
Practical Censorship Evasion
Leveraging Content Delivery Networks

Hadi Zolfaghari
University of Massachusetts Amherst

hadi@cs.umass.edu

Amir Houmansadr
University of Massachusetts Amherst

amir@cs.umass.edu

ABSTRACT
CDNBrowsing is a promising approach recently proposed for
censorship circumvention. CDNBrowsing relies on the fact
that blocking content hosted on public CDNs can poten-
tially cause the censors collateral damage due to disrupting
benign content publishers. In this work, we identify vari-
ous low-cost attacks against CDNBrowsing, demonstrating
that the design of practically unobservable CDNBrowsing
systems is significantly more challenging than what thought
previously. We particularly devise unique website finger-
printing attacks against CDNBrowsing traffic, and discover
various forms of information leakage in HTTPS that can be
used to block the previously proposed CDNBrowsing sys-
tem. Motivated by the attacks, we design and implement
a new CDNBrowsing system called CDNReaper, which de-
feats the discovered attacks.

By design, a CDNBrowsing system can browse only par-
ticular types of webpages due to its proxy-less design. We
perform a comprehensive measurement to classify popular
Internet websites based on their browsability by CDNBrowsing
systems. To further increase the reach of CDNBrowsing, we
devise several mechanisms that enable CDNBrowsing sys-
tems to browse a larger extent of Internet webpages, partic-
ularly partial-CDN webpages.

1. INTRODUCTION
Internet censorship continues to remain the biggest threat

to the Internet freedom across the globe [7, 8, 25]. A re-
cent promising approach for censorship circumvention [21],
which we call CDNBrowsing, relies on the collateral damage
of disrupting ubiquitous content delivery networks (CDN).
In this approach, censored clients obtain a forbidden Inter-
net webpage that is hosted on a CDN network by connect-
ing to some arbitrary edge server of the hosting CDN sys-
tem—as opposed to obtaining it from the optimal CDN edge
server identified through DNS resolution. This mechanism
is aimed at defeating the main censorship mechanisms as
follows: First, CDNBrowsing clients bypass any DNS-based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24 - 28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978365

censorship by refraining from DNS lookups for the censored
content. Second, censors will refrain from IP blocking the
CDN edge servers that host censored webpages since this will
block all the other (potentially many) non-forbidden web-
pages hosted on those edge servers as well. Finally, the use
of encryption by the hosting CDN providers (e.g., through
HTTPS) can bypass DPI-based censorship mechanisms like
keyword and URL filtering.

In this paper, we show that despite being a promising new
direction for censorship circumvention, designing practical
CDNBrowsing systems is significantly more challenging than
previously suggested [21]. We demonstrate the possibility
of various low-cost identification attacks tailored to CDN-
Browsing, and demonstrate that the attacks can effectively
detect and block CacheBrowser, the first CDNBrowsing sys-
tem proposed by Holowczak et al. [21]. Specifically, our thor-
ough analysis of in-the-wild CDN systems shows that their
deployments of the HTTPS protocol leaks the identity of the
websites being served to the clients, therefore, allowing the
censors to block an unprotected CDNBrowsing system like
CacheBrowser. Additionally, we introduce a unique form
of website fingerprinting attack against CDNBrowsing traf-
fic, and show its significantly high accuracy against Cache-
Browser with processing overheads two orders of magnitude
lower than traditional website fingerprinting techniques [39].
We conclude that an effective CDNBrowsing system should
be tailored to every single CDN system it tries to leverage for
circumvention, as opposed to CacheBrowser’s one-size-fits-
all solution; this is due to the diversity of CDN deployments
as shown in our analysis.

To that end, we design and deploy a new CDNBrowsing
system called CDNReaper that protects against the discov-
ered attacks. CDNReaper takes into account the specific
deployment of HTTPS by each real-world CDN system, and
implements CDN-aware mechanisms that remove the leaked
information about (forbidden) CDN destinations browsed by
CDNReaper. Also, CDNReaper defeats the CDNBrowsing-
specific website fingerprinting attacks by making modifica-
tions to the web objects requested by the censored clients.
We have implemented CDNReaper as a fully functional, end-
user system.

By design, a CDNBrowsing system can only browse par-
ticular censored webpages, e.g., those hosted on specific CDN
systems. We perform the first comprehensive analysis on the
reach of CDNBrowsing systems by inspecting the top 10,000
Alexa websites and classifying them into various categories
based on their readiness to be browsed by CDNBrowsing
systems. To further expand the reach of CDNBrowsing, we

http://dx.doi.org/10.1145/2976749.2978365


devise several mechanisms that enable CDNBrowsing sys-
tems to browse a larger scope of Internet webpages. In par-
ticular, we implement mechanisms to enable CDNBrowsing
of partial-CDN websites, i.e., those with only some of their
main content hosted on CDN, which constitute a large frac-
tion of Internet webpages based on our study. For instance,
some video streaming or Internet TV websites host their
multimedia content on CDN networks, but not their front-
page HTML. We particularly introduce content wrappers
and dynamic mirrors to enable CDNBrowsing of partial-
CDN websites, and demonstrate their feasibility for popular
partial-CDN webpages like bbc.co.uk and tumblr.com. We
show that these mechanisms come with very small overheads
compared to fully CDNBrowsable webpages. We also inves-
tigate how CDNReaper can be used for browsing websites
hosted on private CDN networks, such as YouTube.

In summary, we make the following main contributions:
• We identify various low-cost attacks tailored for CDN-

Browsing systems, and demonstrate their effectiveness
against CacheBrowser [21]. Particularly, we devise
a CDNBrowsing-specific website fingerprinting attack
that is two orders of magnitude faster than the state-
of-the-art fingerprinting system of Wang et al. [39],
despite its higher accuracy.

• We have designed and deployed an advanced CDN-
Browsing system called CDNReaper. Our system is
designed to defeat the CDNBrowsing-specific attacks
we discovered. We have implemented CDNReaper as a
fully functional system with Chrome and Firefox plug-
ins. We have also designed an advanced bootstrapper
for CDNReaper. Our bootstrapper is designed as a
CDNBrowsable service itself, therefore it is highly un-
blockable.

• Through comprehensive evaluations, we classify the
top 10,000 Alexa websites into six categories based on
their readiness to be browsed through CDNBrowsing.

• We have devised several mechanisms to extend the
reach of CDNBrowsing. Particularly, we introduce
content wrappers and dynamic mirrors, which enable
CDNBrowsing of partial-CDN webpages with negligi-
ble overheads.

2. BACKGROUND ON CDNBrowsing

2.1 Internet Censorship
The Internet plays a crucial role in today’s social and

political movements by facilitating the free circulation of
speech, information, and ideas. Consequently, repressive
regimes and totalitarian governments regulate, monitor, and
restrict access to the Internet [1, 4, 13, 27, 32, 35, 41], which
is broadly known as Internet censorship. The main tech-
nical approaches [14, 26] to enforce censorship are IP ad-
dress blocking, DNS interference, and deep-packet inspection
(DPI). The censors use these techniques not only to block
access to forbidden Internet destinations, but also to disable
systems that aim at helping censored users bypass censor-
ship, i.e., circumvention systems [2,3,15,16,19,23,24,29,31,
33, 36, 38, 40]. Therefore, the basic feature of an effective
circumvention system is to be unblockable by the censors.
Unfortunately, the leading circumvention technologies are
effectively blocked [9,41,43] by competent state-level censors
across the globe (most notably, China and Iran), thanks to
the affordable state-of-the-art censorship technologies man-

ufactured and sold by competing multinational technology
companies. Even the most advanced, state-of-the-art cir-
cumvention systems designed in the academia, such as Tor
pluggable transports [16, 19,31,38,40], are thwarted [20,22,
37] by competent state-level censors.

2.2 CDNBrowsing Circumvention
CDNBrowsing is a new approach for censorship circum-

vention, recently proposed by Holowczak et al. [21] as a sys-
tem called CacheBrowser. CDNBrowsing is based on the
observation that webpages hosted on typical CDN platforms
share the same set of IP addresses. Therefore, to block a for-
bidden webpage hosted on a CDN system, the censors will
not be able to use IP filtering since it will also block all the
(potentially many) non-forbidden webpages that are served
through the same set of shared IP addresses. The censors,
however, may be able to use DNS interference to block
access to specific forbidden CDN-hosted webpages. Fortu-
nately, such DNS interference can be easily circumvented:
as Holowczak et al. show, typical CDN-hosted webpages can
be obtained from arbitrary CDN edge servers. Therefore, a
censored client can ignore the DNS resolution stage (which
is anyways interfered with by the censors) and directly re-
quest the forbidden CDN website from some arbitrary CDN
edge server that the client already knows. Ignoring the DNS
resolution state by a CDNBrowsing client can potentially
degrade the QoS performance of the (otherwise censored)
CDNBrowsing connection compared to regular connections
(since DNS resolution is meant to identify the optimal CDN
IP address), however, Holowczak et al. show that the per-
formance is still superior to that of traditional circumven-
tion systems like Tor. Finally, the use of encryption in
HTTPS connections is meant to prevent the censors from
deep-packet inspection of HTTPS CDN content, there-
fore, rendering URL/keyword filtering infeasible

2.3 Advantages of CDNBrowsing
CDNBrowsing is a new paradigm in censorship circumven-

tion. It differs from traditional circumvention systems [15,
23,24,31,33,36,38,40] like Tor, Psiphon, and VPNs in that
it makes no use of circumvention proxies. This offers CDN-
Browsing unique advantages over traditional circumvention
systems: Better quality of service: Since CDNBrowsing
makes no use of —congested, bandwidth-limited—circumvention
proxies, CDNBrowsing connections can offer better qual-
ity of service (e.g., lower latency) compared to traditional
circumvention systems that make use of proxies. This is
demonstrated [21] against Tor. Lower cost of operation:
In proxy-based circumvention systems, someone should pay
for the operational costs of circumvention proxies, i.e., ei-
ther the users (e.g., VPN users), or some volunteers (e.g.,
Tor relays). In a CDNBrowsing system, however, the op-
erational costs are minimized due to the absence of prox-
ies. Better sustainability: Third-party entities who run
proxies for traditional circumvention systems like Tor and
Psiphon may lose interest in doing so over time, e.g., due
to the high-cost of operation or censor coercion. CDN-
Browsing, on the other hand, has minimal dependence on
third-party operators. Ease of deployment: Many re-
cent proposals for circumvention have not seen real-world
deployment as their deployments require substantial sup-
port from third-parties. For instance, a proxy-based pro-
posal like FreeWave [24] needs to be deployed on volunteer

bbc.co.uk
tumblr.com


proxies, Infranet [18] relies on volunteer webpages, and decoy
routing [23,42] cannot function without help from volunteer
ISPs. CDNBrowsing systems, however, can function with
little reliance on volunteers.

2.4 Limitation of CDNBrowsing
Unlike traditional circumvention systems, a CDNBrowsing

system can only browse certain webpages, e.g., those that
are hosted on public CDN providers. Therefore, the owners
of censored websites may have to adapt their website de-
ployments (e.g., by hosting them on public CDN systems)
to make their content accessible by a CDNBrowsing sys-
tem. In other words, CDNBrowsing systems are publisher-
centric [21]: content publishers (e.g., website owners) will
have to pay the expenses for their content to become ac-
cessible by censored users, as opposed to being oblivious to
censorship and relying on volunteer third-parties like Tor
bridges to undertake the expenses.

Why CDNBrowsing is still promising despite this
limitation: First, only a very small fraction of all Inter-
net webpages are blocked by a typical censoring country like
China or Iran. Therefore, an ideal circumvention system is
not the one that is able to browse all Internet websites, but
the one that can browse all (or most) of the censored Inter-
net destinations. Traditional circumvention systems like Tor
and VPN proxies enable access to all websites —including
the majority non-censored websites —at the price of lower
quality of service, higher cost of operation, etc. Second, the
“publisher-centric”circumvention paradigm in which content
publishers get involved in unblocking their content is not un-
realistic. In fact, an increasing number of censored content
publishers have recently started to take measures to unblock
their censored content, e.g., media websites like bbc.co.uk,
manototv.com, and dw.tv are currently working with cir-
cumvention companies like Lantern and Psiphon to make
their own censored content unblocked. Therefore, a practical
CDNBrowsing system like our CDNReaper may be adopted
by censored content publishers in the future, e.g., through
censored website administrators migrating their websites to
public CDNs. Finally, as we show in this paper, a significant
fraction of readily non-CDNBrowsable websites are partially
hosted on CDNs. We build mechanisms that enables CD-
NReaper to browse such websites with only minimal over-
head compared to fully-CDNBrowsable websites, therefore
expanding the reach of CDNBrowsing.

2.5 Comparison to Domain Fronting
Fifield et al. [19] recently proposed a new approach for

setting up circumvention proxies, called domain fronting. In
this approach, circumvention proxies, e.g., Tor bridges, are
run as web services that share IP addresses with other non-
circumvention services. Particularly, Fifield et al. implement
a domain fronting pluggable transport for Tor, called meek,
which is implemented over Microsoft Azure, Google App En-
gine and, Amazon CloudFront. Similar to CDNBrowsing, IP
filtering of domain fronted proxies causes collateral damage
to the censors as it will also block the non-circumvention
services hosted on the shared IP addresses.

Domain fronting over CDN resembles the approach taken
in CDNBrowsing. However, they offer distinctive advan-
tages and disadvantages compared to each other. Domain
fronting is essentially a proxy-based approach, therefore it
suffers from the weaknesses enumerated in Section 2.3 in

comparison to CDNBrowsing. Particularly, deployment of
a domain fronting system like meek is significantly costlier
than a CDNBrowsing system. For instance, the meek plug-
gable transport has cost a total of $26,536 in proxying ex-
penses since its inception ($2,479 per month in the latest
report) [30], even despite a discounted rate due to a “free re-
search grant” [19] and a 1.5–3 MB/s bandwidth cap on users’
traffic. We show in Section 5 that even the mirrored CDN-
Browsing websites cost close to zero. Also, CDNBrowsing
systems offer better quality of service compared to domain
fronting due to their proxy-less implementation as shown by
Holowczak et al. [21] (meek is particularly much slower due
to its 3 MB/s bandwidth limit).

On the other hand, unlike domain fronting which is a
generic proxy, CDNBrowsing can access only particular types
of Internet websites as discussed in Section 2.4. We will
perform a comprehensive evaluation of our CDNBrowsing
system’s reachability later in Section 5. Also, the identifi-
cation attacks that we discuss in Section 3 are unique to
CDNBrowsing and to the most part inapplicable to domain
fronting. We will elaborate on this in Section 3.3.

2.6 CDN Basics and Terminologies
We refer to the autonomous organization operating a con-

tent delivery network as a CDN provider, and to the con-
tent publishers paying the CDN providers for hosting their
web content as CDN customers. For instance, bloomberg.
com is a“customer”of the Akamai CDN“provider.” A client
is an Internet user who connects to CDN providers to access
the content they host.

A typical CDN network is composed of several key compo-
nents. Edge servers are the computer servers that cache
and serve customer content to the clients. A CDN’s edge
servers are usually set up at disperse geographic locations to
optimize performance and reliability [6]. A CDN provider’s
mapping system, which serves DNS queries, directs clients
to various edge servers based on factors like proximity and
the load on the servers.

Commercial CDN providers [5] like Akamai and Cloud-
Front use their CDN infrastructure to serve a large number
of heterogeneous customers; we refer to them as shared
CDNs. In a shared CDN system, edge server IP addresses
are shared among the customers, i.e., the mapping system
may assign the same IP addresses to various customer web-
sites. On the other hand, a private CDN is one that
only serves the content for a specific content publisher, e.g.,
Google has its own private CDN.

3. IDENTIFICATION ATTACKS
In Section 2.2 we discussed the main principles behind

CDNBrowsing’s resistance to the core censorship mecha-
nisms, i.e., IP blocking, DNS interference, and DPI-based
filtering. In this section, we introduce several unique attacks
against CDNBrowsing, demonstrating that the design of ef-
fective, unblockable CDNBrowsing systems is significantly
more challenging. We particularly show that our attacks can
identify and block CacheBrowser [21]. Later in Section 4 we
design a CDNBrowsing system that defeats these attacks.

3.1 Destination Leakage in HTTPS
Despite the use of encryption in HTTPS, we demonstrate

that an unprotected CDNBrowsing system like CacheBrowser
can be blocked using deep-packet inspection and IP filtering.

bbc.co.uk
manototv.com
dw.tv
bloomberg.com
bloomberg.com


CDN A1 A2 B1 B2
Akamai 3 3 7 3

Cloudfront 7 3 3 3

CloudFlare 7 3 3 3

Edgecast 3 3 7 3

Fastly 3 3 3 3

Incapsula 3 3 3 3

MaxCDN 3 7 3 3

Table 1: Deploying HTTPS by major CDNs.

This is due to how real-world CDNs implement the HTTPS
protocol.

3.1.1 How Real-World CDNs Deploy HTTPS
Implementing HTTPS over CDN networks poses signifi-

cant technical challenges as demonstrated by Liang et al. [28]
recently. First, content publishers need to delegate trust
(e.g., TLS certificates) to the CDN edge servers in order
to be able to provide clients with authenticated, secure ac-
cess to HTTPS websites. Second, as each CDN edge server
is likely to handle TLS requests for multiple independent
domains (e.g., belonging to different content publishers), it
must be able to return valid certificates for each of the re-
quested domains. In the following, we discuss the four main
mechanisms used by real-world CDNs to deploy HTTPS.
Table 1 shows the mechanisms used by the major CDN
providers.

A. Use of Shared TLS Certificates.

A1. CDN Domain Certificates. In this approach,
the CDN provider obtains a certificate certifying its wild-
card domain, e.g., *.akamaihd.net. To use this wildcard
certificate, a publisher customer of this CDN will need to
use a subdomain of the certified CDN domain to publish its
content, e.g., fbstatic-a.akamaihd.net. Trivially, this allows
multiple independent customers of a CDN to use the same
certificate. Content publishers mainly use this mechanism
to host the inner objects of their webpages, e.g., the CSS
files, images, and scripts that are embedded inside HTML
webpages. The wildcard certificates are usually offered for
free to content publishers.

A2. SAN Certificates. The Subject Alternative Name
(SAN) extension to X.509 allows multiple domain names to
be included in a single certificate [12]. Using this extension,
a CDN system can obtain a single TLS certificate that collec-
tively certifies domain names for multiple CDN customers.
A CDN edge server in possession of a SAN certificate can
then serve HTTPS for all of the customer domains included
in the certificate.

B. Use of Individual TLS Certificates.

B1. Server Name Indication (SNI). SNI [17] is an ex-
tension to the TLS protocol. It allows a web server hosting
multiple HTTPS domain names to return the right individ-
ual TLS certificates to a client requesting one of the domains.
The use of SNI is arguably the most suitable method for
HTTPS deployment by CDNs since it allows content pub-
lishers to use their individual certificates with no additional

cost to the CDN. However, SNI is not yet widely deployed
by CDNs even though most modern web browsers and TLS
libraries support this extension.

B2. Dedicated IP addresses. Some in-the-wild CDNs
dedicate specific IP addresses to each of their customers,
allowing them to serve individual certificates for their cus-
tomer content publishers. During each TLS handshake, an
edge server will return a TLS certificate that corresponds
to the destination IP address targeted by the client. CDN
providers usually charge their customers for dedicated IP
addresses.

3.1.2 How These Deployments Leak Destination
The described HTTPS deployments may leak the identity

of the customer CDN websites in one of the following ways,
enabling low-cost censorship: (1) TLS certificate: In the
A2, B1, and B2 HTTPS deployments, the TLS certificate
returned by a CDN edge server may reveal the identity of
the customer domain name. This enables the censors to use
DPI to block CDNBrowsing connections to forbidden CDN
customers without disrupting connections to non-forbidden
customers. (2) The SNI field: In the B1 deployment,
the SNI field carries the requested domain name in clear-
text, enabling censorship of the forbidden CDN domains.
(3) Dedicated IPs: In the B2 deployment, censors can
identify forbidden CDNBrowsing connections based on the
(discoverable) mapping between IP addresses and forbidden
customers.

These leakage attacks are low-cost and readily deployable
over major off-the-shelf censorship boxes: The “TLS cer-
tificate” and “SNI field” tests each require a DPI box to
inspect—a single packet—from an HTTPS connection, and
the “dedicated IPs” test can be deployed using the standard
IP address filtering.

We therefore conclude that an effective CDNBrowsing sys-
tem should be tailored to particular deployments of HTTPS
by various real-world CDN systems. Particularly, we find
that CacheBrowser’s one-size-fits-all solution makes it sus-
ceptible to the enumerated leakage attacks, enabling the cen-
sors to block it at low-cost against the major CDNs listed
in Table 1.

3.2 Domain-Based Website Fingerprinting
Today’s modern webpages are composed of several web

objects including advertisements, CSS, and Javascript ob-
jects usually hosted on multiple domains. This requires a
web browser to make multiple HTTP requests, potentially
with multiple web servers, to render a typical webpage. This
enables a unique website fingerprinting attack against
CDNBrowsing systems, which we call domain-based website
fingerprinting. The main intuition behind the attack is that
different CDN customers hosted by the same CDN are likely
to be composed of various objects. Therefore, the censors
can fingerprint each CDN webpage based on the number of
packets it exchanges with various domains. For instance,
Figure 1 compares three CDN webpages regarding the num-
ber of packets they receive from various domains.

Note that domain-based website fingerprinting only ap-
plies to CDNBrowsing systems: traditional proxy-based cir-
cumvention systems like Tor and VPNs combine all of the
objects of a circumvented webpage into a single encrypted
connection to the proxy, therefore concealing from the cen-
sors the packets exchanged with various domains.

*.akamaihd.net
fbstatic-a.akamaihd.net


AKAMAI

AMAZON
APPNE

BETFAIR-IE

CLOUDFLARE

CRITEO

FACEBOOK
FASTLY

GOOGLE
INAP

LVLT-
ORG

PUBMATIC

Organization Label

0

100

200

300

400

500

600

700

800
N

um
be

ro
fP

ac
ke

ts
R

ec
ei

ve
d

reddit.com
imgur.com
betfair.com

Figure 1: The number of packets received from 10 different
organizations (domains) for three CDN webpages.

Implementing a domain-based fingerprint: We de-
sign a domain-based website fingerprinting algorithm to iden-
tify CDNBrowsing destinations. Our domain-based finger-
print is based on a decision-tree classifier and uses the amount
of incoming and outgoing traffic from/to various domains as
the feature vector.

In our analysis, we label each packet based on the domain
of its destination IP address using whois. For example,
a request to ad.doubleclick.net, an advertisement business
owned by Google, will be labeled GOOGLE and a request to
analytics.twitter.com will be labeled TWITTER. We also group
together network domains that belong to the same organi-
zation but have different whois names for users in different
regions, e.g., LINODE-US and LINODE-UK.

To evaluate our domain-based website fingerprinting al-
gorithm, we chose a set of 100 pages from among websites
blocked in China and Iran with full HTTPS support. From
the traces of the 100 monitored pages we extracted 390
unique domain labels which we reduce to 249 after grouping
them together as described above. This results in 498 fea-
tures (incoming and outgoing traffic for each domain) across
our dataset. For each of the webpages in our dataset we
browse the page 40 times, where we use 30 of the runs for
training and the remaining 10 during the detection. Our al-
gorithm is able to identify CDNBrowsing destinations with
a high accuracy of 0.991 ± 0.002.

Comparing with regular website fingerprinting: We
also run the state-of-the-art website fingerprinting attack of
Wang et al. [39] over the same set of CDNBrowsing webpages
described above. The attack runs a k-NN classifier and is
shown to have superior performance compared to previous
website fingerprinting algorithms. We achieve a 0.94±0.002
accuracy in identifying the CDNBrowsing webpages in our
dataset using Wang et al.’s attack (within 2000 rounds for
weight adjustments). As can be seen, our domain-based
fingerprinting algorithm slightly outperforms the state-of-
the-art fingerprinting attack of Wang et al. (0.991 ± 0.002
compared to 0.94 ± 0.002) even though our feature set was
smaller than Wang et al.’s. More importantly, our simple
domain-based algorithm is two-orders of magnitude
faster than the state-of-the-art website fingerprint-
ing of Wang et al. Specifically, while Wang et al.’s algorithm
takes 90 CPU seconds for training and 0.05 CPU seconds for
classification on an Intel Xeon 3.5 GHz processor, our algo-
rithm takes only 0.60 and 10µ CPU seconds for training and
classification, respectively.

3.3 Relevance of the Attacks to Domain Fronting
As introduced in Section 2.5, domain fronting [19] runs

circumvention proxies over web services with shared IP ad-
dresses, such as app engines, cloud services, and CDNs. Par-
ticularly, meek is a domain fronting pluggable transport for
Tor that, among other things, runs over Amazon Cloud-
Front.

As domain fronting takes a similar approach to CDN-
Browsing, we discuss how the attacks discussed in this sec-
tion are relevant to it.

Destination Leakage in HTTPS. The HTTPS leakage
attacks of Section 3.1 are also relevant to CDN-based do-
main fronting, however, they are not as critical compared
to CDNBrowsing. In CDN-based domain fronting, it suf-
fices to find as few as a single CDN provider that does not
leak website identity through HTTPS (i.e., the single CDN
provider can be used to set up domain fronting proxies like
meek [19]). By contrast, CDNBrowsing needs to be able to
obtain censored content from various CDN providers with-
out leaking destination identity.

Website Fingerprinting. The domain-based website
fingerprinting attack introduced in Section 3.2 is unique to
CDNBrowsing and does not work against domain fronting
systems. This is because, like other proxy-based circum-
vention systems, domain fronting proxies bundle all web
objects of a circumvention session into a single encrypted
connection, i.e., a Tor connection in meek. Therefore, the
censors will not be able to identify the destination domains
of the target web session, preventing them from perform-
ing our domain-based website fingerprinting attack. In fact,
the domain-based website fingerprinting attack is exclusively
unique to CDNBrowsing and does not work on any other
circumvention system.

On the other hand, traditional website fingerprinting mech-
anisms such as Wang et al.’s [39] are applicable to domain
fronting (and other proxy-based circumvention systems), and
have been investigated in previous work.

4. CDNReaper:
A PRACTICAL CDNBrowsing SYSTEM

We design and implement CDNReaper, a CDNBrowsing
system that defeats the attacks introduced in Section 3. Our
code is available online at https://github.com/CacheBrowser.1

4.1 Threat Model
We consider CDNReaper clients to be inside censoring

ISPs. A censoring ISP deploys the main censorship tech-
niques of IP filtering, DNS interference, and Deep-Packet
Inspection (DPI) [14, 26] to prevent its users from access-
ing forbidden Internet destinations, also to stop them from
using circumvention systems. The censors can also perform
active probing mechanisms [22,41], as well as offline attacks
such as machine-learning based website fingerprinting [39].

We assume that censors are rational, i.e., they refrain
from actions that will interfere with non-prohibited Inter-
net activities of their benign, non-circumvention citizens. In
particular, we assume that the censors do not block all en-
crypted traffic as encryption is essential for various popular
non-forbidden Internet services. Additionally, we assume

1We re-use the existing CacheBrowser repository and
project name due to its popularity.

ad.doubleclick.net
analytics.twitter.com
https://github.com/CacheBrowser


Figure 2: CDNReaper’s architecutre.

that the censors do not entirely block a commercial CDN
provider (e.g., by IP blacklisting all edge servers), since this
will block all the non-forbidden webpages hosted on it. The
censors, however, may perform—selective—blocking of CDN
domain names and encrypted connections.

We assume that (at least some of) commercial CDN
providers are oblivious to censorship. An oblivious
CDN provider does not fully cooperate with either the cen-
sors or circumvention systems. No CDNBrowsing system
can take advantage of a CDN provider who is not willing to
be used for CDNBrowsing; such a CDN provider can sim-
ply remove all of the forbidden content publishers from its
network in the first place, e.g., as done by Chinese CDN
providers [21]. Also, a non-oblivious CDN provider may only
cooperate with some censoring governments, but not all of
them. For instance, Akamai is only known to be partially
cooperating with the Chinese censors [21].

4.2 High-level Design
To prevent the attacks introduced in Section 3, CDNReaper

needs to be able to make modifications to the HTTPS traf-
fic of the clients. CacheBrowser’s simple design [21], which
simply modifies /etc/hosts to change DNS mappings, does
not offer the flexibility to modify HTTPS connections. We
therefore design CDNReaper based on a clean-slate architec-
ture, which is shown in Figure 2. The core of CDNReaper
is RServer, which runs as a local HTTP/HTTPS proxy on
the client’s machine. Our design is in nature similar to Tor
client software that uses a SOCKS Proxy. RServer receives
Internet requests (e.g., HTTP GETs) from client applica-
tions such as a web browser, and proxies them to the Inter-
net possibly after making the required changes on the traffic
to ensure unobseravbility. Unlike CacheBrowser’s one-size-
fits-all approach, CDNReaper treats connections to various
CDN providers differently by tailoring the defense mech-
anisms to each CDN’s particular HTTPS implementation.
Our system’s use of an HTTP proxy allows it to be used by
any application that talks HTTP, particularly web browsers
and download managers. A web browser can simply use
CDNReaper as an HTTP proxy; we have specifically devel-
oped Chrome and Firefox plugins that interact with CD-
NReaper’s RServer to provide additional features, such as
enabling CDNReaper for specific sites.

As depicted in Figure 2, the three main components of
RServer communicate as a chain, each processing the re-
quests sequentially. ProxyServer is an HTTP/HTTPS proxy
server that receives requests from user applications, e.g., a
browser. It intercepts HTTPS requests by acting as a man-

in-the-middle block using a locally generated and privately
stored certificate, which is trusted by the client (each client
generates her own local certificate). ProxyServer forwards
a received HTTP request to Resolver, which will search
in Local Database for information on how to process the
connection to the requested domain name (if no entry is
found, the Bootstrapper will be used as described later).
Resolver will replace the requested domain name with the
resolved IP address. Resolver also applies per-CDN rules
on HTTPS connections to ensure unobservability, as will be
discussed in Section 4.3. Note that the requests for non-
censored domains will be processed normally through regu-
lar DNS queries.

A key component of CDNReaper’s design is Scrambler. It
manipulates HTTP traffic to defeat website fingerprinting,
e.g., by modifying the objects queried on behalf of client
applications. We detail Scrambler in Section 4.4.

If the information needed to browse a CDN website is
missing in Local Database, RServer will use Bootstrapper

to obtain the information. The obtained information will be
cached in Local Database with a TTL. Bootstrapper is de-
signed as a CDNBrowsable service itself, as will be detailed
in Section 4.5.

We also build an API for CDNReaper to enable com-
munications with third-party applications like browsers and
download managers. We particularly build a Chrome exten-
sion and a Firefox plugin that use this API to communicate
with RServer.

4.3 How CDNReaper Removes HTTPS Leak-
age

In Section 3.1 we discussed how the real-world deploy-
ments of HTTPS by in-the-wild CDN networks may leak the
identity of the visited CDN websites, enabling the censor-
ship of an unprotected CDNBrowsing system. CDNReaper
is designed to prevent such leakage.

Our investigation of the most popular CDN systems in
Section 3.1 demonstrates that the deployment of HTTPS
varies across in-the-wild CDN providers. This suggests that
a one-size-fits-all solution like that of CacheBrowser is prone
to failure and a practical CDNBrowsing system should tailor
its mechanism to specific CDN systems.

We start by describing how CDNReaper deals with re-
moving identity leakage for the two CDN systems of Aka-
mai and CloudFlare, which are examples of easy and chal-
lenging CDNs for CDNReaper. We will then describe CD-
NReaper’s approach towards other CDN systems. In our
experiments, we browse the top 10,000 Alexa websites from
20 geographically-dispersed Planetlab [10] nodes in order to
identify multiple edge servers of different CDNs. For each
CDN, we establish HTTPS connections to the identified edge
servers, inspect the connections, and evaluate the impact of
our countermeasures.

Akamai (An easy case). Our analysis finds that Aka-
mai’s mapping system treats HTTPS (secure) webpages dif-
ferently than HTTP (insecure) webpages. Specifically, while
HTTP-only customers of Akamai share edge server IP ad-
dresses, each HTTPS customer of Akamai is assigned to a
dedicated, non-shared set of IP addresses. This simplifies
the handling of customer TLS certificates for Akamai; we
observe that once a client connects to an IP address ded-
icated to a specific Akamai HTTPS customer (e.g., https:
//customer1.com), the edge server will automatically return

https://customer1.com
https://customer1.com


the TLS certificate for the customer1 domain to the client
regardless of the value of the SNI field (e.g., even if the SNI
specifies a customer2 domain name).

Ignoring the SNI field by Akamai edge servers allows CD-
NReaper to simply replace a forbidden website’s SNI entry
with a non-forbidden domain name, or even to remove the
SNI entry. Still, the dedicated IP addresses of a forbid-
den website as well as the returned certificate containing
the forbidden domain name enable censorship. To counter,
CDNReaper requests a forbidden HTTPS website from edge
server IP addresses other than those dedicated by the map-
ping system for it. We performed comprehensive experi-
ments to see if this results in successful connections. We find
that all insecure edge servers of Akamai respond correctly
to HTTPS requests for any of the 400 Akamai customer
websites we tried. An insecure edge server simply returns
an Akamai wildcard certificate (e.g., an akamaihd.net cer-
tificate) for these connections, effectively hiding the actual
domain names. For secure edge servers (i.e., IP addresses
dedicated to other customers), we identified 410 edge servers
(out of a total of 6,800 secure edge servers) that correctly
responded to the HTTPS requests for other domain names,
while the rest returned an HTTP 403 Permission Denied er-
ror.

For both secure and insecure edge servers, the returned
certificate is different than the domain name requested by
the client (i.e., it is either the certificate for another Aka-
mai website or an Akamai wildcard certificate). CDNReaper
simply ignores the received certificate to avoid a browser er-
ror. Note that this does not weaken the security of HTTPS:
CDNReaper still verifies that the received certificate is in
possession of an Akamai edge server, i.e., it is an Akamai
domain certificate or a certificate of another Akamai cus-
tomer.

CloudFlare (A challenging case). Among all CDN
providers we evaluated, CloudFlare has the least flexibility
to be used for CDNBrowsing. CloudFlare provides both
free and paid HTTPS services to its customers. For its free
HTTPS service, CloudFlare shares edge server IP addresses
among its customers. To be able to return the right certifi-
cate to the clients, CloudFlare combines the use of the SNI
and SAN certificates, as described in Section 3.1. A Cloud-
Flare edge server uses the SNI entry to return a TLS certifi-
cate to a requesting client, which will be a SAN certificate
shared with multiple CDN customers. Unlike Akamai and
all the other CDN systems we evaluated, CloudFlare edge
servers enforce a strict access control based on the SNI en-
try. That is, if a client requests a webpage whose domain is
different from what specified in the SNI, the edge server will
close the connection with a 403 Permission Denied error
message. Also, CloudFlare’s shared edge servers deny serv-
ing HTTPS connects that miss an SNI field. CloudFlare’s
paid HTTPS service, on the other hand, assigns dedicated
IP addresses to the customers. The dedicated edge servers
serve the content even if the SNI entry is missing, however,
they solely serve the content for the assigned customer do-
main name. Therefore, requesting a forbidden CDN content
from the dedicated edge server of another customer domain
will result in a 403 error.

Based on these observations, no CDNBrowsing system
will be able to offer circumvention for CloudFlare against
a competent censor who deploys DPI over the SNI field.
Nonetheless, CDNReaper defeats IP address filtering and

DNS interference for all HTTP and HTTPS connections to
CloudFlare.

CDNReaper’s CDN-Aware Treatment: CDNReaper
uses the following mechanisms to prevent the three described
types of leakage in TLS. SNI leakage: To remove iden-
tity leakage through SNI, CDNReaper replaces forbidden
domain names in the SNI fields of its connections with non-
forbidden domain names. The replaced domain name is se-
lected based on the policies of the hosting CDN. Deter-
ministic IP addresses: In all of the CDN systems we
evaluated, clients can ask any “shared” edge server for arbi-
trary HTTPS content. For some CDNs, an HTTPS website
can be accessed even through the edge severs dedicated to
other customers. CDNReaper picks the edge server IP ad-
dresses according to each CDN’s setting. TLS certificate
leakage: Our countermeasures for SNI and deterministic
IP leakages automatically mitigate information leakage in
TLS certificates as well. As described before, dedicated edge
servers return TLS certificates based on either the domain
name specified in the SNI or the IP address. For instance, if
the SNI field for a forbidden Akamai connection is changed
to akamai.net, the edge server will return the certificate for
akamai.net, not the forbidden website’s certificate. For most
CDNs, the shared edge servers by default return a certificate
for the CDN wildcard domain.

For each connection, CDNReaper applies one or multiple
of the following techniques based on the characteristics of
the hosting CDN:

• T1. If the shared edge servers of the CDN accept
HTTPS requests for arbitrary customer websites, ask
forbidden content from an arbitrarily edge server. The
edge server will respond with a CDN wildcard domain
certificate.

• T2. If the dedicated edge servers accept HTTPS re-
quests for other customer websites, contact the dedi-
cated IP address of a non-forbidden domain to request
content for a forbidden domain.

• T3. If the edge servers allow connections to have
empty SNI fields, remove the SNI entry in forbidden
HTTPS connections.

• T4. If the edge servers allow non-matching SNI en-
tries, replace a forbidden connection’s SNI with a non-
forbidden domain name.

Table 2 shows the techniques that work for each of the
evaluated CDNs. For CDNReaper to be able to browse for-
bidden websites on a particular CDN network, that CDN
should support at least one of T1 or T2. For CDNReaper’s
connections to be unobservable to competent DPI-powered
censors, the hosting CDN network should support at least
one of T3 or T4.

4.4 How CDNReaper Defeats Traffic Analysis
In Section 3.2 we demonstrated the possibility of unique

website fingerprinting attacks against CDNBrowsing sys-
tems. Specifically, we demonstrated a “domain-based” web-
site fingerprinting attack, which works by recording the amount
of traffic a CDNBrowsing client exchanges with different
Internet domains. We also showed the feasibility of tra-
ditional website fingerprinting attacks [39] against CDN-
Browsing, however, we demonstrated our CDNBrowsing-
specific domain-based fingerprinting attack to be two orders
of magnitude faster than the traditional fingerprinting at-
tacks (and even slightly more accurate).



CDN T1 T2 T3 T4
Akamai 3 Some 3 3

Cloudfront 3 3 Some 3

Cloudlfare 3 3 Some 7

CDNetworks 3 3 3 3

Edgecast 3 3 3 3

Fastly 3 3 3 3

Incapsula 3 3 3 3

Table 2: The applicability of CDNReaper’s countermeasures
to various CDN systems. A CDN should support at least one
of T1 or T2 to enable CDNBrowsing, and should support
at least one of T3 or T4 for defeating the attacks.

The Scrambler component in our CDNReaper design aims
at resisting the introduced website fingerprinting attacks.
Scrambler modifies the amount of traffic a CDNReaper client
exchanges with different end-points, i.e., by injecting redun-
dant traffic on some domains and/or removing (non-critical)
traffic from other domains. Scrambler’s modifications are
performed with two constraints: (1) not disrupting a client’s
normal browsing experience, and (2) limiting traffic over-
head to a rate specified by the client.

Injecting traffic: The user configures a maximum over-
head for Scrambler’s modifications (as we will show in our
analysis, the overhead impacts resistance to fingerprinting
attacks). For each network request from the browser, the
Scrambler component may decide to send a decoy request
along with the actual request, ensuring that the overhead
does not surpass the user-specified limit. The decoy web re-
quests are chosen from a list of ndom popular domains main-
tained by Scrambler (ndom is proportional to the overhead
limit, as discussed later). For each of the ndom domains,
Scrambler remembers multiple URLs in order to send the
decoy requests. Scrambler keeps record of the volume of
bandwidth exchanged with each of the ndom domains during
the latest time interval of T seconds (we use T = 10s). The
decoy destinations are selected from the list of decoy URLs
such that the overall bandwidth is roughly uniformly dis-
tributed among the ndom decoy domains. To do so, Scram-
bler picks from among domains with the lowest traffic in
the past T seconds as the decoy domain.

Dropping traffic: Our analysis of the frontpage of the top
1,000 Alexa websites shows that on average close to 24% of
the requests made by them are advertisement and analyt-
ical requests. As such objects have little impact on users’
browsing experience, Scrambler may drop them in order to
improve resistance to domain-based website fingerprinting
attacks. For each dropped connection, Scrambler may add
a decoy connection, as described earlier, subject to keeping
traffic overhead below the user-specified limit. To refrain
from dropping important web objects, Scrambler maintains
a list of advertisement and analytical URL patterns that
gets updated over time. A client can modify the list.
Scrambler’s performance in defeating attacks can get fur-

ther improved by dropping/modifying other non-critical web
requests. Particularly, some popular web objects, such as
common JS or CSS libraries, are hosted on multiple do-
mains, therefore Scrambler can change the requested do-
main. For instance, a request for some version of the JQuery

0 50 100 150 200

Overhead Percent

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Domain based classifier (Only adding traffic)
Domain based classifier (Adding and dropping)
Wang k-NN classifier [39] (Adding and dropping)

Figure 3: Accuracy of website fingerprinting attacks against
CDNReaper for various overheads.

library from the Google repository2 can be modified to that
of Microsoft3 or Cloudflare.4 We leave this to future work.

Evaluation: We evaluate the performance of the website
fingerprinting attacks of Section 3.2 against the defenses de-
ployed by our Scrambler. We perform our machine-learning
based attacks using the same parameters as in Section 3.2.
We vary ndom from 10 to 150 proportional to the overhead
limit. Figure 3 shows the accuracy of the attacks on CD-
NReaper for different overheads. Compared to the results in
Section 3.2 against CacheBrowser (i.e., accuracies of 0.991
and 0.94 for domain-based and Wang et al. [39], respec-
tively), the accuracy of both of the attacks drops signifi-
cantly even for low overheads. As expected, increasing the
overhead limit improves resistance to the attacks. Also, we
can see that our CDNBrowsing-specific domain-based attack
is still more successful compared to traditional fingerprint-
ing attacks. This is because the Scrambler can not remove
or highly modify the critical domains part of a web session.
We also see that dropping traffic is more effective for lower
overheads. Note that even a 200% overhead is not drastic,
i.e., it implies that on average the client will need to load
two extra pages per censored webpage.

4.5 A Practical Bootstrapper for CDNReaper
To be able to serve a forbidden webpage, CDNReaper

client software needs to know the following information about
the forbidden webpage: the CDN provider hosting the web-
page (if any), the type of CDN hosting (i.e., partial or full
CDN deployment), the settings of the hosting CDN (Ta-
ble 2), and some (multiple) edge server IP addresses for the
hosting CDN. This information is kept in Local Database.
When a particular forbidden webpage is requested for the
first time, CDNReaper’s Local Database may not have all
of the required information to serve that request. In this
case, CDNReaper will use its Bootstrapper component (Fig-
ure 2) to obtain the missing information and record it in
Local Database with a TTL. If Bootstrapper is unable to
fulfill a request, either due to the requested domain not being
hosted on a CDN or due to insufficient information, this will
also be recorded in the Local Database to avoid redundant
queries.

2ajax.googleapis.com/ajax/libs/jquery/1.12.2/jquery.min.
js
3ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.2.min.js
4cdnjs.cloudflare.com/ajax/libs/jquery/1.12.2/jquery.js

ajax.googleapis.com/ajax/libs/jquery/1.12.2/jquery.min.js
ajax.googleapis.com/ajax/libs/jquery/1.12.2/jquery.min.js
ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.2.min.js
cdnjs.cloudflare.com/ajax/libs/jquery/1.12.2/jquery.js


CDNReaper’s Bootstrapper is a CDNBrowsable service
itself, therefore it offers the same resistance to censorship
as CDNReaper. Specifically, our Bootstrapper connects to
a remote bootstrapping server that is hosted on a “good”
CDN network based on Table 2. Our bootstrapping server
is hosted on Amazon Cloudfront, but one can run multi-
ple remote bootstrapping servers each on a different CDN
network to increase reliability.

Our remote bootstrapping server runs a RESTful Web
API [34] to respond to queries. A client’s Bootstrapper

will establish a CDN-based HTTPS connection to the re-
mote bootstrapping server in order to query information
about blocked domain names. CDNReaper also supports lo-
cal Bootstrapper files to be used as a bootstrapping source,
along with a client interface for manually entering records
for forbidden domain names.

5. EXTENDING THE REACH OF
CDNBrowsing

As discussed earlier in Section 2.2, an inherent limitation
of a CDNBrowsing system is that it can only browse certain
types of censored webpages. In this section, we start by
a comprehensive analysis of Internet webpages to evaluate
their readiness to be browsed by a CDNBrowsing system
like CDNReaper. Next, we will present several mechanisms
that we have deployed to significantly increase the fraction of
Internet webpages that can be browsed by a CDNBrowsing
system.

5.1 Classifying Internet Websites
We evaluate the homepages of the top 10,000 Alexa web-

sites and classify them into six classes based on their com-
patibility with CDNBrowsing.

• Class 1 (full-CDN, protected HTTPS) A webpage
that is fully hosted on shared-CDNs, and is accessi-
ble through HTTPS. Additionally, the hosting CDN
provider enables CDNReaper to remove HTTPS in-
formation leakage as described in Section 4.3.

• Class 2 (full-CDN, leaking HTTPS) A webpage that
has all of its content hosted on shared-CDNs and one
that can be accessed through HTTPS. However, the
hosting CDN does not enable CDNReaper to remove
HTTPS leakage as discussed in Section 4.3.

• Class 3 (full-CDN, HTTP-only) A webpage that has
all of its content hosted on shared-CDN networks, but
without HTTPS support.

• Class 4 (partial-CDN) A webpage that has only some
of its content hosted on shared-CDN networks. Often,
partial-CDN webpages host their sizable content such
as images and videos on a CDN, and host user-specific
content on their own origin servers.

• Class 5 (private-CDN) A webpage that is hosted on a
private-CDN network as defined in Section 2.6. Note
that Class 5 overlaps with the two Classes of 4 and 6.

• Class 6 (non-CDN) A webpage that has no content
hosted on any shared-CDN networks.

Figure 4 shows the fraction of the webpages belonging to
each of the defined Classes within the top 10,000 Alexa web-
sites. The webpages in Class 1 can be browsed using CD-
NReaper with plausible unobservability against a competent
censor deploying advanced DPI. However, this constitutes a
small fraction of all webpages. The webpages in Class 2 can

Class	  1	  -‐ 608
6%

Class	  2	  -‐ 711
7%

Class	  3	  -‐ 1469
15%

Class	  4	  -‐ 6474
64%

Class	  6	  -‐ 738
7%

Figure 4: Classifying the top 10,000 Alexa websites based
on their readiness to be browsed by CDNReaper.

be browsed by CDNReaper only against a censor who does
not inspect HTTPS fields (e.g., certificates and SNI) for for-
bidden domain names. Also, the webpages in Class 3 can be
browsed by CDNReaper only in the presence of the censors
who do not deploy URL/keyword filtering. We expect the
fraction of pages in Class 3 to decrease over time with the
growing popularity of encryption on the web.

In the following, we discuss several mechanisms that ex-
pand the reachability of CDNReaper by enabling it to browse
websites in Class 4 to Class 6.

5.2 Supporting Partial CDN Webpages
As shown in Figure 4, a large fraction (64.7%) of the in-

spected websites are in Class 4, i.e., are partially hosted
on shared-CDNs. Through manual inspection of these web-
pages, we observe that for many of these partial-CDN web-
pages, the CDN-hosted content is the core content of the
webpage, potentially of the highest interest to the censored
clients. Particularly, many partial-CDN webpages host siz-
able multimedia content like images, documents, and video
streams on CDN in order to reduce hosting expenses and
increase reliability. Based on this observation, we use the
mechanisms described in the following to enable CDNBrowsing
of partial-CDN websites.

5.2.1 Content Wrappers
As discussed earlier, many of the partial-CDN websites

we evaluated host their high-interest content on CDNs. For
instance, the popular flickr.com hosts its image and video
content on shared-CDN networks, but not the rest of the
website. We introduce content wrappers to enable CDN-
Browsing of such partial-CDN websites. A content wrapper
is a simple HTML page that renders the CDN-hosted parts
of a partial-CDN webpage, e.g., the images and videos. One
can generate content wrappers for various censored web-
pages and distribute them among censored clients through
out-of-band channels, e.g., email. We call such content wrap-
pers as offline wrappers.

Alternatively, one can run a live content wrapper as a
CDNBrowsable webpage, e.g., by hosting it on a shared-
CDN. Note that even live content wrappers have minimal
operational costs to the volunteers who set them up. This is
because the bandwidth-heavy parts of the wrapped websites

flickr.com


Figure 5: A content wrapper for the partial-CDN webpage
of bbc.co.uk.

are simply downloaded from the CDN network paid by the
original content publisher, and the volunteer only has to host
small HTML wrappers, which can be hosted on a low-QoS,
free CDN network. To demonstrate, we have made a con-
tent wrapper for bbc.co.uk, a partial-CDN website blocked
in China and Iran, as shown in Figure 5. Our wrapper ren-
ders the bandwidth-intensive videos of BBC directly from
Akamai, which is paid directly by BBC. We have hosted
a live version of our wrapper on a free hosting service at
https://bbcvids.site.

5.2.2 Dynamic Mirroring of Non-CDN Content
Content wrappers, introduced above, are ideal for partial-

CDN webpages whose non-CDN content are static (i.e., do
not change frequently over time). We devise a dynamic mir-
roring mechanism to support partial-CDN webpages whose
non-CDN content may change dynamically. Our dynamic
mirror is similar to a “live” wrapper in that the clients will
obtain the CDN-hosted content directly from the partially
hosting CDN. A dynamic mirror is also hosted on a shared-
CDN to be browsable by CDNReaper. By contrast, a dy-
namic mirror obtains the non-CDN parts of the webpage
directly from the content publisher upon client requests.

To demonstrate the simplicity and effectiveness of this ap-
proach, we set up a dynamic mirror for https://www.tumblr.
com, which is a partial-CDN blogging website censored in
Iran. We deploy our mirror on Heroku,5 a CDNBrowsable
cloud application platform that offers free hosting service
for low-bandwidth applications. To run our dynamic mirror,
we deployed a NodeJS server on get-tumblr.herokuapp.com,
which fetches and returns the —non-CDN —HTML content
of Tumblr blogs. For example, the blog https://techedblog.
tumblr.com is mirrored at https://get-tumblr.herokuapp.com/
techedblog, which is browsable by CDNReaper. Once the
mirrored HTML is loaded, the rest of the content will load
from the shared-CDN that partially hosts Tumblr.

Automated Mirror Creation: To facilitate the creation
of mirrors, we have built an online tool called MirrorMySite,
hosted at http://mirror-my.site, which automates the cre-
ation of such mirrors. To use this tool, the user is required
to create a free Heroku account. The user will then sim-
ply enter the webpage URL intended to be mirrored, and
the mirror will be deployed as a NodeJS server on a Heroku
subdomain of the user’s choice, e.g. mybbc.herokuapp.com.
The link, then, can be used by one or many censored clients.

Comparison to Static Mirrors: The Collateral Freedom
project [11] also mirrors several popular censored websites on
cloud platforms like Amazon EC2 and GitHub. However,

5https://www.heroku.com/

zoosk.com betfair.com scribd.com dailymotion.com
0.0B

976.6KiB

1.9MiB

2.9MiB

3.8MiB

4.8MiB

5.7MiB

6.7MiB

7.6MiB

Tr
an

sf
er

re
d

B
yt

es

Meek
Our Dynamic Mirror

Figure 6: Comparing our dynamic mirrors with meek [19]
regarding traffic load for sample partial-CDN websites. The
traffic load consists of the upstream and downstream traffic
used by the third-party proxy in order to fulfill a client’s
requests.

such mirrors (1) only support static web content like HTML
pages, and (2) are not live and need to get manually updated
frequently by their operators.

Comparison to Domain Fronting: As discussed in
Section 2.5 a major advantage of CDNBrowsing over CDN-
based domain fronting is its significantly lower operational
costs. This is because domain fronting proxies simply relay
all of the circumvented traffic for the censored users, there-
fore the volunteer relays need to pay the significant opera-
tional costs (bandwidth, CPU, etc.). As mentioned earlier,
the meek pluggable transport has so far cost Tor a total of
$26,536 in operational charges ($2,479 for the last reported
month) [30] even despite using a discounted rate due to a
“free research grant” [19] and a 1.5–3 MB/s bandwidth cap
on users’ traffic. CDNBrowsing of full-CDN webpages has
zero cost to CDNReaper since all traffic is directly obtained
from the edge servers paid by the censored content publish-
ers. Even for partial-CDN websites, the dynamic mirrors do
not impose significant bandwidth costs compared to proxy-
based circumvention systems. Figure 6 compares the traffic
load proxied by our dynamic mirror versus meek for multiple
partial-CDN websites. As can be seen, the loads on our mir-
rors are almost negligible compared to meek; our dynamic
mirrors can be set up on free CDNs, as demonstrated above,
due to their very low bandwidth.

5.2.3 Importing Login Credentials
An increasing number of content publishers maintain user

accounts for their clients, i.e., users will have to log in to
their websites. Examples includes social networking web-
sites, online banking, etc. In order to protect their sensitive
client information (e.g., passwords), such content publish-
ers commonly refrain from hosting their log-in webpages on
third-party CDN networks, even if the rest of their content
is hosted on CDN. That constitutes a significant fraction
of partial-CDN websites. To enable CDNReaper to browse
such partial-CDN websites, our CDNReaper browser plugin
allows users to import their log-in credentials that are ob-
tained through out-of-band channels or previous sessions as
website cookies.

5.3 Supporting Private CDNs
Some content publishers use private CDNs (as defined in

Section 2.6) to host their content, either partially or en-

bbc.co.uk
bbc.co.uk
https://bbcvids.site
https://www.tumblr.com
https://www.tumblr.com
get-tumblr.herokuapp.com
https://techedblog.tumblr.com
https://techedblog.tumblr.com
https://get-tumblr.herokuapp.com/techedblog
https://get-tumblr.herokuapp.com/techedblog
http://mirror-my.site
mybbc.herokuapp.com
https://www.heroku.com/


tirely. For instance, this includes 10% of the top 10,000
websites we analyzed (Class 5 in Figure 4). Holowczak et
al. [21] argue that a CDNBrowsing system can not circum-
vent private CDNs, since the censors can IP-filter all the
edge servers of a private CDN at no collateral damage of
blocking non-forbidden websites. However, we demonstrate
that CDNReaper can be utilized for browsing important pri-
vate CDNs. First, some private CDNs are so dispersedly
implemented that IP blocking all of their edge servers will
be both resource-intensive and error-prone to the censors.
Second, and more importantly, even some of the private
CDNs are shared between multiple sibling content publish-
ers, therefore, IP filtering will cause collateral damage. Even
though the number of websites unwillingly blocked in this
case would be smaller compared to an IP-filtered shared-
CDN, we find that the co-hosted websites are among the
most popular non-forbidden websites, including Instagram,
Google, Microsoft, and Yahoo.

We evaluate the top 10,000 Alexa websites for private
CDNs. Since the internal architecture of most content pub-
lishers are not publicly disclosed, we consider a website to be
on a private CDN based on the variety of the IP addresses
serving it. For each website that is not hosted on one of
the known shared-CDNs [5], we browse it from 20 geograph-
ically dispersed PlanetLab nodes and collect the hosting IP
addresses. If 25% or more of the collected IP addresses for
a website are different we consider the website to be hosted
on a private-CDN (we choose the 25% threshold by manu-
ally inspecting multiple known private-CDN websites). This
leads us to 960 private CDNs in Alexa’s top 10,000, approx-
imately 10% of the websites. Note that the list of identified
private-CDN websites is a subset of both Class 4 and Class
6 in Figure 4. This is because some of the partial-CDN web-
sites in Class 4 host part of their content on shared CDNs
and part on private CDNs.

We particularly find instances of sibling content publishers
who share private-CDNs where only some of the sharing con-
tent publishers are considered to be forbidden by the censors.
As one example, the different websites owned by Google Inc.,
e.g., Google Search and YouTube, are hosted on the same
private CDN. We perform experiments from a node in Iran,
who blocks only some Google websites; particularly, Iran
censors www.youtube.com but not www.google.com. We
observe that Iran’s censorship of www.youtube.com is per-
formed only through DNS interference, but not IP filtering,
presumably to avoid the collateral damage of blocking non-
forbidden Google products like www.google.com. We use
CDNReaper to access the censored www.youtube.com from
our Iranian node by connecting to arbitrary IP addresses of
Google’s private CDN that serve www.google.com; this is
shown in Figure 7a.

As another example of co-located private-CDN websites,
we case study Facebook’s private CDN. Both facebook.com
and messenger.com are owned by Facebook, and our ex-
periments show that both websites use the same private
CDN. As shown in Figure 7b, we were able to successfully
use CDNReaper to browse facebook.com using CDNReaper
by connecting to the edge server IP addresses obtained for
www.messenger.com. Note that facebook.com is also a Class
4 website, i.e., it hosts all of its static content (images,
videos, etc.) on the Akamai shared-CDN, but its HTML
content is hosted on a private-CDN.

(a) YouTube loaded using
google.com IPs

(b) Facebook loaded using
messenger.com IPs

Figure 7: CDNReaper loading blocked private-CDN web-
sites

6. CONCLUSIONS
We discover various low-cost attacks against CDNBrowsing

systems. Particularly, we demonstrate that the specific im-
plementation of HTTPS by in-the-wild CDN providers may
leak the identity of the websites browsed thorough CDN-
Browsing, therefore, arguing that CDNBrowsing systems
should be tailored to specific CDN systems, in contrast to
the one-size-fits-all solution in previous work [21]. We also
devise CDNBrowsing-specific website fingerprinting attacks
that are able to identify CDNBrowsing traffic with very high
accuracy, faster than traditional website fingerprints. To
counter the attacks, we design and fully implement a new
CDNBrowsing system called CDNReaper.

We additionally perform comprehensive measurements to
classify Internet websites based on their readiness for CDN-
Browsing. To further increase the reach of CDNBrowsing,
we devise several mechanisms that enable CDNBrowsing of
partial-CDN webpages.

7. ACKNOWLEDGMENTS
We would like to thank anonymous reviewers for their

insightful feedback. This work was supported in part by
NSF CAREER grant CNS-1553301.

8. REFERENCES
[1] S. Aryan, H. Aryan, and A. Halderman. Internet

censorship in Iran: A first look. In FOCI, 2013.

[2] C. Brubaker, A. Houmansadr, and V. Shmatikov.
CloudTransport: Using Cloud Storage for
Censorship-Resistant Networking. In PETS, 2014.

[3] S. Burnett, N. Feamster, and S. Vempala. Chipping
Away at Censorship Firewalls with User-Generated
Content. In USENIX Security, 2010.

[4] R. Carroll. China steps up web censorship and blocks
HSBC. http://www.theguardian.com/world/2014/
nov/18/china-blocks-hsbc-web-crackdown-censorship,
November 2014.

[5] Latest List of Vendors in the Content Delivery
Ecosystem. http://blog.streamingmedia.com/2014/07/
cdnvendors.html.

[6] 5 Reasons to Implement a Content Delivery Network
(CDN). http://blog.newrelic.com/2012/12/18/
5-reasons-to-implement-a-cdn/.

[7] Joint Statement on Censorship and Science: A Threat
to Science, the Constitution, and Democracy.
http://humanrightshouse.org/Articles/16300.html,
April 2011.

www.youtube.com
www.google.com
www.youtube.com
www.google.com
www.youtube.com
www.google.com
facebook.com
messenger.com
facebook.com
www.messenger.com
facebook.com
google.com
messenger.com
http://www.theguardian.com/world/2014/nov/18/china-blocks-hsbc-web-crackdown-censorship
http://www.theguardian.com/world/2014/nov/18/china-blocks-hsbc-web-crackdown-censorship
http://blog.streamingmedia.com/2014/07/cdnvendors.html
http://blog.streamingmedia.com/2014/07/cdnvendors.html
http://blog.newrelic.com/2012/12/18/5-reasons-to-implement-a-cdn/
http://blog.newrelic.com/2012/12/18/5-reasons-to-implement-a-cdn/
http://humanrightshouse.org/Articles/16300.html


[8] Threats to Internet freedom – political censorship and
government control over infrastructure.
http://humanrightshouse.org/Articles/16300.html,
April 2011.

[9] China Continues Its Crackdown On VPN Services.
https://techcrunch.com/2015/09/07/
china-continues-its-crackdown-on-vpn-services/,
September 2015.

[10] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: An
Overlay Testbed for Broad-Coverage Services.
SIGCOMM CCR, 33(3):3–12, 2003.

[11] Collateral Freedom.
https://openitp.org/pdfs/CollateralFreedom.pdf,
2013.

[12] D. Cooper, S. Santesson, S. Farrell, S. Boeyen,
R. Housley, and W. Polk. Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile. RFC 5280 (Proposed Standard),
May 2008. Updated by RFC 6818.

[13] J. Cowie. Egypt Leaves the Internet.
http://www.renesys.com/blog/2011/01/
egypt-leaves-the-internet.shtml, January 2011.

[14] Defeat Internet Censorship: Overview of Advanced
Technologies and Products.
http://www.internetfreedom.org/archive/Defeat
Internet Censorship White Paper.pdf, 2007.

[15] R. Dingledine and N. Mathewson. Design of a
Blocking-Resistant Anonymity System.
https://svn.torproject.org/svn/projects/design-paper/
blocking.html.

[16] K. Dyer, S. Coull, T. Ristenpart, and T. Shrimpton.
Protocol Misidentification Made Easy with
Format-Transforming Encryption. In CCS, 2013.

[17] D. Eastlake. Transport Layer Security (TLS)
Extensions: Extension Definitions. RFC 6066
(Proposed Standard), Jan. 2011.

[18] N. Feamster, M. Balazinska, G. Harfst,
H. Balakrishnan, and D. Karger. Infranet:
Circumventing Web Censorship and Surveillance. In
USENIX Security, 2002.

[19] D. Fifield, C. Lan, R. Hynes, P. Wegmann, and
V. Paxson. Blocking-resistant Communication through
Domain Fronting. In PETS, 2015.

[20] J. Geddes, M. Schuchard, and N. Hopper. Cover Your
ACKs: Pitfalls of Covert Channel Censorship
Circumvention. In CCS, 2013.

[21] J. Holowczak and A. Houmansadr. CacheBrowser:
Bypassing Chinese Censorship without Proxies Using
Cached Content. In CCS, 2015.

[22] A. Houmansadr, C. Brubaker, and V. Shmatikov. The
Parrot is Dead: Observing Unobservable Network
Communications. In IEEE S&P, 2013.

[23] A. Houmansadr, G. Nguyen, M. Caesar, and
N. Borisov. Cirripede: Circumvention Infrastructure
Using Router Redirection with Plausible Deniability.
In CCS, 2011.

[24] A. Houmansadr, T. Riedl, N. Borisov, and A. Singer. I
Want My Voice to Be Heard: IP over Voice-over-IP
for Unobservable Censorship Circumvention. In NDSS,
2013.

[25] S. Kelly, M. Earp, L. Reed, A. Shahbaz, and
M. Truong. Tightening the Net: Governments Expand
Online Controls (Freedom on the Net 2014).
https://freedomhouse.org/sites/default/files/FOTN
2014 Full Report compressedv2 0.pdf, 2014.

[26] C. Leberknight, M. Chiang, H. Poor, and F. Wong. A
Taxonomy of Internet Censorship and Anti-censorship.
http:
//www.princeton.edu/˜chiangm/anticensorship.pdf,
2010.

[27] C. Lecher. Internet censorship reaching dangerous
levels in Turkey.
http://www.todayszaman.com/national
internet-censorship-reaching-dangerous-levels-in-turkey
393727.html, July 2014.

[28] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu.
When HTTPS Meets CDN: A Case of Authentication
in Delegated Service. In IEEE S&P, 2014.

[29] R. McPherson, A. Houmansadr, and V. Shmatikov.
CovertCast: Using Live Streaming to Evade Internet
Censorship. In PETS, 2016.

[30] Summary of meek’s costs, March 2016.
https://lists.torproject.org/pipermail/tor-project/
2016-April/000271.html.

[31] H. Moghaddam, B. Li, M. Derakhshani, and
I. Goldberg. SkypeMorph: Protocol Obfuscation for
Tor Bridges. In CCS, 2012.

[32] Z. Nabi. The anatomy of Web censorship in Pakistan.
In FOCI, 2013.

[33] A Simple Obfuscating Proxy. https:
//www.torproject.org/projects/obfsproxy.html.en.

[34] RESTful Web APIs. http://restfulwebapis.com/.

[35] P. Sands. Syria Tightens Control over Internet.
http://www.thenational.ae/news/world/middle-east/
syria-tightens-control-over-internet, September 2008.

[36] Ultrasurf. http://www.ultrareach.com.

[37] L. Wang, K. P. Dyer, A. Akella, T. Ristenpart, and
T. Shrimpton. Seeing through Network-Protocol
Obfuscation. In CCS, 2015.

[38] Q. Wang, X. Gong, G. Nguyen, A. Houmansadr, and
N. Borisov. CensorSpoofer: Asymmetric
Communication Using IP Spoofing for
Censorship-Resistant Web Browsing. In CCS, 2012.

[39] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and
I. Goldberg. Effective Attacks and Provable Defenses
for Website Fingerprinting. In USENIX Security, 2014.

[40] Z. Weinberg, J. Wang, V. Yegneswaran,
L. Briesemeister, S. Cheung, F. Wang, and D. Boneh.
StegoTorus: A Camouflage Proxy for the Tor
Anonymity System. In CCS, 2012.

[41] P. Winter and S. Lindskog. How the Great Firewall of
China Is Blocking Tor. In FOCI, 2012.

[42] E. Wustrow, S. Wolchok, I. Goldberg, and
J. Halderman. Telex: Anticensorship in the Network
Infrastructure. In USENIX Security, 2011.

[43] S. Yang. China Has Escalated Internet Censorship to
a New Level. http:
//www.businessinsider.com/china-blocks-vpns-2015-1,
January 2015.

http://humanrightshouse.org/Articles/16300.html
https://techcrunch.com/2015/09/07/china-continues-its-crackdown-on-vpn-services/
https://techcrunch.com/2015/09/07/china-continues-its-crackdown-on-vpn-services/
https://openitp.org/pdfs/CollateralFreedom.pdf
http://www.renesys.com/blog/2011/01/egypt-leaves-the-internet.shtml
http://www.renesys.com/blog/2011/01/egypt-leaves-the-internet.shtml
http://www.internetfreedom.org/archive/Defeat_Internet_Censorship_White_Paper.pdf
http://www.internetfreedom.org/archive/Defeat_Internet_Censorship_White_Paper.pdf
https://svn.torproject.org/svn/projects/design-paper/blocking.html
https://svn.torproject.org/svn/projects/design-paper/blocking.html
https://freedomhouse.org/sites/default/files/FOTN_2014_Full_Report_compressedv2_0.pdf
https://freedomhouse.org/sites/default/files/FOTN_2014_Full_Report_compressedv2_0.pdf
http://www.princeton.edu/~chiangm/anticensorship.pdf
http://www.princeton.edu/~chiangm/anticensorship.pdf
http://www.todayszaman.com/national_internet-censorship-reaching-dangerous-levels-in-turkey_393727.html
http://www.todayszaman.com/national_internet-censorship-reaching-dangerous-levels-in-turkey_393727.html
http://www.todayszaman.com/national_internet-censorship-reaching-dangerous-levels-in-turkey_393727.html
https://lists.torproject.org/pipermail/tor-project/2016-April/000271.html
https://lists.torproject.org/pipermail/tor-project/2016-April/000271.html
https://www.torproject.org/projects/obfsproxy.html.en
https://www.torproject.org/projects/obfsproxy.html.en
http://restfulwebapis.com/
http://www.thenational.ae/news/world/middle-east/syria-tightens-control-over-internet
http://www.thenational.ae/news/world/middle-east/syria-tightens-control-over-internet
http://www.ultrareach.com
http://www.businessinsider.com/china-blocks-vpns-2015-1
http://www.businessinsider.com/china-blocks-vpns-2015-1

	Introduction
	Background on CDNBrowsing
	Internet Censorship
	CDNBrowsing Circumvention
	Advantages of CDNBrowsing
	Limitation of CDNBrowsing
	Comparison to Domain Fronting
	CDN Basics and Terminologies

	Identification attacks 
	Destination Leakage in HTTPS
	How Real-World CDNs Deploy HTTPS
	How These Deployments Leak Destination

	Domain-Based Website Fingerprinting
	Relevance of the Attacks to Domain Fronting

	CDNReaper: A Practical CDNBrowsing System
	Threat Model
	High-level Design
	How CDNReaper Removes HTTPS Leakage
	How CDNReaper Defeats Traffic Analysis
	A Practical Bootstrapper for CDNReaper

	Extending the Reach of  CDNBrowsing
	Classifying Internet Websites
	Supporting Partial CDN Webpages
	Content Wrappers
	Dynamic Mirroring of Non-CDN Content
	Importing Login Credentials

	Supporting Private CDNs

	Conclusions
	Acknowledgments
	References

