
CacheBrowser:
Bypassing Chinese Censorship without Proxies

Using Cached Content

John Holowczak and Amir Houmansadr
College of Information and Computer Sciences

University of Massachusetts Amherst
jholowcz@umass.edu amir@cs.umass.edu

ABSTRACT
The cached Internet content served by content delivery net-
works (CDN) comprises a large fraction of today’s Inter-
net traffic, yet, there is little study on how real-world cen-
sors deal with blocking forbidden CDN-hosted Internet con-
tent. We investigate the techniques used by the Great Fire-
wall of China to block CDN-hosted content, and demon-
strate that blocking CDN content poses unique technical
and non-technical challenges to the censors. We therefore
design a client-side circumvention system, CacheBrowser,
that leverages the censors’ difficulties in blocking CDN con-
tent. We implement CacheBrowser and use it to unblock
CDN-hosted content in China with a download latency sig-
nificantly smaller than traditional proxy-based circumven-
tion systems like Tor. CacheBrowser’s superior quality-of-
service is thanks to its publisher-centric approach, which
retrieves blocked content directly from content publishers
with no use of third-party proxies.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; E.3 [Data]: Data Encryption

General Terms
Algorithms, Design, Security

Keywords
Censorship resistance; Unobservability; CDN; Content cache

1. INTRODUCTION
Internet censorship continues to remain a global threat to

the freedom of speech and open access to information. This
is largely due to the Internet’s old “end-to-end communica-
tion” paradigm borrowed from the telephony system of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3832-5/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2810103.2813696.

70’s: censors can prevent users at low cost from making end-
to-end connections with forbidden content publishers iden-
tified by unique IP addresses. This is enforced either by
blocking the IP addresses of forbidden publishers or by pre-
venting users from learning such IP addresses, i.e., through
DNS interference [30].

Fortunately, the Internet has been gradually diverging
from the old end-to-end communication paradigm by em-
bracing modern forms of communication. In particular, caching
Internet content, practiced to improve performance, secu-
rity, and reliability, has revolutionized the way content is
being communicated on the Internet. Content caching is
particularly being deployed pervasively by content deliv-
ery networks (CDN) to fulfill end-users’ demands for high-
bandwidth, low-latency access to popular content like video
streams and online applications. The Akamai CDN provider
alone serves more than 30% of the Internet’s static web traf-
fic [34], accompanied by other competitor CDN providers [8]
offering a broad range of service plans and performance
guarantees. The success story of content caching in CDN
networks has even inspired several next-generation Internet
architectures [2, 33, 36] with content caching as their main
design principle, and content caching has become an insep-
arable part of file sharing overlay networks like BitTorrent.

In this paper, we take the first steps in studying the im-
pacts of content caching on the Internet censorship prob-
lem. We analyze the effectiveness of existing censorship
techniques in blocking content cached on content delivery
networks (CDN), and investigate how the Great Firewall of
China (GFW), unanimously believed to be the most compe-
tent censorship architecture, blocks forbidden CDN content
in-the-wild. Our study finds that content caching by CDN
networks poses significant technical and non-technical chal-
lenges to the censors, even despite self-censorship by a major
CDN provider, Akamai, as discovered in our study. Specif-
ically, we show that IP address blocking, a highly-effective
technique in blocking regular Internet content, is impracti-
cal in blocking CDN content, and that the GFW refrains
from IP blocking CDN content due to the potential collat-
eral damage. This is because a typical CDN content object
is hosted on many (e.g., several thousands of) IP addresses
that are shared among many (potentially hundreds of thou-
sands) non-related content publishers, therefore, any IP ad-
dress blocking attempt to censor the forbidden CDN con-
tent will equally censor the non-related —potentially non-
forbidden —content publishers.

Based on the lessons of our analysis, we design a circum-
vention system, CacheBrowser, that exploits the censors’
difficulties in censoring CDN content. CacheBrowser evades
censors’ DNS interference by directly retrieving blocked CDN
content from one of the many (e.g., tens of thousands) CDN
servers hosting the same blocked CDN content. We have
built CacheBrowser as a client-side software, and used it to
circumvent the GFW by accessing popular forbidden CDN-
hosted websites like change.org and facebook.com.

Contrary to proxy-based circumvention systems like Tor [18]
and Psiphon [27], CacheBrowser takes a new circumvention
approach, which we call publisher-centric. In this approach,
end-users make no use of third-party proxies to retrieve cen-
sored Internet content, but instead obtain the censored con-
tent directly from the content publishers. We show that
CacheBrowser’s publisher-centric approach has significant
advantages over traditional proxy-based circumvention sys-
tems, e.g., CacheBrowser’s download latency is drastically
smaller than Tor.

Due to its publisher-centric design, CacheBrowser can only
unblock CDN-hosted content (because non-CDN content can
be IP address filtered). Fortunately, this is not a real-world
limitation since we show that a significant fraction of popular
websites blocked in China are already hosted on CDN. Also,
hosting content on CDN is seamless and affordable even for
personal websites and blogs [10,12,13], therefore, a censored
content publisher can unblock her content by transitioning
to a CDN platform.

In short, we make the following main contributions:
• We make the first comprehensive analysis of how con-

tent cached by CDN networks can be censored, and
how the GFW is blocking such cached content.

• We design a system called CacheBrowser that lever-
ages the censors’ challenges in blocking CDN content.

• We implement CacheBrowser and demonstrate how it
can be used to unblock popular censored CDN content
in China, e.g., facebook.com.

• We introduce the publisher-centric approach for cir-
cumvention, which has significant advantages over tra-
ditional proxy-based systems like Tor.

2. BACKGROUND: CONTENT DELIVERY
NETWORKS

A content delivery network (CDN) is a distributed sys-
tem run by a CDN provider that delivers Internet con-
tent, i.e., CDN content, from content publishers, referred
to as CDN customers, to end-users. A typical CDN
network caches content of its customers on multiple (usu-
ally many) servers located at disperse geographic locations,
and directs an end-user looking for the cached content to a
caching server that optimizes user experience, e.g., reduces
download latency. In addition to the improved QoS for end-
users, CDN hosting makes a content publisher’s service more
scalable and reliable, saves the publisher money by reducing
the load on their network backbone, and boosts pagerank-
ing on search engines [11]. Therefore, an increasing number
of content publishers, ranging from small personal webpages
and blogs [10] to large-scale social networking websites, are
hosting their content on CDN systems.

The CDN market is shared between an increasing number
of competitor commercial CDN providers [8]. Akamai has
the largest market share by serving [1, 34] nearly 30% of all

web traffic, communicated over several millions of HTTP
requests per second. CDNs have become such a key part
of the Internet that even their short-term failure severely
impacts the Internet as a whole.1

2.1 CDN Architecture
Despite the variety of CDN providers [8], they share the

same high-level architecture [35].

Edge servers: An edge server is a computer server run by
a CDN provider to serve the CDN provider’s customer con-
tent to end-users. Commercial CDN networks are composed
of very large numbers of edge servers located at diverse ge-
ographic locations to ensure efficient distribution of cached
content. For instance, Akamai runs 170,000 edge servers
scattered across 102 countries [1]. Upon a user request for
cached content, the queried edge server will either respond
the content from its local cache, or request the content from
the content publisher.

Mapping system: Every CDN network has a mapping
system that directs querying users to the “best” edge server
hosting the requested content. Mapping the best edge servers
to the querying end-users is a complex, dynamic process
and takes into account various factors including the geo-
graphic location of the end-user, the global network condi-
tions, the load on edge servers, etc. Ideally, the mapping
system will return an edge server that maximizes the QoS
for each querying user, e.g., one with a close proximity to
the querying user.

Other components: A typical CDN network is com-
posed of other key components [35], that we exclude due
to their little relevance to our study. In particular, each
CDN network has a transport system that transmits cus-
tomer content to edge servers, a communication and control
system that exchanges status information, configuration up-
dates, and control messages within the CDN system, and a
management portal used by CDN customers to control how
their content and applications are being served by the host-
ing CDN system.

2.2 Typical CDN Communication
Suppose that an end-user, CDNUser, decides to access the

HTTP content at URLR=http://www.cnn.com/index.html,
which belongs to CDNCustomer (the CNN in our case). Also,
suppose that CDNCustomer is a CDN customer of CDNProvider
(Fastly CDN for the given example). That is, CDNCustomer’s
content is served by CDNProvider. The following steps are
taken in order for CDNUser to obtain the requested HTTP
content (URLR) hosted by CDNProvider:

1. Generic DNS lookup: CDNUser will send a DNS
lookup request to a generic top-level domain (TLD) DNS
server for URLR’s domain name. The generic TLD resolver
will be redirected to one of the CDNProvider’s top-level name
server (TLNS) as the DNS authority, e.g., a Fastly TLNS
server. Such redirection is enforced by listing the TLNS
server of CDNProvider in the“authorities”section of the DNS
record for the queried domain name, often with a large TTL
value.

2. CDN DNS lookup: The CDN TLNS returned in
the previous stage will delegate the DNS query to some low-
level Name Servers (LLNS) of CDNProvider with a shorter
DNS TTL. The DNS query is finally sent to one of these

1https://gigaom.com/2011/08/08/akamai-dns-issue/

change.org
facebook.com
facebook.com
http://www.cnn.com/index.html
https://gigaom.com/2011/08/08/akamai-dns-issue/

CDN LLNS servers, which will return the IP address of
a CDNProvider edge server that will serve the content for
URLR. The edge server is chosen by a complex mapping
algorithm [34,35] taking into account factors like geographic
proximity, availability of content, network bandwidth, etc.
Edge server assignments are extremely dynamic (to optimize
the performance of content delivery), i.e., the edge server
returned to a CDNUser querying URLR may change roughly
every minute [34].

3. Requesting CDN edge server for content: Finally,
CDNUser will send an HTTP/HTTPS GET request to the
returned CDNProvider edge server for URLR. If the content
is not already cached by the edge server, the edge server will
first retrieve it from CDNCustomer’s origin servers [34].

2.3 Types of CDN Networks
In a shared CDN (S-CDN) network the CDN infras-

tructure (e.g., edge servers, mapping system, and communi-
cation and control system) is shared among several (usually
many) CDN customers, i.e., content publishers. This type of
CDN is mainly operated by commercial CDN providers like
Akamai, CloudFlare, and Fastly. Content publishers (e.g.,
the CNN or Yahoo!) pay commercial S-CDN providers for
hosting their content or applications. On the other hand,
a private CDN (P-CDN) infrastructure is dedicated to
serve content delivery for a specific content publisher. The
use of a private CDN can provide better control on con-
tent distribution and better privacy protection, however, its
maintenance (e.g., ensuring security, reliability, and avail-
ability) may be complicated, costly, and prone to failures.
Therefore, except for giant content producers, typical con-
tent publishers tend to use shared CDN services powered by
commercial CDN providers. Also, some private CDN net-
works are powered by commercial CDN providers.

3. CENSORSHIP OF CDN CONTENT
Despite CDN traffic comprising a significant fraction of

Internet communications, there is no study on how real-
world censors block forbidden CDN content. We study how
content caching by CDN networks impacts Internet censor-
ship. We start by evaluating traditional censorship tech-
niques against CDN content, then, study how China blocks
CDN content through in-the-wild experiments. The chal-
lenge to our study is the lack of knowledge on the internal
specifications of in-the-wild censors, real-world enterprise
CDN systems, and possible business agreements between the
censors and CDN providers.

3.1 Possible CDN Censorship Techniques
Considering the architecture of typical CDN networks, in-

troduced in Section 2, we discuss how various censorship
techniques can be leveraged to block CDN content.

3.1.1 IP Address Filtering
IP address filtering is a simple, low-cost technique for

censorship. In this approach, censors identify (then, black-
list) the IP addresses of forbidden content publishers (e.g.,
through browsing their websites), and drop network pack-
ets to such blacklisted IP addresses through null routing on
gateway routers of the censoring ISPs [3].

IP address blocking is one of the most widely used cen-
sorship techniques, and most commercial network devices

(e.g., routers and firewalls) have the built-in capability for
performing it with low computation overheads. However,
we argue that IP address filtering is highly incapable
of blocking CDN content since it causes significant
collateral damage to the censors. This is due to the
following properties of CDN traffic:

P1: Pervasive, distributed caching– In order to en-
sure availability and optimize performance, a CDN system
caches customers’ content on large numbers of edge servers,
residing at various, usually dispersed, Internet locations. To
IP-filter CDN content, censors will need to enumerate all
the IP addresses caching the forbidden content, and then
blacklist all of them. This is contrary to regular (non-CDN)
Internet content in which case blocking a single (or a few)
IP addresses suffices to entirely block a forbidden publisher.

P2: Shared IP addresses– Commercial CDN providers
share their infrastructure, e.g., edge servers and mapping
system, between all (potentially many) of their CDN cus-
tomers. Therefore, a forbidden CDN content will be re-
trieved from the same set of (edge server) IP addresses as
other non-forbidden CDN content served by the hosting CDN
provider. As a result, any attempt to IP filter forbidden
CDN content will equally affect the non-forbidden CDN con-
tent hosted by the hosting CDN provider. Note that this
does not apply to P-CDN systems.

P3: Highly dynamic IP assignment– To optimize load
balancing and quality-of-service, mapping edge servers to
end-users is performed highly dynamically, e.g., Akamai’s
mapping system updates returned IP addresses as frequently
as every minute [34]. Therefore, censors will not be able to
map specific forbidden CDN content to a small subset of
edge server IP addresses, even within short time intervals.

3.1.2 DNS Interference
Along with IP address filtering, DNS interference is one of

the most widely practiced censorship techniques [3,4,30]. In
this approach, censors prevent end-users from learning the
IP addresses that serve forbidden content, i.e., they interfere
with the name resolution process. This may be implemented
in different ways: dropping DNS messages that query for-
bidden domain names, hijacking DNS communications, and
poisoning DNS records on DNS servers [3, 4].

DNS interference is highly effective [4] in censoring Inter-
net content as name resolution is an essential part of Inter-
net communications, both for CDN and non-CDN content.
However, DNS interference can be easily circumvented if a
blocked user bypasses the name resolution process and learns
the IP addresses serving forbidden domain names from other
means, e.g., out-of-band channels. This is why real-world
censors usually complement DNS interference with IP filter-
ing. However, as discussed above, IP filtering is ineffective
(i.e., causes collateral damage) in blocking CDN content.

3.1.3 Keyword/URL filtering using DPI
Modern network monitoring equipment can inspect net-

work traffic searching for forbidden keywords or URLs, a
capability known as deep packet inspection (DPI) [30]. A
network flow found to contain a forbidden keyword or URL
is then interfered with by the censors, e.g., by dropping
packets or forging TCP RST messages [3]. To perform suc-
cessful keyword/URL filtering, for any intercepted network
flow a DPI tool will need to defragment all the packets be-
longing to that flow (or even across multiple flows), and

perform online/offline inspection of the defragmented con-
tent. This makes DPI-based keyword/URL filtering more
resource-intensive compared to IP blacklisting and DNS in-
terference specially given the sheer volume of traffic inter-
cepted by typical monitoring devices.

CDN content is prone to the same level of keyword/URL
filtering as regular (non-CDN) Internet content. In both
cases, the use of encryption (e.g., HTTPS) will effec-
tively foil any kind of keyword/URL filtering.

3.1.4 Self-censorship by CDN providers
State-level censors may require commercial CDN providers

to self-censor forbidden Internet content or else they will
not be able to run CDN infrastructure (e.g., edge servers)
within the censors’ network territories or make business with
the publishers under the jurisdiction of the censors. Such
self-censorship can be performed at different levels, from
not hosting forbidden content publishers at all to not serv-
ing forbidden content to the censors’ Internet users only.
The larger a state-level censor’s economy is, the higher the
chances that commercial CDN providers will perform self-
censorship.

3.1.5 Advanced resource-intensive analysis
In addition to searching for prohibited keywords or URLs,

DPI tools can be leveraged for other types of analysis for the
purposes of censorship, e.g., online/offline statistical traf-
fic analysis [19] and protocol identification analysis [22, 24].
Such advanced types of analysis are significantly resource-
intensive and suffer from high rates of false positives, which
is why there is no evidence that real-world censors use such
techniques at large-scale.

3.2 How China is Censoring CDN Content
We study how China’s Great Firewall (GFW), unanimously

believed to be the most competent and elaborated censor-
ship system in the world [30,37], blocks CDN content. China
also has the strongest economy and the most advanced IT
infrastructure compared to other state-level censors. Given
the exhaustive list of commercial CDN providers [8], we limit
our study to the providers with the largest market share.

Experiment Methodology: We run our experiments
on a Linux computer node located inside China (which we
anonymize to protect the owners). We also have access to
several computers outside China. We do verify that our
node in China faces the same censorship restrictions as typ-
ical Chinese users: we try connecting to a list of blocked
URLs known to be blocked based on GreatFire.org from
this node, and we confirm that the URLs are inaccessible
from our node.

We assemble a list of blocked CDN-hosted URLs by scrap-
ping GreatFire.org, then, we analyze how they are blocked.
To check if a target domain name faces DNS interference, we
perform a dig query for its domain name and check whether
the returned IP address corresponds to the queried domain
name using an online whois service outside China. To check
if a target URL is IP address filtered, we resolve the URL’s
domain name on a non-censored machine, and then try fetch-
ing the URL content directly from the Chinese node by di-
rectly connecting to the obtained IP address without per-
forming a DNS lookup on the Chinese node. Our code that
fetches a URL from its IP address with no DNS query is
written in Python, and we refer to it as GET(IP,URL) in the

rest of the paper. For an HTTPS URL, censors will not be
able to see the domain name of the URL when GET(IP,URL)

is used.

3.2.1 Akamai: non-Chinese CDN Present in China
Akamai is the leading CDN provider in the world with

more than 170,000 edge servers (tripled since 2010 [34])
across 102 countries and within over 1,300 networks [1].
Among the major CDN providers we studied, Akamai is
the only non-Chinese CDN provider with CDN infrastruc-
ture inside China, which is “offered through a partnership”
as stated by the company [14].

To do our experiments, we assemble a list of China-based
edge servers of Akamai by browsing several non-forbidden
Akamai-hosted URLs from our Chinese node (Akamai’s map-
ping system often returns an edge server close to the query-
ing user). We verify that the edge servers are in China using
an online whois service. We make the following observations:

Legitimate content can be retrieved from any edge
server. For any of the experimented non-forbidden URLs
hosted by Akamai, we are able to successfully fetch the URL
using GET(IP,URL) from any of the Akamai edge servers,
even those not returned by Akamai’s mapping system to
our DNS query.

China-based edge servers of Akamai censor queries
for forbidden content. Contrary to what we observed for
legitimate URLs, our Chinese node can fetch a forbidden
Akamai URL only from the non-Chinese edge servers of Aka-
mai. More specifically, our attempt to fetch a blocked URL
from a Chinese Akamai edge server results in an “HTTP
403 Forbidden” error, which implies that the Chinese edge
server “can be reached and understood the request,
but refuses to take any further action.”2 This finding
complies with the company’s statement [14] that “because
Akamai understands the business and institutional require-
ments involved in delivering your content within China, we
can work with you to avoid any regulatory surprises.”

The mapping system does not self-censor. Aka-
mai’s mapping system, which appears to be located outside
China, does not perform any censorship on mapping requests
from Chinese users, i.e., it returns them valid edge server
IP addresses even when they ask for content forbidden by
the GFW. An interesting case study demonstrating this is
istockphoto.com: possibly due to an oversight, the web-
site is blocked only using URL filtering, but neither DNS
interference (a DNS query resolves correctly) nor IP block-
ing (the HTTPS version of the website is accessible). For
this website, we observe that the DNS queries sent to Aka-
mai’s mapping server from our Chinese node are resolved to
a valid Akamai edge server outside China, confirming that
the mapping system does not self-censor, contrary to the
China-based edge servers.

DNS interference is the most common technique
practiced to block CDN content. The majority of
the blocked CDN websites we examined are DNS poisoned
by the GFW, i.e., our DNS queries are all resolved to invalid
IP addresses.

No edge server IPs are blocked by the GFW , even the
edge servers outside China. This confirms our hypothesis in
Section 3.1.1: censors do not block edge server IPs because

2http://en.wikipedia.org/wiki/HTTP_403

GreatFire.org
GreatFire.org
istockphoto.com
http://en.wikipedia.org/wiki/HTTP_403

they serve both legitimate and forbidden content, there is
too many of them (170,000 Akamai edge servers), and their
assignment is so dynamic that can not be mapped to specific
content publishers.

DNS interference is used to block forbidden HTTPS
URLs. While non-encrypted URLs are easily blockable by
DPI, to block encrypted URLs the censors have no technical
way other than blocking the whole domain serving the URL.
This can be implemented either by DNS interference or IP
address blocking, but we observe that DNS interference is
the standard technique used by the GFW due to the dis-
cussed challenges with IP address blocking. This, however,
may block some non-forbidden content as well, as observed
previously [29]. For instance, to block https://a248.e.

akamai.net/f/1/1/1/www.psiphon.ca/zh/download.html, a
mirrored link to download Psiphon [27], the GFW has DNS
poisoned (but not IP address filtered) the whole a248.e.

akamai.net domain, which has also blocked some content of
ikyu.com, a non-forbidden online travel service.

3.2.2 Non-Chinese CDNs not Present in China
We also studied CloudFlare, Amazon CloudFront, Edge-

Cast, Fastly, and SoftLayer, which are major CDN providers
with the largest market share after Akamai, but with no
CDN infrastructure inside China. Our experiments confirm
online information3,4,5 [9] that none of these providers have
CDN infrastructure inside China, i.e., our requests for non-
blocked websites from our Chinese node are always resolved
to edge server IP addresses outside China. We make the
following observations:

Content can be retrieved from any edge server of the
CDN provider hosting a specific URL, even from the edge
servers not assigned by the CDN mapping system.

We find no evidence of self-censorship by the studied
CDN providers. Forbidden content can be successfully
retrieved through all edge servers (using GET(IP,URL)) from
our Chinese node.

DNS interference is the most common technique
used by the GFW to block forbidden content hosted by
these CDN providers. Once our Chinese node sends a DNS
query for a forbidden CDN hosted content, it receives a non-
relevant IP address (instead of a valid edge server address).

We observe no edge server being IP filtered by the
GFW. This is due to the collateral damage caused by block-
ing non-forbidden content, as discussed in Section 3.1.1.

HTTPS URLs are censored through DNS interfer-
ence. Blocking encrypted CDN-hosted URLs is not fea-
sible through IP address blocking (due to the use of shared
edge server IPs) nor DPI (due to encryption). To block,
the GFW interferes with the name resolution of forbidden
encrypted CDN URLs, which can results in blocking some
non-forbidden content.We noticed that many of the URLs
blocked by the GFW are the mirror webpages set up by
greatfire.org’s“collateral freedom”project [16], e.g., https:
//daol8yb47gnd3.cloudfront.net. We also observe that
the GFW has DNS poisoned (but not IP filtered) some CDN
domain names because the domain names were used by some
forbidden content publishers. For example, to block https:

3www.cloudflarestatus.com
4http://aws.amazon.com/cloudfront/details/
5knowledgelayer.softlayer.com/faqs/213

//edgecastcdn.net/00107ED/freeweibo the GFW is DNS
poisoning the whole edgecastcdn.net domain. In Novem-
ber 2014, such DNS poisoning accidentally blocked major
non-forbidden CDN customers in China, including the HSBC’s
banking portal website.6

3.2.3 Chinese CDN Providers
ChinaCache, ChinaNetCenter, and CDNetworks are the

leading [9] Chinese CDN providers with ChinaCache pro-
viding the fastest performance thanks to its 11, 000 servers.
All three CDN providers fully comply with the regulations
and laws of the Chinese government. Not surprisingly, we
could not find any censorship by the GFW on the content
hosted by these CDN providers, presumably because they
do not host any forbidden content.

3.3 Lessons of Our Study
Table 1 summarizes our analysis, discussed below:

1. End-users can bypass CDN mapping and directly
fetch CDN content from any of the edge servers of the host-
ing CDN provider. The mapping system of a CDN provider
dynamically returns the edge servers that provide end-users
with the best quality-of-service based on factors like end-
user’s geographic location, network conditions, etc., how-
ever, this does not prevent end-users from directly fetching
content from the other edge servers of the CDN provider.
Therefore, if an end-user knows some edge servers of the
hosting CDN provider, she can ignore the name resolution
(CDN mapping) step —which may be interfered with by the
censors —and directly fetch content from the known edge
servers. This may slightly downgrade the quality-of-service
to the user as evaluated in Section 5.3. Also, if some (but not
all) of the edge servers perform self-censorship (e.g., Akamai
in China), end-users can still get the content from the other
(non-censoring) edge servers of that CDN provider.

2. The GFW avoids IP address filtering in blocking
CDN content because of its significant collateral damage,
i.e., blocking (popular) non-forbidden content. That is, IP
address blocking of forbidden websites hosted on a CDN
network will disable all the legitimate websites hosted by
the same CDN provider as well. Even for forbidden web-
sites hosted on P-CDN networks, IP address blocking will
be exhaustive due to the large number of IP addresses in
any single P-CDN network.

3. DNS interference is the GFW’s main technique
in censoring CDN content. Therefore, if end-users are able
to obtain the IP addresses of the hosting edge servers from
means other than DNS name resolution they will be able
to circumvent censorship of CDN content.

4. To be allowed to run CDN infrastructure in China
CDN providers must self-censor. Chinese CDN providers
fully comply with the GFW regulations by not hosting any
forbidden content at the first place. Non-Chinese CDN
providers have to perform partial self-censorship to be al-
lowed to run servers in China. For example, we found that
Akamai is censoring forbidden content on its Chinese edge
servers (but not other edge servers or its mapping system).
This could be the main reason why many major CDN providers,
like Amazon CloudFront, are hesitant to run CDN infras-

6http://www.theguardian.com/world/2014/nov/18/
china-blocks-hsbc-web-crackdown-censorship

https://a248.e.akamai.net/f/1/1/1/www.psiphon.ca/zh/download.html
https://a248.e.akamai.net/f/1/1/1/www.psiphon.ca/zh/download.html
a248.e.akamai.net
a248.e.akamai.net
ikyu.com
greatfire.org
https://daol8yb47gnd3.cloudfront.net
https://daol8yb47gnd3.cloudfront.net
https://edgecastcdn.net/00107ED/freeweibo
https://edgecastcdn.net/00107ED/freeweibo
www.cloudflarestatus.com
https://edgecastcdn.net/00107ED/freeweibo
http://aws.amazon.com/cloudfront/details/
https://edgecastcdn.net/00107ED/freeweibo
knowledgelayer.softlayer.com/faqs/213
https://edgecastcdn.net/00107ED/freeweibo
edgecastcdn.net
http://www.theguardian.com/world/2014/nov/18/china-blocks-hsbc-web-crackdown-censorship
http://www.theguardian.com/world/2014/nov/18/china-blocks-hsbc-web-crackdown-censorship

Table 1: How the GFW censors content hosted by major CDN providers.

CDN provider
Infrastructure

Self-Censorship?
DNS Poisoning DNS Poisoning IP Filtering

in China? Publisher Domains? CDN Domains? Edge Servers?
Non-Chinese, present in China

Yes
Yes, Chinese edge Yes,

Limited No
(Akamai) servers only pervasively

Non-Chinese, not present in China Yes,
(CloudFlare, CloudFront, No None pervasively Limited No

EdgeCast, Fastly, SoftLayer)
Chinese CDN Yes,

(ChinaCache, ChinaNetCenter, Yes entirely No No No
CDNetworks)

tructure in China despite the significant economic attrac-
tion.

5. Non-Chinese CDN providers are constrained in
how much they can self-censor. This is due to two
main reasons: First, CDN providers have to abide by the
regulations and laws of their home countries, which could de-
prive them from censorship. For instance, U.S.-based CDN
providers cannot deny service to legitimate U.S. content
publishers, including the ones forbidden by a foreign state-
level censor like China. Second, excessive self-censorship can
seriously hurt their reputation, and therefore their business
interests. As witnessed, Akamai only partially cooperates in
censorship with China.

6. Blocking encrypted CDN content is technically
impossible without cooperation of the hosting CDN
provider. Therefore, as long as there are some (shared)
CDN providers not cooperating with the censors, content
publishers can use them to resist censorship of their content.

4. CacheBrowser: A PUBLISHER-CENTRIC
CIRCUMVENTION SYSTEM

Content caching by CDN providers has become an essen-
tial, inseparable part of Internet communications. However,
our analysis summarized in Section 3.3 shows that the cen-
sors face significant technical and non-technical challenges
in blocking forbidden CDN content. This motivated us to
design CacheBrowser, a circumvention system that lever-
ages the censors’ challenges in blocking CDN content.

The high-level intuition behind CacheBrowser is that the
main technique used (and the only one feasible) to censor
encrypted CDN content is interfering with name resolution,
however, name resolution is not required to retrieve CDN
content, but it only aims at optimizing CDN communica-
tions. Therefore, a (censored) end-user can bypass name
resolution and retrieve content from any of the known edge
servers part of the hosting CDN provider, potentially with
degraded quality-of-service as evaluated in Section 5.3.

Note that, this is only effective in circumventing CDN
censorship: regular, non-CDN content can be mapped to
a small, usually static, set of IP addresses, which can be
easily IP filtered by the censors with no collateral damage
(this is how Tor relays are blocked for instance). IP filter-
ing CDN content, however, will cause the censors significant
collateral damage since (as discussed in Section 3.1.1) CDN
IP addresses are shared within a massive pool of heteroge-
neous, unrelated content publishers, most of them may be
hosting non-forbidden (and possibly popular) content. Even
for private CDN networks, IP filtering will be exhaustive

WebBrowser

Scraper

CDN-to-IP
Database

Customer-to-CDN
Database

LocalDNS

ResolverDaemon Bootstrapper

Resolver

(Client-side or remote)

Figure 1: Block diagram of CacheBrowser.

to the censors as it will require them to block hundreds to
thousands of IP addresses per forbidden content publisher, as
opposed to a handful of IP addresses for non-CDN content.

CacheBrowser takes a unique, potentially-revolutionary
approach for circumvention different from that of traditional
circumvention systems like Tor [18], Anonymizer [5], and
Psiphon [27]. In this approach, which we call publisher-
centric circumvention, each content publisher plays a key
role in having her content unblockable. This is unlike proxy-
based circumvention systems like Tor in which case third-
party entities (e.g., volunteer Tor relays) are the center of
circumvention, and content publishers are mainly oblivious
to the whole circumvention process. In Section 7.1.2 we
enumerate the unique advantages of a publisher-centric ap-
proach like CacheBrowser over proxy-based systems.

4.1 CacheBrowser’s Architecture
Figure 1 shows the block diagram of CacheBrowser’s client

software, which is installed on an end-user’s machine. Web-

Browser is a regular (possibly modified) web browser used
to browse both regular and blocked Internet content. For
any URL requested by the end-user or part of a previously
fetched webpage, WebBrowser queries a local name resolution
system, LocalDNS, to obtain the hosting IP address, and it
contacts a regular DNS system only if there is no record in
LocalDNS for the requested domain name.
Scraper continuously inspects WebBrowser’s requested URLs

(including URLs entered by the user and the inner URLs
of downloaded pages) looking for potentially blocked do-
main names. Scraper will ask Resolver to resolve newly-
found blocked domain names, and the Resolver will re-
solve the blocked domain name and will add a record for
it in LocalDNS. The WebBrowser’s DNS cache is then flushed
to remove the existing DNS records for the blocked do-
main. This can be done either by restarting the browser

or through browser settings.7,8 In case Resolver can not re-
solve a blocked domain (e.g., it does not know which CDN
provider hosts a queried customer domain), it will ask a
Bootstrapper for help. This will be done only once for each
newly-found blocked domain name. The Bootstrapper com-
ponent can be implemented either at the client-side or on a
remote bootstrapping node, as will be described later.

4.1.1 The Scraper Component
The Scraper component has access to the web content of

WebBrowser, e.g., as a browser plugin. It maintains a list of
previously-resolved blocked domain names, ResolvedList,
which will continuously update as the user browses new
blocked websites. Suppose that a requested URL (either en-
tered by the user or part of a downloaded HTML page) can
not be successfully downloaded by WebBrowser (e.g., times
out). In this case, if the URL’s domain name is not in Re-

solvedList, Scraper will inform Resolver of the URL’s do-
main name as a new domain name that should be resolved,
and will add the domain name to ResolvedList. Otherwise,
Scraper will inform Resolver that the current mapping for
the URL’s domain name in LocalDNS is invalid and should
be updated.

If a requested URL is browsed successfully by WebBrowser,
Scraper will report its uncensored domain name to Re-

solver along with its resolved IP address. Resolver may
use this information to expand its CDN-to-IP database.

4.1.2 The Resolver Component
The Resolver is composed of four main parts, as shown

in Figure 1: The LocalDNS database serves as a local DNS
by keeping name records (i.e., DNS responses) for blocked
domain names. ResolverDaemon is the engine of Resolver
that processes queries from Scraper by accessing the other
three databases of Resolver, or by communicating with the
Bootstrapper component. The CDN-to-IP database con-
tains a list of (presumably) unblocked IP addresses for each
CDN domain. And, the Customer-to-CDN database records
the mapping between each customer domain name and the
domain name of its hosting CDN.

Adding a new LocalDNS record: Suppose that Scraper

asks for a new domain name BlockedDomain to be resolved,
which could be either a blocked customer domain name
(e.g., www.cnn.com), or a blocked CDN domain name (e.g.,
a248.e.akamai.net). If Customer-to-CDN and/or CDN-to-

IP have records for BlockedDomain, ResolverDaemon will
add a corresponding record to LocalDNS. Otherwise, Re-

solverDaemon will query Bootstrapper to resolve Blocked-

Domain. If BlockedDomain is a customer domain (e.g.,
cnn.com), Bootstrapper will return BlockedDomain’s CDN
domain name(s) along with a few unblocked IP addresses
of the hosting CDN domains. If BlockedDomain is a CDN
domain, Bootstrapper will return several unblocked IP ad-
dresses of the CDN provider. ResolverDaemon will update
the Customer-to-CDN and CDN-to-IP databases accordingly.

If a requested URL’s BlockedDomain is a non-CDN do-
main but the inner URLs are CDN objects, an advanced
Bootstrapper (as implemented in Section 5.1) may be used
to return the non-CDN parts of the requested URL (e.g., a

7http://www.kahunaburger.com/2009/03/18/
clear-dns-cache-in-firefox/
8http://superuser.com/questions/203674/
how-to-clear-flush-the-dns-cache-in-google-chrome

small-sized HTML page) and CacheBrowser will be able to
fetch the (bulky) CDN parts of the URL.

Updating an existing LocalDNS record: If Scraper

informs ResolverDaemon that an existing name resolu-
tion record for BlockedDomain needs to be updated, Re-

solverDaemon first removes the corresponding record from
LocalDNS. If BlockedDomain is listed as a customer in
Customer-to-CDN, ResolverDaemon checks if BlockedDo-

main’s CDN provider has changed and updates Customer-

to-CDN accordingly. Otherwise, ResolverDaemon will re-
move the unreachable IP address from CDN-to-IP database.
Finally, it adds a new record for BlockedDomain in LocalDNS.

Updating other databases: ResolverDaemon continu-
ously updates Customer-to-CDN and CDN-to-IP using Boot-

strapper responses and other sources. For instance, when
the user browses non-blocked CDN websites, ResolverDae-
mon will learn IP addresses of the hosting CDN domains, and
use that information to update CDN-to-IP. Also, Resolver-
Daemon can download and import external Customer-to-

CDN databases containing CDN mapping for popular blocked
webpages through out-of-band channels.

4.1.3 The Bootstrapper Component
The very first time CacheBrowser tries to browse a

blocked URL on a specific BlockedDomain, it is likely that
CacheBrowser’s Resolver can not resolve BlockedDomain,
therefore, it will ask Bootstrapper for help. We assume that
Bootstrapper has access to a non-censored name resolution
oracle, and it can be implemented either at the client-side
or as a remote service, as demonstrated in Section 5.1.

If the queried BlockedDomain is a CDN domain (e.g.,
a248.e.akamai.net) Bootstrapper will return to Resolver

multiple IP addresses belonging to that domain. If Blocked-
Domain is a customer domain (e.g., cnn.com) Bootstrapper

will return the name(s) of CDN domains hosting Blocked-

Domain’s content, along with multiple IP addresses of those
CDN domain(s). An advanced Bootstrapper may addition-
ally download and send back the non-CDN parts of a re-
quested URL (e.g., the base HTML page), which is imple-
mented in our remote Bootstrapper in Section 5.1.

It is worth emphasizing that Bootstrapper is a latency-
insensitive, low-bandwidth channel accessed very infre-
quently by a CacheBrowser client.

4.2 What Can Be Browsed by CacheBrowser
In the following we discuss how different classes of cen-

sored websites can be browsed by CacheBrowser.

Websites completely hosted on CDN. The majority of
the CDN customer websites we analyzed host all of their web
objects (e.g, HTML, CSS, JavaScript, and images) on CDN.
Some customers host all of their objects on a single CDN sys-
tem (e.g., https://www.istockphoto.com/) and some cus-
tomers spread their objects across multiple CDN systems
(e.g., https://www.pinterest.com/). Such websites can
be browsed by CacheBrowser if at least some of the edge
servers of their hosting CDN provider(s) serve the content
to the public with no self-censorship based on users’ geo-
graphic locations. This includes all of the non-Chinese CDN
providers studied in Section 3 (including Akamai) with re-
spect to the GFW. Also, the hosting CDN provider should
encrypt connections to prevent the censors from keyword
filtering. Fortunately, a large fraction of today’s websites al-
ready satisfy both of the conditions: an increasing number of

www.cnn.com
a248.e.akamai.net
http://www.kahunaburger.com/2009/03/18/clear-dns-cache-in-firefox/
http://www.kahunaburger.com/2009/03/18/clear-dns-cache-in-firefox/
http://superuser.com/questions/203674/how-to-clear-flush-the-dns-cache-in-google-chrome
http://superuser.com/questions/203674/how-to-clear-flush-the-dns-cache-in-google-chrome
a248.e.akamai.net
cnn.com
https://www.istockphoto.com/
https://www.pinterest.com/

content publishers are moving their services to commercial
CDN networks (for purposes other than circumvention, e.g.,
improving end-user QoS and reliability), and all major CDN
providers support (and some mandate9) encryption of con-
nections. Therefore, CacheBrowser can already be used to
browse a comprehensive list of blocked Internet content with
no action needed from their publishers. Content hosted on
P-CDN networks can be IP filtered if the size of the private
CDN network is not prohibitively large.

Websites partially hosted on CDN. Some websites
host only parts of their web objects (e.g., images and other
heavy-weight objects) on CDN and the rest of the (light-
weight) objects on their origin servers. This appears to be
on outdated practice, and most recent CDN implementa-
tions host the entire website on CDN. For such a website,
CacheBrowser can be used to download the CDN-hosted ob-
jects of the website, however, the non-CDN objects should
be retrieved through other means. Since the non-CDN ob-
jects are usually light-weight (e.g., the base HTML page), a
low-capacity covert channel can be used for retrieving them.
In our current implementation of CacheBrowser presented
in Section 5, we use our light-weight remote Bootstrapper

for this purpose.

Websites not hosted on CDN. The publishers of such
Websites can make their content browsable through Cache-
Browser by simply hosting their content on a public CDN
network that supports encryption. Thanks to the business
competition between numerous commercial CDN providers,
offering low-cost or even free [13] CDN service, CDN hosting
has become affordable even to host personal websites [10]
and blogs [12]. In particular, some providers offer free
CDN hosting services [13], including CloudFlare, Incapsula,
CoralCDN, and SwarmCDN. Hosting a website on a com-
mercial CDN network requires no technical knowledge and
is seamless: it can be done manually [12] by changing the
DNS setting of the web host to the name servers of the
CDN provider, and even many commercial web hosting ser-
vices have integrated, one-click mechanisms to host a cus-
tomer website on the commercial CDN network chosen by
the publisher.10

Also, publishers can seamlessly migrate their CDN-hosted
websites to other CDN networks in case of self-censorship by
their current CDN provider; this can be done by updating
the DNS settings of the web hosting system and usually
takes less than 24 hours for the new DNS records to prop-
agate. To improve resistance, a content publisher may even
decide to host its content on multiple, competing CDN sys-
tems. Note that this does not substantially increase the
costs to the publisher as (non-free) CDN providers charge
per traffic volume served to end-users.11

5. IMPLEMENTATION AND EXPERI-
MENTS

We have built an implementation of CacheBrowser in
Linux, and have evaluated its performance on our China-
based node introduced in Section 3, which is censored by
the GFW, and several other non-censored nodes.

9https://blog.cloudflare.com/
introducing-universal-ssl/

10https://www.cloudflare.com/hosting-partners
11http://www.cdn.net/pricing/

5.1 Implementation
CacheBrowser’s client software We have implemented
a CacheBrowser client software in Linux, but the techniques
can be easily implemented in other operating systems like
Microsoft Windows. Our WebBrowser is a regular Mozilla
Firefox browser. We have implemented the Scraper and
ResolverDaemon components in Python, and we use two lo-
cally stored “txt” files for the Customer-to-CDN and CDN-to-

IP databases. We simply use the “/etc/hosts” file of Linux
OS to serve as our LocalDNS database.

In our prototype implementation, for any URL unreach-
able (either fully or partially) by WebBrowser, the user will
have to run the Scraper Python script for that URL only
once, and then re-try to fetch the URL using WebBrowser.
Our Scraper will trigger the ResolverDaemon script, which,
if successful, will add a DNS record for the blocked domain
name(s) to the “/etc/hosts” file. In our final code release,
we plan on building a Firefox plugin that automatically
launches the Scraper script for each timed out URL.

We also implement a light-weight WebBrowser in Python
for large-scale, scripted measurement of download laten-
cies. For a given blocked URL, https://blocked.com/

BlockedURL.html, our script obtains an edge server IP from
“/etc/hosts” and sends an HTTP GET request to it for
BlockedURL.html with the HTTP header fields of Host:

blocked.com/ and User-Agent: Mozilla/5.0 (Windows

NT 5.1; rv:14.0) Gecko/20100101 Firefox/14.0.1.

Client-side Bootstrapper We prototype a client-
side Bootstrapper using a free online DNS resolvers,
digwebinterface.com. Such online DNS resolvers are free,
non-blocked, and are able to answer DNS queries on behalf
of multiple, geographically-dispersed DNS servers in differ-
ent network regions.

Remote Bootstrapper We have also implemented a re-
mote Bootstrapper based on SWEET [39], a light-weight
covert communication system designed by our group pre-
viously. SWEET works by encapsulating covert mes-
sages inside emails sent using regular email protocols. We
have implemented a SWEET server on a Linux server in
Amherst, which listens for incoming emails from Cache-
Browser clients targeted to a specific email address. Each
incoming email contains one or multiple DNS queries for
blocked URLs/domains generated by ResolverDaemon of
CacheBrowser clients. We run a Python script on our
Bootstrapper server that automatically processes such DNS
queries, and sends the DNS responses back to the querying
CacheBrowser clients. To answer a query, the Python script
simply runs dig commands on 20 dispersed PlanetLab [15]
nodes, or uses a local directory of domains resolved in the
past hour. Our SWEET-based Bootstrapper is also able
to download and send to CacheBrowser users the non-CDN
parts of their queried URLs (e.g., a non-CDN HTML file).

5.2 Coverage Evaluation
As discussed in Section 4.2, CacheBrowser can be used to

unblock censored content hosted on a CDN provider sup-
porting HTTPS (CacheBrowser may be able to unblock
some non-CDN or non-encrypted content as well, but the
censors can eventually re-block them through IP address fil-
tering or DPI). This already comprises a large fraction of
today’s Internet content, which is rapidly expanding with
CDN hosting becoming more adopted by content publish-

https://blog.cloudflare.com/introducing-universal-ssl/
https://blog.cloudflare.com/introducing-universal-ssl/
https://www.cloudflare.com/hosting-partners
http://www.cdn.net/pricing/
https://blocked.com/BlockedURL.html
https://blocked.com/BlockedURL.html
digwebinterface.com

Figure 2: A snapshot of unblocking Facebook in China us-
ing CacheBrowser, with all objects (hosted on various CDN
domains) fetched successfully.

ers. To demonstrate this, we scraped greatfire.org for
websites in the top 1000 Alexa websites that are blocked by
the GFW. We observe that 82% of the blocked websites are
already hosted by some CDN provider, where the number is
85% for news websites like the wsj.com. As discussed in Sec-
tion 4.2, non-supported publishers can take simple measures
to make their content unblocked by CacheBrowser.

While the majority of these websites are hosted solely on
commercial CDN networks, some have complex implemen-
tations by combining private and shared CDN networks.
Facebook.com has by far the most complex design: a pri-
vate CDN, *.facebook.com, hosts the base HTML pages
including Facebook’s frontpage and login HTML pages, and
*.akamaihd.net, an Akamai S-CDN, serves many of the
inner links of a Facebook session including all the CSS,
JavaScript, and gif resources, as well as profile and non-
profile images in the jpeg and png formats. We also no-
tice that recently uploaded images and videos are served on
*.fbcdn.net, another private CDN, before they are moved
to *.akamaihd.net.

We find that the GFW performs DNS poisoning for the
*.facebook.com domain only, but not the other domains as
this effectively makes facebook.com inaccessible to the Chi-
nese users. In addition to DNS poisoning, the GFW per-
forms limited IP filtering for the *.facebook.com private
CDN network, but still missing many of the IP addresses in
this private CDN. As with other studied websites, we ob-
served no instance of IP filtering for any of the shared CDN
networks. All of the *.akamaihd.net domains perform self-
censorship as discussed before, e.g., the edge servers located
inside China deny to serve the content (but not the other
edge servers).

Our CacheBrowser client is able to successfully unblock
facebook.com (in addition to many other experimented
blocked websites), which is a highly complex, multi-CDN
webpage. As the snapshot in Figure 2 shows, our Cache-
Browser user in China fetches all the objects successfully.

5.3 Latency Evaluation
As discussed earlier, the goal of a CDN network’s mapping

system is to maximize the QoS (e.g., reduce latency) for end-
users by returning edge server IP addresses tailored to each
querying end-user, network conditions, etc. CacheBrowser
bypasses such mapping —which is already DNS poisoned
by the censors —and uses some known edge server to fetch

blocked CDN content. Therefore, one can expect that fetch-
ing content from an “alternative” edge server, as opposed to
the “default” one mapped by the CDN mapping system, will
reduce QoS for a CacheBrowser user.

We have measured such increased latency for three major
CDN providers, as shown in Figure 3. The most left bar in
each figure is the download time when the object is retrieved
from the default edge server returned by the mapping sys-
tem, and all the other bars correspond to various alternative
edge servers of the same CDN network (each bar shows the
mean over 100 trials). We have selected alternative edge
servers that are highly distributed across the world, from
Japan and Australia to the U.S., Europe, and the Middle
East. As can be seen, while the latency increases when con-
tent is fetched from alternative edge servers, the overhead is
not prohibitively significant. This extra latency is the price
paid by CacheBrowser for unblocking the content that is
otherwise unbrowsable. Also, our measurements reflect the
most pessimistic overheads since we have chosen alternative
edge servers that are far distanced from our end-user; a more
strategic selection of edge servers by CacheBrowser (e.g., by
choosing nearby edge servers) will reduce the latency over-
head.

Figure 4 compares the download times of several CDN
webpages by CacheBrowser, Tor, and a non-censored con-
nection. We perform two sets of experiments, one from
our China-based CacheBrowser client, and one from a lo-
cal CacheBrowser client in our lab. In both of the cases,
CacheBrowser results in higher latencies compared to a non-
censored download, however, the overhead is not significant.
Despite the increased latency, CacheBrowser performs sig-
nificantly faster than Tor on our local client. We were not
allowed to run Tor on our Chinese client, however, we conjec-
ture a similar latency advantage over Tor in China. This is
due to CacheBrowser’s publisher-centric approach, in which
content is not relayed through (potentially overloaded and
resource-limited) third-party proxies that add extra delay.

5.4 Remote Bootstrapper
In our experiments, a CacheBrowser client receives an

email containing DNS responses from our SWEET-based
remote Bootstrapper with a median latency of 5.4 seconds
(95% of messages are received within 10 seconds across 100
runs, confirming our previous study [39]) if the DNS re-
sponses are cached on the server. Such latency depends
on factors like the client’s distance from the SWEET email
server and the client’s email provider [39]. If the DNS re-
sponse is not cached on the remote Bootstrapper server,
running dig commands on PlanetLab nodes will add an-
other 3-8 seconds delay, depending on the responsiveness of
the used PlanetLab nodes.

Such latency is good enough for CacheBrowser to operate
because a typical content publisher does not change its CDN
provider frequently (e.g., only every few months), therefore,
a CacheBrowser client needs to re-query a blocked content
publisher only once after every migration.

6. SYSTEM ANALYSIS

6.1 Threat Model
We assume that our CacheBrowser user resides inside a

censored network territory. The censoring ISP may deploy
various censorship mechanisms as discussed in Section 3.1

greatfire.org
wsj.com
*.facebook.com
*.akamaihd.net
*.fbcdn.net
*.akamaihd.net
*.facebook.com
facebook.com
*.facebook.com
*.akamaihd.net
facebook.com

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.0

0.5

1.0

1.5

2.0

2.5

D
ow

nl
oa

d
Ti

m
e

(s
)

0.067
0.072
0.073

0.277 0.136
0.436
0.399
0.415
0.389

0.535
0.538 0.409

0.726
0.849

1.988
1.275

0.167
1.040

0.493
0.535
0.536

Default Alt. Edge Server

(a) Akamai

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
ow

nl
oa

d
Ti

m
e

(s
)

0.049
0.054

0.111
0.049

0.405
0.405
0.405

0.048
0.049
0.049

0.787
1.178

0.336
0.333

0.922
0.911
0.915

0.050
0.407

0.340
0.049

Default Alt. Edge Server

(b) EdgeCast

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.0

0.5

1.0

1.5

2.0

D
ow

nl
oa

d
Ti

m
e

(s
)

0.245
0.608

1.159
1.675

0.615
1.601

0.721
0.736 0.572

1.789
0.694

0.715
0.715
0.728

0.936
0.260

0.300
0.226

0.245
0.283

0.233

Default Alt. Edge Server

(c) Amazon CloudFront

Figure 3: Comparing download time of a CDN content object from the “best” edge server returned by mapping system vs.
other edge servers. The alternative edge servers are chosen to be geographically far distanced from the end-user.

istockphoto.com

nbc.com

facebook.com

Facebook Object

pinterest.com

theatlantic.com

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ow

nl
oa

d
Ti

m
e

(s
)

0.910

0.479

0.000

1.124

0.245 0.049

1.397 1.204

0.467

1.329

0.704

0.340

Non-Censored CacheBrowser

(a) Client in China

istockphoto.com

nbc.com

facebook.com

Facebook Object

pinterest.com

theatlantic.com

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ow

nl
oa

d
Ti

m
e

(s
)

0.424

0.067

0.193 0.011

0.245 0.049

0.878

0.493

0.477

0.457

0.704

0.704

2.534

2.381 2.218

1.504

1.349

1.349

Non-Censored CacheBrowser Tor

(b) Client in Amherst, MA, U.S.

Figure 4: Comparing download latency for several websites using three methods: non-censored (regular) download, using
CacheBrowser, and using Tor. We were not allowed to run Tor on our Chinese client. Also, in our China experiments, there
is no “Non-censored” measurement for facebook.com, which is blocked, and we use the HTTPS version of istockphoto.com
for its “Non-censored” measurement (it is blocked by keyword filtering only). All the other websites are not blocked in China.

in order to block forbidden content as well as to detect and
disable the use of any censorship circumvention system like
CacheBrowser. However, we assume that the censors are ra-
tional, i.e., they refrain from any actions that will interfere
with non-prohibited Internet activities of a significant num-
ber of their non-circumvention citizens. In particular, we
assume that the censors do not block all encrypted traffic
as encryption is essential for various popular non-forbidden
Internet services. Additionally, we assume that the cen-
sors do not entirely block a commercial CDN provider (e.g.,
by IP blacklisting all edge servers) merely because it serves
some prohibited content publishers, since the CDN provider
will likely be hosting many non-forbidden content publish-
ers as well. The censors, however, may perform —selective
—blocking of CDN domain names and encrypted traffic.

We assume that commercial CDN providers do not co-
operate with censored users nor with content publishers
in order to circumvent censorship, as this may jeopardize
their business interests with economically-powerful state-
level censors like China. A CDN provider may cooperate
with the censors, however, the cooperation is constrained to
not violate the jurisdiction of the CDN’s home country as
well as its business interests in other parts of the world. For
instance, as we analyzed in Section 3, Akamai only partially

cooperates with the GFW in order to protect its business in-
terests and reputation in other (non-censored) regions. We
assume that the CDN providers fully controlled by the cen-
sors (e.g., Chinese CDN providers) will not even host any
forbidden content.

In this paper, we do not consider unobservability against
active attacks and traffic analysis, but discuss the challenges
and possible solutions in the rest of this section.

6.2 Privacy
Privacy form Circumvention Provider Proxy-based
circumvention systems like Tor, Psiphon, and VPNs expose
their users to significant privacy risks from the circumven-
tion providers. For instance, malicious Tor relays can per-
form a toolset of attacks [31] to comprise Tor users’ privacy,
and a malicious VPN service (e.g., one run by a repres-
sive government to spy on dissidents) can learn the users’
browsing activities and even the content of their communi-
cations. Such risks do not apply to CacheBrowser due to its
publisher-centric approach, i.e., no proxy is used.

A CacheBrowser client may use a remote Bootstrapper,
e.g., the email-based system described earlier. The remote
Bootstrapper can not see the content of the client’s commu-
nications, but may learn the destinations she browses. Even

facebook.com
istockphoto.com

this is not a risk, because the Bootstrapper will only see
the user’s (anonymized) email address, not her IP address.

Privacy from CDN providers The CDN provider host-
ing a blocked website will be able to identify the censored
users who fetch the blocked website, e.g., based on IP ad-
dress information. This does not introduce a new privacy
risk: CDN providers can anyway identify all of the end-users
browsing their customers (including both censored and un-
censored end-users), however, as part of their service agree-
ment they guarantee to not misuse such information, e.g.,
not disclose it to state-level censors. A CDN provider re-
leasing such information will risk hurting its reputation and
losing its customers.

Privacy from the censors Suppose that a CacheBrowser
user downloads an encrypted blocked CDN content, e.g.,
an HTTPS webpage. Unless the CDN network hosting the
blocked content cooperates with the censors, the censors will
not be able to detect neither the fact that the client is brows-
ing that blocked website, nor the content of her communi-
cation. This is because the hosting edge servers serve many
other webpages, CacheBrowser bypasses the DNS stage, and
encryption hides the actual HTTP GET requests and re-
sponses. If no encryption is used, the censors can detect
such communication using DPI and block it.

6.3 Blocking Resistance
Censors disabling encryption Outright blocking of en-
cryption will prevent CacheBrowser users from hiding the
web destinations they browse. However, as stated in our
threat model, we assume that the censors will refrain from
doing so due to the significant collateral damage of disabling
legitimate, critical Internet services that use encryption.

Censors blocking CDN networks Censors may decide
to block a whole CDN domain (e.g., a248.e.akamai.net)
that hosts some forbidden CDN customers. The censors
can do so by DNS interference, however, this will not im-
pact CacheBrowser users as they directly connect to edge
servers. The censors can alternatively block all IP addresses
of the target CDN domain. However, as discussed before,
this will cause the censors significant collateral damage due
to blocking the non-forbidden websites served through those
IP addresses. Also, enumerating and blocking all of the IP
addresses of a CDN domain (which also may change over
time) will be exhaustive to the censors.

CDN provider cooperating with the censors In order
to protect their business interests, some CDN providers may
decide to cooperate with the economically strong censors.
As discussed before, such cooperation will be limited as the
CDN providers have to protect their reputation and busi-
ness interests in other regions. For instance, CDN providers
based in the U.S. are not allowed to deny service to particu-
lar content publishers whose content is legitimate in the U.S.
(but might be forbidden in a censoring region like China).
This is confirmed by our analysis of Section 3.3, i.e., Aka-
mai, the only non-Chinese CDN cooperating with the GFW,
performs its self-censorship in a limited manner. Also, CDN
cooperation with censoring countries with smaller economic
impact (e.g., Syria) seems to be very unlikely.

Denial-of-service attacks Censors occasionally lunch
denial-of-service (DoS) attacks on circumvention systems to
interfere with their operation. This is usually performed
by flooding the third-party proxies running a circumven-

tion system, e.g., by building long Tor circuits to exhaust
Tor relays [20]. Such DoS attacks are out of the scope for
CacheBrowser as it does not involve any third-party proxies.

Active attacks Previous work [22, 24] shows how active
attacks, e.g., strategically dropping packets, can be used to
identify and block some circumvention systems. Such at-
tacks do not generally apply to CacheBrowser’s encrypted
HTTP traffic, e.g., the dropped packets will be resent at the
TCP layer. Nonetheless, the dependencies between multiple
HTML objects in a complex webpage (or across multiple
webpages) may be used to devise attacks specific to that
webpage. We leave a thorough analysis to future work.

Insider attacks Unlike traditional circumvention systems,
censors who run CacheBrowser do not learn additional in-
formation that will help them in blocking CacheBrowser.
For instance, in proxy-based circumvention systems like Tor
censors can learn (and block) the IP addresses of circum-
vention proxies by merely running such systems [37]. Also,
our remote Bootstrapper sends various DNS responses to
querying users to be unobservable to insider attackers.

Reconfiguring the GFW to block CacheBrowser
CacheBrowser does not rely on an existing flaw in the GFW
nor a misconfiguration of the censoring firewalls that can be
fixed once/if CacheBrowser has become widely deployed and
popular. Instead, it relies on the censors’ technical difficul-
ties in distinguishing forbidden CDN content from benign
CDN content, and also the challenges of blocking forbidden
CDN content without significant collateral damage.

6.4 Website Fingerprinting
Website fingerprinting can compromise both privacy and

blocking resistance, using different techniques:

Based on traffic patterns The censors may use statistical
fingerprinting techniques [7,23] on encrypted CDN traffic to
detect end-users connecting to forbidden CDN customers.
Such techniques are resource-intensive to be performed at
large-scale and suffer from high rates of false positives (thus,
collateral damage) as demonstrated by a recent study [28];
this is why there is no evidence of real-world deployment
of such techniques by the censors. If such techniques are
deployed content publishers of our publisher-centric circum-
vention system can increase the rates of false positive even
further by dynamically changing their patterns or resem-
bling non-forbidden pages.

Based on webpage objects A typical webpage may con-
tain URI links to various external web resources such as
HTML CSS, analytics JavaScript, and advertisement. Even
though some of these external resources are fetched through
encrypted connections, one might fingerprint a webpage
based on the number, type, and destination of its exter-
nal URIs. As a future work, we plan to explore the extent
of such website fingerprinting on CacheBrowser connections,
and devise countermeasures mechanisms. Possible counter-
measures include blocking unnecessary external resources,
pre-fetching required external resources, and fetching exter-
nal resources that mimic other, non-blocked webpages.

Based on edge servers At any given time, a CDN’s map-
ping system is likely to return different edge servers to a user
for two different customer webpages. This can be used to
probabilistically fingerprint CDN webpages despite encryp-
tion. A simple countermeasure is for a CacheBrowser client
to always connect to edge servers that are returned for some

a248.e.akamai.net

non-forbidden webpage on the same CDN system. We leave
further analysis and implementation to future work.

6.5 Availability of Remote Bootstrapper
CacheBrowser’s remote Bootstrapper may be targeted by

DoS attacks, but the risks are very limited due to the low
volume of traffic and light weight of operations in each Boot-

strapper communication. Also, a Bootstrapper can use
standard DoS defense mechanisms like using computational
puzzles as suggested for SWEET [39].

The utilized remote Boostrapper should provide plausible
unobservability, otherwise it will be blocked by the censors.
The remote Boostrapper of our current implementation is
based on SWEET [39], whose unobservability has been ex-
tensively discussed in its original paper [39]. SWEET offers
high unobservability for low-volume communications, mak-
ing it an ideal choice for our light-weight remote Bootstrap-
per. We use our SWEET-based Bootstrapper to optionally
download and send to CacheBrowser users the non-CDN
parts of their queried URLs, as discussed before. This will
increase our Bootstrapper’s traffic volume and weaken its
unobservability.

It is worth emphasizing that CacheBrowser is not tied
to the presented SWEET-based Bootstrapper, and future
work can design alternative light-weight remote Bootstrap-

pers, e.g., based on online social networks. Also, a remote
Bootstrapper is not required for CacheBrowser’s operation
and a client can use client-side Bootstrappers.

6.6 Resistance to Nation-State Censors
The practical censorship resistance offered by Cache-

Browser depends on specific nation-state censors. For each
particular nation-state censor, CensoringCountry, we clas-
sify commercial CDN providers into three categories: (1)
CDN providers that are not under the CensoringCountry’s
jurisdiction and do not have any explicit business relations
with them (e.g., Fastly in the case of China), (2) CDN
providers that are not under CensoringCountry’s jurisdic-
tion but partially cooperate with them to protect their busi-
ness interests (e.g., Akamai in the case of China), and (3)
CDN providers that are under the full jurisdiction of Cen-
soringCountry (e.g., ChinaCache in the case of China). As
discussed for China in Section 3.2, CacheBrowser can be
used to browse forbidden content on the first and second
categories of CDN providers as long as the hosting CDN
provider does not perform full cooperation with the censors
(e.g., through geo-location based content filtering, or remov-
ing forbidden content). Such censorship cooperation is less
likely for CDN providers of type one due to the lack of busi-
ness interests, but is more likely to be implemented by the
second category of providers. The CDN providers of the
third category simply do not host forbidden content.

Fortunately, for major nation-state censors the majority
of commercial CDN providers fall under the first category
of providers discussed above. As mentioned in Section 3.2,
there is only one provider in the second category for China.
The situation is even worse for nation-state censors with
weaker economies, for instance we could not identify any
commercial CDN providers that run edge servers in Iran,
Syria, or Venezuela, i.e., their second category is empty.
Even if some of these censors deploy their home-brewed
CDN systems (i.e., the third category) they can not dis-

connect their users from the non-censoring CDN providers
due to the significant collateral damage discussed earlier.

7. RELATED WORK

7.1 Proxy-Based Circumvention Systems
Proxy-based circumvention [5,6,18,25–27,38] is the main-

stream approach for censorship circumvention. In this ap-
proach, one or multiple circumvention entities, known as
proxies, relay traffic between censored users and content
publishers. Such proxying is offered either as a paid or free
service, and does not involve content publishers.

In CacheBrowser’s publisher-centric approach, however,
third-party involvement is minimal, and end-users obtain
content directly from content publishers. Obviously, the way
a publisher serves its content will impact the performance
of a publisher-centric system.

7.1.1 Domain Fronting
Domain fronting [21] is a new technique for setting up

proxies in proxy-based circumvention systems to make them
better resistant to IP address blocking. The main idea of
domain fronting is to run circumvention proxies, e.g., Tor
bridges [17], on “web services” that share IP addresses with
multiple (potentially non-related) guest services. This way,
IP address blocking the circumvention proxy (e.g., the Tor
bridge) running inside the web service will cause the cen-
sors collateral damage since blocking shared IP addresses
will block all the other (potentially non-forbidden) guest ser-
vices running on the hosting web service. The web services
used for domain fronting include application engines, cloud
computing infrastructures, and CDN systems.

Domain fronting has been recently adopted by several
proxy-based circumvention systems, in particular Tor (as
a pluggable transport [32]), Psiphon, FireFly Proxy,12 and
Flashlight HTTP proxy.13 Tor’s meek pluggable transport
implements domain fronting on Google App Engine, Mi-
crosoft Azure cloud infrastructure, and CloudFront CDN.

While the meek project’s implementation on CloudFront
CDN shares conceptual similarities with CacheBrowser, we
emphasize that the two approaches of “domain fronting” and
“cache browsing” are fundamentally different. Domain
fronting is the approach to run circumvention proxies on
online web services so that a proxy’s IP address is shared
with other (non-forbidden) applications, therefore costly to
be blocked. On the other hand, our cache browsing approach
(implemented as CacheBrowser) is the idea of obtaining a
censored content object directly from one of its many cached
versions, without using any circumvention proxies. There-
fore, domain fronting and cache browsing have different im-
plementation domains. Domain fronting can be deployed on
web services that share IP addresses like app engines, cloud
computing systems, and CDN, and cache browsing can lever-
age content caching by any caching system including CDNs,
cache networks [33, 36], and filesharing networks like Bit-
Torrent. In other words, domain fronting is “service-centric”
while our cache browsing approach is “content-centric.”

12https://github.com/yinghuocho/firefly-proxy
13https://github.com/getlantern/flashlight

https://github.com/yinghuocho/firefly-proxy
https://github.com/getlantern/flashlight

7.1.2 Advantages of CacheBrowser
In the following, we discuss the advantages of Cache-

Browser’s publisher-centric approach over proxy-based cir-
cumvention systems, particularly domain fronting.

Superior quality-of-service: Proxy-based circumven-
tion systems like Tor are notorious for their poor QoS. This
is due to their traffic indirection through network relays
that usually have insufficient resources (e.g., bandwidth,
CPU, etc.) to support large numbers of censored clients.
A publisher-centric approach improves the QoS by eliminat-
ing such third-party relays and exchanging content directly
between publishers and end-users. As illustrated in Fig-
ure 4, CacheBrowser significantly outperforms Tor’s meek
implementation.

Minimal expenses to third-parties: Proxy-based cir-
cumvention systems rely on either third-parties (e.g., volun-
teer Tor relays) or end-users (e.g., paid VPN services and
Anonymizer) to pay the monetary expenses of running cir-
cumvention proxies. In a publisher-centric approach, how-
ever, each content publisher pays the expenses for having
its own content un-censored. In CacheBrowser, in particu-
lar, the price is indirectly paid by content publishers who
host their content on commercial CDN systems.

Censors’ pressure has less impact: Proxy-based cir-
cumvention systems, including domain fronting services like
meek, FireFly proxy, and Flashlight proxy, are online “ser-
vices” that are solely used for censorship circumvention.
Therefore, the censors can pressure their hosting web ser-
vices to entirely remove them. For example, Apple Inc.
has repeatedly removed anti-censorship applications from
its China iOS App Store under the pressure of the Chinese
government.14 In CacheBrowser, however, even if a CDN
provider takes down forbidden content within the censors’
region, users can still obtain the cached content from other
regions not impacted by censorship.

Eliminating legal consequences for third-party oper-
ators: Volunteer operators of proxy-based circumvention
systems often face legal punishments for the illegal actions
of (usually unknown) end-users. This has frequently been
witnessed15 for volunteer Tor relays whose relays have been
used by unknown Tor users for illegal activities. Publisher-
centric systems eliminate such risks as no third-parties are
involved in content transmission, and censored users obtain
content the same way as regular, non-censored users do.

Little reliance on third-parties to operate: Once the
third-parties running a proxy-based circumvention system
lose interest in running the system (e.g., due to economic
or political reasons), the system will stop functioning. A
publisher-centric system like CacheBrowser, however, is to
the most part independent of third-party operators, and
end-users will be able to fetch content as long as content
publishers are willing to serve content.

7.1.3 Disadvantage of CacheBrowser
Should be adopted by content publishers: A
publisher-centric solution will not be effective if its underly-
ing concept (CDN hosting in the case of CacheBrowser) is

14https://en.greatfire.org/blog/2013/oct/
opendoor-shut-apples-chinese-app-store

15https://network23.org/blackoutaustria/2014/07/01/
to-whom-it-may-concern-english-version/

not embraced by content publishers, either intentionally or
unintentionally. In the case of CacheBrowser, many content
publishers have already deployed the underlying concept for
reasons other than censorship resistance, as discussed in Sec-
tion 5.2.

7.2 Mirroring Censored Content
A recent alternative approach to proxy-based systems is

to mirror censored content on web services that support
domain fronting, without running any third-party prox-
ies. For instance, the Collateral Freedom project [16] mir-
rors several popular censored websites on cloud-fronting
platforms like Amazon EC2 and GitHub. Similar to do-
main fronting proxy-based systems, the mirrored content
will make use of IP addresses that are shared with other,
likely non-forbidden, Internet content, therefore any censor-
ship will cause the censors collateral damage due to making
the non-forbidden content inaccessible as well. For exam-
ple, blocking a mirror of NYTimes on GitHub (e.g., https:
//github.com/greatfire/wiki/wiki/nyt) will require the
censors to block all the other GitHub projects as well.

Note that the mirroring approach has major limitations.
First, mirroring only works for static, non-interactive web
traffic, e.g., static news articles, but can not be used for
dynamic web content, e.g., social networking services like
Facebook. Second, since the mirrors are set up manually by
volunteers, they are limited to popular, highly-demanded
censored content only (e.g., the Collateral Freedom project
mirrors a very small set of websites). Third, the mirrored
content is often hosted by third-party volunteers, not the
actual content publishers. This may impact the integrity of
the content, or even users’ privacy. For instance, the GFW
may host mirrors of blocked content that are modified. By
contrast, CacheBrowser users obtain the content form the
same channel as regular non-censored users. Fourth, some
mirrored content may be blocked by DNS poisoning. For in-
stance, the GFW blocks Collateral Freedom mirrors hosted
on some CDN networks through DNS blocking, enforcing
the Collateral Freedom project to change the mirrors’ CDN
domains frequently. In fact, we were able to use our Cache-
Browser tool to successfully unblock the previously blocked
mirrors of the Collateral Freedom project.

8. CONCLUSIONS
Through analysis and real-world experiments, we demon-

strated that blocking cached CDN content poses unique
technical and non-technical challenges to the censors. We
designed and implemented a client-side circumvention sys-
tem that exploits such challenges and is able to unblock
censored CDN content in China with a superior QoS com-
pared to proxy-based circumvention systems like Tor. The
“cache browsing” idea of CacheBrowser can be applied for
censorship circumvention in other cache-centric contexts like
next-generation Internet architectures [33, 36] and fileshar-
ing overlay networks. The broader lesson of our study is that
future circumvention technologies should embrace modern,
emerging communication paradigms in their designs.

9. ACKNOWLEDGMENTS
We would like to thank our anonymous reviewers for their

insightful comments. The research was supported in part by
a 2015 Faculty Research Award from Google Inc.

https://en.greatfire.org/blog/2013/oct/opendoor-shut-apples-chinese-app-store
https://en.greatfire.org/blog/2013/oct/opendoor-shut-apples-chinese-app-store
https://network23.org/blackoutaustria/2014/07/01/to-whom-it-may-concern-english-version/
https://network23.org/blackoutaustria/2014/07/01/to-whom-it-may-concern-english-version/
https://github.com/greatfire/wiki/wiki/nyt
https://github.com/greatfire/wiki/wiki/nyt

10. REFERENCES

[1] Akamai Facts & Figures. http:
//www.akamai.com/html/about/facts_figures.html.

[2] A. Anand, F. Dogar, D. Han, B. Li, H. Lim,
M. Machado, W. Wu, A. Akella, D. G. Andersen,
J. W. Byers, et al. XIA: An Architecture for an
Evolvable and Trustworthy Internet. In HotNets, 2011.

[3] D. Anderson. Splinternet Behind the Great Firewall of
China. Queue, 10(11):40, 2012.

[4] Anonymous. The Collateral Damage of Internet
Censorship by DNS Injection. ACM SIGCOMM CCR,
42(3), 2012.

[5] J. Boyan. The Anonymizer: Protecting User Privacy
on the Web. Computer-Mediated Communication
Magazine, 4(9), Sept. 1997.

[6] C. Brubaker, A. Houmansadr, and V. Shmatikov.
CloudTransport: Using Cloud Storage for
Censorship-Resistant Networking. In PETS, 2014.

[7] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson.
Touching from a distance: Website fingerprinting
attacks and defenses. In CCS, 2012.

[8] Latest List Of Vendors In The Content Delivery
Ecosystem. http://blog.streamingmedia.com/2014/
07/cdnvendors.html.

[9] Content Delivery Networks.
http://www.cdnplanet.com/cdns/.

[10] How to Use CloudFlare to Speed Up Your Site.
http://www.northernbellediaries.com/

how-to-use-cloudflare-to-speed-up-your-site/.

[11] 5 Reasons to Implement a Content Delivery Network
(CDN). http://blog.newrelic.com/2012/12/18/
5-reasons-to-implement-a-cdn/.

[12] Tutorial: Creating a CDN for WordPress with
CloudFront and S3.
http://blog.celingest.com/en/2013/07/19/

tutorial-creating-cdn-wordpress-cloudfront-s3/.

[13] 10 Free CDN Services to Speed Up WordPress.
http://www.wpexplorer.com/

free-cdn-services-for-wordpress/.

[14] Reaching China’s Online Users.
http://www.akamai.com/html/technology/

china-content-delivery-network.html.

[15] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: an
overlay testbed for broad-coverage services.
SIGCOMM CCR, 33(3):3–12, 2003.

[16] Collateral Freedom.
https://openitp.org/pdfs/CollateralFreedom.pdf,
2013.

[17] R. Dingledine and N. Mathewson. Design of a
Blocking-Resistant Anonymity System.
https://svn.torproject.org/svn/projects/

design-paper/blocking.html.

[18] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The Second-generation Onion Router. In USENIX
Security, 2004.

[19] M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli.
Tunnel hunter: Detecting application-layer tunnels
with statistical fingerprinting. Computer Networks,
53(1):81–97, 2009.

[20] N. S. Evans, R. Dingledine, and C. Grothoff. A
Practical Congestion Attack on Tor Using Long Paths.
In USENIX Security Symposium, 2009.

[21] D. Fifield, C. Lan, R. Hynes, P. Wegmann, and
V. Paxson. Blocking-resistant Communication through
Domain Fronting. In PETS, 2015.

[22] J. Geddes, M. Schuchard, and N. Hopper. Cover Your
ACKs: Pitfalls of Covert Channel Censorship
Circumvention. In CCS, 2013.

[23] D. Herrmann, R. Wendolsky, and H. Federrath.
Website fingerprinting: attacking popular privacy
enhancing technologies with the multinomial
näıve-bayes classifier. In CCS, 2009.

[24] A. Houmansadr, C. Brubaker, and V. Shmatikov. The
Parrot is Dead: Observing Unobservable Network
Communications. In IEEE S&P, 2013.

[25] A. Houmansadr, G. Nguyen, M. Caesar, and
N. Borisov. Cirripede: Circumvention Infrastructure
Using Router Redirection with Plausible Deniability.
In CCS, 2011.

[26] A. Houmansadr, T. Riedl, N. Borisov, and A. Singer. I
Want My Voice to Be Heard: IP over Voice-over-IP
for Unobservable Censorship Circumvention. In NDSS,
2013.

[27] J. Jia and P. Smith. Psiphon: Analysis and
Estimation. http://www.cdf.toronto.edu/~csc494h/
reports/2004-fall/psiphon_ae.html, 2004.

[28] M. Juarez, S. Afroz, G. Acar, C. Diaz, and
R. Greenstadt. A critical evaluation of website
fingerprinting attacks. In CCS, 2014.

[29] K. Kathuria. Bypassing Internet Censorship for News
Broadcasters. In FOCI, 2011.

[30] C. Leberknight, M. Chiang, H. Poor, and F. Wong. A
Taxonomy of Internet Censorship and Anti-censorship.
http://www.princeton.edu/~chiangm/

anticensorship.pdf, 2010.

[31] Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, and W. Jia.
A new cell counter based attack against Tor. In CCS,
2009.

[32] meek Pluggable Transport. https://trac.
torproject.org/projects/tor/wiki/doc/meek.

[33] Named Data Networking Project.
http://www.named-data.net.

[34] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai
network: a platform for high-performance internet
applications. ACM SIGOPS OSR, 44(3):2–19, 2010.

[35] A.-M. K. Pathan and R. Buyya. A taxonomy and
survey of content delivery networks. http:
//www.cloudbus.org/reports/CDN-Taxonomy.pdf.

[36] D. Raychaudhuri, K. Nagaraja, and
A. Venkataramani. Mobilityfirst: a robust and
trustworthy mobility-centric architecture for the future
internet. ACM SIGMOBILE MCCR, 16(3):2–13, 2012.

[37] P. Winter and S. Lindskog. How the Great Firewall of
China Is Blocking Tor. In FOCI, 2012.

[38] E. Wustrow, S. Wolchok, I. Goldberg, and
J. Halderman. Telex: Anticensorship in the Network
Infrastructure. In USENIX Security, 2011.

[39] W. Zhou, A. Houmansadr, M. Caesar, and N. Borisov.
SWEET: Serving the Web by Exploiting Email
Tunnels. In HotPETs, 2013.

http://www.akamai.com/html/about/facts_figures.html
http://www.akamai.com/html/about/facts_figures.html
http://blog.streamingmedia.com/2014/07/cdnvendors.html
http://blog.streamingmedia.com/2014/07/cdnvendors.html
http://www.cdnplanet.com/cdns/
http://www.northernbellediaries.com/how-to-use-cloudflare-to-speed-up-your-site/
http://www.northernbellediaries.com/how-to-use-cloudflare-to-speed-up-your-site/
http://blog.newrelic.com/2012/12/18/5-reasons-to-implement-a-cdn/
http://blog.newrelic.com/2012/12/18/5-reasons-to-implement-a-cdn/
http://blog.celingest.com/en/2013/07/19/tutorial-creating-cdn-wordpress-cloudfront-s3/
http://blog.celingest.com/en/2013/07/19/tutorial-creating-cdn-wordpress-cloudfront-s3/
http://www.wpexplorer.com/free-cdn-services-for-wordpress/
http://www.wpexplorer.com/free-cdn-services-for-wordpress/
http://www.akamai.com/html/technology/china-content-delivery-network.html
http://www.akamai.com/html/technology/china-content-delivery-network.html
https://openitp.org/pdfs/CollateralFreedom.pdf
https://svn.torproject.org/svn/projects/design-paper/blocking.html
https://svn.torproject.org/svn/projects/design-paper/blocking.html
http://www.cdf.toronto.edu/~csc494h/reports/2004-fall/psiphon_ae.html
http://www.cdf.toronto.edu/~csc494h/reports/2004-fall/psiphon_ae.html
http://www.princeton.edu/~chiangm/anticensorship.pdf
http://www.princeton.edu/~chiangm/anticensorship.pdf
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://trac.torproject.org/projects/tor/wiki/doc/meek
http://www.named- data.net
http://www.cloudbus.org/reports/CDN-Taxonomy.pdf
http://www.cloudbus.org/reports/CDN-Taxonomy.pdf

	Introduction
	Background: Content Delivery Networks
	CDN Architecture
	Typical CDN Communication
	Types of CDN Networks

	Censorship of CDN Content
	Possible CDN Censorship Techniques
	IP Address Filtering
	DNS Interference
	Keyword/URL filtering using DPI
	Self-censorship by CDN providers
	Advanced resource-intensive analysis

	How China is Censoring CDN Content
	Akamai: non-Chinese CDN Present in China
	Non-Chinese CDNs not Present in China
	Chinese CDN Providers

	Lessons of Our Study

	CacheBrowser: A Publisher-Centric Circumvention System
	CacheBrowser's Architecture
	The Scraper Component
	The Resolver Component
	The Bootstrapper Component

	What Can Be Browsed by CacheBrowser

	Implementation and Experiments
	Implementation
	Coverage Evaluation
	Latency Evaluation
	Remote Bootstrapper

	System Analysis
	Threat Model
	Privacy
	Blocking Resistance
	Website Fingerprinting
	Availability of Remote Bootstrapper
	Resistance to Nation-State Censors

	Related Work
	Proxy-Based Circumvention Systems
	Domain Fronting
	Advantages of CacheBrowser
	Disadvantage of CacheBrowser

	Mirroring Censored Content

	Conclusions
	Acknowledgments
	References

