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ABSTRACT
Flow correlation is the core technique used in a multitude of
deanonymization attacks on Tor. Despite the importance of �ow
correlation attacks on Tor, existing �ow correlation techniques are
considered to be ine�ective and unreliable in linking Tor �ows
when applied at a large scale, i.e., they impose high rates of false
positive error rates or require impractically long �ow observations
to be able to make reliable correlations. In this paper, we show that,
unfortunately, �ow correlation attacks can be conducted on Tor
tra�c with drastically higher accuracies than before by leveraging
emerging learning mechanisms. We particularly design a system,
called DeepCorr, that outperforms the state-of-the-art by signi�-
cant margins in correlating Tor connections. DeepCorr leverages
an advanced deep learning architecture to learn a �ow correlation
function tailored to Tor’s complex network—this is in contrast to
previous works’ use of generic statistical correlation metrics to cor-
relate Tor �ows. We show that with moderate learning, DeepCorr
can correlate Tor connections (and therefore break its anonymity)
with accuracies signi�cantly higher than existing algorithms, and
using substantially shorter lengths of �ow observations. For in-
stance, by collecting only about 900 packets of each target Tor �ow
(roughly 900KB of Tor data), DeepCorr provides a �ow correlation
accuracy of 96% compared to 4% by the state-of-the-art system of
RAPTOR using the same exact setting.

We hope that our work demonstrates the escalating threat of
�ow correlation attacks on Tor given recent advances in learning
algorithms, calling for the timely deployment of e�ective counter-
measures by the Tor community.

CCS CONCEPTS
• Information systems → Tra�c analysis; • Security and
privacy → Pseudonymity, anonymity and untraceability;
Privacy-preserving protocols; • Networks → Network privacy
and anonymity;
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1 INTRODUCTION
Tor [16] is the most widely used anonymity system with more
than 2 million daily users [74]. It provides anonymity by relaying
clients’ tra�c through cascades of relays, known as onion-circuits,
therefore concealing the association between the IP addresses of
the communicating parties. Tor’s network comprises around 7,000
public relays, carrying terabytes of tra�c every day [74]. Tor is
used widely not only by dissidents, journalists, whistleblowers, and
businesses, but also by ordinary citizens to achieve anonymity and
blocking resistance.

To be usable for everyday Internet activities like web browsing,
Tor aims to provide low-latency communications. To make this pos-
sible, Tor relays refrain from obfuscating tra�c features like packet
timings as doing so will slow down the connections.1 Consequently,
Tor is known to be susceptible to �ow correlation attacks [14, 51, 68]
in which an adversary tries to link the egress and ingress segments
of a Tor connection by comparing their tra�c characteristics, in
particular their packet timings and packet sizes.

This paper studies �ow correlation attacks on Tor. Flow cor-
relation is the core technique used in a wide spectrum of the
attacks studied against Tor (and similar anonymity systems) [8,
20, 36, 38, 70, 72]. For instance, in the predecessor attack [83] an
adversary who controls/eavesdrops multiple Tor relays attempts
at deanonymizing Tor connections by applying �ow correlation
techniques. The Tor project adopted “guard” relays to limit such
an adversary’s chances of placing herself on the two ends of a
target Tor connection. Borisov et al. [8] demonstrated an active
denial-of-service attack that increases an adversary’s chances of
observing the two ends of a target user’s Tor connections (who then
performs �ow correlation). Alternatively, various routing attacks
have been presented on Tor [20, 38, 70, 72] that aim at increasing
an adversary’s odds of intercepting the �ows to be correlated by
manipulating the routing decisions.

Despite the critical role of �ow correlation in a multitude of
Tor attacks, �ow correlating Tor connections has long been consid-
ered to be ine�cient at scale [37, 55, 66]—but not anymore! Even
though Tor relays do not actively manipulate packet timings and
sizes to resist �ow correlation, the Tor network naturally perturbs
Tor packets by signi�cant amounts, rendering �ow correlation a
1Note that some Tor bridges (but not the public relays) obfuscate tra�c characteris-
tics of the Tor �ows between themselves and censored clients by using various Tor
pluggable transports [61].
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di�cult problem in Tor. Speci�cally, Tor connections experience
large network jitters, signi�cantly larger than normal Internet con-
nections. Such large perturbations are resulted by congestion on
Tor relays, which is due to the imbalance between Tor’s capacity
and the bandwidth demand from the clients. Consequently, existing
�ow correlation techniques [34, 45, 53, 72] su�er from high rates of
false positives and low accuracies, unless they are applied on very
long �ow observations and/or impractically small sets of target
�ows. For instance, the state-of-the-art �ow correlation of RAP-
TOR [72] achieves good correlation performance in distinguishing
a small set of only 50 target connections, and even this requires
the collection of 100 MB over 5 minutes of tra�c for each of the
intercepted �ows.

In this work, we take �ow correlation attacks on Tor to real-
ity. We develop tools that are able to correlate Tor �ows with ac-
curacies signi�cantly higher than the state-of-the-art—when ap-
plied to large anonymity sets and using very short observations
of Tor connections. We argue that existing �ow correlation tech-
niques [13, 34, 45, 53, 68, 72] are ine�cient in correlating Tor tra�c
as they make use of generic statistical correlation algorithms that
are not able to capture the dynamic, complex nature of noise in Tor.
As opposed to using such general-purpose statistical correlation
algorithms, in this paper we use deep learning to learn a correlation
function that is tailored to Tor’s ecosystem. Our �ow correlation sys-
tem, called DeepCorr, then uses the learned correlation function to
cross-correlate live Tor �ows. Note that contrary to website �nger-
printing attacks [10, 27, 58, 75, 76], DeepCorr does not need to learn
any target destinations or target circuits; instead DeepCorr learns
a correlation function that can be used to link �ows on arbitrary
circuits, and to arbitrary destinations. In other words, DeepCorr can
correlate the two ends of a Tor connection even if the connection
destination has not been part of the learning set. Also, DeepCorr
can correlate �ows even if they are sent over Tor circuits di�erent
than the circuits used during the learning process. This is possible
as DeepCorr’s neural network learns the generic features of noise
in Tor, regardless of the speci�c circuits and end-hosts used during
the training process.

We demonstrate DeepCorr’s strong performance through large
scale experiments on live Tor network. We browse the top 50,000
Alexa websites over Tor, and evaluate DeepCorr’s true positive and
false positive rates in correlating the ingress and egress segments
of the recorded Tor connections. To the best of our knowledge, our
dataset is the largest dataset of correlated Tor �ows, which we have
made available to the public.2 Our experiments show that DeepCorr
can correlate Tor �ows with accuracies signi�cantly superior to ex-
isting �ow correlation techniques. For instance, compared to the
state-of-the-art �ow correlation algorithm of RAPTOR [72], Deep-
Corr o�ers a correlation accuracy3 of 96% compared to RAPTOR’s
accuracy of 4% (when both collect 900 packets of tra�c from each
of the intercepted �ows)! The following is a highlight of DeepCorr’s
performance:

2https://people.cs.umass.edu/~amir/FlowCorrelation.html
3To be fair, in our comparison with RAPTOR we derive the accuracy metric similar to
RAPTOR’s paper [72]: each �ow is paired with only one �ow out of all evaluated �ows.
For the rest of our experiments, each �ow can be declared as correlated with arbitrary
number of intercepted �ows, which is a more realistic (and more challenging) setting.

• We use a total of 25,000 Tor �ows collected by ourselves to
train DeepCorr (we use 5,000 �ows for training in most of
our experiments). Training DeepCorr takes about a day on a
single TITAN X GPU, however we show that an adversary
needs to re-train DeepCorr roughly once a month to preserve
its correlation performance.

• DeepCorr can be used as a generic correlation function: Deep-
Corr’s performance is consistent for various test datasets
with di�erent sizes and containing �ows routed over di�er-
ent circuits.

• DeepCorr outperforms prior �ow correlation algorithms
by very large margins. Importantly, DeepCorr enables the
correlation of Tor �ows with �ow observations much shorter
than what is needed by previous work. For instance, with
only 300 packets, DeepCorr achieves a true positive rate of
0.8 compared to less than 0.05 by prior work (for a �xed false
positive rate of 10−3).

• DeepCorr’s performance rapidly improves with longer �ow
observations and with larger training sets.

• DeepCorr’s correlation time is signi�cantly faster than pre-
vious work for the same target accuracy. For instance, each
DeepCorr correlation takes 2ms compared to RAPTOR’s
more than 20ms, when both target a 95% accuracy on identi-
cal dataset.

We hope that our study raises concerns in the community on the
escalating risks of large-scale tra�c analysis on Tor communica-
tions in light of the emerging deep learning algorithms. A possible
countermeasure to DeepCorr is deploying tra�c obfuscation tech-
niques, such as those employed by Tor pluggable transports [61], on
all Tor tra�c. We evaluate the performance of DeepCorr on each of
Tor’s currently-deployed pluggable transports, showing that meek
and obfs4-iat0 provide little protection against DeepCorr’s �ow
correlation, while obfs4-iat1 provides a better protection against
DeepCorr (note that none of these obfuscation mechanisms are
currently deployed by public Tor relays, and even obfs4-iat1 is
deployed by a small fraction of Tor bridges [55]). This calls for
designing e�ective tra�c obfuscation mechanisms to be deployed
by Tor relays that do not impose large bandwidth and performance
overheads on Tor communications.

Finally, note that while we present DeepCorr as a �ow correla-
tion attack on Tor, it can be used to correlate �ows in other �ow
correlation applications as well. To demonstrate this, we also apply
DeepCorr to the problem of stepping stone detection [6, 26, 80]
showing that DeepCorr signi�cantly outperforms previous stepping
stone detection algorithms in unreliable network settings.
Organization: The rest of this paper is organized as follows. In
Section 2, we overview preliminaries of �ow correlation and mo-
tivate our work. In Section 3, we introduce our �ow correlation
system, called DeepCorr. We describe our experimental setup in
Section 4, and present and discuss our experimental results in Sec-
tion 5. We discuss and evaluate possible countermeasures against
DeepCorr in Section 6 and conclude the paper in Section 7.

2 PRELIMINARIES AND MOTIVATION
Flow correlation attacks, also referred to as con�rmation attacks,
are used to link network �ows in the presence of encryption and
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other content obfuscation mechanisms [14, 18, 26, 46, 53, 68, 81, 86].
In particular, �ow correlation techniques can break anonymity in
anonymous communication systems like Tor [16] and mix net-
works [15, 64, 65] by linking the egress and ingress segments
of the anonymous connections through correlating tra�c fea-
tures [4, 14, 51, 63, 68, 78, 79, 87]. Alternatively, �ow correlation
techniques can be used to identify cybercriminals who use network
proxies to obfuscate their identities, i.e., stepping stone attack-
ers [69, 84, 86].

2.1 Threat Model
Figure 1 shows the main setting of a �ow correlation scenario. The
setting consists of a computer network (e.g., Tor’s network) with
M ingress �ows and N egress �ows. Some of the egress �ows are
the obfuscated versions of some of the ingress �ows; however, the
relation between such �ows can not detected using packet con-
tents due to the use of encryption and similar content obfuscation
techniques like onion encryption. For instance, in the case of Tor,
Fi and Fj are the entry and exit segments of one Tor connection
(see Figure 1), however, such association can not be detected by
inspecting the packet contents of Fi and Fj due to onion encryption.
We call (Fi , Fj ) a pair of associated �ows.

The goal of an adversary in this setting is to identify (some or
all of) the associated �ow pairs, e.g., (Fi , Fj ), by comparing traf-
�c characteristics, e.g., packet timings and sizes, across all of the
ingress and egress �ows. Linking associated �ow pairs using tra�c
characteristics is called �ow correlation.

A �ow correlation adversary can intercept network �ows at
various network locations. A Tor adversary, in particular, can inter-
cept Tor �ows either by running malicious Tor relays [8, 36, 83] or
by controlling/wiretapping Internet ASes or IXPs [39, 70, 72]. We
further elaborate on this in Section 2.3.

Note that in this paper we study passive �ow correlation attacks
only; therefore, active �ow correlation techniques, also known
as �ow watermarks as introduced in Section 2.5, are out of the
scope of this paper. Also, �ow correlation is di�erent from website
�ngerprinting attacks, as discussed in Section 2.5.

2.2 Existing Flow Correlation Techniques
As mentioned before, �ow correlation techniques use tra�c fea-
tures, particularly, packet timings, packet sizes, and their variants
(e.g., �ow rates, inter-packet delays, etc.), to correlate and link net-
work �ows (recall that packet contents can not be used to link �ows
in this setting due to content obfuscation, e.g., onion encryption).
For instance, the early work of Paxson and Zhang [86] models
packet arrivals as a series of ON and OFF patterns, which they
use to correlate network �ows, and Blum et al. [7] correlate the
aggregate sizes of network packets over time. Existing �ow correla-
tion techniques mainly use standard statistical correlation metrics to
correlate the vectors of �ow timings and sizes across �ows. In the
following, we overview the major types of statistical correlation
metrics used by previous �ow correlation algorithms.
Mutual Information The mutual information metric measures
the dependency of two random variables. It, therefore, can be used
to quantify the correlation of �ow features across �ows, e.g., the
tra�c features of an egress Tor �ow depends on the features of its

corresponding ingress �ow. The mutual information technique has
been used by Chothia et al. [13] and Zhu et al. [88] to link �ows.
This metric, however, requires a long vector of features (e.g., long
�ows) in order to make reliable decisions, as it needs to reconstruct
and compare the empirical distributions of tra�c features of target
�ows.
Pearson Correlation The Pearson Correlation coe�cient is a
classic statistical metric for linear correlation between random
variables. Unlike the mutual information metric, the Pearson Cor-
relation metric does not need to build the empirical distribution
of the variables it is correlating, and therefore can be applied on
a shorter length of data. The Pearson Correlation metric has been
used by several �ow correlation systems [45, 68].
Cosine Similarity The Cosine similarity metric measures the
angular similarity of two random variables. Similar to the Pearson
coe�cient, it can be directly applied on the sample vectors of two
random variables. This metric has been used by di�erent timing
and size correlation systems [34, 53] to link network �ows.
Spearman Correlation The Spearman rank correlation metric
measures the statistical dependence between the rankings of two
variables. The metric can be de�ned as the Pearson correlation
between ranked variables. The recent work of RAPTOR [72] uses
this metric to correlate Tor �ows.

2.3 Flow Correlation Attacks on Tor
Flow correlation is the core technique used in a broad range of
attacks studied against Tor (and other anonymity systems). To be
able to perform �ow correlation, an adversary needs to observe
(i.e., intercept) some fraction of �ows entering and exiting the
Tor network. The adversary can then deanonymize a speci�c Tor
connection, if she is able to intercept both of the ingress and egress
segments of that Tor connection (by performing a �ow correlation
algorithm on those �ow segments). Therefore, an adversary can
increase her chances of deanonymizing Tor connections by trying
to intercept a larger fraction of Tor’s ingress and egress �ows.

There are two main approaches an attacker can take to increase
the fraction of Tor connections she is intercepting. First, by running
a large number of Tor relays and recording the tra�c features of
the Tor connections they relay. Various studies have shown that
an adversary with access to such malicious relays can increase
her chances of intercepting the both ends of a Tor connection in
di�erent ways [3, 8, 28, 49, 83]. For instance, Borisov et al. [8]
demonstrate an active denial-service-attack to increase the chances
of intercepting the ingress and egress segments of a target client’s
Tor tra�c. The Tor project has adopted the concept of Tor guard
relays [21] to reduce the chances of performing �ow correlation by
an adversary controlling malicious relays, an attack known as the
predecessor attack [83].

Alternatively, an adversary can increase her opportunities of per-
forming �ow correlation by controlling/wiretapping autonomous
systems (ASes) or Internet exchange points (IXPs), and record-
ing the tra�c features of the Tor connections that they transit.
Several studies [22, 52, 72] demonstrate that speci�c ASes and
IXPs intercept a signi�cant fraction of Tor tra�c, therefore are
capable of performing �ow correlation on Tor at large scale. Oth-
ers [20, 38, 39, 70, 72] show that an AS-level adversary can further



Figure 1: The main setting of a �ow correlation attack on Tor. The adversary intercepts Tor �ows either by running malicious
Tor relays or wiretapping Internet ASes and IXPs.

increase her chances of �ow correlation by performing various
routing manipulations that reroute a larger fraction of Tor connec-
tions through her adversarial ASes and IXPs. For instance, Starov
et al. [70] recently show that approximately 40% of Tor circuits are
vulnerable to �ow correlation attacks by a single malicious AS, and
Sun et al. [72] show that churn in BGP as well as active manipula-
tion of BGP updates can amplify an adversarial AS’s visibility on
Tor connections. This has lead to various proposals on deploying
AS-aware path selection mechanisms for Tor [2, 20, 54].

2.4 This Paper’s Contributions
While �ow correlation is the core of a multitude of attacks on
Tor [3, 8, 20, 22, 28, 38, 39, 49, 52, 54, 70, 72, 72, 83], existing �ow
correlation algorithms are assumed to be ine�ective in linking Tor
connections reliably and at scale [37, 55, 66]. This is due to Tor’s
extremely noisy network that applies large perturbations on Tor
�ows, therefore rendering tra�c features across associated ingress
and egress Tor �ows hard to get reliably correlated. In particular,
Tor’s network applies large network jitters on Tor �ows, which is
due to congestion on Tor relays, and many Tor packets are frag-
mented and repacketized due to unreliable network conditions.
Consequently, existing �ow correlation techniques o�er poor corre-
lation performances—unless applied to very large �ow observations
as well as unrealistically small sets of target �ows.4 For instance,
the state-of-the-art correlation technique of Sun et al. [72] needs to
observe 100MB of tra�c from each target �ow for around 5 min-
utes to be able to perform reliable �ow correlations. Such long �ow
observations not only are impractical due to the short-lived nature
of typical Tor connections (e.g., web browsing sessions), but also
impose unbearable storage requirements if applied at large scale
(e.g., a malicious Tor relay will likely intercepte tens of thousands
of concurrent �ows). Moreover, existing techniques su�er from

4Note that active attacks like [68] are out of our scope, as discussed in Section 2.5, since
such attacks are easily detectable, and therefore can not be deployed by an adversary
at large scale for a long time period without being detected.

high rates of false positive correlations unless applied on an unre-
alistically small set of suspected �ows, e.g., Sun et al. [72] correlate
among a set of only 50 target �ows.
Our Approach: We believe that the main reason for the ine�ec-
tiveness of existing �ow correlation techniques is the intensity as
well as the unpredictability of network perturbations in Tor. We
argue that previous �ow correlation techniques are ine�cient in
correlating Tor tra�c since they make use of general-purpose statis-
tical correlation algorithms that are not able to capture the dynamic,
complex nature of noise in Tor. As opposed to using such generic
statistical correlation metrics, in this paper we use deep learning
to learn a correlation function that is tailored to Tor’s ecosystem. We
design a �ow correlation system, called DeepCorr, that learns a
�ow correlation function for Tor, and uses the learned function to
cross-correlate live Tor connections. Note that contrary to website
�ngerprinting attacks [10, 27, 58, 75, 76], DeepCorr does not need
to learn any target destinations or target circuits; instead Deep-
Corr learns a correlation function that can be used to link �ows
on arbitrary circuits, and to arbitrary destinations. In other words,
DeepCorr can correlate the two ends of a Tor connection even if
the connection destination has not been part of the learning set.
Also, DeepCorr can correlate �ows even if they are sent over Tor
circuits di�erent than the circuits used during the training process.

We demonstrate DeepCorr’s strong correlation performance
through large scale experiments on live Tor network, which we
compare to previous �ow correlation techniques. We hope that our
study raises concerns in the community on the increasing risks
of large-scale tra�c analysis on Tor in light of emerging learning
algorithms. We discuss potential countermeasures, and evaluate
DeepCorr’s performance against existing countermeasures.

2.5 Related Topics Out of Our Scope
Active �ow correlation (watermarking) Network �ow water-
marking is an active variant of the �ow correlation techniques intro-
duced above. Similar to passive �ow correlation schemes, �ow wa-
termarking aims at linking network �ows using tra�c features that



persist content obfuscation, i.e., packet sizes and timings. By con-
trast, �ow watermarking systems need tomanipulate the tra�c fea-
tures of the �ows they intercept in order to be able to perform �ow
correlation. In particular, many �ow watermarking systems [29–
31, 33, 62, 79, 85] perturb packet timings of the intercepted �ows by
slightly delaying network packets to modulate an arti�cial pattern
into the �ows, called the watermark. For instance, RAINBOW [33]
manipulates the inter-packet delays of network packets in order
to embed a watermark signal. Several proposals [32, 44, 62, 79, 85],
known as interval-based watermarks, work by delaying packets
into secret time intervals.

While passive �ow correlation attacks (studied in this paper) are
information theoretically undetectable, a watermarking adversary
may reveal herself by applying tra�c perturbations that di�er from
that of normal tra�c. Some active correlation techniques [12, 68]
do not even aim for invisibility, therefore they can be trivially
detected and disabled, making them unsuitable for large scale �ow
correlation. Additionally, while passive �ow correlation algorithms
can be computed o�ine, �ow watermarks need to be performed by
resourceful adversaries who are able to apply tra�c manipulations
on live Tor connections. In this paper, we only focus on passive
�ow correlation techniques.
Website Fingerprinting Website �ngerprinting attacks [10, 24,
25, 27, 40, 47, 57, 58, 75–77] use a di�erent threat model than �ow
correlation techniques. In website �ngerprinting, an adversary in-
tercepts a target client’s ingress Tor tra�c (e.g., by wiretapping
the link between a Tor client and her guard relay), and compares
the intercepted ingress Tor connection to the tra�c �ngerprints
of a �nite (usually small) set of target websites. This is unlike �ow
correlation attacks in which the adversary intercepts the two ends of
an anonymous connection, enabling the attacker to deanonymize
arbitrary senders and receivers. Existing website �ngerprinting
systems leverage standard machine learning algorithms such as
SVM and kNN to classify and identify target websites, and recent
work [67] has investigated the use of deep learning for website
�ngerprinting. In contrary, as overviewed in Section 2.2, prior pas-
sive �ow correlation techniques use statistical correlation metrics
to link tra�c characteristics across network �ows. We consider
website �ngerprinting orthogonal to our work as it is based on
di�erent threat model and techniques.

3 INTRODUCING DeepCorr
In this section, we introduce our �ow correlation system, called
DeepCorr, which uses deep learning algorithms to learn correlation
functions.

3.1 Features and Their Representation
Similar to existing �ow correlation techniques overviewed earlier,
our �ow correlation system uses the timings and sizes of network
�ows to cross-correlate them. A main advantage [23] of deep learn-
ing algorithms over conventional learning techniques is that a deep
learningmodel can be providedwith raw data features as opposed to
engineered tra�c features (like those used by SVM- and kNN-based
website �ngerprinting techniques [10, 24, 25, 27, 47, 57, 58, 75, 76]).
This is because deep learning is able to extract complex, e�ective
features from the raw input features [23] itself. Therefore, DeepCorr

takes raw �ow features as input, and uses them to derive complex
features, which is used by its correlation function.

We represent a bidirectional network �ow, i , with the following
array:

Fi = [Tui ; S
u
i ;T

d
i ; S

d
i ]

where T is the vector of inter-packet delays (IPD) of the �ow i ,
S is the vector of i’th packet sizes, and the u and d superscripts
represent “upstream” and “downstream” sides of the bidirectional
�ow i (e.g., Tui is the vector of upstream IPDs of i). Also, note that
we only use the �rst ` elements of each of the vectors, e.g., only
the �rst ` upstream IPDs. If a vector has fewer than ` elements, we
pad it to ` by appending zeros. We will use the �ow representation
Fi during our learning process.

Now suppose that we aim at correlating two �ows i and j (say i
was intercepted by amalicious Tor guard relay and j was intercepted
by an accomplice exit relay). We represent this pair of �ows with
the following two-dimensional array composed of 8 rows:

Fi, j = [Tui ;T
u
j ;T

d
i ;T

d
j ; S

u
i ; S

u
j ; S

d
i ; S

d
j ]

where the lines of the array are taken from the �ow representations
Fi and Fj .

3.2 Network Architecture
We use a Convolutional Neural Network (CNN) [23] to learn a
correlation function for Tor’s noisy network. We use a CNN since
network �ow features can be modeled as time series, and the CNNs
are known to have good performance on time series [23]. Also,
the CNNs are invariant to the position of the patterns in the data
stream [23], which makes them ideal to look for possibly shifted
tra�c patterns.5

Figure 2 shows the structure of DeepCorr’s CNN network. The
network takes a �ow pair Fi, j as the input (on the left side). Deep-
Corr’s architecture is composed of two layers of convolution and
three layers of a fully connected neural network. The �rst convolu-
tion layer has k1 kernels each of size (2,w1), where k1 andw1 are
the hyperparameters, and we use a stride of (2, 1). The intuition
behind using the �rst convolution layer is to capture correlation
between the adjacent rows of the input matrix Fi, j , which are sup-
posed to be correlated for associated Tor �ows, e.g., between Tui
and Tuj .

DeepCorr’s second convolution layer aims at capturing tra�c
features from the combination of all timing and size features. At
this layer, DeepCorr uses k2 kernels each of size (4,w2), where k2
andw2 are also our hyperparameters, and it uses a stride of (4, 1).

The output of the second convolution layer is �attened and fed
to a fully connected network with three layers. DeepCorr uses
max pooling after each layer of convolution to ensure permutation
invariance and to avoid over�tting [23]. Finally, the output of the
network is:

pi, j = Ψ(Fi, j )

5Note that our work is the �rst to use a learning mechanism for �ow correlation. In
our search of e�ective learning mechanisms for �ow correlation, we tried various
algorithms including fully connected neural networks, recurrent neural network (RNN),
and support vector machine (SVM). However, CNN provided the best �ow correlation
performance compared to all the other algorithms we investigated, which is intuitively
because CNNs are known to work better for longer data lengths. For instance, we
achieved an accuracy of only 0.4 using fulling-connected neural networks, which is
signi�cantly lower than our performance with CNNs.



Figure 2: The network architecture of DeepCorr.

which is used to decide if the two input �ows in Fi, j are correlated
or not. To normalize the output of the network, we apply a sigmoid
function [23] that scales the output between zero and one. Therefore,
pi, j shows the probability of the �ows i and j being associated
(correlated), e.g., being the entry and exit segments of the same Tor
connection.

DeepCorr declares the �ows i and j to be correlated if pi, j > η,
where η is our detection threshold discussed during the experiments.

The parameters (w1,w2,k1,k2) are the hyperparameters of our
system; we will tune their values through experiments.

3.3 Training
To train our network, we use a large set of �ow pairs that we
created over Tor. This includes a large set of associated �ow pairs,
and a large set of non-associated �ow pairs. An associated �ow
pair, Fi, j , consists of the two segments of a Tor connection (e.g.,
i and j are the ingress and egress segments of a Tor connection).
We label an associated pair with yi, j = 1. On the other hand, each
non-associated �ow pair (i.e., a negative sample) consists of two
arbitrary Tor �ows that do not belong to the same Tor connection.
We label such non-associated pairs with yi, j = 0. For each captured
Tor entry �ow, i , we create Nneд negative samples by forming Fi, j
pairs where j is the exit segment of an arbitrary Tor connection.
Nneд is a hyperparameter whose value will be obtained through
experiments.

Finally, we de�ne DeepCorr’s loss function using a cross-entropy
function as follows:

L = −
1
|F |

∑
Fi, j ∈F

yi, j logΨ(Fi, j ) + (1 − yi, j ) log(1 − Ψ(Fi, j )) (1)

where F is our training dataset, composed of all associated and
non-associated �ow pairs. We used the Adam optimizer [43] to
minimize the loss function in our experiments. The learning rate
of the Adam optimizer is another hyperparameter of our system.

4 EXPERIMENTAL SETUP
In this section, we discuss our data collection and its ethics, the
choice of our hyperparameters, and our evaluation metrics.

4.1 Datasets and Collection
Figure 3 shows our experimental setup for our Tor experiments. We
used several Tor clients that we ran inside separate VMs to generate
and collect Tor tra�c. We use each of our Tor clients to browse
the top 50,000 Alexa websites over Tor, and captured the �ows
entering and exiting the Tor network for these connections (we use
half of these �ows for training in various experiments). Therefore,
the entering �ows are in Tor cell format, and the �ows exiting Tor
are in regular HTTP/HTTPS format. We used 1,000 arbitrary Tor
circuits for browsing websites over Tor, i.e., each circuit was used
to browse roughly 50 websites. We used di�erent guard nodes in
forming our Tor circuits; we were able to alternate our guard nodes
by disabling Vanilla Tor’s option that enforces guard relay reuse.
We also used a regular Firefox browser, instead of Tor’s browser,
to be able to enforce circuit selection. We used Tor version 0.3.0.9,
automated by a Python script.

Note that we did not set up our own Tor relays for the purpose
of the experiments, and we merely used public Tor relays in all of
our experiments. We captured the ingress Tor �ows using tcpdump
on our Tor clients. To capture the egress Tor tra�c (i.e., tra�c
from exit relays to websites), we made our exit Tor tra�c tunnel
through our own SOCKS proxy server (as shown in Figure 3), and
we collected the exit Tor tra�c on our own SOCKS proxy server
using tcpdump. Note that using this data collection proxy may
add additional latency on the collected �ows, so the performance
of DeepCorr in practice is better than what we report through
experiments. We also collected 500 websites through Tor pluggable
transport to evaluate them as countermeasures against DeepCorr.

We collected our Tor tra�c in two steps: �rst, we collected tra�c
over a two weeks period, and then with a three months gap we
collected more Tor tra�c for a one month period (in order to show
the impact of time on training). We have made our dataset available
publicly. To the best of our knowledge, this is largest dataset of



Figure 3: Our experimental setup on Tor

correlated Tor �ows, and we hope it will be useful to the research
community.

Note that while we only collect web tra�c, this is not a constraint
of DeepCorr, and it can be used to correlate arbitrary Tor tra�c.

4.2 Ethics of Data Collection
To make sure we did not overload Tor’s network, we ran up to 10
concurrent Tor connections during our data collection. Also, we
alternated the guard nodes used in our circuits to evade overloading
any speci�c circuits or relays. We did not browse any illegal content
over Tor, and we used an idle time between connections of each of
our clients. As explained above, we collected our ingress and egress
Tor �ows on our own Tor clients as well as our own SOCKS proxy
server; therefore, we did not collect any tra�c of other Tor users.

In our experiments with Tor pluggable transports, we collected
a much smaller set of �ows compared to our bare Tor experiments;
we did so because Tor bridges are very scarce and expensive, and
therefore we avoided overloading the bridges.

4.3 Choosing the Hyperparameters
We used Tensor�ow [1] to implement the neural networks of Deep-
Corr. We tried various values for di�erent hyperparameters of our
system to optimize the �ow correlation performance. To optimize
each of the parameters, our network took about a day to converge
(we used a single Nvidia TITAN X GPU).

For the learning rate, we tried {0.001, 0.0001, 0.0005, 0.00005},
and we got the best performance with a learning rate of
0.0001. As for the number of negative samples, Nneд , we tried
{9, 49, 99, 199, 299} and 199 gave us the best results. For the window
sizes of the convolution layers,w1 andw2, we tried {5, 10, 20, 30}.
Our best results occurred withw1 = 30 andw2 = 10. We also exper-
imented with {2, 5, 10} for the size of the max pooling, and a max
pooling of 5 gave the best performance. Finally, for the number of
the kernels, k1,k2, we tried {500, 1000, 2000, 3000}, and k1 = 2000
and k2 = 1000 resulted in the best performance. We present the
values of these parameters and other parameters of the system in
Table 1.

4.4 Evaluation Metrics
Similar to previous studies, we use the true positive (TP) and false
positive (FP) error rates as the main metrics for evaluating the
performance of �ow correlation techniques. The TP rate measures
the fraction of associated �ow pairs that are correctly declared to

Table 1: DeepCorr’s hyperparameters optimized to correlate
Tor tra�c.

Layer Details

Convolution Layer 1

Kernel num: 2000
Kernel size: (2, 30)

Stride: (2,1)
Activation: Relu

Max Pool 1 Window size: (1,5)
Stride: (1,1)

Convolution Layer 2

Kernel nume: 1000
Kernel size: (4, 10)

Stride: (4,1)
Activation: Relu

Max Pool 2 Window size: (1,5)
Stride: (1,1)

Fully connected 1 Size: 3000, Activation: Relu
Fully connected 2 Size: 800, Activation: Relu
Fully connected 3 Size: 100, Activation: Relu

be correlated by DeepCorr (i.e., a �ow pair (i ,j) where i and j are the
segments of the same Tor connection, and we have pi, j > η). On the
other hand, the FP rate measures the fraction of non-associated �ow
pairs that are mistakenly identi�ed as correlated by DeepCorr (e.g.,
when i and j are the segments of two unrelated Tor connections,
yet pi, j > η). To evaluate FP, DeepCorr correlates every collected
entry �ow to every collected exit �ow, therefore, we perform about
N × (N − 1) false correlations for each of our experiments, where
N is the number of test �ow pairs in the underlying experiment (N
is 5,000 in most of the experiments).

Note that the detection threshold ηmakes a trade o� between the
FP and TP rates; therefore we make use of ROC curves to compare
DeepCorr to other algorithms.

Finally, in our comparisons with RAPTOR [72], we additionally
use the accuracy metric (the sum of true positive and true negative
correlations over all correlations), which is used in the RAPTOR
paper. To have a fair comparison, we derive the accuracy metric
similar to RAPTOR: each �ow is declared to be associated with
only a single �ow out of all evaluated �ows, e.g., the �ow that
results in the maximum correlation metric, pi, j . For the rest of our
experiments, each �ow can be declared as correlated with arbitrary
number of intercepted �ows (i.e., any pairs that pi, j > η), which is
a more realistic (and more challenging) setting.



5 EXPERIMENT RESULTS
In this section we present and discuss our experimental results.

5.1 A First Look at the Performance
As described in the experimental setup section, we browse 50,000
top Alexa websites over Tor and collect their ingress and egress
�ow segments. For this experiment, we selected 5,000 connections
to train DeepCorr, and we use another 5,000 connections for testing.
Therefore, we feed DeepCorr about 5, 000 pairs of associated �ow
pairs, and 5, 000×4, 999 ≈ 2.5×107 pairs of non-associated �ow pairs
for training. We only use the �rst ` = 300 packets of each �ow (for
shorter �ows, we pad them to 300 packets by adding zeros). Figure 4
presents the true positive and false positive error rates of DeepCorr
for di�erent values of the threshold η. As expected, η trades o� the
TP and FP error rates. The �gure shows a promising performance
for DeepCorr in correlating Tor �ows—using only 300 packets of
each �ow. For instance, for a FP of 10−3, DeepCorr achieves a TP
close to 0.8. As shown in the following, this is drastically better
than the performance of previous work.
On the practicality of false positive error rates Note that a
10−3 FP may seem too large for a real-world setting in which the
malicious AS/IXP is intercepting several thousands of Tor connec-
tions at any time. First, the results presented here are for Tor �ows
with only ` = 300 packets to demonstrate DeepCorr’s unique per-
formance on short �ows (no previous work has done experiments
with such short lengths of Tor �ows with acceptable accuracies). As
shown later, increasing �ow length rapidly improves DeepCorr’s
correlation performance, e.g., from Figure 8 a �ow length of 450
packets improves FP by close to two orders of magnitude compared
to 300 packets (for a �xed TP of 0.8). This is also evident from
Figures 11 and 12. Second, the correlation adversary can deploy a
multi-stage attack to optimize accuracy and tra�c collection. For
instance, she can apply DeepCorr on the �rst 300 packets of all
intercepted Tor �ows, and then collect more packets for the �ow
pairs detected by the �rst stage of the attack. She then re-applies
DeepCorr on the longer observations of those �ow pairs. Third, the
adversary can perform standard pre-�ltering mechanisms to further
reduce FPs, e.g., she can ignore all �ow pairs with substantially
di�erent start times. In our experiments, all of the �ows have the
same starting times.

5.2 DeepCorr Can Correlate Arbitrary Circuits
and Destinations

As discussed earlier, DeepCorr learns a correlation function for
Tor that can be used to correlate Tor �ows on—any circuits—and
to—any destinations—regardless of the circuits and destinations
used during the training process. To demonstrate this, we compare
DeepCorr’s performance in two experiments, each consisting 2, 000
Tor connections, therefore 2, 000 associated pairs and 2, 000× 1, 999
non-associated �ow pairs. In the �rst experiment, the �ows tested
for correlation by DeepCorr use the same circuits and destinations
as the �ows used during DeepCorr’s training. In the second experi-
ment, the �ows tested for correlation by DeepCorr (1) use circuits
that are totally di�erent from the circuits used during training, (2)
are targeted to web destinations di�erent from those used during
training, and (3) are collected one week after the learning �ows.
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Figure 4: True positive and false positive error rates of Deep-
Corr in detecting correlated pairs of ingress and egress Tor
�ows for di�erent detection thresholds (η). Each �ow is only
300 packets.
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Figure 5: DeepCorr’s performance does not depend on the
circuits and destinations used during the training phase.

Figure 5 compares DeepCorr’s ROC curve for the two experiments.
As can be seen, DeepCorr performs similarly in both of the experi-
ments, demonstrating that DeepCorr’s learned correlation function
can be used to correlate Tor �ows on arbitrary circuits and to arbi-
trary destinations. The third line on the �gure shows the results
when the training set is three months old, showing a degraded
performance, as further discussed in the following.
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Figure 6: DeepCorr’s correlation values for associated and
non-associated �ows for 30 consecutive days without re-
training. The performance only starts to drop after about
three weeks.

5.3 DeepCorr Does Not Need to Re-Train
Frequently

Since the characteristics of Tor tra�c change over time, any
learning-based algorithm needs to be re-trained occasionally to
preserve its correlation performance. We performed two experi-
ments to evaluate how frequently DeepCorr needs to be retrained.
In our �rst experiment, we evaluated our pre-trained model over
Tor �ows collected during 30 consecutive days. Figure 6 presents
the output of the correlation function for each of the days for both
associated and non-associated �ow pairs. As we can see, the corre-
lation values for non-associated �ows do not change substantially,
however, the correlation values for associated �ows starts to slightly
degrade after about three weeks. This suggests that an adversary
will need to retrain her DeepCorr only every three weeks, or even
once a month.

As an extreme case, we also evaluated DeepCorr’s performance
using a model that was trained three months earlier. Figure 5 com-
pares the results in three cases: three months gap between training
and test, oneweek gap between training and test, and no gap.We see
that DeepCorr’s accuracy signi�cantly degrades with three months
gap between training and test—interestingly, even this signi�cantly
degraded performance of DeepCorr due to lack of retraining is
superior to all previous techniques compared in Figure 10.

5.4 DeepCorr’s Performance Does Not Degrade
with the Number of Test Flows

We also show that DeepCorr’s correlation performance does not
depend on the number of �ows being correlated, i.e., the size of the
test dataset. Figure 7 presents the TP and FP results (for a speci�c
threshold) on datasets with di�erent numbers of �ows. As can be
seen, the results are consistent for di�erent numbers of �ows being
correlated. This suggests that DeepCorr’s correlation performance
will be similar to what derived through our experiments even if
DeepCorr is applied on signi�cantly larger datasets of intercepted
�ows, e.g., on the �ows collected by a large malicious IXP.
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Figure 7: DeepCorr’s performance is consistent regardless of
the size of the testing dataset (we use a �xed, arbitrary η).

5.5 DeepCorr’s Performance Rapidly Improves
with Flow Length

In all of the previous results, we used a �ow length of ` = 300
packets. As can be expected, increasing the length of the �ows
used for training and testing should improve the performance of
DeepCorr. Figure 8 compares DeepCorr’s performance for di�erent
lengths of �ows, showing that DeepCorr’s performance improves
signi�cantly for longer �ow observations. For instance, for a target
FP of 10−3, DeepCorr achievesTP = 0.62 with ` = 100 packets long
�ows, while it achieves TP = 0.95 with �ows that contain ` = 450
packets.

Note that the lengths of intercepted �ows makes a tradeo� be-
tween DeepCorr’s performance and the adversary’s computation
overhead. That is, while a larger �ow length improves DeepCorr’s
correlation performance, longer �ows impose higher storage and
computation overheads on the tra�c correlation adversary. A larger
�ow length also increase the adversary’s waiting time in detecting
correlated �ows in real-time.

5.6 DeepCorr’s Performance Improves with the
Size of the Training Set

As intuitively expected, DeepCorr’s performance improves when
it uses a larger set of Tor �ows during the training phase (i.e.,
DeepCorr learns a better correlation function for Tor with more
training samples). Figure 9 compares DeepCorr’s ROC curve when
trained with di�erent numbers of �ows (for all of the experiments,
we use a �xed number of 1,000 �ows for testing). The �gure con�rms
that increasing the size of the training set improves the performance
of DeepCorr. For instance, for a target FP = 10−3, using 1,000
training �ows results in TP = 0.56, while using 5,000 �ows for
training gives DeepCorr a TP = 0.8. This shows that a resourceful
adversary can improve the accuracy of her �ow correlation classi�er
by collecting a larger number of Tor �ows for training. Note that a
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Figure 8: DeepCorr’s performance rapidly improves when
using longer �ows for training and testing.

10−3 10−2 10−1

False Positive

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
P
os
it
iv
e

Size of trainig data = 1000

Size of training data = 3000

Size of training data = 5000

Random Guess

Figure 9: DeepCorr’s correlation performance improves
with more training data.

larger training set increases the training time, however the learning
process does not need to repeat frequently as evaluated before.

5.7 DeepCorr Signi�cantly Outperforms the
State-Of-The-Art

In Section 2.2 we overviewed major �ow correlation techniques
introduced prior to our work. We perform experiments to compare
DeepCorr’s performance with such prior systems in correlating
Tor �ows. Figure 10 compares the ROC curve of DeepCorr to other
systems, in which all of the systems are tested on the exact same
set of Tor �ows (each �ow is at most 300 packets). As can be seen,
DeepCorr signi�cantly outperforms the �ow correlation algorithms

Table 2: Correlation time comparison with previous tech-
niques

Method One correlation time
RAPTOR 0.8ms
Cosine 0.4ms

Mutual Information 1ms
Pearson 0.4ms
DeepCorr 2ms

used by prior work, as we see a wide gap between the ROC curve of
DeepCorr and other systems. For instance, for a target FP = 10−3,
while DeepCorr achieves a TP of 0.8, previous systems provide
TP rates less than 0.05! This huge improvement comes from the
fact that DeepCorr learns a correlation function tailored to Tor
whereas previous systems use generic statistical correlation metrics
(as introduced in Section 2.2) to link Tor connections.

Needless to say, any �ow correlation algorithm will improve its
performance by increasing the length of the �ows it intercepts for
correlation (equivalently, the tra�c volume it collects from each
�ow); we showed this in Section 5.5 for DeepCorr. To o�er reason-
able accuracies, previous works have performed their experiments
on �ows that contain signi�cantly more packets (and more data)
than our experiments. For instance, Sun et al. evaluated the state-of-
the-art RAPTOR [72] in a setting with only 50 �ows, and each �ow
carries 100MB of data over 5 minutes. This is while in our experi-
ments presented so far, each �ow has only 300 packets, which is
equivalent to only ≈ 300 KB of Tor tra�c (in contrast to RAPTOR’s
100MB!). To ensure a fair comparison, we evaluate DeepCorr to
RAPTOR in the exact same setup (e.g., 50 �ows each 100MB, and
we use the accuracy metric described in Section 4.4). The results
shown in Figure 11 demonstrates DeepCorr’s drastically superior
performance (our results for RAPTOR comply with the numbers
reported by Sun et al. [72]). On the other hand, we show that the
performance gap between DeepCorr and RAPTOR is signi�cantly
wider for shorter �ow observations. To show this, we compare
DeepCorr and RAPTOR based on the volume of tra�c they inter-
cept from each �ow. The results shown in Figure 12 demonstrate
that DeepCorr outperforms signi�cantly, especially for shorter �ow
observations. For instance, RAPTOR achieves a 0.95 accuracy af-
ter receiving 100MB from each �ow, whereas DeepCorr achieves
an accuracy of 1 with about 3MB of tra�c. We see that DeepCorr
is particularly powerful on shorter �ow observations. We zoomed
in by comparing RAPTOR and DeepCorr for small number of ob-
served packets, which is shown in Figure 13. We see that DeepCorr
achieves an accuracy of ≈ 0.96 with only 900 packets, in contrast
to RAPTOR’s 0.04 accuracy.

5.8 DeepCorr’s Computational Complexity
In Table 2, we show the time to perform a single DeepCorr correla-
tion in comparison to that of previous techniques (the correlated
�ows are 300 packets long for all the systems). We see that Deep-
Corr is noticeably slower than previous techniques, e.g., roughly
two times slower than RAPTOR. However, note that since all the
systems use the same length of �ows, DeepCorr o�ers drastically bet-
ter correlation performance for the same time overhead; for instance,
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Figure 10: Comparing DeepCorr’s ROC curve with previ-
ous systems shows an overwhelming improvement over
the state-of-the-art (all the systems are tested on the same
dataset of �ows, and each �ow is 300 packets).
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Figure 11: Comparing DeepCorr to RAPTOR [72] using the
same �ow lengths and �ow number as the RAPTOR [72] pa-
per.

based on Figure 10, we see that DeepCorr o�ers a TP≈ 0.9 when all
previous systems o�er a TP less than 0.2. Therefore, when all the
systems o�er similar accuracies (e.g., each using various lengths
of input �ows) DeepCorr will be faster than all the systems for
the same accuracy. As an example, each RAPTOR correlation takes
20ms (on much longer �ow observations) in order to achieve the
same accuracy as DeepCorr which takes only 2ms—i.e., DeepCorr
is 10 times faster for the same accuracy.

Compared to previous correlation techniques, DeepCorr is the
only system that has a training phase. We trained DeepCorr using
a standard Nvidia TITAN X GPU (with 1.5GHz clock speed and
12GB of memory) on about 5,000 pairs of associated �ow pairs and
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Figure 12: Comparing the accuracy of DeepCorr and RAP-
TOR [72] for various volumes of data intercepted from each
�ow. The RAPTOR values are comparable to Figure 6 of the
RAPTOR paper [72].
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Figure 13: Comparing DeepCorr to RAPTOR in correlating
short �ows.

5000 × 4999 non-associated �ow pairs, where each �ow consists of
300 packets. In this setting, DeepCorr is trained in roughly one day.
Recall that as demonstrated in Section 5.3, DeepCorr does not need
to be re-trained frequently, e.g., only once every three weeks. Also,
a resourceful adversary with better GPU resources than ours will
be able to cut down on the training time.

5.9 DeepCorr Works in Non-Tor Applications
as Well

While we presented DeepCorr as a �ow correlation attack on Tor, it
can be used to correlate �ows in other �ow correlation applications
as well. We demonstrate this by applying DeepCorr to the problem
of stepping stone attacks [6, 26, 80]. In this setting, a cybercrimi-
nal proxies her tra�c through a compromised machine (e.g., the



Figure 14: The network architecture of DeepCorr to detect
stepping stone attacks

Table 3: DeepCorr’s parameters optimized for the stepping
stone attack application.

Layer Details

Convolution Layer 1

Kernel num: 200
Kernel size: (2, 10)

Stride: (1,1)
Activation: Relu

Max Pool 1 Window size: (1,5)
Stride: (1,1)

Fully connected 1 Size: 500, Activation: Relu
Fully connected 2 Size: 100, Activation: Relu

stepping stone) in order to hide her identity. Therefore, a network
administrator can use �ow correlation to match up the ingress and
egress segments of the relayed connections, and therefore trace
back to the cybercriminal. Previous work has devised various �ow
correlation techniques for this application [17, 33, 53, 59, 81].

For our stepping stone detection experiments, we used the
2016 CAIDA anonymized data traces [11]. Similar to the previous
works [33, 34, 53] we simulated the network jitter using Laplace
distribution, and modeled packet drops by a Bernoulli distribution
with di�erent rates. We apply DeepCorr to this problem by learning
DeepCorr in a stepping stone setting. As the noise model is much
simpler in this scenario than Tor, we use a simpler neural network
model for DeepCorr for this application. Also, we only use one
direction of a bidirectional connection to have a fair comparison
with previous systems, which all only use one-sided �ows. Figure 14
and Table 3 show our tailored neural network and our choices of
parameters, respectively.

Our evaluations show that DeepCorr provides a perfor-
mance comparable to “Optimal” �ow correlation techniques of
Houmansadr et al. [33, 34] when network conditions are stable.
However, when the network conditions becomes noisy, DeepCorr
o�ers a signi�cantly stronger performance in detecting stepping
stone attacks. This is shown in Figure 15, where the communication
network has a network jitter with a 0.005s standard deviation, and
the network randomly drops 1% of the packets.

6 COUNTERMEASURES
While previous work has studied di�erent countermeasures against
�ow correlation and similar tra�c analysis attacks [2, 9, 19, 35, 41,
42, 50, 56, 61, 82], they remain mostly non-deployed presumably
due to the poor performance of existing �ow correlation techniques
at large scale [60, 66]. In the following, we discuss two possible
countermeasures.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

False Positive

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
P
os
it
iv
e

DeepCorr

Cosine

Optimal

Random Guess

Figure 15: DeepCorr outperforms state-of-the-art stepping
stone detectors in noisy networks (1% packet drop rate).

6.1 Obfuscate Tra�c Patterns
An intuitive countermeasure against �ow correlation (and similar
tra�c analysis attacks like website �ngerprinting) is to obfuscate
tra�c characteristics that are used by such algorithms. Therefore,
various countermeasures have been suggested that modify packet
timings and packet sizes to defeat �ow correlation, in particular by
padding or splitting packets in order to modify packet sizes, or by
delaying packets in order to perturb their timing characteristics.
The Tor project, in particular, has deployed various pluggable trans-
ports [61] in order to defeat censorship by nation-states who block
all Tor tra�c. Some of these pluggable transports only obfuscate
packet contents [56], some of them obfuscate the IP address of the
Tor relays [48], and some obfuscate tra�c patterns [50, 56]. Note
that Tor’s pluggable transports are designed merely for the purpose
of censorship resistance, and they obfuscate tra�c only from a
censored client to her �rst Tor relay (i.e., a Tor bridge). Therefore,
Tor’s pluggable transports are not deployed by any of Tor’s public
relays.

As a possible countermeasure against DeepCorr, we suggest to
deploy tra�c obfuscation techniques by all Tor relays (including
the guard and middle relays). We evaluated the impact of several
Tor pluggable transports on DeepCorr’s performance. Currently,
the Tor project has three deployed plugs: meek, obfs3, and obs4. We
evaluated DeepCorr on meek and obfs4 (obfs3 is an older version
of obfs4). We also evaluated two modes of obfs4: one with IAT
mode “on” [55], which obfuscates tra�c features, and one with the
IAT mode “o�”, which does not obfuscate tra�c features. We used
DeepCorr to learn and correlate tra�c on these plugs. However, due
to ethical reasons, we collected a much smaller set of �ows for these
experiments compared to our previous experiments; this is because
Tor bridges are very scarce and expensive, and we therefore avoided
overloading the bridges.6 Consequently, our correlation results are

6Alternatively, we could set up our own Tor bridges for the experiments. We decided
to use real-world bridges to incorporate the impact of actual tra�c loads in our
experiments.



Table 4: DeepCorr’s performance if Tor’s pluggable trans-
ports are deployed by the relays (results are very optimistic
due to our small training set, which is for ethical reasons).

Plug name TP FP
obfs4 with IAT=0 ≈ 0.50 0.0005
meek ≈ 0.45 0.0005
obfs4 with IAT=1 ≈ .10 0.001

very optimistic due to their small training datasets (e.g., a real-
world adversary will achieve much higher correlation accuracies
with adequate training). We browsed 500 websites over obfs4 with
and without the IAT mode on, as well as over meek. We trained
DeepCorr on only 400 �ows (300 packets each) for each transport
(in contrast to 5,000 �ows in our previous experiments), and tested
on another 100 �ows. Table 4 summarizes the results. We see that
meek and obfs4 with IAT=0 provide no protection to DeepCorr; note
that a 0.5 TP is comparable to what we get for bare Tor if trained
on only 400 �ows (see Figure 9), therefore we expect correlation
results similar to bare Tor with a larger training set. The results are
intuitive: meek merely obfuscates a bridge’s IP and does not deploy
tra�c obfuscation (except for adding natural network noise). Also
obfs4 with IAT=0 solely obfuscates packet contents, but not tra�c
features. On the other hand, we see that DeepCorr has a signi�cantly
lower performance in the presence of obfs4 with IAT=1 (again,
DeepCorr’s accuracy will be higher for a real-world adversary who
collects more training �ows).

Our results suggest that (public) Tor relays should deploy a traf-
�c obfuscation mechanism like obfs4 with IAT=1 to resist advanced
�ow correlation techniques like DeepCorr. However, this is not a
trivial solution due to the increased cost, increased overhead (band-
width and CPU), and reduced QoS imposed by such obfuscation
mechanisms. Even the majority [55] of Obfsproxy Tor bridges run
obfs4 without tra�c obfuscation (IAT=0). Therefore, designing an
obfuscation mechanism tailored to Tor that makes the right balance
between performance, cost, and anonymity remains a challenging
problem for future work.

6.2 Reduce An Adversary’s Chances of
Performing Flow Correlation

Another countermeasure against �ow correlation on Tor is reducing
an adversary’s chances of intercepting the two ends of many Tor
connections (therefore, reducing her chances of performing �ow
correlation). As discussed earlier, recent studies [22, 52, 72] show
that various ASes and IXPs intercept a signi�cant fraction of Tor
tra�c, putting them in an ideal position to perform �ow correlation
attacks. To counter, several proposals suggest new relay selection
mechanisms for Tor that reduce the interception chances of mali-
cious ASes [2, 5, 41, 54, 71, 73]. None of such alternatives have been
deployed by Tor due to their negative impacts on performance,
costs, and privacy. We argue that designing practical AS-aware
relay selection mechanisms for Tor is a promising avenue to defend
against �ow correlation attacks on Tor.

7 CONCLUSIONS
We design a �ow correlation system, called DeepCorr, that drasti-
cally outperforms the state-of-the-art systems in correlating Tor
connections. DeepCorr leverages an advanced deep learning archi-
tecture to learn a �ow correlation function tailored to Tor’s complex
network (as opposed to previous works’ use of general-purpose
statistical correlation metrics). We show that with adequate learn-
ing, DeepCorr can correlate Tor connections (and therefore break
its anonymity) with accuracies signi�cantly stronger than existing
algorithms, and using substantially shorter lengths of �ow obser-
vations. We hope that our work demonstrates the escalating threat
of �ow correlation attacks on Tor in rise of advanced learning algo-
rithms, and calls for the deployment of e�ective countermeasures
by the Tor community.
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