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ABSTRACT

Today, systems rely as heavily on data as on the software that ma-
nipulates those data. Errors in these systems are incredibly costly,
annually resulting in multi-billion dollar losses, and, on multiple
occasions, in death. While software debugging and testing have
received heavy research attention, less effort has been devoted to
data debugging: discovering system errors caused by well-formed
but incorrect data. In this paper, we propose continuous data test-
ing: using otherwise-idle CPU cycles to run test queries, in the
background, as a user or database administrator modifies a database.
This technique notifies the user or administrator about a data bug as
quickly as possible after that bug is introduced, leading to at least
three benefits: (1) The bug is discovered quickly and can be fixed
before it is likely to cause a problem. (2) The bug is discovered
while the relevant change is fresh in the user’s or administrator’s
mind, increasing the chance that the underlying cause of the bug, as
opposed to only the discovered side-effect, is fixed. (3) When poor
documentation or company policies contribute to bugs, discovering
the bug quickly is likely to identify these contributing factors, facili-
tating updating documentation and policies to prevent similar bugs
in the future. We describe the problem space and potential benefits
of continuous data testing, our vision for the technique, challenges
we encountered, and our prototype implementation for PostgreSQL.
The prototype’s low overhead shows promise that continuous data
testing can address the important problem of data debugging.
Categories and Subject Descriptors:

D.2.5 [Software Engineering]: Testing and Debugging

H.2.7 [Database Management]: Database Administration

General Terms: Design

Keywords: Database testing, continuous testing, data debugging

1. MOTIVATION

Today’s software systems rely heavily on data and have a pro-
found effect on our everyday lives. Defects in these systems are
common and extremely costly, having caused, for example, gas
pipeline and spacecraft explosions [26, 34], loss of life [5, 21], and,
at least twice, a near start of a nuclear war [18, 29, 36]. However,
despite the prevalence of data errors [9, 13, 30, 31], while software-
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logic defects have received ample research attention, until recently
(e.g., [1, 15]), detecting and correcting system errors caused by
well-formed but incorrect data has received far less.

Data errors can arise in a variety of ways, including data entry er-
rors (e.g., typographical errors and transcription errors from illegible
text), measurement errors (e.g., the data source may be faulty or cor-
rupted), and data integration errors [13]. These errors can be costly:
Errors in spreadsheet data have led to million dollar losses [30, 31],
and poor data quality has been estimated to cost the US economy
more than $600 billion per year [9]. Data bugs have caused insur-
ance companies to wrongly deny claims and fail to notify customers
of policy changes [37]; agencies to miscalculate their budgets [10];
medical professionals to deliver incorrect medications to patients,
resulting in at least 24 deaths in the US in 2003 [27]; and NASA
to mistakenly ignore, via erroneous data cleaning, from 1973 until
1985, the Earth’s largest ozone hole over Antarctica [16].

In this paper, we aim to address a particular kind of data errors
that are introduced into existing databases. Consider the follow-
ing motivating example: Company Inc. maintains a database of its
employees, their personal data, salaries, benefits, etc. Figure 1(a)
shows a sample view of the data, and Figure 1(b) shows part of the
documentation Company Inc. maintains to describe how the data is
stored, to assist those using and maintaining the data. Company Inc.
is facing tough times and negotiates a 5% reduction in the salaries
of all employees. While updating the employee database, an ad-
ministrator makes a mistake and instead of reducing the salary data,
reduces all compensation data by 5%, which includes salary, health
benefits, retirement benefits, and other forms of compensation.

After a couple of months of the mistake going unnoticed, Alonzo
Church finally realizes that his paycheck stub indicates reduced
benefits. He complains to the human resources office, who verify
that Alonzo’s benefits should be higher, and ask the database ad-
ministrator to fix Alonzo’s benefits data. The administrator, who
has made hundreds of updates to the database since making the mis-
take, doesn’t think twice about the problem and updates Alonzo’s
data, without realizing the underlying erroneous change that caused
Alonzo’s, and other, data errors.

In a tragic turn of events, a month later, Alan Turing accidentally
ingests cyanide and is hospitalized. With modern technology, the
hospital quickly detects the poison and is able to save Alan’s life.
Unfortunately, the insurance company denies Alan’s claims because
his employer has been paying smaller premiums than was negotiated
for Alan’s policy. Alan sues Company Inc. for the damages. The
mistake is finally discovered, too late to save the company.

Our example scenario, while hypothetical, is not much differ-
ent from real-world scenarios caused by data errors [10, 27, 37].
Humans and applications modify data and often inadvertently intro-
duce errors. While integrity constraints guard against predictable



fname mname Iname dob eid compensation salary hbenefit rbenefit
Alan Mathison Turing 23 Jun 1912 7323994 $240,540 $120,327 $10,922 $20,321
Alonzo Church 14 Jun 1903 3420883 $248,141 $122,323 811,200 $20,988
Tim John Berners-Lee 8 Jun 1955 4040404 $277,500 $145,482 $14,876 $25,800
Dennis MacAlistair Ritchie 9 Sep 1941 7632122 $202,484 $101,001 $10,002 $19,191
Marissa Ann Mayer 30 May 1975 9001009 $281,320 $150,980 $15,004 $26,112
William Henry Gates 28 Oct 1955 1277739 $320,022 $190,190 $19,555 $30,056

(a) Company Inc.’s employee database table

The employee database table contains a row for every Company Inc.’s employee. For each employee, there is a first, middle, and
last name, date of birth, employee id, salary, health benefits, and retirement benefits. All employees must appear in this table,
even after they retire or pass away. The employee id must be unique for each employee. The dob is stored in a “day month
year” format, where month is the first three letters of the month, capitalized, and year is four digits.

(b) Employee table documentation

Figure 1: Company Inc. keeps a database of its current and past employees. A sample view of the database (a) includes employee information
(with the database’s attributes represented by the bold data descriptors). Company Inc. also maintains a description (b) of their employee
database as documentation for database users, administrations, and maintainers.

erroneous updates, many careless, unintentional errors still make
it through these barriers. Cleaning tools attempt to purge datasets
of discrepancies before the data can be used, but many errors still
go undetected and get propagated further through queries and other
transformations. Company Inc. illustrates three challenges with
maintaining database systems. These challenges cannot be easily
addressed by existing techniques, such as integrity constraints.
First, a mistake of changing the data for the wrong attribute, or set
of attributes, is hard to detect when the change is within a reasonable
range. For example, when the data’s valid domain spans multiple
orders of magnitude, detecting an error caused by a forgotten period
during data entry (e.g., 1337 instead of 13.37) is impossible auto-
matically (since both entries satisfy the integrity constraints) and
too onerous manually. Detecting these errors requires a method that
is aware of the data semantics, and of how the data are used.
Second, when errors go undetected for a long period of time, they
become obscure and they may cause additional errors. If the dis-
covered error is a side-effect of a deeper faulty change, discovering
the error quickly after making the change helps identify and correct
the underlying cause, as opposed to only the discovered side-effect.
Correcting an error becomes costlier, the longer the error remains un-
detected, as decisions based on the error will need to be rolled back.
Third, poor documentation and company policies often contribute
to mistakes. For example, Company Inc.’s data description docu-
ment does not describe what the compensation attribute is, how it
is derived, and whether changing it will trigger automated changes
to other attributes. Further, the company has a single point of failure
in its one administrator. Having not discovered the cause of the
mistake, the documentation remains incomplete and policies unaf-
fected. By contrast, discovering quickly the cause of the mistake can
expose outdated documentation and poor policies early, improving
the database system integrity and reducing documentation drift.
To address these challenges, we propose continuous data testing,
a new technique that is complementary to integrity constraints and
existing efforts in data cleaning, to guard against erroneous updates,
and reduce the time between the moment the error is introduced and
the moment it gets detected. Continuous data testing uses otherwise-
idle CPU cycles to execute test queries over a database, as a user
modifies that database, to discover erroneous edits quickly. If the
user changes the database in a way that breaks a test, the user sees
the test failure right away. This results in at least three benefits:

1. The bug is discovered quickly and can be fixed before it is
likely to cause a problem.

2. The bug is discovered while the relevant change is fresh in
the administrator’s mind, increasing the chance that the un-
derlying cause of the bug, as opposed to only the discovered
side-effect, is fixed.

3. When poor documentation or company policies contribute to
bugs, discovering the bug quickly is likely to identify these
contributing factors, facilitating updating documentation and
policies to prevent similar future bugs.

Continuous data testing can discover multiple kinds of errors,
including correctness errors and performance-degrading errors. Cer-
tain changes to the database may not affect correctness, but could
compromise performance (e.g., the choice of indexes), causing
queries and applications to run slower. Continuous data testing
can alert administrators to changes that affect the running time,
as well as the memory footprint, and other performance metrics.
Accordingly, continuous data testing can aid in database funing.

Our prototype implementation’s low overhead shows promise that
continuous data testing can address the important problem of data
debugging. The rest of this paper is organized as follows. Section 2
defines continuous data testing and describes our prototype, opti-
mizations, and challenges. Section 3 places our work in the context
of related research. Finally, Section 4 summarizes our contributions.

2. CONTINUOUS DATA TESTING

While we cannot expect humans to avoid making mistakes alto-
gether, the drama at Company Inc. could have been avoided if the
database administrator became aware of the error soon after intro-
ducing it. Unfortunately, the error was not detected until months
later, and by that time, its impact was irreversible. Our goal is not
to stop errors from being introduced, but to shorten the time to
detection as much as possible. Early detection will prevent errors
from propagating and having practical impact, and will simplify
correction as the user or administrator can more easily associate the
occurrence of the error with recent updates.

We achieve this goal through continuous data testing, which con-
tinuously executes tests (black-box computations over a database)
using otherwise-idle CPU cycles, alerting the user when the test re-
sults change. The test execution continues as long as the user is mak-
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Figure 2: Continuous data testing architecture. While users and
programs interact with and make changes to the database, contin-
uous data testing non-intrusively executes test queries to identify
potentially harmful changes.

ing changes. In this paper, we assume that each test is a SQL query;
however, our framework can handle more general test computations.

A well known approach to data error prevention is integrity con-
straints. Such constraints verify that updates retain the integrity
of the data. By contrast, the errors continuous data testing targets
cannot be easily detected by static constraints. Instead, semantic
queries identify changes in the meaning of the data. Continuous
data testing is not meant to replace constraint-based techniques, but
rather to complement them and to work in conjunction with them.
Testing is suitable for enforcing complex conditions not captured by
integrity constraints. Testing can also capture errors that are intro-
duced to the database outside of regular database updates. Further,
integrity constraints need to be checked during each data update,
can hinder performance, and are only suitable for enforcing simple
restrictions (e.g., value ranges). While continuous data testing is
also computation-intensive, it does not hinder performance because
it only runs on otherwise-idle CPU cycles.

We have built a prototype continuous data testing implementation
for the PostgreSQL database management system to evaluate the
feasibility of our approach. Continuous data testing poses several
research challenges that we aim to address in our research:

Test generation: Generating appropriate tests for applications is
challenging and has been explored extensively in the contexts of
software testing (e.g., [22]) and database testing (e.g., [19, 20, 25]).
Continuous data testing can rely on human-written tests, or tests gen-
erated by an automated tool or by a hybrid approach. For example,
our prototype implementation uses human-written and template-
generated query inputs, and generates query outputs by running
the query on the unchanged database, thus creating regression tests.
Critically, since tests are application dependent, they should be
guided by the database workload, and should be representative of
the expected database queries and capture the data semantics. Con-
tinuous data testing can directly benefit from complementary, future
advances on automated data test generation.

When to test: A naive continuous data testing implementation
can execute tests continuously, ignoring concurrent database activity
and without targeting idle cycles. While reducing the time before
a user or administrator discovers a behavioral change caused by
an update, this approach does not minimize the notification delay
because the test executions are not prioritized based on the updates.
Still, our prototype continuous data testing implementation showed
this approach experienced only a 16-29% overhead (depending on
the query workload) in database interactions. While reducing this
overhead is important, this presents a reasonable starting point for
such a naive approach.

A more efficient continuous data testing implementation executes
tests only when data updates occur. Our prototype uses database
triggers to accomplish this by performing static analysis on the
test queries to decide which triggers to add to which tables in the
database to trigger continuous data testing execution. Our prelim-
inary experiments with this approach show a 7% improvement in
the overhead compared to the naive implementation. However, both
the static analysis and incorporating more intricate database func-
tionality remain challenges in future work. For example, in some
scenarios, query results may change without data updates, e.g., when
a new clustered index is added to a database.

What to test: A naive continuous data testing implementation
can execute every test in every iteration. However, each data change
will only affect a subset of the tests; executing the tests not affected
by the change wastes resources and delays the notification time. A
more efficient continuous data testing implementation uses static
analysis on the updates, to determine and run only the tests that
could be affected by each update. This optimization to our prototype
decreased the overhead by up to 40% over the naive implementation.

Future work on test query prioritization, and even guided test
query generation, can reduce the notification delay even further.

How to test: Test queries can be complex; executing them on
large datasets may be slow and consume system resources. Future
research will include incremental query computation, using the
change to the data as an input to the query computation. For example,
a test query that computes a sum does not need to be recomputed
from scratch when a datum is updated; rather the previous sum can
be adjusted based on the value of the update. Previous work on
incremental view maintenance [6, 11] will guide our research. In
other domains, incremental computation has been shown to greatly
speed up data structures [32] and code compilation [12].

User interface: Reporting a test failure is not trivial. Our cur-
rent continuous data testing prototype only indicates which test
has failed; the user has to manually investigate whether the failure
indicates an error. This can be a tedious process because the test
query may be complex, and the failure can be non-descriptive and
hard to analyze. Instead, descriptive failure summaries could in-
clude information on which, and how many, tuples are effected, and
similarities between the affected tuples. Since the goal is to help
users interpret failures by using explanations, in the same spirit as
deriving explanations for query results using causal analysis [23],
descriptive failure summaries can use causality theory to analyze
the contributions of each update to a given failure.

Debugging performance: One of the goals of continuous data
testing is to detect erroneous data quickly. However, changes in the
data may not only affect the system output, but also performance.
Changes to the data or an introduction of an index could make a
test query slower (or faster) or could affect the execution’s memory
footprint. By monitoring the tests’ performance, continuous data
testing can become a useful tool for database tuning, quickly pro-
viding feedback on whether a change has a negative, positive, or no
effect on performance.

3. RELATED WORK

It is possible to prevent data errors from being introduced [35],
but this requires devising integrity constraints that anticipate all
possible erroneous updates. Chen et al. [7] follow a more interactive
approach, asking the user a challenge question to verify an update
by comparing the answer with the post-update query execution. This
approach is similar to tests, but requires manual effort and interferes
with normal system use. In contrast, continuous data testing focuses
on detecting errors, rather than preventing them, and has a minimal
impact on normal execution.



Database testing research has focused on generating tests, discov-
ering application logic errors, and debugging performance [19, 25],
but not detecting data errors. Meanwhile extensive work automati-
cally generating regression tests (e.g., [22]) has neither focused on
data testing, nor query generation.

In the spreadsheet domain, data bugs can be discovered by finding
outliers in the relative impact each datum has on formulae [1], by
detecting and analyzing data region clones [15], and by identifying
certain patterns, called smells [8]. In contrast, the continuous data
testing approach is system specific, uses tests that encode the system
semantics, and, of course, applies to systems that use databases.

In writing software systems, running tests continuously and noti-
fying developers of test failures as soon as possible helps write better
code faster [28]. Reducing the notification time for compilation er-
rors eases fixing the compilation errors [12]. Continuous execution
of programs, even data-driven programs, such as spreadsheets, can
inform developers of the programs’ behavior as the programs are
being developed [14, 17]. Continuous integration and merging
can notify developers about merge conflicts quickly after they are
created [3, 4]. And speculative analysis can inform developers
about errors they have not yet created, but are likely to soon [2, 24].
Likely tests can also be predicted and executed in the background
to discover unexpected behavioral changes [33]. Overall, notifying
developers sooner of problems appears to make it easier to resolve
those problems, which is the primary goal of continuous data testing.

4. CONTRIBUTIONS

Continuous data testing is a novel technique for discovering sys-
tem errors caused by well-formed but incorrect data. The technique
is complementary to integrity constraints and existing efforts in
data cleaning because it targets semantic data errors. We have de-
scribed the problem space and potential benefits of continuous data
testing, outlined our vision for the technique, identified research
challenges, and discussed preliminary performance measurements
based on our prototype implementation that support the feasibility
of continuous data testing. Our early research into continuous data
testing is encouraging and suggests it can be used to improve data-
intensive system quality, making continuous data testing a promising
technique for addressing the important problem of data debugging.
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