
Application Layer 2-1

2. Application Layer

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

 All material copyright 1996-2012
 J.F Kurose and K.W. Ross, All Rights Reserved

Application Layer 2-2

2. Application layer: Outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

§  SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-3

2. Application layer: Goals

our goals:
v  conceptual,

implementation aspects
of network application
protocols
§  transport-layer

service models
§  client-server

paradigm
§  peer-to-peer

paradigm

v  learn about protocols by
examining popular
application-level
protocols
§  HTTP
§  FTP
§  SMTP / POP3 / IMAP
§  DNS

v  creating network
applications
§  socket API

Application Layer 2-4

Some network apps

v  e-mail
v  web
v  text messaging
v  remote login
v  P2P file sharing
v  multi-user network games
v  streaming stored video

(YouTube, Hulu, Netflix)

v  voice over IP (e.g., Skype)
v  real-time video

conferencing
v  social networking
v  search
v  …
v  …

Application Layer 2-5

Creating a network app
write programs that:
v  run on (different) end systems
v  communicate over network
v  e.g., web server software

communicates with browser
software

no need to write software for
network-core devices

v  network-core devices do not
run user applications

v  applications on end systems
allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Application Layer 2-6

Application architectures

possible structure of applications:
v  client-server
v  peer-to-peer (P2P)

Application Layer 2-7

Client-server architecture

server:
v  always-on host
v  permanent IP address
v  data centers for scaling

clients:
v  initiate communication to

server
v  intermittently connected
v  may have dynamic IP

addresses
v  do not communicate directly

with each other

client/server

Application Layer 2-8

P2P architecture
v  no always-on server
v  peers request service from

other peers, provide service
in return to other peers
§  self scalability – new

peers bring new service
capacity, as well as new
service demands

v  peers are intermittently
connected and change IP
addresses
§  complex management

peer-peer

Application Layer 2-9

Processes communicating

process: program running
within a host

v  within same host, two
processes communicate
using inter-process
communication (defined by
OS)

v  processes in different hosts
communicate by exchanging
messages

client process: process that
initiates communication

server process: process that
waits to be contacted

v  aside: even P2P applications
have client processes &
server processes

clients, servers

Application Layer 2-10

Sockets
v  process sends/receives messages to/from its socket
v  socket analogous to a dropbox at door

§  sending process shoves message into dropbox
§  sending process relies on transport to deliver message to

dropbox at receiving process

Internet

controlled
by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Application Layer 2-11

Addressing processes
v  to receive messages,

process must have identifier
v  host device has unique 32-

bit IP address
v  Q: does IP address of host

on which process runs
suffice for identifying the
process?

v  identifier includes both IP
address and port numbers
associated with process on
host.

v  example port numbers:
§  HTTP server: 80
§  mail server: 25

v  to send HTTP message to
www.cs.umass.edu web
server:
§  IP address: 128.119.240.84
§  port number: 80

v  more shortly…

§  A: no, many processes
can be running on same
host

Application Layer 2-12

App-layer protocol defines
v  types of messages

exchanged,
§  e.g., request, response

v  message syntax:
§  what fields in messages

& how fields are
delineated

v  message semantics
§  meaning of information

in fields
v  rules for when and how

processes send & respond
to messages

open protocols:
v  defined in RFCs
v  allows for interoperability
v  e.g., HTTP, SMTP
proprietary protocols:
v  e.g., Skype

Application Layer 2-13

What transport service does an app need?
data integrity
v  some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

v  other apps (e.g., audio) can
tolerate some loss

timing
v  some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

throughput
v  some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

v  other apps (“elastic apps”)
make use of whatever
throughput they get

security
v  encryption, data integrity,

…

Application Layer 2-14

Transport service requirements: common apps

application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

time sensitive

no
no
no
yes, 100’s
msec

yes, few secs
yes and no,
100s msec

Application Layer 2-15

Common Internet transport services

TCP service:
v  reliable transport between

sending and receiving
process

v  flow control: sender won’t
overwhelm receiver

v  congestion control: throttle
sender when network
overloaded

v  does not provide: timing,
minimum throughput
guarantee, security

v  connection-oriented: setup
required between client and
server processes

UDP service:
v  unreliable data transfer

between sending and
receiving process

v  does not provide:
reliability, flow control,
congestion control,
timing, throughput
guarantee, security,
orconnection setup,

Q: why bother? Why is
there a UDP?

Application Layer 2-16

Internet apps: application, transport protocols

application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

Q: Why might skype use TCP?

Securing TCP

TCP & UDP
v  no encryption
v  cleartext passwds sent

into socket traverse
Internet in cleartext

SSL
v  provides encrypted

TCP connection
v  data integrity
v  end-point

authentication

SSL is at app layer
v  Apps use SSL libraries,

which “talk” to TCP
SSL socket API
v  cleartext passwds sent

into socket encrypted
before transmission

v  See Chapter 7

Application Layer 2-17

Q1: TCP vs. UDP

v  Which of the following is true?
A.  FTP uses UDP
B.  HTTP uses UDP
C.  UDP ensures in-order delivery but not reliability
D.  HTTP uses TCP

Application Layer 2-18

Q2 Endpoint process identifier

v  A network application process is identified
uniquely by which of the following?

A.  IP address
B.  IP address, port
C.  IP address, port, MAC address
D.  domain name

Application Layer 2-19

Q3 Transport

v  Pick the true statement
A.  TCP provides reliability and guarantees a

minimum bandwidth.
B.  TCP provides reliability while UDP provides

bandwidth guarantees.
C.  TCP provides reliability while UDP does not.
D.  Neither TCP nor UDP provide reliability.

Application Layer 2-20

Q4 HTTP

v  Persistent HTTP fetches multiple web objects
over a single TCP connection while non-
persistent HTTP uses a separate TCP connection
for each object. True/false?

A.  True
B.  False

Application Layer 2-21

Application Layer 2-22

2. Application layer: Outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

§  SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-23

Web and HTTP

First, a review…
v  web page consists of objects
v  object can be HTML file, JPEG image, Java applet,

audio file,…
v  web page consists of base HTML-file which

includes several referenced objects
v  each object is addressable by a URL, e.g.,
 www.someschool.edu/someDept/pic.gif

host name path name

Application Layer 2-24

HTTP overview

HTTP: hypertext
transfer protocol

v  Web’s application layer
protocol

v  client/server model
§  client: browser that

requests, receives,
(using HTTP protocol)
and “displays” Web
objects

§  server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running
Firefox browser

server
running

Apache Web
server

iphone running
Safari browser

Application Layer 2-25

HTTP overview (continued)

uses TCP:
v  client initiates TCP

connection (creates socket)
to server, port 80

v  server accepts TCP
connection from client

v  HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

v  TCP connection closed

HTTP is “stateless”
v  server maintains no

information about
past client requests
§  cookies an exception

protocols that maintain
“state” are complex!

v  past history (state) must be
maintained

v  if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

Application Layer 2-26

HTTP connections

non-persistent HTTP
v  at most one object

sent over TCP
connection
§  connection then

closed
v  downloading multiple

objects required
multiple connections

persistent HTTP
v  multiple objects can

be sent over single
TCP connection
between client, server

Application Layer 2-27

Non-persistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

2. HTTP client sends HTTP request
message (containing URL) into
TCP connection socket.
Message indicates that client
wants object someDepartment/
home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into
its socket

time

(contains text,
references to 10

jpeg images)
www.someSchool.edu/someDepartment/home.index

Application Layer 2-28

Non-persistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. HTTP server closes TCP
connection.

time

Application Layer 2-29

Non-persistent HTTP: response time

RTT (definition): time for a
small packet to travel from
client to server and back

HTTP response time:
v  one RTT to initiate TCP

connection
v  one RTT for HTTP request

and first few bytes of HTTP
response to return

v  file transmission time
v  non-persistent HTTP

response time =
 2RTT+ file transmission

time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Application Layer 2-30

Persistent HTTP

non-persistent HTTP issues:
v  requires 2 RTTs per object
v  OS overhead for each TCP

connection
v  browsers often open

parallel TCP connections
to fetch referenced objects

persistent HTTP:
v  server leaves connection

open after sending
response

v  subsequent HTTP
messages between same
client/server sent over
open connection

v  client sends requests as
soon as it encounters a
referenced object

v  as little as one RTT for all
the referenced objects

Application Layer 2-31

HTTP request message

v  two types of HTTP messages: request, response
v  HTTP request message:

§  ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
 lines

carriage return,
line feed at start
of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

Application Layer 2-32

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lf version URL

cr lf value header field name

cr lf value header field name

~ ~ ~ ~

cr lf

entity body ~ ~ ~ ~

Application Layer 2-33

Uploading form input

POST method:
v  web page often includes

form input
v  input is uploaded to

server in entity body

URL method:
v  uses GET method
v  input is uploaded in URL

field of request line:
 www.somesite.com/animalsearch?monkeys&banana

Application Layer 2-34

Method types

HTTP/1.0:
v  GET
v  POST
v  HEAD

§  asks server to leave
requested object out
of response

HTTP/1.1:
v  GET, POST, HEAD
v  PUT

§  uploads file in entity
body to path specified
in URL field

v  DELETE
§  deletes file specified in

the URL field

Application Layer 2-35

HTTP response message

status line
(protocol
status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT

\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html;

charset=ISO-8859-1\r\n
\r\n
data data data data data ...

Application Layer 2-36

HTTP response status codes

200 OK
§  request succeeded, requested object later in this msg

301 Moved Permanently
§  requested object moved, new location specified later in this msg

(Location:)

400 Bad Request
§  request msg not understood by server

404 Not Found
§  requested document not found on this server

505 HTTP Version Not Supported

v  status code appears in 1st line in server-to-
client response message.

v  some sample codes:

Application Layer 2-37

Trying out HTTP (client side) for yourself
1. Telnet to your favorite Web server:

opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
anything typed in sent
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. type in a GET HTTP request:

GET /~ross/ HTTP/1.1
Host: cis.poly.edu

by typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)

Application Layer 2-38

User-server state: cookies

many Web sites use cookies
four components:

1) cookie header line of
HTTP response
message

2) cookie header line in
next HTTP request
message

3) cookie file kept on
user’s host, managed
by user’s browser

4) back-end database at
Web site

example:
v  Susan always access Internet

from her PC
v  visits specific e-commerce

site for first time
v  when initial HTTP requests

arrives at site, site creates:
§  unique ID
§  entry in backend

database for ID
v  subsequent HTTP requests

carry cookie

Application Layer 2-39

Cookies: keeping “state” (cont.)
client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
 entry

usual http response
set-cookie: 1678 ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

Application Layer 2-40

Cookies (continued)
cookies uses:
v  authorization
v  shopping carts
v  recommendations
v  user session state (Web

e-mail)

cookies and privacy:
v  cookies permit sites to

learn a lot about you
v  you may supply name and

e-mail to sites

aside

“stateful” protocols:
v  protocol endpoints maintain state at

sender/receiver over multiple transactions
v  cookies in http messages carry state

Application Layer 2-41

Web caches (proxy server)

v  user sets browser: Web
accesses via cache

v  browser sends all HTTP
requests to cache
§  if object in cache:

cache returns object
§  else cache requests

object from origin
server, then returns
object to client

goal: satisfy client request without involving origin server

client

proxy
server

client origin
server

origin
server

Application Layer 2-42

More about Web caching

v  cache acts as both
client and server
§  server for original

requesting client
§  client to origin server

v  typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?
1.  reduce response time

for client request
2.  reduce traffic on an

institution’s access link
3.  reduce server load (as

does P2P file sharing)

Application Layer 2-43

Caching example:

origin
servers

public
 Internet

institutional
network

1 Gbps LAN

1.54 Mbps
access link

assumptions:
v  avg object size: S=100K bits
v  avg request rate from browsers to origin

servers: A=15/sec
v  avg data rate to browsers: R=1.50 Mbps
v  access link rate: C=1.54 Mbps
v  RTT from institutional router to any

origin server: T=200 ms

consequences:
v  LAN utilization: 0.15%
v  access link utilization ≈ 99%
v  total delay = Internet delay + access

delay + LAN delay
 = 200 ms + ≈minutes + μsecs

problem!

Application Layer 2-44

assumptions:
v  avg object size: S=100K bits
v  avg request rate from browsers to

origin servers: A=15/sec
v  avg data rate to browsers: R=1.50 Mbps
v  access link rate: C=1.54 Mbps
v  RTT from institutional router to any

origin server: T=200 ms

consequences:
v  LAN utilization: 0.15% (as before)
v  access link utilization = 99%
v  total delay = Internet delay + access delay

+ LAN delay
 = 200 ms + ≈minutes + usecs

Caching example: fatter access link

origin
servers

1.54 Mbps
access link

154 Mbps

154 Mbps

≈ms

Cost: increased access link speed (not cheap!)

9.9%

public
 Internet

institutional
network

1 Gbps LAN

institutional
network

1 Gbps LAN

Application Layer 2-45

Caching example: install local cache

origin
servers

1.54 Mbps
access link

local web
cache

assumptions:
v  avg object size: S=100K bits
v  avg request rate from browsers to origin

servers: A=15/sec
v  avg data rate to browsers: R=1.50 Mbps
v  access link rate: C=1.54 Mbps
v  RTT from institutional router to any

origin server: T=200 ms

consequences:
v  LAN utilization: 0.15% (as before)
v  access link utilization = 100%
v  total delay = Internet delay + access delay +

LAN delay
 = 2 sec + minutes + usecs

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public
 Internet

institutional
network

1 Gbps LAN

Application Layer 2-46

Caching example: install local cache

origin
servers

1.54 Mbps
access link

local
web

cache

assumptions:
v  avg object size: S=100K bits
v  avg request rate from browsers to origin

servers: A=15/sec
v  avg data rate to browsers: R=1.50 Mbps
v  access link rate: C=1.54 Mbps
v  RTT from institutional router to any

origin server: T=200 ms public
 Internet

Application Layer 2-47

Caching example: install local cache
Calculating access link

utilization, delay with cache:
v suppose cache hit rate is 0.4

§  p=40% requests satisfied at cache,
60% (=1-p) satisfied at origin

origin
servers

1.54 Mbps
access link

v access link utilization:
§  60% of request data rate

v  data rate to browsers over access link
 = pR = 0.6*1.50 Mbps = .9 Mbps
§  utilization u = pR/C = 0.9/1.54 = 0.58
§  transmission delay d = S/C = 0.067s
§  queuing delay q = (S/C)/(1-u) = 0.16s

v total delay
§  (1-p)*miss_delay + p*hit_delay
§  = (1-p) * (delay from origin servers) + p

* (delay when satisfied at cache)
§  = (1-p)*(T+d+q) + p*(?)
§  = 0.6 (0.2 + 0.067 + 0.16) + 0.4 (≈μs)

§  = ≈250ms

public
 Internet

institutional
network

1 Gbps LAN
local web

cache

Benefit: Lower latency without costly upgrade!

Application Layer 2-48

Conditional GET

v  Goal: don’t send object if
cache has up-to-date
cached version
§  no object transmission

delay
§  lower link utilization

v  cache: specify date of
cached copy in HTTP
request
If-modified-since:
<date>

v  server: response contains
no object if cached copy
is up-to-date:
HTTP/1.0 304 Not
Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

Q1: HTTP conn. persistence

v  Which of the following is true about persistent
HTTP compared to non-persistent HTTP
A.  Persistent HTTP improves throughput using more

connections.
B.  Persistent HTTP improves download time by

reducing the number of connection setup round trips
C.  Persistent HTTP improves throughput by sending

fewer HTTP requests.
D.  Persistent HTTP improves download time by sending

fewer HTTP requests.

Application Layer 2-49

Q2: HTTP conn. persistence

v  Among the following, in which case would you get
the greatest improvement in performance with
persistent HTTP compared to non-persistent?
A.  Low capacity (bits/sec) network paths
B.  High capacity network paths
C.  Long-distance network paths
D.  High capacity, short-distance network paths
E.  High capacity, long-distance network paths

Application Layer 2-50

Q3: Web caching

v  If the cache captured a fraction
p=0.3 of requests, what is the
average delay contributed by
transmission delays alone (i.e., no
queuing) for each object? Ignore
LAN transmission delays.
A.  S/C
B.  pS/C
C.  (1-p)S/C
D.  (p + AS/C)(S/C)
E.  (1-p)(AS/C)(S/C)

Application Layer 2-51

institutional
network

1 Gbps LAN

1.54 Mbps
access link

local
web

cache

public
 Internet

assumptions:

v  avg object size: S=100K bits
v  avg request rate from browsers

to origin servers: A=15/sec
v  access link rate: C=1.54 Mbps
v  RTT from institutional router

to any origin server: T=200 ms

Q4 HTTP download time

v  Consider a web page with a base file of size S0
bits and N inline objects each of size S bits being
downloaded by a client over a link of capacity C
bits/sec and RTT T. How much time is saved by
using persistent HTTP compared to non-
persistent assuming requests for all inline objects
are sent in a pipelined manner?

A.  T
B.  T(2N-1)
C.  NT + S/C
D.  T + NS/C
E.  T(N-1)

Application Layer 2-52

Q5 HTTP download time

v  Consider a web page with a base file of size S0
bits and N inline objects each of size S bits being
downloaded by a client over a link of capacity C
bits/sec and RTT T. How much time is saved by
using persistent HTTP compared to non-
persistent assuming requests for all inline objects
are sent in a sequential manner, i.e., a request for
the next object is sent after the previous object
has been completely received?

A.  T
B.  NT
C.  (2N-1)T
D.  2NT Application Layer 2-53

Q6 HTTP download time

v  Consider a web page with a base file of size S0
bits and N inline objects each of size S bits being
downloaded by a client over a link of capacity C
bits/sec and RTT T bits/sec and RTT T. How
much time will persistent HTTP (with pipelined
requests) take if it used two parallel connections?
Assume both connections are set up in parallel at
the start, they share the available capacity equally,
and inline objects are equally split across them.

A.  (2T+S0) + T + NS/C
B.  (2T+S0) + NT + NS/C
C.  (2T+S0) + NS/C

Application Layer 2-54

Application Layer 2-55

2. Application layer: Outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

§  SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-56

FTP: the file transfer protocol
file transfer

FTP
server

FTP
user

interface
FTP
client

local file
system

remote file
system

user
at host

v  transfer file to/from remote host
v  client/server model

§  client: side that initiates transfer (either to/from remote)
§  server: remote host

v  ftp: RFC 959
v  ftp server: port 21

Application Layer 2-57

FTP: separate control, data connections

v  FTP client contacts FTP server
at port 21, using TCP

v  client authorized over control
connection

v  client browses remote
directory, sends commands
over control connection

v  when server receives file
transfer command, server
opens 2nd TCP data
connection (for file) to client

v  after transferring one file,
server closes data connection

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

v  server opens another TCP
data connection to transfer
another file

v  control connection: “out of
band”

v  FTP server maintains
“state”: current directory,
earlier authentication

Application Layer 2-58

FTP commands, responses
sample commands:
v  sent as ASCII text over

control channel
v  USER username
v  PASS password
v  LIST return list of file in

current directory
v  RETR filename

retrieves (gets) file
v  STOR filename stores

(puts) file onto remote
host

sample return codes
v  status code and phrase (as

in HTTP)
v  331 Username OK,
password required

v  125 data
connection
already open;
transfer starting

v  425 Can’t open
data connection

v  452 Error writing
file

Application Layer 2-59

2. Application layer: Outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

§  SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-60

Electronic mail
Three major components:
v  user agents
v  mail servers
v  simple mail transfer

protocol: SMTP

User Agent
v  a.k.a. “mail reader”
v  composing, editing, reading

mail messages
v  e.g., Outlook, Thunderbird,

iPhone mail client
v  outgoing, incoming

messages stored on server

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer 2-61

Electronic mail: mail servers

mail servers:
v  mailbox contains incoming

messages for user
v  message queue of outgoing

(to be sent) mail messages
v  SMTP protocol between mail

servers to send email
messages
§  client: sending mail

server
§  “server”: receiving mail

server

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer 2-62

Electronic Mail: SMTP [RFC 2821]

v  uses TCP to reliably transfer email message from
client to server, port 25

v  three phases of transfer
§  handshaking (greeting)
§  transfer of messages
§  closure

v  command/response interaction (like HTTP, FTP)
§  commands: ASCII text
§  response: status code and phrase

v  messages must be in 7-bit ASCI

Application Layer 2-63

user
agent

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message to
her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

mail
server

mail
server

1
2 3 4

5
6

Alice’s mail server Bob’s mail server

user
agent

Application Layer 2-64

Sample SMTP interaction
 S: 220 hamburger.edu
 C: HELO crepes.fr
 S: 250 Hello crepes.fr, pleased to meet you
 C: MAIL FROM: <alice@crepes.fr>
 S: 250 alice@crepes.fr... Sender ok
 C: RCPT TO: <bob@hamburger.edu>
 S: 250 bob@hamburger.edu ... Recipient ok
 C: DATA
 S: 354 Enter mail, end with "." on a line by itself
 C: Do you like ketchup?
 C: How about pickles?
 C: .
 S: 250 Message accepted for delivery
 C: QUIT
 S: 221 hamburger.edu closing connection

Application Layer 2-65

Try SMTP interaction for yourself:

v  telnet servername 25
v  see 220 reply from server
v  enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands

above lets you send email without using email client (reader)

Application Layer 2-66

SMTP vs HTTP

SMTP
v  persistent connections
v  7-bit ASCII request/

response + status codes
v  CRLF.CRLF for end of

message
v  Push
v  Multiple objects sent in

multipart message

HTTP
v  persistent or non-persistent

v  ASCII request/response +
status codes

v  CRLF or CRLFCRLF for
end of message

v  Pull
v  Single object encapsulated in

its own response message

Application Layer 2-67

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

v  header lines, e.g.,
§  To:
§  From:
§  Subject:
different from SMTP MAIL

FROM, RCPT TO:
commands!

v  Body: the “message”
§  ASCII characters only

header

body

blank
line

Application Layer 2-68

Mail access protocols

v  SMTP: delivery/storage to receiver’s server
v  mail access protocol: retrieval from server

§  POP: Post Office Protocol [RFC 1939]: authorization,
download

§  IMAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored msgs on
server

§  HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
 IMAP)

user
agent

user
agent

Application Layer 2-69

POP3 protocol

authorization phase
v  client commands:

§  user: declare username
§  pass: password

v  server responses
§  +OK
§  -ERR

transaction phase, client:
v  list: list message numbers
v  retr: retrieve message by

number
v  dele: delete
v  quit

 C: list
 S: 1 498
 S: 2 912
 S: .
 C: retr 1
 S: <message 1 contents>
 S: .
 C: dele 1
 C: retr 2
 S: <message 1 contents>
 S: .
 C: dele 2
 C: quit
 S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

Application Layer 2-70

POP3 (more) and IMAP
more about POP3
v  previous example uses

POP3 “download and
delete” mode
§  Bob cannot re-read e-

mail if he changes
client

v  POP3 “download-and-
keep”: copies of messages
on different clients

v  POP3 is stateless across
sessions

IMAP
v  keeps all messages in one

place: at server
v  allows user to organize

messages in folders
v  keeps user state across

sessions:
§  names of folders and

mappings between
message IDs and folder
name

Application Layer 2-71

2. Application layer: Outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

§  SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Domain Name System:
v  distributed database

implemented in hierarchy of
many name servers

v  application-layer protocol: hosts,
name servers communicate to
resolve names à addresses
§  note: core Internet function,

implemented as application-
layer protocol

§  complexity at network’s
“edge”

Application Layer 2-72

DNS: domain name system

people: many identifiers:
§  SSN, name, passport #

Internet hosts, routers:
§  IP address (32 bit) -

used for addressing
datagrams

§  “name”, e.g.,
www.yahoo.com -
used by humans

Q: how to map between IP
address and name, and
vice versa ?

Application Layer 2-73

DNS: services, structure
why not centralize DNS?
v  single point of failure
v  traffic volume
v  distant centralized database
v  maintenance

DNS services
v  Resolution

§  hostname à IP address

v  Aliasing
§  canonical, alias names
§  mail server aliasing

v  Load balancing with
replicated web servers:
§  many IP addresses

correspond to one name

A: doesn’t scale!

Application Layer 2-74

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers yahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx:
v  client queries root server to find .com TLD DNS server
v  client queries .com TLD DNS server for amazon.com auth server
v  client queries amazon.com DNS auth server to get IP address for

www.amazon.com

… … Top-level domain servers

Authoritative name servers

Application Layer 2-75

DNS: root name servers
v  contacted when no info about top-level or auth server
v  root name server can:

§  return top-level or auth name server address
§  or contact auth server and return final resolved address

 13 root name
“servers”
worldwide

a. Verisign, Los Angeles CA
 (5 other sites)
b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA
 (41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

Application Layer 2-76

TLD, authoritative servers

top-level domain (TLD) servers:
§  responsible for com, org, net, edu, aero, jobs, museums,

and all top-level country domains, e.g.: uk, fr, ca, jp
§  Network Solutions maintains servers for .com TLD
§  Educause for .edu TLD

authoritative DNS servers:
§  organization’s own DNS server(s), providing authoritative

hostname to IP mappings for organization’s named hosts
§  can be maintained by organization or service provider

Application Layer 2-77

Local DNS name server

v  does not strictly belong to hierarchy
v  deployed by ISP (residential, company, university)

§  also called “default name server”
v  acts as proxy between host and DNS hierarchy

§  has local cache of recent name-to-address translation
pairs (but may be out of date!)

Application Layer 2-78

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4
5

6

authoritative DNS server
dns.cs.umass.edu

7 8

TLD DNS server

DNS name
resolution example

v  host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
v  contacted server

replies with name of
server to contact

v  “I don’t know this
name, but ask this
server”

Application Layer 2-79

4 5

6
3

recursive query:
v  puts burden of name

resolution on
contacted name
server

v  heavy load at upper
levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server
dns.cs.umass.edu

8

DNS name
resolution example

TLD DNS
server

Application Layer 2-80

DNS: caching, updating records

v  any name server can cache learned mappings
§  cache entries timeout (disappear) after some time (TTL)
§  TLD servers typically cached in local name servers, so

root name servers not often visited
v  cached entries may be out-of-date (best effort

name-to-address translation!)
§  if name host changes IP address, may not be known

Internet-wide until all TTLs expire
v  update/notify mechanisms proposed IETF standard

§  RFC 2136

Application Layer 2-81

DNS records

DNS: distributed db storing resource records (RR)

type=NS
§  name is domain (e.g.,

foo.com)
§  value is hostname of

authoritative name
server for this domain

RR format: (name, value, type, ttl)

type=A
§  name is hostname
§  value is IP address

type=CNAME
§  name is alias name for some

“canonical” (the real) name
§  www.ibm.com is really
 servereast.backup2.ibm.com

§  value is canonical name

type=MX
§  value is name of mailserver

associated with name

Application Layer 2-82

DNS protocol, messages
v  query and reply messages, both with same message

format

msg header
v  identification: 16 bit # for

query, reply to query uses
same #

v  flags:
§  query or reply
§  recursion desired
§  recursion available
§  reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs # authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

Application Layer 2-83

name, type fields
 for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification flags

questions

questions (variable # of questions)

additional RRs # authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

DNS protocol, messages

2 bytes 2 bytes

Application Layer 2-84

Inserting records into DNS

v  example: new startup “Network Utopia”
v  register name networkuptopia.com at DNS registrar

(e.g., Network Solutions)
§  provide names, IP addresses of authoritative name server

(primary and secondary)
§  registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)

 (dns1.networkutopia.com, 212.212.212.1, A)
v  create authoritative server type A record for

www.networkuptopia.com; type MX record for
networkutopia.com

Attacking DNS

DDoS attacks
v  Bombard root servers

with traffic
§  Not successful to date
§  Traffic Filtering
§  Local DNS servers

cache IPs of TLD
servers, bypassing root

v  Bombard TLD servers
§  Potentially more

dangerous

Redirect attacks
v  Man-in-middle

§  Intercept queries
v  DNS poisoning

§  Send bogus replies to
DNS server that caches

Exploit DNS for DDoS
v  Send queries with

spoofed source
address: target IP

v  Requires amplification

Application Layer 2-85

Q1: HTTP vs. FTP

v  Which of the following is not true?
A.  HTTP and FTP are client-server protocols
B.  HTTP separates control and data across two

connections while FTP does not
C.  FTP separates control and data across two

connections while HTTP does not
D.  Both HTTP and FTP use multiple connections to

complete typical user operations
E.  Both HTTP and FTP allow clients to upload

(send) as well as download (receive) data

Application Layer 2-86

Q2: HTTP vs SMTP

v  Which of the following is not true?
A.  HTTP is pull-based, SMTP is push-based
B.  HTTP uses a separate header for each object,

SMTP uses a multipart message format
C.  SMTP uses persistent connections
D.  HTTP uses client-server communication but

SMTP does not

Application Layer 2-87

Q3: Mail agent protocols

v  Which of the following is not a difference
between POP3 and IMAP?

A.  Session state maintenance
B.  Folders
C.  Use of TCP

Application Layer 2-88

Q4: DNS

v  Which one of the following pairs are respectively
maintained by the client-side ISP and the domain
name owner?
A.  Local, Authoritative
B.  Root, Top-level domain
C.  Root, Local
D.  Top-level domain, authoritative
E.  Authoritative, Top-level domain

Application Layer 2-89

Application Layer 2-90

2. Application layer: Outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

§  SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-91

P2P architecture
v  no always-on server
v  arbitrary host-host

communication
v  intermittent connectivity

with changing IP addresses

examples:
§  file distribution

(BitTorrent)
§  Streaming (KanKan)
§  VoIP (Skype)

Application Layer 2-92

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?
§  peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
 bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacity u2 d2

u1 d1

di

ui

Application Layer 2-93

File distribution time: client-server

v  server transmission: must
sequentially send (upload) N
file copies:
§  time to send one copy: F/us
§  time to send N copies: NF/us

increases linearly in N

time to distribute F
to N clients using

client-server approach
 Dcs ≥ max{NF/us,,F/dmin}

v  client: each client must
download file copy
§  dmin = min client download rate
§  min client download time: F/dmin

us

network
di

ui

F

Application Layer 2-94

File distribution time: P2P

v  server transmission: must
upload at least one copy
§  time to send one copy: F/us

time to distribute F
to N clients using

P2P approach

us

network
di

ui

F

 DP2P ≥ max{F/us,,F/dmin,,NF/(us + Σui)}

v  client: each client must
download file copy
§  min client download time: F/dmin

v  clients: as aggregate must download NF bits
§  max upload rate (limting max download rate) is us + Σui

… but so does this, as each peer brings service capacity
increases linearly in N …

Application Layer 2-95

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

P2P: BitTorrent and precursors

Application Layer 2-96

Application Layer 2-97

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

v  file divided into 256Kb chunks
v  peers in torrent send/receive file chunks

… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

Application Layer 2-98

v  peer joining torrent:
§  has no chunks, but will

accumulate them over time
from other peers

§  registers with tracker to get
list of peers, connects to
subset of peers (“neighbors”)

P2P file distribution: BitTorrent

v  while downloading, peer uploads chunks to other peers
v  peer may change peers with whom it exchanges chunks
v  churn: peers may come and go
v  once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

Application Layer 2-99

BitTorrent: requesting, sending file chunks

requesting chunks:
v  at any given time, different

peers have different chunks
v  periodically, Alice asks each

peer for their list of chunks
v  Alice seeks missing chunks

from peers, rarest first

sending chunks: tit-for-tat
v  Alice sends chunks to those

four peers currently sending her
chunks at highest rate
§  other peers are choked by Alice

(do not receive chunks from her)
§  re-evaluate top 4 every10 secs

v  every 30 secs: randomly select
another peer, start sending
§  “optimistically unchoke” this peer
§  newly chosen peer may join top 4

Application Layer 2-100

BitTorrent: tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better
trading partners, get file faster !

Distributed Hash Table (DHT)

Application Layer 2-101

Distributed Hash Table (DHT)

v DHT: a distributed P2P database
v database has (key, value) pairs; examples:

§  key: ss number; value: human name
§  key: movie title; value: peer IP address

v Distribute the (key, value) pairs over the
(millions of peers)

v a peer queries DHT with key
§ DHT returns values that match the key

v peers can also insert (key, value) pairs
Application 2-102

Q: how to assign keys to peers?

v central issue:
§  assigning (key, value) pairs to peers.

v basic idea:
§  convert each key to an integer
§  assign integer to each peer
§  put (key,value) pair in the peer that is closest

to the key

Application 2-103

DHT identifiers

v assign n-bit integer identifier to each peer in
range [0,2n-1] for some n.

v require each key to be an integer in same range
v to get integer key, hash original key, e.g., key =

hash(“Led Zeppelin IV”)

Application 2-104

0
1

2n-1

peer1_IP

peer23_IP

Hey Jude

Back to Black

Assign keys to peers

v rule: assign key to the peer that has the
closest ID.

v convention: closest is the immediate
successor of the key if no peer exists

v e.g., n=4; peers: 1,3,4,5,8,10,12,14;
§  key = 13, then successor peer = 14
§  key = 15, then successor peer = 1

Application 2-105

1

3

4

5

8
10

12

15

Simplistic circular DHT

v  “Overlay” network where each peer only aware of
immediate successor and predecessor.

Application 2-106

0001

0011

0100

0101

1000
1010

1100

1111

Who’s responsible
for key 1111 ? I am

O(N) messages
on avgerage to resolve
query, when there
are N peers

1111

1111

1111

1111

1111

1111

Define closest
as closest
successor

Application 2-107

Simplistic circular DHT

Circular DHT with shortcuts

v  each peer keeps track of IP addresses of predecessor,
successor, short cuts.

v  reduced from 6 to 2 messages.
v  possible to design shortcuts so O(log N) neighbors, O(log N)

messages in query

1

3

4

5

8
10

12

15

Who’s responsible
for key 1111?

Application 2-108

Peer churn

example: peer 5 abruptly leaves
v peer 4 detects peer 5 departure; makes 8 its immediate
successor; asks 8 who its immediate successor is; makes
8’s immediate successor its second successor.
v what if peer 13 wants to join?

1

3

4

5

8
10

12

15

handling peer churn:
v each peer knows address of its
two successors
v each peer periodically pings its
two successors to check aliveness
v if immediate successor leaves,
choose next successor as new
immediate successor

Application 2-109

Q1: What protocol?

v When your mail client contacts a mail
server like “mail.cs.umass.edu”, what does
it use to infer the address of this server?
A.  IMAP
B.  SMTP
C.  POP3
D.  DNS
E.  HTTP

2: Application Layer 110

Q2: What protocol?

v What transport protocol does DNS use for
requests and responses?
A.  TCP
B.  UDP
C.  HTTP

2: Application Layer 111

Q3: P2P

v  BitTorrent is typically used as a hybrid P2P
+ client-server system.
A.  True
B.  False

2: Application Layer 112

Q4: P2P

v  BitTorrent uses tit-for-tat in each round to
A.  Determine which chunks to download
B.  Determine from which peers to download

chunks
C.  Determine to which peers to upload chunks
D.  Determine which peers to report to the tracker

as uncooperative
E.  Determine whether or how long it should stay

after completing download

2: Application Layer 113

Q5: Ideal P2P

v With a server of upload capacity C and K
clients with uniform upload capacity U and
uniform download capacity D, how much time
does it take for an ideal P2P system to
transmit a file of size S to all K clients?
A.  max(S/D, S/C, KS/(C+KD))
B.  KS/C
C.  min(S/C, S/U, S/D)
D.  max(S/C, S/D, S/(C/K+U))
E.  KS/(C+KD+KU)

2: Application Layer 114

Q6: DHT

v Which of the following is not true?
A.  DHTs distribute portions of a hash table across

peers.
B.  The key corresponding to an object (e.g., movie)

depends on the current number of peers.
C.  Which peer is responsible for an object

depends on the current number of peers.

2: Application Layer 115

Q7: DHT
v  In a circular DHT with N peers and M

objects where each peer maintains a pointer
only to its immediate neighbors, the arrival
or departure of a single peer
A.  Causes a constant number of peers to update a

constant amount of routing information
B.  Causes O(N) peers to update a constant amount

of routing information
C.  Causes O(N) peers to update O(M) routing

information
D.  Causes a constant number of peers to update

O(M) routing information
2: Application Layer 116

Application Layer 2-1
17

2. Application layer: Outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

§  SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-118

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: dropbox between application process and end-
end-transport protocol

Internet

controlled
by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Application Layer 2-119

Socket programming

Two socket types for two transport services:
§  UDP: unreliable datagram
§  TCP: reliable, byte stream-oriented

Application Example:
1.  Client reads a line of characters (data) from its

keyboard and sends the data to the server.
2.  The server receives the data and converts

characters to uppercase.
3.  The server sends the modified data to the client.
4.  The client receives the modified data and displays

the line on its screen.

Application Layer 2-120

Socket programming with UDP

UDP: no “connection” between client & server
v  no handshaking before sending data
v  sender explicitly attaches IP destination address and

port # to each packet
v  rcvr extracts sender IP address and port# from

received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
v UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
 clientSocket =
DatagramSocket()

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
DatagramSocket(x)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

Application 2-121

server (running on serverIP) client

Application Layer 2-122

import java.io.*;
import java.net.*;

class UDPClient {
 public static void main(String args[]) throws Exception
 {

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 DatagramSocket clientSocket = new DatagramSocket();

 InetAddress IPAddress = InetAddress.getByName("hostname");

 byte[] sendData = new byte[1024];
 byte[] receiveData = new byte[1024];

 String sentence = inFromUser.readLine();

 sendData = sentence.getBytes();

create
input stream

create
client socket

translate
 hostname to IP
addr using DNS

Example: Java client (UDP)

Application Layer 2-123

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length,
 IPAddress, 9876);

 clientSocket.send(sendPacket);

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 clientSocket.receive(receivePacket);

 String modifiedSentence =
 new String(receivePacket.getData());

 System.out.println("FROM SERVER:" + modifiedSentence);
 clientSocket.close();
 }

}

create datagram with
data-to-send,

length, IP addr, port

send datagram
to server

read datagram
from server

Example: Java client (UDP)

Application Layer 2-124

import java.io.*;
import java.net.*;

class UDPServer {
 public static void main(String args[]) throws Exception
 {

 DatagramSocket serverSocket = new DatagramSocket(9876);

 byte[] receiveData = new byte[1024];
 byte[] sendData = new byte[1024];

 while(true)
 {

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 serverSocket.receive(receivePacket);

create
datagram socket

at port 9876

create space for
received datagram

receive
datagram

Example: Java server (UDP)

Application Layer 2-125

 String sentence = new String(receivePacket.getData());

 InetAddress IPAddress = receivePacket.getAddress();

 int port = receivePacket.getPort();

 String capitalizedSentence = sentence.toUpperCase();

 sendData = capitalizedSentence.getBytes();

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress,
 port);

 serverSocket.send(sendPacket);
 }
 }

}

get IP addr
port #, of

sender

write out
datagram
to socket

end of while loop,
loop back and wait for
another datagram

create datagram
to send to client

Example: Java server (UDP)

Application Layer 2-126

Example app: UDP client

import socket
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket.socket(socket.AF_INET,
 socket.SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message,(serverName, serverPort))

modifiedMessage, serverAddress =
 clientSocket.recvfrom(2048)
print modifiedMessage
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for
server

get user keyboard
input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket into string

Application Layer 2-127

Example app: UDP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print “The server is ready to receive”
while 1:
 message, clientAddress = serverSocket.recvfrom(2048)
 modifiedMessage = message.upper()
 serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string
back to this client

Application Layer 2-128

Socket programming with TCP
client must contact server
v  server must be first running
v  server must have created

socket (dropbox) that
welcomes client’s contact

client connects to server by:
v  creating TCP socket,

specifying IP address, port
number of server process

v  client socket is now bound
to that specific server

v  server accepts connect by:
§  creating new connection-

specific socket
§  allows server to talk with

multiple clients

application viewpoint:
TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

Application Layer 2-129

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming request:
serverSocket =
ServerSocket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocket read request from

connectionSocket
write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket
close
clientSocket

Application Layer 2-130

Example: Java client (TCP)
import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

create
input stream

create
clientSocket object

of type Socket,
connect to server

create
output stream

attached to socket

this package defines Socket()
and ServerSocket() classes

server port #

server name,
e.g., www.umass.edu

Application Layer 2-131

 BufferedReader inFromServer =
 new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));

 sentence = inFromUser.readLine();

 outToServer.writeBytes(sentence + '\n');

 modifiedSentence = inFromServer.readLine();

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close();

 }
}

create
input stream

attached to socket

send line
to server

read line
from server

close socket
(clean up behind yourself!)

Example: Java client (TCP)

Application Layer 2-132

import java.io.*;
import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception
 {
 String clientSentence;
 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =
 new BufferedReader(new
 InputStreamReader(connectionSocket.getInputStream()));

wait, on welcoming
socket accept() method
for client contact create,

new socket on return

create
welcoming socket

at port 6789

create input
stream, attached

to socket

Example: Java server (TCP)

Application Layer 2-133

 DataOutputStream outToClient =
 new DataOutputStream(connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes(capitalizedSentence);
 }
 }
}

read in line
from socket

create output
stream, attached

to socket

write out line
to socket

end of while loop,
loop back and wait for
another client connection

Example: Java server (TCP)

Application Layer 2-134

Example app: TCP client

import socket
serverName = ‘servername’
serverPort = 12000
clientSocket = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)
modifiedSentence = clientSocket.recv(1024)
print ‘From Server:’, modifiedSentence
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port 12000

No need to attach server
name, port

Application Layer 2-135

Example app: TCP server

 from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while 1:
 connectionSocket, addr = serverSocket.accept()

 sentence = connectionSocket.recv(1024)
 capitalizedSentence = sentence.upper()
 connectionSocket.send(capitalizedSentence)
 connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

Application Layer 2-136

2. Application layer: Summary

v  application architectures
§  client-server
§  P2P

v  application service
requirements:
§  reliability, bandwidth, delay

v  Internet transport service
model
§  connection-oriented,

reliable: TCP
§  unreliable, datagrams: UDP

our study of network apps now complete!

v  specific protocols:
§  HTTP
§  FTP
§  SMTP, POP, IMAP
§  DNS
§  P2P: BitTorrent, DHT

v  socket programming: TCP,
UDP sockets

Application Layer 2-137

v  typical request/reply
message exchange:
§  client requests info or

service
§  server responds with

data, status code
v  message formats:

§  headers: fields giving
info about data

§  data: info being
communicated

important themes:
v  control vs. data msgs

§  in-band, out-of-band
v  centralized vs. decentralized
v  stateless vs. stateful
v  reliable vs. unreliable msg

transfer
v  “complexity at network

edge”

2. Application layer: Summary
most importantly: learned about protocols!

