First, if the replica is

receiving writes from more than one replica at a time, that is, the

server is involved in multiple anti-entropy sessions, the write-log

only needs to be rolled back once to the insertion point of the

earliest write being received. Second, the receiving server dots

not need to redo the rolled-back writes until the next read from an

application. Hence, there is a tradeoff between lowering the cost

of near consecutive anti-entropy sessions and the latency of the

next read from a client. A replica could therefore roll its write-log

forward, that is, redo the rolled-back writes, when a certain time

threshold has passed since an anti-entropy session. Such I\

threshold can be based on the frequency of read operations.

4. Anti-entropy Protocol Extensions

So far, the paper has presented a reconciliation protocol that

supports different networking environments and reconciliation

policies, is incremental, and allows servers to manage the stomp

resources and performance of their write-logs to their best

convenience. As mentioned earlier, the simple anti-entropy

design also enables additional protocol extensions: server

reconciliation using transportable media, support for session

guarantees and eventual consistency, and light-weight

mechanisms to manage server version vectors when replicas can

be created or retired at any time. These features are enabled by

the three basic anti-entropy design choices, pair-wise

communication, exchange of writes and write propagation

according to specific write orders. As described in this section,

they also work well with the changes made to the algorithm for

more effective storage management.

292

Consistency

• Causally consistent prefix at any time

• Total order enforced by primary

• eventual consistency

• Session guarantees, eg, read your writes,
monotonic reads/writes, writes follow reads
depend on causal prefix property

Replica management

• Need mechanism to

• assign unique id to a replica

• determine replica creation/retirement

• Use writes to create/retire!

• maintains causal prefix property

Replica management

• S_i creates itself by sending creation write
to any S_k as <inf, T_{k,i}, S_k>, where T_
{k,i} is accept stamp assigned by S_k

• <T_{k,i}, S_k> becomes S_i’s id, and T_{k,i}
+1 its initial accept stamp

• Creation/retirement propagated just like
regular writes

Features enabled

Performance
SS-~466. modem. 3000-byte msgs CH

SS+466. modem. lO@byte msgs o-a+
SSa466. ethernet. 3000-byto msgs v3+

SS-z-466, ethemot. lOO-byio msgs HC--(
SS->SS. ethernet. 3000-byte msgs -

SS-zCZ5. ethernot. 100.byle msgs m
J

0 60 100 150 lf?rites p$&ated 300 350 400 450
Number

600

Figure 5. Anti-entropy execution as a function of the number of writes propagated :
, (each write corresponds to one mail message)

158

B other
At the receiver:

izll apply new writes to database
I insert new write5 in writelog

On the network:
IEL~ RPC marshaIling
w e-mail message related data
w public key for access control
I update schema information and

Anti-entropy setup:
0 authentication
M RPC initialization

0
ss-> 486 486 486 486 SS SS
Net: modem modem enet enet enet enet

bytes/msg: 3000 100 3000 100 3000 100

Figure 6. Anti-entropy execution time breakdown for the propagation of 100 writes
(standard deviations on all total times are within 2.2% of the reported numbers)

To further analyze the performance of the algorithm, we broke

down the executiojl time of anti-entropy sessions that propagate

100 writes between two replicas. Each of the bars in Figure 6
corresponds to a different experimental configuration. The labels
indicate on which platform the receiving replica ran, what
network connection was used, and which size messages were
propagated. In all cases the sending replica ran on a
SPARCstation, which does not affect the performande of anti-
entropy since, as the cost breakdowns show, the overheads at the
sending replica are minimal.

As figure 6 shows, the factors that contribute the most to the
performance of the anti-entropy interactions are:
! Network transfer: the most significant overhead of the anti-

entropy sessions corresponds to the actual transmission of the
writes. This phase includes the marshalling and unmarshalling
of the writes being propagated, as well as the time on the

‘network itself. In the graph, the network transfer time is
subdivided into four categories: time to marshal1 and
unmarshall the RPC data, time related to transfer actual
message information, time to transmit each write’s public key
and the overhead to transmit the update schema information

I padding

.

and data padding for each write. As mentioned earlier, systems
with different access control mechanisms and more efficient

schema and padding implementations could eliminate a
substantial part of the communication overhead, particularly In
the modem cases.
The-figure also shows that the bandwidth over the ethernet
between the SPARCstations is about double that achieved
between the laptop and the SPARCStation; the bandwidth in
the former case varied between 4.6 and UMbps, while the
laptop’s ethernet connection only achieved 2.4-3,lMbps. The
observed bandwidth over the modem varied between 23.3 and

26.2Kbps for the communication of the two sets of 100 writes.
Anti-entropy setup: during this step the sender locates other
replicas using the name service, sets up the RPC handle to
communicate with the receiving replica, and performs the
challenge response protocol that is used in Bayou to mutually
authenticate replicas before they engage in the actual
propagation of writes. The last response of the authentication
protocol also includes the version vector state information
from fhe receiving replica. This setup time accounts for most

of fhe time it takes to transmit one write. For 3000 byte

298

Performance

SS-~466. modem. 3000-byte msgs CH
SS+466. modem. lO@byte msgs o-a+

SSa466. ethernet. 3000-byto msgs v3+
SS-z-466, ethemot. lOO-byio msgs HC--(
SS->SS. ethernet. 3000-byte msgs -

SS-zCZ5. ethernot. 100.byle msgs m
J

0 60 100 150 lf?rites p$&ated 300 350 400 450
Number

600

Figure 5. Anti-entropy execution as a function of the number of writes propagated :
, (each write corresponds to one mail message)

158

B other
At the receiver:

izll apply new writes to database
I insert new write5 in writelog

On the network:
IEL~ RPC marshaIling
w e-mail message related data
w public key for access control
I update schema information and

Anti-entropy setup:
0 authentication
M RPC initialization

0
ss-> 486 486 486 486 SS SS
Net: modem modem enet enet enet enet

bytes/msg: 3000 100 3000 100 3000 100

Figure 6. Anti-entropy execution time breakdown for the propagation of 100 writes
(standard deviations on all total times are within 2.2% of the reported numbers)

To further analyze the performance of the algorithm, we broke

down the executiojl time of anti-entropy sessions that propagate

100 writes between two replicas. Each of the bars in Figure 6
corresponds to a different experimental configuration. The labels
indicate on which platform the receiving replica ran, what
network connection was used, and which size messages were
propagated. In all cases the sending replica ran on a
SPARCstation, which does not affect the performande of anti-
entropy since, as the cost breakdowns show, the overheads at the
sending replica are minimal.

As figure 6 shows, the factors that contribute the most to the
performance of the anti-entropy interactions are:
! Network transfer: the most significant overhead of the anti-

entropy sessions corresponds to the actual transmission of the
writes. This phase includes the marshalling and unmarshalling
of the writes being propagated, as well as the time on the

‘network itself. In the graph, the network transfer time is
subdivided into four categories: time to marshal1 and
unmarshall the RPC data, time related to transfer actual
message information, time to transmit each write’s public key
and the overhead to transmit the update schema information

I padding

.

and data padding for each write. As mentioned earlier, systems
with different access control mechanisms and more efficient

schema and padding implementations could eliminate a
substantial part of the communication overhead, particularly In
the modem cases.
The-figure also shows that the bandwidth over the ethernet
between the SPARCstations is about double that achieved
between the laptop and the SPARCStation; the bandwidth in
the former case varied between 4.6 and UMbps, while the
laptop’s ethernet connection only achieved 2.4-3,lMbps. The
observed bandwidth over the modem varied between 23.3 and

26.2Kbps for the communication of the two sets of 100 writes.
Anti-entropy setup: during this step the sender locates other
replicas using the name service, sets up the RPC handle to
communicate with the receiving replica, and performs the
challenge response protocol that is used in Bayou to mutually
authenticate replicas before they engage in the actual
propagation of writes. The last response of the authentication
protocol also includes the version vector state information
from fhe receiving replica. This setup time accounts for most

of fhe time it takes to transmit one write. For 3000 byte

298

Performance

a. Minimal server IDS b. Maximal server IDS

Figure 8. Anti-entropy execution time for 100 writes as a function of the number of replicas

removed from the initial server. For example, a server can

recreate itself with a smaller identifier if it locates another server

with a smaller identifier than the one of the server’s original

creator. This process requires the jssuance of a retirement write, a

new creation write, and anti-entropy with the new creator; it can

be optimized to reuse the server’s existing write-log and database.

7. Related Work

A number of research and commercial systems have used weak

consistency replication and propagated updates among replicas in

a lazy fashion. Each of the individual features of Bayou’s anti-

entropy protocol have almost certainly appeared in previous

systems in some form. Interesting differences lie in the

implementation details about what information gets exchanged

between replicas, what data structures are used to keep track of

other replicas and the state of these replicas, what communication

patterns are allowed between replicas, and so on. Unfortunately,

detailed information about how other systems reconcile their

replicas is difficult to obtain, especially for commercial products.

One contribution of this paper is describing a reconciliation

protocol in detail along with the design decisions that went into

it. In this section, we discuss how other systems’ protocols

compare to Bayou’s based on the sketchy information available.

Grapevine, one of the earliest weakly replicated systems,

propagated updates via electronic mail [2]. Electronic mail is not

completely reliable, however, so the product version of

Grapevine, called Clearinghouse [15], added a background anti-

entropy process in addition to mail delivery. It was later realized

that epidemic style algorithms, like Clearinghouse’s anti-entropy,

could be used by themselves’to fully propagate updates [3]. Pair-

wise reconciliation of replicas is currently used in several systems

besides Bayou, including Notes [IO], Ficus [7], and refdbms,

which uses Golding’s timestamped anti-entropy protocol [4].

Rather than a peer-to-peer model in which any replica can

contact any other replica to reconcile their data, some systems

organize replicas into a hierarchy where a replica only exchanges

updates with its parent or children. Examples of this are the client-

server reconciliation protocols in file systems like Coda [I 1] and

distributed object systems like Rover [9], and also the primary-

secondary or master-snapshot protocols in database management

systems like Oracle [16] and Sybase [5]. Due to their simplified

communication patterns, these systems can more easily maintain

accurate information about the state of the replica(s) with which

they exchange updates. However, update propagation is more

affected by communication outages.

In many systems using lazy replication, the information

exchanged between replicas is based on data objects with

associated update timestamps or version vectors. This is true for

Grapevine [2], Clearinghouse [15], Notes [lo], and Microsoft

Access [LX]. File systems like Coda [lg] and Ficus [7] exchange

updated files between servers or between clients and servers. The

notion of reconciling logs of update operations held at various

replicas, as is done in Bayou via the anti-entropy protocol, has

been discussed for some time in the literature [1, 17, 211 and 1s

used in some commercial database systems [5, 161. Oracle’l, for

instance, uses asynchronous RPCs to propagate transactions

between a master and its snapshots or other masters [16]; it does

not, however, allow these transaction to propagate through

intermediary servers. Rover also uses operations as lhe unit of

reconciliation by queuing RPC invocations that are eventually

applied to the master copy of an object [9].

Systems that propagate updated data objects need an additional

mechanism to handle deleted objects. For example,

Clearinghouse servers maintained and exchanged ‘death

certificates” for deleted objects [3, 151. Protocols have been

devised to decide when replicas can safely discard deleted data

[17]. When update operations rather than data are used for

reconciliation, deletions are handled automatically as just another

type of update operation, and servers can immediately reclaim the

space used by deleted data items.

A goal in the design of Bayou’s anti-entropy protocol was to

ensure that servers can make progress even if the protocol is

disrupted by the loss of a network connection. That is, a server

should be able to use and propagate to other replicas any updates

that it receives even if the protocol does not complctc

successfully. Some systems run their reconciliation process as an

atomic transaction and hence lose the incremental property. Coda

has added a trickle reintegration protocol for use by weakly-

connected clients; while this protocol is atomic, it includes the

notion of a chunk size that can be set to a small value to achieve

incremental reintegration [14]. Also note that systems based on

queued RPCs, such as Oracle, can make incremental progress

since each RPC is generally run as a separate transaction [161.

Techniques for changing the set of replicas vary widely among

systems. In systems with a client-server or primary-secondary

relationship between replicas, new clients or secondaries can

generally be created by simply contacting the primary site, In

peer-to-peer systems, adding or removing replicas often requlrcs

a system administrator and reconciliation’ between replicas,

Golding uses a group membership protocol that requires a new

replica to find some number of sponsor replicas and a rcthing

replica to wait until notice of its retirement reaches all other

replicas [4]. Notes [lo] and Microsoft Access [S], as far as we

can tell, are like Bayou in that they allow replicas to be created

readily from any existing replica, though it does not appear that

300

