Bigtable: A Distributed Storage System for
Structured Data

Alvanos Michalis

April 6, 2009

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Introduction
@ Motivation
Design
@ Data model
© Implementation
@ Building blocks
@ Tablets
@ Compactions
@ Refinements
O Results
@ Hardware Environment
@ Performance Evaluation
© Conclusions
@ Real applications
9 Lessons
@ End

o

Alvanos Michalis

Bigtable: A Distributed Storage System for Structured Data

Introduction

Motivation

@ Lots of Different kinds of datal

s Crawling system URLs, contents, links, anchors, page-rank etc
@ Per-user data: preferences, recent queries/ search history
@ Geographic data, images etc ...

@ Many incoming requests
@ No commercial system is big enough

Scale is too large for commercial databases

May not run on their commodity hardware

No dependence on other vendors

Optimizations

Better Price/Performance

Building internally means the system can be applied across
many projects for low incremental cost

¢ © @ ¢ ¢ @

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Introduction

Motivation

Google goals

Fault-tolerant, persistent
Scalable

@ 1000s of servers
@ Millions of reads/writes, efficient scans

(]

(]

Self-managing

Simple!

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Design

Data model

Bigtable

"contents:" "anchor:cnnsi.com" "anchor:my.look.ca"

"com.cnn.www" —

Definition

A Bigtable is a sparse, distributed, persistent multidimensional
sorted map.

The map is indexed by a row key, column key, and a timestamp;
each value in the map is an uninterpreted array of bytes.

(row:string, column:string, time:int64) -> string

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Design

Data model

"contents:" "anchor:cnnsi.com” "anchor'my look.ca"

"com.cnn.www" —

@ The row keys in a table are arbitrary strings
o Every read or write of data under a single row key is atomic

@ maintains data in lexicographic order by row key

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Design

Data model

Column Families

"contents:" "anchor:cnnsi.com” "anchor:my.look.ca"

"com.cnn.www" —

@ Grouped into sets called column families

o All data stored in a column family is usually of the same type

@ A column family must be created before data can be stored
under any column key in that family

@ A column key is named using the following syntax:
family:qualifier

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Design Data model

Timestamps

@ Each cell in a Bigtable can contain multiple versions of the
same data; these versions are indexed by timestamp (64-bit
integers).

@ Applications that need to avoid collisions must generate
unique timestamps themselves.

@ To make the management of versioned data less onerous, they
support two per-column-family settings that tell Bigtable to
garbage-collect cell versions automatically.

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Building blocks

Tablets
Implementation Compactions

Refinements

Infrastructure

@ Google WorkQueue (scheduler)
@ GFS: large-scale distributed file system

o Master: responsible for metadata
s Chunk servers: responsible for r/w large chunks of data
@ Chunks replicated on 3 machines; master responsible

@ Chubby: lock/file/name service
o Coarse-grained locks; can store small amount of data in a lock
@ 5 replicas; need a majority vote to be active

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Building blocks

Tablets
Implementation Compactions

Refinements

SSTable

SSTable

64 K Block | | 64 K Block | | 64 K Block

Index

@ Lives in GFS
@ Immutable, sorted file of key-value pairs
@ Chunks of data plus an index

@ Index is of block ranges, not values

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Building blocks

Tablets
Implementation Compactions

Refinements

Tablet Design

Tablet Start: AAadvark End: apple

Log I

SSTable SSTable

64 K Block [64 K Block| |64 K BlocK 64 K Block| [64 K Block| [64 K Block

@ Large tables broken into tablets at row boundaries
@ Tablets hold contiguous rows
@ Approx 100 200 MB of data per tablet
@ Approx 100 tablets per machine
@ Fast recovery
o Load-balancing
o Built out of multiple SSTables

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Building blocks
Tablets
Compactions
Refinements

Implementation

Tablet Location

UserTablet
Other

METADATA
tablets

Root tablet /:
Chubby me (1st METADATA tablet) y:

N >

@ Like a B+-tree, but fixed at 3 levels

@ How can we avoid creating a bottleneck at the root?
o Aggressively cache tablet locations

@ Lookup starts from leaf (bet on it being correct); reverse on
miss

Alvanos Michalis

Bigtable: A Distributed Storage System for Structured Data

Building blocks

Tablets
Implementation Compactions

Refinements

Tablet Assignment

@ Each tablet is assigned to one tablet server at a time. The
master keeps track of the set of live tablet servers, and the
current assignment of tablets to tablet servers.

@ Bigtable uses Chubby to keep track of tablet servers. When a
tablet server starts, it creates, and acquires an exclusive lock
on, a uniquely-named file in a specific Chubby directory.

o Tablet server stops serving its tablets if loses its exclusive lock

@ The master is responsible for detecting when a tablet server is
no longer serving its tablets, and for reassigning those tablets
as soon as possible.

@ When a master is started by the cluster management system,
it needs to discover the current tablet assignments before it
can change them.

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Building blocks

Tablets
Implementation Compactions

Refinements

Serving a Tablet

memtable a/ Read Op \
N /
T

Memory \
GFS \

tablet log 7

R
%ﬂfw’ﬁ eOp
AN S

SSTable Files

@ Updates are logged

@ Each SSTable corresponds to a batch of updates or a
snapshot of the tablet taken at some earlier time

@ Memtable (sorted by key) caches recent updates

@ Reads consult both memtable and SSTables

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Building blocks

Tablets
Implementation Compactions

Refinements

Compactions

As write operations execute, the size of the memtable increases.

@ Minor compaction convert the memtable into an SSTable

@ Reduce memory usage
@ Reduce log traffic on restart
@ Merging compaction
o Periodically executed in the background
@ Reduce number of SSTables
@ Good place to apply policy keep only N versions

@ Major compaction
@ Merging compaction that results in only one SSTable

@ No deletion records, only live data
@ Reclaim resources.

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Building blocks

Tablets
Implementation Compactions

Refinements

Refinements (1/2)

@ Group column families together into an SSTable. Segregating
column families that are not typically accessed together into
separate locality groups enables more efficient reads.

@ Can compress locality groups, using Bentley and Mcllroy's
scheme and a fast compression algorithm that looks for
repetitions.

@ Bloom Filters on locality groups allows to ask whether an
SSTable might contain any data for a specified row/column
pair. Drastically reduces the number of disk seeks required -
for non-existent rows or columns do not need to touch disk.

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Building blocks

Tablets
Implementation Compactions

Refinements

Refinements (2/2)

@ Caching for read performance (two levels of caching)

o Scan Cache: higher-level cache that caches the key-value pairs
returned by the SSTable interface to the tablet server code.

@ Block Cache: lower-level cache that caches SSTables blocks
that were read from GFS.

@ Commit-log implementation
@ Speeding up tablet recovery (log entries)

o Exploiting immutability

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Hardware Environment
Performance Evaluation
Results

Hardware Environment

@ Tablet servers were configured to use 1 GB of memory and to
write to a GFS cell consisting of 1786 machines with two 400
GB IDE hard drives each.

@ Each machine had two dual-core Opteron 2 GHz chips

@ Enough physical memory to hold the working set of all
running processes

o Single gigabit Ethernet link

@ Two-level tree-shaped switched network with 100-200 Gbps
aggregate bandwidth at the root.

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Hardware Environment
Performance Evaluation
Results

Results Per Tablet Server

of Tablet Servers
Experiment 1] 50 | 250 [500
random reads 1212 593 479 241
random reads (mem) | 10811 8511 | 8000 [6250
random writes 8850 3745 | 3425 | 2000
sequential reads 4425 2463 | 2625 | 2469
sequential writes 8547 3623 | 2451 | 1905
scans 15385 | 10526 | 9524 | 7843

Number of 1000-byte values read/written per second.

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Hardware Environment
Performance Evaluation

Results

Results Aggregate Rate

~
£

—e— scans
— #— random reads (mem)
—— random writes

— -A— sequential reads
—<— sequential writes
random reads

z

o
<

z

100 200 300 400 500
Number of tablet servers

Values read/written per second

Number of 1000-byte values read /written per second.

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Hardware Environment
Performance Evaluation
Results

Single tablet-server performance

@ The tablet server executes 1200 reads per second (75
MB/s), enough to saturate the tablet server CPUs because of
overheads in networking stack

@ Random and sequential writes perform better than random
reads (commit log and uses group commit)

@ No significant difference between random writes and
sequential writes (same commit log)

@ Sequential reads perform better than random reads (block
cache)

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Hardware Environment
Performance Evaluation
Results

Scaling

@ Aggregate throughput increases dramatically performance of
random reads from memory increases

@ However, performance does not increase linearly

@ Drop in per-server throughput
@ Imbalance in load: Re-balancing is throttled to reduce the
number of tablet movement and the load generated by
benchmarks shifts around as the benchmark progresses
@ The random read benchmark: transfer one 64KB block over
the network for every 1000-byte read and saturates shared 1
Gigabit links

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Real applications
Lessons
End

Conclusions

Timestamps

Project Table size | Compression # Cells # Column | # Locality % in Latency-
name (TB) ratio (billions) | Families Groups memory | sensitive?
Crawl 800 11% 1000 16 8 0% No
Crawl 50 33% 200 2 2 0% No

Google Analytics 20 29% 10 1 1 0% Yes
Google Analytics 200 14% 80 1 1 0% Yes
Google Base 2 31% 10 29 3 15% Yes
Google Earth 0.5 64% 8 2 33% Yes
Google Earth 70 - 9 8 3 0% No
Orkut 9 - 0.9 8 5 1% Yes
Personalized Search 4 47% 6 93 11 5% Yes

@ Google Analytics
o Google Earth

@ Personalized Search

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Real applications
Lessons
End

Conclusions

Lessons learned

@ Large distributed systems are vulnerable to many types of
failures, not just the standard network partitions and fail-stop
failures

Memory and network corruption

Large clock skew

Extended and asymmetric network partitions
Bugs in other systems (Chubby !)

o ...

¢ © @ ¢

@ Delay adding new features until it is clear how the new
features will be used

@ A practical lesson: the importance of proper system-level
monitoring
o Keep It Simple!

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

Real applications
Lessons
End

Conclusions

QUESTIONS ?

Alvanos Michalis Bigtable: A Distributed Storage System for Structured Data

	Outline
	Introduction
	Motivation

	Design
	Data model

	Implementation
	Building blocks
	Tablets
	Compactions
	Refinements

	Results
	Hardware Environment
	Performance Evaluation

	Conclusions
	Real applications
	Lessons
	End

