
Stegobot: a covert social network botnet

Shishir Nagaraja1, Amir Houmansadr2, Pratch Piyawongwisal2, Vijit Singh1,
Pragya Agarwal1, and Nikita Borisov2

1 Indraprastha Institute of Information Technology, New Delhi, India
{nagaraja, vijit, pragya}@iiitd.ac.in

2 University of Illinois at Urbana-Champaign, Urbana, IL, USA
{ahouman2,piyawon1,nikita}@illinois.edu

Abstract. We propose Stegobot, a new generation botnet that com-
municates over probabilistically unobservable communication channels.
It is designed to spread via social malware attacks and steal informa-
tion from its victims. Unlike conventional botnets, Stegobot traffic does
not introduce new communication endpoints between bots. Instead, it is
based on a model of covert communication over a social-network overlay
– bot to botmaster communication takes place along the edges of a social
network. Further, bots use image steganography to hide the presence of
communication within image sharing behavior of user interaction. We
show that it is possible to design such a botnet even with a less than
optimal routing mechanism such as restricted flooding. We analyzed a
real-world dataset of image sharing between members of an online so-
cial network. Analysis of Stegobot’s network throughput indicates that
stealthy as it is, it is also functionally powerful – capable of channeling
fair quantities of sensitive data from its victims to the botmaster at tens
of megabytes every month.

1 Introduction

Malware is an extremely serious threat to modern networks. In recent years, a
new form of general-purpose malware known as bots has arisen. Bots are unique
in that they collectively maintain communication structures across nodes to re-
siliently distribute commands and data through a command and control (C&C)
channel. The ability to coordinate and upload new commands to bots gives the
botnet owner vast power when performing criminal activities, including the abil-
ity to orchestrate surveillance attacks, perform DDoS extortion, sending spam
for pay, and phishing.

The evolution of botnets has primarily been driven by botnet responses based
on the principle of ‘whatever-works’. Early botnets followed a centralized archi-
tecture however the growing size of botnets led to scalability problems. Addi-
tionally, the development of mechanisms that detect centralized command-and-
control servers further accelerated their demise [6, 11, 9]. This led to the develop-
ment of a second generation of decentralized botnets. Examples are Storm and
Conficker [25, 19, 20] that are significantly more scalable and robust to churn.



We believe that one of the main design challenges for future botnets will be
covertness — the ability to evade discovery will be crucial to a botnet’s survival
as organizations step up defense efforts. While there are several covertness con-
siderations involved, one of the most important ones is hiding communication
traces. This is the topic of the present paper. We hope to initiate a study in the
direction of defenses against covert botnets by designing one in the first place.

We discuss the design of a decentralized botnet based on a model of covert
communication where the nodes of the network only communicate along the
edges of a social network. This is made possible by recent advances in malware
strategies. Social malware refers to the class of malware that propagate through
the social network of its victims by hijacking social trust. Instances include
targeted surveillance attacks on the Tibetan Movement [15] and the non-targeted
attack by the Koobface [4] worm on a number of online social networks including
Facebook [1].

By adopting such a communication model, a malicious network such as a
botnet can make its traffic significantly more difficult to be differentiated from
legitimate traffic solely on the basis of communication end-points. Additionally,
to frustrate defense efforts based on traffic flow classification, we explore the use
of covert channels based on information hiding techniques. What if criminals used
steganographic information hiding techniques that exploit human social habits
in designing botnets? Would it be possible to design such a botnet? Would it be
weaker or stronger than existing botnets? These are some of the questions we
hope to answer in this paper.

The rest of this paper is organized as follows: in Section 2 we describe our
threat model along with an overview on JPEG steganography primitives, which
is essential in the design of the social botnet introduced in this paper, Stegobot.
In Section 3 we describe the design and construction of various components.
We evaluate the use of of image steganography in designing the command and
control channel of Stegobot using a real world dataset in Section 4.1; and the
routing mechanism in Section 4.2. This is followed by related work in Section 5
and conclusions in Section 6.

2 Preliminaries

2.1 Threat model

We assume the threat model of a global passive adversary. Since a botnet is a
distributed network of compromised machines acting cooperatively, it is fair to
assume that the defenders will also cooperate (ISPs and enterprises) and hence
have a global view of communication traffic (strong adversary).

We also assume that botnet infections are not detected. As with any botnet
Stegobot cannot withstand hundred-percent clean up of all infected machines.
However we expect it to easily withstand random losses of a considerable num-
bers of bots. This assumption is due to the fact that online social networks are
often scale-free graphs. In a seminal paper [5], Albert and Baraba’si showed that



scale-free graphs are highly robust to the removal of randomly selected nodes. In-
deed the real world social graph considered in this paper (see dataset description
in section 4.2) has a power-law degree-distribution with a slope of γ = 2.3.

2.2 JPEG steganography

A primary goal of this paper is to show that a botnet based on covert channels
can be constructed with a simple design and successfully operated. We use JPEG
steganography to construct communication channels between the bots. We now
review the main results in JPEG steganography that are of relevance to this
paper. A full discussion on the relative merits and demerits of various design
choices is defered until section 5.

We considered the JSteg scheme [3, 21] but the resulting steganographic
capacity of the communication is rather low; steganographic images are de-
tectable [13] even at low embedding rates of 0.05 bits per non-zero non-one
coefficients. A better scheme is proposed by Fridrich et al. [8] who showed that
the average steganographic capacity of grayscale JPEG images with quality fac-
tor of 70 can be approximated to be 0.05 bits per non-zero AC DCT coefficient.
The most recent scheme based on the same principle (of minimal distortion em-
bedding) as the Fridrich scheme is the YASS [23] scheme, which has been shown
undetectable at payloads of 0.05 bits per non-zero DCT coefficient.

3 Stegobot construction

A botnet is a distributed network of a number of infected computers. It is owned
by a human controller called the botherder and consists of three essential com-
ponents: the botmaster(s), the bots, and the Command and Control (C&C) chan-
nel. Bots are compromised machines running a piece of software that implement
commands received from one or more botmasters; they also send botcargo –
information acquired by the bot such as the result of executing botherder com-
mands – to the botmaster. Botmasters refer to compromised machines that the
botherder interacts with in order to send commands via a C&C channel. The
botmaster sends instructions to the bots to carry out tasks and receives botcargo
sent back to it by the bots.

3.1 Design goals

A distinguishing feature of Stegobot is the design of the communication channel
between the bots and the botmaster. Stegobot is designed for stealth, therefore
we do not wish to include any C&C communication links between computers
that do not already communicate.

A further goal is to design probabilistically unobservable communication chan-
nels connecting the botmaster and the bots. If the C&C communication is un-
observable then botnet detection can be significantly more difficult than where



Botmaster

M
alw

are

M
a
lw

a
re

 

Bot

Bot

S
to

le
n 

da
ta

C
om

m
ands

C
o
m

m
a
n
d
s

S
to

le
n
 d

a
ta

Social Network (facebook)

Fig. 1: The topology of the Stegobot botnet

communication is not hidden. This is because in the latter case, traffic-flow sig-
natures and the changes in the structure of traffic connectivity induced by the
presence of the botnet can lead to easier detection and removal of the botnet [10,
16].

3.2 Malware propagation and bots

The first step in botnet creation is malware deployment. The malware is an
executable which infects the machine and performs the activities necessary of a
bot. Stegobot is designed to infect users connected to each other via social links
such as an email communication network or an online social network that allows
friends to exchange emails. The propagation of malware binaries takes place via
social-malware attacks [15].

Social-malware attacks refer to the use of carefully written email lures to
deliver botnet malware combined with the use of email communication networks
to propagate malware. This works when the attackers take the trouble to write
emails that appear to come from the co-workers or friends of the victim (so-
cial phish). A more effective attack is to replay a stolen email containing an
attachment that was genuinely composed by a friend back to the victim after
embedding a malicious payload within the attachment.

Once the attacker secures an initial foothold (deploy the malware on at least
one victim’s machine), the attacker can expand the list of compromised machines
with little additional effort. Whenever one of the initial set of victims sends
an email containing an attachment to one of their colleagues, the bot quickly
embeds a malicious payload to the attachment. Upon opening the attachment,
the receiver’s computer also gets infected and the process continues. Therefore
once a single user is compromised (and the compromised machine continues to
be operated for sending emails), the attacker can recruit additional bots in an



automated fashion. Indeed this was the modus operandi behind the Ghostnet
surveillance attacks on both Google and the Tibetan administration in 2009 [15].

Of course the attacker’s attempts at composing email lures can fail with non-
zero probability. However this exercise needs to succeed only once (as explained
in the previous paragraph) to generate a botnet containing thousands of nodes,
and the risk of failure is offset by targeting multiple people within a social group.

3.3 Bots

In Stegobot, bots possess a pre-programmed list of activities such as harvest-
ing email addresses and passwords, or credit card numbers or simply to log all
keystrokes. Alternatively, in a more flexible design the bots execute commands
received from the botmaster. For instance, bots receive search keywords from
the botmaster and respond with matches from the filesystem, as in the case of
the Tibetan attacks [15].

As explained in the previous paragraph, Stegobot spreads along the social
network of its victims. While we have used emails to explain social-malware at-
tacks, the attacks are by no means restricted to email communication networks
alone; online social networks are equally good targets. For instance, Koobface [4]
is a worm that propagates on Facebook over social links, demonstrating that mi-
grating from conventional email to social network messaging does not insulate
users from social malware attacks. Further, it is noteworthy that Facebook is
adding email extensions to its existing service; and Google added a social net-
working service — Google Buzz — to its popular email service in 2010. This
allows bots to communicate with each other and the botmaster over the social
network as explained in the next section.

3.4 Message types

Stegobot uses two types of message constructions. First, Bot-commands are
broadcast messages from the botmaster. Examples include search strings for file
contents or within keylogged data.

Second, botcargo messages return information requested by the botmaster
such as files matching search strings. Botcargo messages can be divided fur-
ther into two types: locally generated (botcargo-local) or forwarded messages
(botcargo-fwd) on a multi-hop route to the botmaster.

3.5 Communication channel

In Stegobot, we use the images shared by the social network users as a media
for building up the C&C channel. Specifically, we use image steganography tech-
niques to set up a communication channel within the social network, and use it
as the botnet’s C&C channel.

A bot running on a computer can communicate with a bot running on a
different computer if both the computers are being used by people connected by



an edge in the social network. The social network acts as a peer-to-peer over-
lay over which the information is transferred from each bot to the botmaster.
In Stegobot, information between bots must only be transferred using stegano-
graphic channels. In our case, this channel is constructed by hiding the botcargo
within images using standard techniques reviewed in earlier sections. By keeping
the size of the botcargo within certain limits, it is possible to make the pres-
ence of bot communication difficult to discover by examining the communication
channel alone (section 4.1).

One-hop communication takes place according to a push-pull model. Consider
the example of Facebook (see figure 2). When a user pushes (uploads) an image
to Facebook from an infected host, the bot intercepts the image and inserts the
botcargo into the image using an image steganography technique as previously
discussed. In our prototype this was done by uploading botcargo into all pictures
on the victim’s computer; a more practical approach might be to concentrate
on a subset of directories where the user stores pictures. Upon completion of
image upload, all the neighbors of the user are notified (by Facebook). When
a neighbor of the publisher logs into Facebook from an infected machine and
views the picture, the bot pulls (intercepts) the image and extracts the stegano-
graphically embedded botcargo from the image. All botcargo is finally destined
for the botmaster who downloads the cargo by viewing newly posted pictures
from her neighbors. When the botmaster intends to issue a command, she does
so by preparing a botcargo message and uploading it to her Facebook account.
It is worth noting that Facebook presently downloads all the images on to your
computer automatically when a Facebook page is visited; the embedded images
don’t need to be clicked on by the victim for botcargo transfer.

While the communication channel used in our design and experiments is
based on Facebook, any social communication mechanism involving rich content
can be utilized in its place. In theory, blocking access to Online Social Net-
works (OSNs) will stop Stegobot. In practice, efforts to limit access is not easy
since the use of OSNs for furthering business goals is on the increase. Addition-
ally, such measures are easily circumvented by determined users leveraging open
anonymizing proxies.

Multi-hop communication: In Stegobot, routing is based on a very simple algo-
rithm namely restricted flooding.

Congestion control: Each bot maintains a bandwidth throttle which is used to
control the ratio of botcargo-local to botcargo-fwd messages.

Metrics: We measure the effectiveness of the routing strategy using a set of
metrics.

– Channel efficiency the percentage of botcargo-fwd messages that reach the
botmaster averaged over all bots.

– Channel bandwidth is similar to efficiency, but it is the absolute number of
botcargo-fwd messages that reach the botmaster averaged over all bots.



Image selection 

(by user)

Image 

Steganography 
Image Adaption Image Upload 

Collected 

information

Fig. 2: Process of sending a one-hop message

– Duplication count is the number of duplicate botcargo-fwd messages received
by the botmaster.

– Botnet bandwidth is the total number of botcargo-fwd reaching the botmaster
every month excluding duplicates.

4 Experiments

In order to convince ourselves that a Stegobot deployment could indeed be prof-
itably operated in a real world setting, we performed a number of experiments
which are detailed below.

4.1 Steganography experiments

We use YASS [23] as the image steganography scheme of the C&C channel over
the Facebook social network. Facebook’s image processing can interfere with the
bots’ steganographic communication channel. In order to minimize this, the bot
performs an image adaption process as follows before embedding a payload: 1)
each image is converted to the JPEG format, 2) images are resized to meet the
maximum resolution limits performed by Facebook, i.e., 720 × 720 3. This is
performed keeping the aspect ratio of the images.

We use a database of 116 different images to perform our experiments. In
each experiment an image is adapted to Facebook constraints, as mentioned be-
fore, and then the hidden information is embedded into that image using YASS
scheme. The stego image is then uploaded into Facebook through a Facebook
user account, and then downloaded from the Facebook using another Facebook
account. Finally, the downloaded image is evaluated by the YASS detector de-
scribed in [23] in order to extract the hidden message. To evaluate the robustness
of our steganographic process we calculate the bit error rate (BER) metric which
is defined as the ratio of error message bits to the total number of message bits
for each image.

3 More recently, Facebook is allowing uploading of higher-resolution images that in-
crease the steganographic capacity at least 10 times based on our preliminary ex-
periments



Table 1 summarizes the average of the BER parameter (over all of the images)
for different metrics of YASS scheme. Q is the quality factor of YASS scheme and
represents the amount of compression performed by YASS during the steganog-
raphy process. Q has a range of [0, 100] and directly impacts the quality of the
stego image, i.e., higher Q results in images with higher quality/size. Based on
the results of our experiments, Facebook’s uploading process is equivalent to
the application JPEG compression over the image with a quality factor of Qf .
For Q > Qf Facebook applies extra compression on the image which results in
loosing some of hidden information bits. On the other hand decreasing Q results
in lower number of bits being inserted by the YASS scheme. So, there should be
an optimum value for Q within the range of [0, 100] which minimizes the BER
rate, i.e., maximizes the robustness to Facebook perturbations. As table 1 shows
the BER values are minimized for a Q = 75, hence we approximate the quality
factor of the Facebook compression to be Qf ≈ 75.

We also investigate the effect of the redundancy parameter of YASS, q, on
the BER. The parameter q represents the number of times an information bit
is repeated inside an image by the YASS scheme. Intuitively, we expect that
larger q results in reducing the BER, since more redundant bits can help better
in reconstructing a noisy message; this is confirmed through our experiments
as table 1 shows. In fact, the q parameter makes a tradeoff between robustness
and steganographic capacity: increasing q improves robustness by reducing BER
while it also reduces the number of data bits inserted by the YASS scheme.
Table 2 shows the number of bits inserted by YASS for different values of q.

Our experiments show that a small number of image, namely bad images,
are responsible for a majority of errors in the average BER. Excluding these
images in the steganography process can significantly reduce average BER. We
define and use a metric, SelfCorr, in order to decide whether an image is ’bad’
or ’good’. The SelfCorr metric evaluates the cross correlation of an image by a
noise-filtered version of itself. We declare images with SelfCorr> 0.9964 as ’bad’
images. Table 3 illustrates the BER results after excluding the small number of
’bad’ images determined by the SelfCorr metric. As can be seen, the average
BER is significantly improved, e.g, the average BER is 0 for q ≥ 12.

Table 1: Average BER (over 116 images) without removing ’bad images’
q 2 4 6 8 10 12 14 16 18 20

Q=65 0.3073 0.1320 0.0520 0.0227 0.0097 0.0047 0.0022 0.0010 0.0006 0.0003
Q=70 0.2966 0.1318 0.0529 0.0219 0.0096 0.0049 0.0025 0.0010 0.0005 0.0002
Q=75 0.3015 0.1557 0.0680 0.0283 0.0101 0.0067 0.0027 0.0010 0.0004 0.0000
Q=80 0.3086 0.1839 0.0846 0.0347 0.0143 0.0089 0.0034 0.0015 0.0008 0.0000
Q=85 0.3512 0.2618 0.1777 0.0854 0.0372 0.0183 0.0127 0.0053 0.0024 0.0013
Q=90 0.4287 0.3917 0.3639 0.3390 0.3146 0.2906 0.2567 0.2122 0.1591 0.1262



Table 2: Number of bits inserted in each image for different values of q
q 2 4 6 8 10 12 14 16 18 20

Data bits 40280 20140 13426 10070 8056 6173 5754 5035 4475 4028

Table 3: Average BER after removing ’bad images’
q 2 4 6 8 10 12 14 16 18 20

Q=65 0.2945 0.1088 0.0311 0.0092 0.0022 0.0002 0.0000 0.0000 0.0000 0.0000
Q=70 0.2836 0.1105 0.0340 0.0095 0.0016 0.0002 0.0000 0.0000 0.0000 0.0000
Q=75 0.2892 0.1372 0.0492 0.0136 0.0011 0.0001 0.0000 0.0000 0.0000 0.0000
Q=80 0.2977 0.1686 0.0662 0.0175 0.0020 0.0003 0.0000 0.0000 0.0000 0.0000
Q=85 0.3436 0.2512 0.1631 0.0646 0.0165 0.0029 0.0012 0.0000 0.0000 0.0000
Q=90 0.4255 0.3877 0.3589 0.3331 0.3074 0.2823 0.2464 0.1978 0.1396 0.1035

4.2 Routing results

Combining social-malware with steganographic channels yields a covert botnet
where new bots are recruited as infections spread along the edges of the social
network, while existing bots communicate using the well understood image based
steganographic channels. In this section, we study the routing capabilities of such
a botnet using a real-world example.

Dataset: We chose to study the Flickr4 social network [2], an online friendship
network that facilitates image sharing. We crawled the Flickr website and down-
loaded on a fraction of the Flickr social network. Specifically, our dataset con-
tains 7200 nodes (people), the social network edges (online friendship relations)
between them, and the number of images posted per person per month. The
dataset corresponds to user activity on Flickr over a period of 40 months. The
Flickr dataset will be made available on our website for the research community.

In our simulation, each bot node generates K botcargo-local (see section 3.4)
messages per month. K = 10 corresponds to say ten files that the bot plans to
route to the botmaster across the social overlay network. ttl is fixed at log(N =
7000) u 3 hops. Each bot reserves a minimum of 5% of node bandwidth to
forward botcargo-fwd messages received from neighbors. Further, we assume bot-
command messages broadcast from the botmaster at a rate of one message per
month. This means that the botmaster can instruct her bots to change operation
no more than once a month.

Stegobot’s infection strategy is based on social malware attacks. In our exper-
iments, we have assumed an infection rate of 50%. While this number might ap-
pear high to some readers, it is actually a conservative estimate; social-malware
has been known to have infection rates approaching 90-95% in real-world at-
tacks [15].

4 Unfortunately, we did not have access to the Facebook topology or the upload pat-
terns of users.



Fig. 3: Average channel efficiency against ttl

Botcargo preparation: Each bot gathers botcargo (both from the host as well as
from its neighbors). It then encodes as much of the botcargo in a single image
as allowable according to a detection threshold ` bits. The practically possible
values for the number of bits is given in table 2 and a discussion in section 4.1.

Routing: In Stegobot, routing is carried out by restricted flooding. Each bot
publishes (floods) botcargo to all neighbors (joined the botnet) within ttl hops
in the social network. Finally, the botmaster receives botcargo through the one
of its infected neighbors. We assume that the botmaster is a randomly chosen
node in the network. For each of the graphs below, we averaged the results over
fifty different botmaster nodes.

Figure 3 shows the efficiency of botcargo transmission for increasing amounts
of ttl and various numbers of botcargo-local messages. For K = 5 botcargo-local
messages, the efficiency peaks at 30% and decreases and then stabilizes for higher
ttl values as the resulting increase in the number of botcargo-fwd messages begins
to cause congestion. Congestion effects are also felt when the number of botcargo-
local messages increase even at a smaller ttl. This justifies our intuition for using
ttl = log(N) where N is the number of infected nodes in the botnet.

In restricted flooding, high-degree nodes in the topology play the role of hubs
and are able to pull and collect large amounts of botcargo. As such they become
a natural point where stolen information is collected and can then be siphoned
off to the botmaster.

Channel Bandwidth and Efficiency: Figure 4 shows the bandwidth and efficiency
of the communication channel in the average case. Figure 4.a shows the monthly



(a) Normalized Bandwidth and Efficiency (b) Duplication

Fig. 4: Communication channel bandwidth and efficiency

average number of botcargo-fwd messages received by the botmaster (normal-
ized by the size of the botnet) for various amounts of botcargo-local messages
collected per bot (constant across bots). Figure 4.a also shows the average ef-
ficiency of the communication channel from a bot to the botmaster as the size
of the botcargo changes. The network seems to operate at an average efficiency
of 30% of collected botcargo reaching the botmaster when K = 2 (#botcargo
per bot per month). This decreases with increase in K although the absolute
number of messages delivered at the botmaster increases marginally from .75
per bot for K = 2 to 2.5 per bot for K = 10. Further increases result in even
more marginal increases as the effects of congestion result in decreasing routing
efficiency. A positive effect of increasing per node botcargo collection sizes (K)
is the reduction in duplicate messages reaching the botmaster. This is shown in
figure 4.b, the proportion of duplicate messages rapidly decreases until K = 10
and further reduces to 40% at K = 20. We observe that the positive effects of
duplication reduction correspond with an increase in normalized bandwidth as
the number of botcargo-local messages collected per node increase.

The main result of our experiments is shown in figure 5. Figure 5.a shows the
average number of botcargo messages delivered to the botmaster. This shows an
increasing trend. This can be traced to the increasing number of users and the
number of average number of photo updates per user increase over the months in
our dataset. The sharp drops and increases are related to routing performance
under churn, when a few large uploaders suddenly stop using uploading for
certain periods of time, or dormant users being uploading in larger numbers (say
from one-two images to twelve-fifteen images per month). Figure 5.b indicates
the cumulative amount of traffic received by the botmaster over the years and



(a) Botcargo delivered (b) Cumulative botcargo delivered

Fig. 5: Experimental results for the number of delivered batcargo

gives a sense of the total amount of sensitive material she can steal and the long-
term trends. Combining the total number of messages reaching the botmaster
(18000 botcargo-fwd) with the number of bits embedded in each message, we
obtain a monthly bandwidth of between 21.60MB/month in the average case
(q = 8) to 86.13MB (q = 2) for lower interference from the image adaption
process.

Overall, it is easy to see that even with a simple and naive routing algorithm
such as restrictive flooding, the botmaster is easily able to collect around 10%
of the total amount of stolen information. With a slightly more sophisticated
algorithm that exploits the presence of medium and high degree hub nodes as
super-peers, one could design a better routing algorithm. For instance, in the
current implementation all nodes behave the same way, hence hub nodes also
locally flood all the botcargo they receive. This is replayed back and forth be-
tween hubs and the rest of the network causing severe congestion. By ensuring
that super-peers carefully route incoming botcargo only to other super-peers, we
believe it should be possible to significantly improve network throughput.

5 Related work

Most current botnets use a peer-to-peer architecture [19, 20] which improves
robustness and scalability. Botnet detection techniques exploit inter-bot inter-
action patterns [16] or exploit the statistical characteristics of traffic flows [10,
28] to localize bots. Both these approaches require access communication traf-
fic between the bots. By using (probabilistically) unobservable communication
channels, Stegobot evades all these detection approaches.



The work closest to ours is the work of Nappa et al. [17] who describe the de-
sign of a resilient botnet using the Skype protocol for inter-bot communication.
The use of Skype for VoIP communication is popular and is hence difficult to
block without annoying legitimate users. By hijacking active (logged in) Skype
sessions, the botnet is able to bypass firewalls that might otherwise prevent bots
from directly communicating with each other. Our design goes a lot further due
to the unobervability properties of our communication channel. Unlike the design
of Nappa et al., we do not add new connection end-points – no communication
between user-accounts (bots) that do not already communicate, and no addi-
tional communication is introduced beyond what that users already exchange,
resulting in a stealthy design.

5.1 JPEG steganography

Practical steganography schemes are based either on heuristic methods or pro-
vide some provable security based on some specific model. One of the first prac-
tical steganography schemes for the JPEG images is the JSteg scheme [3, 21]. It
is based on using the Least Significant Bit (LSB) components of the quantized
DCT coefficients. More specifically, the message bits are simply replaced with
the LSBs of the DCT coefficients of an image, considering some exclusions for
preserving the image quality. The embedding path for the LSBs was originally
sequential while the use of pseudo-random path was suggested in later imple-
mentations. Even with pseudo-random path the LSB steganography techniques
are shown to be detectable through different kind of attacks [27, 29, 14, 13] that
exploit artifacts made in the first order statistics of the DCT coefficients.

These attacks led the next generation of the JPEG steganography schemes,
namely statistical restoration-based schemes, to consider preserving statistical
behavior of the cover images [24]. The main idea is to divide the cover image
into two disjoint parts, which one part is used to embed the message and the
other part is used to make corrections in order to preserve the selected statistical
behavior of the image. A related approach for preserving the statistical behavior
is used in the Model Based Steganography [22], where some specific model is
preserved for the DCT coefficients.

As an example of the heuristic steganography schemes we can mention the
F5 scheme [26], which was developed to address the detectability of the LSB-
based embedding schemes. By decreasing the absolute value of the coefficients
by 1 and using some other tricks the F5 scheme avoids the obvious artifacts on
different features of the image. To increase the embedding efficiency F5 uses a
coding scheme, namely Matrix Embedding.

Another approach for steganography, recently attracting more attention, is
the minimal distortion embedding [7, 12]. These schemes focus on increasing the
embedding efficiency by decreasing the embedding distortion. Newman et al.
in [18] propose JPEG-compatibility-steganalysis resistant method, which em-
beds the message into the spatial domain of the image before performing the
JPEG compression. YASS [23] is a more recent scheme based on the approach
of minimal distortion embedding.



6 Conclusions

The essence of communication security lies not merely in protecting content
but also unobservability. In this paper, we have presented and analyzed the de-
sign of a covert botnet using unobservable communication channels that aims
to steal sensitive information. The proposed botnet deploys innovative social
malware infection strategies to create an overlay network over the social com-
munication network of victims. A critical aspect of our design is the use of image
based steganographic techniques to hide bot communication and make it indis-
tinguishable from image noise. While techniques for image steganography are
well known, we go one step further to show that it is possible to design an ef-
fective covert network by exploiting the social network connecting users and the
social habits of individual users.

Acknowledgements

The authors would like to thank Anindya Sarkar for providing the source code
for the YASS image steganography scheme.

References

1. Facebook. http://www.facebook.com.
2. Flickr. http://www.flickr.com.
3. JSteg. http://zooid.org/~paul/crypto/jsteg/.
4. Koobface. http://en.wikipedia.org/wiki/Koobface.
5. R. Albert, H. Jeong, and A.-L. Barabasi. Error and attack tolerance of complex

networks. Nature, 406(6794):378–382, July 2000.
6. J. R. Binkley and S. Singh. An algorithm for anomaly-based botnet detection.

In SRUTI’06: Proceedings of the 2nd conference on Steps to Reducing Unwanted
Traffic on the Internet, pages 7–7, Berkeley, CA, USA, 2006. USENIX Association.

7. J. J. Fridrich, M. Goljan, and D. Soukal. Perturbed quantization steganography.
Multimedia Syst, 11(2):98–107, 2005.

8. J. J. Fridrich, T. Pevný, and J. Kodovský. Statistically undetectable jpeg steganog-
raphy: dead ends challenges, and opportunities. In D. Kundur, B. Prabhakaran,
J. Dittmann, and J. J. Fridrich, editors, Proceedings of the 9th workshop on Mul-
timedia & Security, MM&Sec 2007, Dallas, Texas, USA, September 20-21, 2007,
pages 3–14. ACM, 2007.

9. J. Goebel and T. Holz. Rishi: Identify bot contaminated hosts by IRC nickname
evaluation. In HotBots, 2007.

10. G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering analysis of network
traffic for protocol- and structure-independent botnet detection. In Proceedings of
the 17th USENIX Security Symposium (Security’08), 2008.

11. A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale botnet detection and
characterization. In HotBots, 2007.

12. Y. Kim, Z. Duric, and D. Richards. Modified matrix encoding technique for mini-
mal distortion steganography. In J. Camenisch, C. S. Collberg, N. F. Johnson, and
P. Sallee, editors, Information Hiding, volume 4437 of Lecture Notes in Computer
Science, pages 314–327. Springer, 2006.



13. K. Lee and A. Westfeld. Generalized category attack improving histogram-based
attack on jpeg lsb embedding. In Information Hiding workshop, pages 11–13.
Springer-Verlag, Lecture Notes in Computer Science, 2007.

14. K. Lee, A. Westfeld, and S. Lee. Category attack for lsb embedding of jpeg images.
In International Workshop on Digital Watermarking, IWDW, volume 4283, pages
35–48. Springer-Verlag, Lecture Notes in Computer Science, 2006.

15. S. Nagaraja and R. Anderson. The snooping dragon: social-malware surveillance of
the tibetan movement. Technical Report UCAM-CL-TR-746, University of Cam-
bridge, March 2009.

16. S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and N. Borisov. Botgrep: finding
p2p bots with structured graph analysis. In Proceedings of the 19th USENIX
conference on Security, USENIX Security’10, pages 7–7, Berkeley, CA, USA, 2010.
USENIX Association.

17. A. Nappa, A. Fattori, M. Balduzzi, M. Dell’Amico, and L. Cavallaro. Take a Deep
Breath: a Stealthy, Resilient and Cost-Effective Botnet Using Skype. In Proceed-
ings of the 7th Conference on Detection of Intrusions and Malware & Vulnerabil-
ity Assessment (DIMVA), Bonn, Germany, Lecture Notes in Computer Science.
Springer, July 2010.

18. Newman, Moskowitz, Chang, and Brahmadesam. A steganographic embedding
undetectable by JPEG compatibility steganalysis. In IH: International Workshop
on Information Hiding, 2002.

19. P. Porras, H. Saidi, and V. Yegneswaran. A multi-perspective analysis of the Storm
(Peacomm) worm. In SRI Technical Report 10-01, 2007.

20. P. Porras, H. Saidi, and V. Yegneswaran. A foray into Conficker’s logic and ren-
dezvous points. In 2nd Usenix Workshop on Large-Scale Exploits and Emergent
Threats (LEET ’09), 2009.

21. N. Provos and P. Honeyman. Hide and seek: An introduction to steganography.
In IEEE Security and Privacy, volume 1, pages 32–44, 2003.

22. P. Sallee. Model-based steganography. In IWDW, pages 154–167, 2003.
23. K. Solanki, A. Sarkar, and B. S. Manjunath. YASS: Yet another steganographic

scheme that resists blind steganalysis. In T. Furon, F. Cayre, G. J. Doërr, and
P. Bas, editors, Information Hiding, volume 4567 of Lecture Notes in Computer
Science, pages 16–31. Springer, 2007.

24. K. Solanki, K. Sullivan, U. Madhow, B. Manjunath, and S. Chandrasekaran. Prov-
ably secure steganography: Achieving zero k-l divergence using statistical restora-
tion. In ICIP, 2006.

25. S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich. Analysis of the Storm and
Nugache trojans: P2P is here. ;login, 32(6), Dec. 2007.

26. Westfeld. F5–A steganographic algorithm: High capacity despite better steganal-
ysis. In IH: International Workshop on Information Hiding, 2001.

27. A. Westfeld and A. Pfitzmann. Attacks on steganographic systems. In A. Pfitz-
mann, editor, 3rd International Workshop of Information Hiding, volume 1768,
pages 61–75. Springer-Verlag, Lecture Notes in Computer Science, 2000.

28. T.-F. Yen and M. K. Reiter. Traffic aggregation for malware detection. In DIMVA
’08: Proceedings of the 5th international conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 207–227, Berlin, Heidelberg, 2008.
Springer-Verlag.

29. X. Yu, Y. Wang, and T. Tan. On estimation of secret message length in jsteg-
like steganography. In International Conference on Pattern Recognition, volume 4,
pages 673–676, 2004.


