
Outline
Introduction

Design
Implementation

Results
Conclusions

Bigtable: A Distributed Storage System for
Structured Data

Alvanos Michalis

April 6, 2009

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

1 Introduction
Motivation

2 Design
Data model

3 Implementation
Building blocks
Tablets
Compactions
Refinements

4 Results
Hardware Environment
Performance Evaluation

5 Conclusions
Real applications
Lessons
End

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Motivation

Google!

Lots of Different kinds of data!

Crawling system URLs, contents, links, anchors, page-rank etc
Per-user data: preferences, recent queries/ search history
Geographic data, images etc ...

Many incoming requests

No commercial system is big enough

Scale is too large for commercial databases
May not run on their commodity hardware
No dependence on other vendors
Optimizations
Better Price/Performance
Building internally means the system can be applied across
many projects for low incremental cost

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Motivation

Google goals

Fault-tolerant, persistent

Scalable

1000s of servers
Millions of reads/writes, efficient scans

Self-managing

Simple!

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Data model

Bigtable

Definition

A Bigtable is a sparse, distributed, persistent multidimensional
sorted map.

The map is indexed by a row key, column key, and a timestamp;
each value in the map is an uninterpreted array of bytes.

(row:string, column:string, time:int64) -> string

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Data model

Rows

The row keys in a table are arbitrary strings

Every read or write of data under a single row key is atomic

maintains data in lexicographic order by row key

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Data model

Column Families

Grouped into sets called column families

All data stored in a column family is usually of the same type

A column family must be created before data can be stored
under any column key in that family

A column key is named using the following syntax:
family:qualifier

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Data model

Timestamps

Each cell in a Bigtable can contain multiple versions of the
same data; these versions are indexed by timestamp (64-bit
integers).

Applications that need to avoid collisions must generate
unique timestamps themselves.

To make the management of versioned data less onerous, they
support two per-column-family settings that tell Bigtable to
garbage-collect cell versions automatically.

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Building blocks
Tablets
Compactions
Refinements

Infrastructure

Google WorkQueue (scheduler)

GFS: large-scale distributed file system

Master: responsible for metadata
Chunk servers: responsible for r/w large chunks of data
Chunks replicated on 3 machines; master responsible

Chubby: lock/file/name service

Coarse-grained locks; can store small amount of data in a lock
5 replicas; need a majority vote to be active

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Building blocks
Tablets
Compactions
Refinements

SSTable

Lives in GFS

Immutable, sorted file of key-value pairs

Chunks of data plus an index

Index is of block ranges, not values

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Building blocks
Tablets
Compactions
Refinements

Tablet Design

Large tables broken into tablets at row boundaries

Tablets hold contiguous rows
Approx 100 200 MB of data per tablet

Approx 100 tablets per machine
Fast recovery
Load-balancing

Built out of multiple SSTables

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Building blocks
Tablets
Compactions
Refinements

Tablet Location

Like a B+-tree, but fixed at 3 levels

How can we avoid creating a bottleneck at the root?

Aggressively cache tablet locations
Lookup starts from leaf (bet on it being correct); reverse on
miss

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Building blocks
Tablets
Compactions
Refinements

Tablet Assignment

Each tablet is assigned to one tablet server at a time. The
master keeps track of the set of live tablet servers, and the
current assignment of tablets to tablet servers.

Bigtable uses Chubby to keep track of tablet servers. When a
tablet server starts, it creates, and acquires an exclusive lock
on, a uniquely-named file in a specific Chubby directory.

Tablet server stops serving its tablets if loses its exclusive lock

The master is responsible for detecting when a tablet server is
no longer serving its tablets, and for reassigning those tablets
as soon as possible.

When a master is started by the cluster management system,
it needs to discover the current tablet assignments before it
can change them.

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Building blocks
Tablets
Compactions
Refinements

Serving a Tablet

Updates are logged

Each SSTable corresponds to a batch of updates or a
snapshot of the tablet taken at some earlier time

Memtable (sorted by key) caches recent updates

Reads consult both memtable and SSTables

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Building blocks
Tablets
Compactions
Refinements

Compactions

As write operations execute, the size of the memtable increases.

Minor compaction convert the memtable into an SSTable

Reduce memory usage
Reduce log traffic on restart

Merging compaction

Periodically executed in the background
Reduce number of SSTables
Good place to apply policy keep only N versions

Major compaction

Merging compaction that results in only one SSTable
No deletion records, only live data
Reclaim resources.

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Building blocks
Tablets
Compactions
Refinements

Refinements (1/2)

Group column families together into an SSTable. Segregating
column families that are not typically accessed together into
separate locality groups enables more efficient reads.

Can compress locality groups, using Bentley and McIlroy’s
scheme and a fast compression algorithm that looks for
repetitions.

Bloom Filters on locality groups allows to ask whether an
SSTable might contain any data for a specified row/column
pair. Drastically reduces the number of disk seeks required -
for non-existent rows or columns do not need to touch disk.

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Building blocks
Tablets
Compactions
Refinements

Refinements (2/2)

Caching for read performance (two levels of caching)

Scan Cache: higher-level cache that caches the key-value pairs
returned by the SSTable interface to the tablet server code.
Block Cache: lower-level cache that caches SSTables blocks
that were read from GFS.

Commit-log implementation

Speeding up tablet recovery (log entries)

Exploiting immutability

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Hardware Environment
Performance Evaluation

Hardware Environment

Tablet servers were configured to use 1 GB of memory and to
write to a GFS cell consisting of 1786 machines with two 400
GB IDE hard drives each.

Each machine had two dual-core Opteron 2 GHz chips

Enough physical memory to hold the working set of all
running processes

Single gigabit Ethernet link

Two-level tree-shaped switched network with 100-200 Gbps
aggregate bandwidth at the root.

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Hardware Environment
Performance Evaluation

Results Per Tablet Server

Number of 1000-byte values read/written per second.

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Hardware Environment
Performance Evaluation

Results Aggregate Rate

Number of 1000-byte values read/written per second.

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Hardware Environment
Performance Evaluation

Single tablet-server performance

The tablet server executes 1200 reads per second (75
MB/s), enough to saturate the tablet server CPUs because of
overheads in networking stack

Random and sequential writes perform better than random
reads (commit log and uses group commit)

No significant difference between random writes and
sequential writes (same commit log)

Sequential reads perform better than random reads (block
cache)

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Hardware Environment
Performance Evaluation

Scaling

Aggregate throughput increases dramatically performance of
random reads from memory increases

However, performance does not increase linearly

Drop in per-server throughput

Imbalance in load: Re-balancing is throttled to reduce the
number of tablet movement and the load generated by
benchmarks shifts around as the benchmark progresses
The random read benchmark: transfer one 64KB block over
the network for every 1000-byte read and saturates shared 1
Gigabit links

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Real applications
Lessons
End

Timestamps

Google Analytics

Google Earth

Personalized Search

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Real applications
Lessons
End

Lessons learned

Large distributed systems are vulnerable to many types of
failures, not just the standard network partitions and fail-stop
failures

Memory and network corruption
Large clock skew
Extended and asymmetric network partitions
Bugs in other systems (Chubby !)
...

Delay adding new features until it is clear how the new
features will be used

A practical lesson: the importance of proper system-level
monitoring

Keep It Simple!

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Outline
Introduction

Design
Implementation

Results
Conclusions

Real applications
Lessons
End

END!

QUESTIONS ?

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

	Outline
	Introduction
	Motivation

	Design
	Data model

	Implementation
	Building blocks
	Tablets
	Compactions
	Refinements

	Results
	Hardware Environment
	Performance Evaluation

	Conclusions
	Real applications
	Lessons
	End

