Flexible Update
Propagation for Weakly

Consistent Replication

Karin Petersen, Mike K. Spreitzer, Douglas B. Terry, Marvin M. Theimer
and Alan J. Demers

Anti-entropy

® Entropy = disorder

® Anti-entropy = bringing two replicas up-
to-date

® Allow arbitrary pairwise communication

® Question: what updates to propagate in
what order?

Design goals

Arbitrary communication topologies
Operation over low-bandwidth networks
Incremental progress

Eventual consistency

Efficient storage management
Propagation through transportable media

Lightweight replica creation and retirement

Arbitrary policy choices

Basic setup

® Fach replica/server maintains
® Database
® Write log
® Clients read or write from replicas
® Anti-entropy
® one-way operation between two replicas

® through propagation of writes

® write propagation obeys accept-order

Accept order

® FEach write carries an accept stamp =
(Lamport clock, replica-id)

® Accept stamps define a partial order over all
writes by a single server

® Prefix Property: If R has write W __i that was
initially accepted by server X, it has all writes
X accepted before W i

Version vectors

® Prefix property enables compact
representation of a replica’s position

® FEach replica R maintains version vector R.V
such that R.V(X) is largest accept-stamp of
any write accepted by X and known to R

® Replicas use VVs to bring each other up-to-
date

Anti-entropy protocol

anu-cntropy(s R) {
Get R.V from receiving server R
now send all the writes unknown to R
w = first write in S.write-log
WHILE (w) DO
IF R.V(w.server-id) < w.accept-stamp THEN
#w is new for R
SendWrite(R, w)
w = next write in S.write-log
END

} .
Figure 1. Basic anti-entropy executed at server S to update receiving server R

Write stability

® When to apply a write to database and
discard from log? What if long-lost replica
shows up!?

® Need a primary to commit writes

® assigns commit sequence number (CSN)
to writes

® New partial order enforced by (CSN,
accept-stamp) in that order

Propagating committed writes

anti-entropy(S,R) {
Get R.V and R.CSN from receiving server R

X firct cond all tho cnmmittod writoe that R Anoe nnt Innu
1] J.l“ P B WS TITRI TR IR LS FF T &b FTbRD Wil FELFS & » r

F e FiLe LS FR

IF R.CSN < S.CSN THEN
w = first committed write that R does not know about
WHILE (w) DO
IF w.accept-stamp <= R.V(w.server-id) THEN
R has the write, but does not know it is committed
SendCommitNotification(R, w.accept-stamp, w.server-id, w.CSN)
ELSE
SendWrite(R, w)
END
w = next committed write in S.write-log
END
END
w = first tentative write
now send all the tentative writes
WHILE (w) DO
IF R.V(w.server-id) < w.accept-stamp THEN
SendWrnite(R, w)
w = next write in S.write-log
END
}

Figure 2. Anti-entropy with support for committed writes (run at server S to update R)

Write log truncation

Replica S maintains a version vector S.0
representing omitted prefix of write log

S maintains CSN for S.O

If S.OSN > R.CSN, then S has discarded
committed writes R is missing

What to do!?

Full database transfer

anti-entropy{S,R) {
Request R.V and R.CSN from receiving server R
#check if R’s write-log does not include all the necessary writes to only send writes or
commit notifications
IF (S.0SN > R.CSN) THEN
Execute a full database transfer
Roll back S’s database to the state corresponding to 8.0
SendDatabase(R, S.DB)
SendVector(R, S.0) # this will be R’s new R.O vector
SendCSN(R, S.OSN) # R's new R.OSN will now be S.OSN
END
now same algorithm as in Figure 2, send anything that R does not yet know about
IFR.CSN < S.CSN THEN
w = first committed write that R does not yet know about
WHILE (w) DO
IF w.accept-stamp <= R.V(w.server-id) THEN
SendCommitNotification(R, w.accept-stamp, w.server-id, w.CSN)
ELSE
SendWrite(R, w)
END
w = next committed write in S.write-log
END
END
w = first tentative write in S.write-log
WHILE (w) DO
IF R.V(w.server-id) < w.accept-stamp THEN
SendWrite(R, w)
w = next write in S.write-log

}

Figure 3. Anti-entropy with support for write-log truncation (run at server S to update server R)

Consistency

® Causally consistent prefix at any time
® TJotal order enforced by primary
® eventual consistency

® Session guarantees, eg, read your writes,
monotonic reads/writes, writes follow reads
depend on causal prefix property

Replica management

® Need mechanism to

® assign unique id to a replica

® determine replica creation/retirement
® Use writes to create/retire!

® maintains causal prefix property

Replica management

® S icreates itself by sending creation write
to any S_k as <inf,T_{k,i}, S k>, whereT _
{k,i} is accept stamp assigned by S_k

<T {k,i},S k> becomes S i’sid,andT_{k,i}
+1 its initial accept stamp

Creation/retirement propagated just like
regular writes

Features enabled

I~'i.-nl|||'1.=\ Desion Choices I‘E:'I-T{:Ijl:‘liﬂ' UIT:.-:':::'“' I‘n:lr:a:;:.tlium I‘l'd:f|;::::Tllium I {?un:::'fﬁx
- Order Order ’

Arbitrary Communication Topologies

Arbitrary Policy Choices *

Low-bandwidth Metworks g

Incremental Progress o +

Eventual Consistency e

Appressive Storage Management

Use of Transpontable Media *

Light-weight Dvnamic Replica Sels * * *

Per Update Conflict Management +

Session Guarantees

Performance

L
S$8->486, modem, 3000-byte msgs
58->486, modem, 100-byte msgs
' 88-»486, ethemet, 3000-byte msgs
SS5-»486, ethemet, 100-byte msgs
S8->885, ethermnet, 3000-byle msgs
§8->58, ethemet, 100-byte msgs

o] =~ &0 (e}
0o o o Q

<
o

)
Q

N
O

o3
)
=]
o
L&]
3]
(7]
R
4]
E
=
©
3 40
()
e
[-4]
>
3
Yt
i
=
4]
e
=
<

-t
=]

e R

_f__—_.__’____.'——'
0 [] L] ¥) | . 1
0 50 100 150 200 _ 250 300 350 400 450 500
Number of writes propagated

Figure 5. Anti-entropy execution as a function of the number of writes propagated
. (each write corresponds to one mail message)

Performance

. other
At the receiver:
ECWEN apply new writes to database
—— insert new writes in writelog
On the network: ‘
@ RPC marshalling .
= c-mail message related data
Ezzza public key for access control
C— update schema information and padding
Anti-entropy setup:
C—=3 authentication
mmmmm RPC initialization

[
=]
=
o
o
¥}
[]
£
L
E
=
s
2
i
=
(2
&
<
o
o
&
[
t
=
o
D.H
=
=
-

10.6

7.67‘ 7.16 5.0
. = = e £

S5 486 486 486 486 SS 58
Net: modem modem enet enet enet enet
bytes/msg: 3000 100 3000 100 3000 100

Figure 6. Anti-entropy execution time breakdown for the propagation of 100 writes
(standard deviations on all total times are within 2.2% of the reported numbers)

Performance

a, Minimal server IDs b. Maximal server IDs

Anti-entropy time in seconds

L)
n=)
=
g
W
R
)
E
it
>
c.
g
=
o
[]
=
=
<

6 500 1000 1800 R0 00 .pow S5m0 400 4%a 6000 ‘ %0) o2 25
Number ofs?ephcas Number of rezﬁilcas

Figure 8. Anti-entropy execution time for 100 writes as a function of the number of replicas

