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ABSTRACT
A surprising query result is often an indication of errors in
the query or the underlying data. Recent work suggests us-
ing causal reasoning to find explanations for the surprising
result. In practice, however, one often has multiple queries
and/or multiple answers, some of which may be considered
correct and others unexpected. In this paper, we focus on
determining the causes of a set of unexpected results, pos-
sibly conditioned on some prior knowledge of the correct-
ness of another set of results. We call this problem View-
Conditioned Causality. We adapt the definitions of causa-
lity and responsibility for the case of multiple answers/views
and provide a non-trivial algorithm that reduces the problem
of finding causes and their responsibility to a satisfiability
problem that can be solved with existing tools. We evaluate
both the accuracy and effectiveness of our approach on a real
dataset of user-generated mobile device tracking data, and
demonstrate that it can identify causes of error more effec-
tively than static Boolean influence and alternative notions
of causality.

Categories and Subject Descriptors. E.0 Data General
General Terms. Algorithms
Keywords. causality, view-conditioning, error tracing

1. INTRODUCTION
Data transformations from a source to a target dataset

are ubiquitous today and can be found in data integration
[26], data exchange [25, 3], and ETL tools [31]. Users often
detect errors in the target data. For example, a user may
detect that an item in a target data instance is incorrect: the
tuple should not be there, or some of its attribute values are
erroneous; she would like to find out which of the many input
tuples that contributed to the incorrect output is faulty. It is
critical that the error be traced and corrected in the source
data, because once an error is identified, one can prevent
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Figure 1: Two simple classifiers based on sensory
input from a cell phone. The inputs to the classifiers
are either Boolean variables (e.g. h), or scalar values
to which an appropriate threshold is applied (e.g. i).
Symbol M denotes a strict majority function.

it from propagating to multiple items in the target data.
This can be viewed as a form of“post-factum”data cleaning:
while in standard data cleaning one corrects errors before the
data is transformed and integrated, in our setting the errors
are detected only after the data has been transformed.

In this paper, we show how to extend the concept of cau-
sality [28] to trace errors in a source dataset that caused
incorrect results in a target dataset. We showcase our moti-
vation through a practical example.

Example 1 (Recommendation System). Consider a
new generation smart phone. It has multiple sensors (e.g.
GPS, accelerometer, light, and cell tower signal). Based on
these sensors, a set of classifiers can predict the owner’s
current activities (e.g. walking, driving, working, being with
family, or being in a business meeting). Using the knowledge
of the user’s current activities allows the system to serve the
user with useful targeted recommendations. For example,
if the user is away from their car around lunch time, the
application will suggest restaurants within walking distance.

This is an example of data transformation: the source data
(input) are the sensors, the target data (output) are the ac-
tivities. Inaccuracies in the sensor data are a common oc-
currence: sensors have innate imprecisions (e.g., the GPS
may miscalculate the current location), or some sensors may
become inhibited (e.g., if the user places the cell-phone in
the glove compartment while driving, then the light sensor’s
reading is incorrect). As a consequence, an inferred activ-
ity may be wrong. The application can often detect such
errors from user feedback or based on the user’s subsequent
actions and reactions to the provided recommendations. But



the main challenge is to actually identify the responsible sen-
sor(s). For example, in Fig. 1 the “is-driving” activity de-
pends on 3 sensors: if “is-driving” is wrong, which of the
three sensors is erroneous? With this knowledge, the sys-
tem could inhibit the reading from that sensor and therefore
improve the other classifiers.

The first step towards tracing errors in the source data
is to compute the lineage of each item in the target data.
Data lineage, or provenance, has been extensively studied
recently [10, 16, 5]. But as Example 1 shows, examining the
lineage of an erroneous result is not sufficient to identify the
cause of the problem: all three sensor inputs are part of the
lineage, and without further context, it is not possible to
determine which specific sensor is erroneous.

In this work, we identify erroneous inputs by building
upon a long history of work on causality theory. Albeit re-
lated to lineage, causality is a more refined notion. The
lineage of an erroneous output reflects causal dependencies
between the input and output data, and causal reasoning
can use this information to return the possible causes ranked
by their degree of responsibility. Causality has been studied
extensively in philosophy, AI, and cognitive science. We-
base our discussion on the established definitions of actual
causes and responsibility first developed by Halpern, Pearl
and Chockler [11, 17], and our previous work that adapted
these definitions to a database context, targeting query re-
sult explanations [28].

In error tracing, however, we face a richer context than
in traditional causality theory. In addition to the erroneous
output item, we also have access to several output items
that we know are correct. In fact, there may even be more
than one erroneous output item. Accounting for this richer
context leads to much better error tracing.

Example 2 (Recommendation System - continued).
A modern smart phone typically has 10-12 sensors, and could
have up to 20-30 classifiers, predicting a variety of activities.
Based on the user’s response to recommendations, the sys-
tem can typically derive that multiple predictions are correct
or incorrect. Suppose, for example, that the system knows
that 3 predictions are wrong and 2 are correct. Now the sys-
tem has more information than just knowing that one clas-
sifier is wrong. The challenge is to find the most likely input
sensor that could have caused the 3 faulty predictions, while
at the same time allowing the 2 correct predictions. Thus,
conditioned on the two correct outputs, we seek the most
responsible sensor(s) that explain the faulty classifiers.

For example, assume the two simple classifiers of Fig. 1:
if both are incorrect, then intuitively, the GPS becomes the
most likely culprit; if the “is-driving” classification is wrong
and “is-indoor” is correct, then we know that the GPS input
has to be correct.

In this paper, we propose View-Conditioned Causality, a
novel concept that allows us to trace errors in transformed
target data, such as query results or views, back to the input
base data. Our main contributions are as follows:

(1) We propose a new definition of view-conditioned cau-
sality and its associated notion of responsibility. In order to
use causality for error tracing, we refine existing notions of
causality/responsibility by conditioning on all knowledge of
correct or incorrect results.

(2) Computing causality and responsibility is known to
be hard in general [14]. Previously, we have studied the

complexity of causality and responsibility for conjunctive
queries [28]. Despite some tractable cases, computing the
responsibility remains hard, in general. To date, no practi-
cal algorithms exist to compute causes or responsibilities for
all cases. In order to compute causality and responsibility
in practice, we propose a novel algorithm for translating the
view-conditioned causality and responsibility problems into
a SAT and a weighted MAX-SAT problem respectively, for
which very effective tools exist [2, 4]. In the case of causa-
lity, our algorithm produces a Boolean expression ΦSAT that
is satisfiable iff a given input variable is a view-conditioned
cause. In the case of responsibility, our algorithm also pro-
duces, in addition to the “hard” constraint ΦSAT, several
“soft” clauses: the larger the number of soft clauses that
cannot be satisfied, the lower the responsibility.

(3) The formula ΦSAT needs to be converted to CNF in
order to be processed by general (Max)SAT solvers, and
this has the potential of an exponential blow-up. Our third
contribution describes an optimized conversion to CNF that
results in exponentially smaller CNF expressions.

(4) Finally, we perform an experimental validation of our
techniques on real data from an actual application analogous
to Example 1. Our experiments verify the quality of our ap-
proach in identifying erroneous inputs, and evaluate its per-
formance. We show that view-conditioned causality retains
an average precision very close to 1, outperforming other
techniques such as counterfactual causality and Boolean in-
fluence, by 60% and 75% respectively at certain instances.
Our optimized algorithm for the CNF conversion is shown to
produce SAT problems orders of magnitude smaller than the
naive approach, while the SAT solvers were able to process
even the larger generated problem instances in a few sec-
onds. We further demonstrate interesting insights on how
responsibility of features can function as a meaningful quan-
tifier of classifier quality and robustness: classifiers that use
features with low responsibility can be easily corrected by
eliminating faulty inputs, whereas classifiers whose features
are all of high responsibility (i.e. they are all likely sources
of failure), cannot achieve good correction rates.

The structure of this paper follows its main contributions:

• We propose view-conditioned causality and responsi-
bility as a solution for tracing errors from views and
transformations to source data (Sect. 3).

• We demonstrate a non-trivial algorithm that reduces
the problems of computing causes and responsibility
to the satisfiability of Boolean expressions which can
be solved with existing tools (Sect. 4).

• We propose an optimized conversion algorithm of the
resulting Boolean expressions into CNF, in order to be
fed into a SAT or MaxSAT solver (Sect. 5).

• We illustrate the effectiveness of using our techniques
for tracking errors in a real world classifier-based rec-
ommendation system (Sect. 6).

2. BACKGROUND AND RELATED WORK
Causality is an active area of research, mostly in AI and

philosophy. One of the basic notions in causality theory is
counterfactual causality [29, 27]. An input variable is cou-
nterfactual if a change in its value reverses the value of the
output variable. Counterfactuals are a very intuitive notion,
but very limited in their applicability as they don’t support



disjunctive causes: If Z occurs when X1 or X2 occurs, nei-
ther of X1 or X2 are counterfactual causes for Z.

Halpern and Pearl [17] extended counterfactuals by in-
troducing actual causes which rely upon a graph structure
called a causal network, and added the notion of permissive
contingencies. The causal network is defined by structural
equations, which describe how variables relate to each other;
for example Z = X1∨X2 is a structural equation linking in-
puts X1 and X2 to output Z. Contingencies are based on the
notion of intervention: what becomes counterfactual if part
of the input changes. For example, if X1 and X2 are both
true, neither of them is counterfactual for Y . However, if
the input changes in a certain way, for instance X2 is false,
then X1 becomes counterfactual. One says that X1 is an
actual cause of Z under the contingency X2 = false. Such
contingencies can be viewed as alternative possible worlds
or variable assignments. Roughly, a variable X is an actual
cause if there exists a contingency (a value assignment for
the other variables) that makes X counterfactual.

The notion of responsibility was first defined in [11] as a
measure of the degree of causality: the responsibility is in-
verse proportional to the size of the smallest contingency
set. This is a key notion for our setting, because responsibi-
lity allows us to rank causes. Ranking is critical in complex
queries with large lineages, and in the case of error tracing it
serves as a comparison metric of the likelihood of the various
error sources. However, determining causes and responsibi-
lity was shown to be NP-hard in general [14].

Very recently, we extended the notions of causality and
responsibility to database queries [28]. Here the input vari-
ables are tuples in the input database, the output variables
are the answer tuples returned by the query, and the causal
network is given by the lineage expression. An input tuple is
a counterfactual cause for an output tuple if its removal from
the input causes the output to disappear. An input tuple is
an actual cause for an output tuple if there exists a set of tu-
ples in the input (the contingency) such that, after removing
them, the input tuple becomes a counterfactual cause. The
complexity of causality and responsibility were analyzed as a
function of the query (query complexity). These results are
unrelated to our work, since we analyze directly the lineage
expression and do not consider query complexity. Neither
the general work on causality, nor its adaptation to data-
base queries have studied the problem of tracing errors from
output data to input data.

Our work relates to prior work on data provenance, in the
sense that our input is a provenance expression. There, ap-
proaches are mainly classified into three categories: how-,
why-, and where- provenance [6, 10, 13, 16]. Also, recent
work has focused on the problem of explaining missing query
results, i.e. why a certain tuple does not appear as an an-
swer. The work in this field is divided into data-focused
[22, 20, 19] where explanations are given as base tuples, and
query-focused [8, 33] where explanations are based on query
predicates. The ability to rank causes clearly distinguishes
causality from the provenance and missing answers work,
and makes it more appropriate for tracking errors. In inde-
pendent work, Cheney [9] also discusses the analogy between
provenance and causality, and describes defining causal se-
mantics for provenance graphs.

An interesting, and related work is the view side-effects
problem on tuple deletion and annotation propagation [7].
This problem involves finding a subset of tuples in the data-

base whose deletion will eliminate a given tuple t from the
view, with the minimum number of side-effects (other tu-
ple eliminations) in the view. An analogous definition of
the problem exist for tuple insertion and updates, and all
are shown to be hard, in general. Very recent work [12]
studies the “side-effect free” version of this problem, where
zero side-effects are enforced, and the aim is to minimize
the subset of tuples selected from the database. Here, the
same hardness results hold as in the general version of the
problem. Note that these problems differ from computing
responsibility, where we need to find the minimum set of
input tuples that make a given tuple counterfactual. Also,
the view side-effects problem is in PTIME for queries that
do not contain joins together with projection or union. In
contrast, we showed the hardness criterion for computing
responsibilities to be entirely different [28], and even queries
that only contain joins can be NP-hard.

3. VIEW CONDITIONING
Formal setup. We use capital letters for variables (e.g.

X), small letters for value assignments (e.g. x), and bold
letters for sets of variables or assignments (e.g. X or x).
We denote Boolean values interchangeably with true and
false or T and F, respectively. We consider a set of n input
variables (also called parameters) X = {X1, . . . , Xn}, and
a set of observed output variables Z = {Z1, . . . , Zm}. Each
input variable Xi takes values from a discrete or continuous
domain, e.g. reals, integers, Booleans. Each output variable
Zj is Boolean. We denote Φ = {Φ1, . . . , Φm} a transforma-
tion from the input variables to the output variables. Each
Φj is called a lineage expression, and is a Boolean expression
over the input variables, defined as follows. Call a threshold
predicate a predicate of the form Xi op t, where Xi is an
input variable, op is one of <,≤, =, 6=≥, >, and t is a con-
stant threshold value. Then Φj is any Boolean expression
over threshold predicates. Thus, the transformation Φ takes
an input vector x of values, and computes the output vector
z, where each zj = Φj(x). We write x |= z, to denote that
z are the output values of the view transformations given
input values x. In addition to the input and output vectors,
we further assume to know the correct values for the out-
put Z and denote this ground truth as ẑ = {ẑ1, . . . , ẑm}. If
zi = ẑi then variable Zi is correct, otherwise it is incorrect.

For a simple illustration, consider a simple classifier that
computes Z = (X1 > 10) ∧ (X2 < 3). Given two input
values x1, x2 the classifier returns the output T or F, in an
obvious way. Classifier systems are more complex types of
transformations. For a more traditional transformation ex-
ample, consider a select-project-join query. Each input tuple
corresponds to a Boolean variable Xi, and each output tuple
is a Boolean variable Zj . The formula Φj is the standard
lineage expression giving the dependency of Zj as a function
of the input tuples [16].

Note that our discussion will focus on classifier systems,
but our results can be invariably used for other transfor-
mation types like conjunctive queries as well. Even though
data sizes are much larger in query scenarios than sensor
based applications, the lineage of each output tuple is ac-
tually bound by the query size. Moreover, we only need to
keep as relevant variables those that participate in the lin-
eage of erroneous outputs, thus greatly reducing the problem
size. Finally, the SAT solver component is not prohibitive to
this end, as modern SAT solvers can solve problems having



millions of variables and clauses in less than 10 minutes of
run time (cf. [1]).

3.1 The Problem: Tracing Data Errors
By comparing the output values z to the ground truth ẑ,

we can detect errors in the output. This means that there
is an error in the input data X, but we don’t know which
one, and only know which output is erroneous. Thus, while
we may learn the ground truth for the output values, we
don’t know the ground truth for the input variables. For
example, in Example 1 it is not possible to know whether
a sensor is inhibited by looking at its measurements, but it
is quite possible to determine that a classifier was incorrect,
by examining the user’s actions. Our goal is to trace the
output errors back to the input data, and this justifies the
following problem:

Error tracing problem: Given input values x for the
input variables X, a set of transformations Φ comput-
ing the values z of the output variables Z, and given
a ground truth ẑ for the output variables, detect the
sources of error in the input data.

Clearly, if z = ẑ then there are no errors. We will assume
that z 6= ẑ for the rest of the paper. In our problem setting,
the ground truth includes values for all output variables Z.
In practice that is often not the case: we know the ground
truth for some, but not all output variables. In that case
we simply restrict the output variables to those for which
the ground truth is known. Thus, in the rest of this paper
we will assume that the ground truth is known for all the
output variables Z.

3.2 Our Approach: View-Conditioned Causality
We define here counterfactual causes, and actual causes

for a set of output values, which we call view-conditioned
causality. Then, we explain how this can be applied to trac-
ing errors. As a first attempt we may try to say that an in-
put Xi is a view-conditioned counterfactual cause (or VCC
cause, in short), if a change in the value xi “corrects” the
output z to the ground truth output ẑ; we say in this case
that Xi is a VCC cause of z|ẑ, and read that “z is condi-
tioned on ẑ”. However, this is a tall order. The problem is
that we are requiring that Xi, alone, can correct simultane-
ously all erroneous output values, while keeping unchanged
all correct output values. Instead, our definition considers
an entire set of input variables to be a counterfactual cause:

Definition 3 (VCC Cause). Consider input values x
for the input variables X, a transformation Φ computing
the output values z, and a ground truth ẑ. A set Xc ⊆ X
is a view-conditioned counterfactual cause of z|ẑ, if there
exist values x̂i for each Xi ∈ Xc, such that the following two
conditions hold:

• x |= z and

{{Xi = xi | Xi 6∈ Xc}∪{Xi = x̂i | Xi ∈ (X\Xc)}} |= ẑ

• Xc is minimal, i.e. no subset of Xc is a VCC cause.

Intuitively, a VCC cause is a minimal set of input variables
for which there exists a changed assignment that results in
output ẑ.

Example 4 (VCC causes). Consider the views Z given
in Fig. 2b over the inputs X, where X1 and X3 take values

X x
X1 5
X2 T

X3 2

(a)

Z Φ z
Z1 (X1 < 10) ∧X2 T

Z2 (X3 > 0) ∧X2 T

Z3 (X3 > 3) F

(b)

Figure 2: (a): Value assignments for inputs X. (b):
The values of outputs Z are based on simple trans-
formations (also called lineages) Φ of the inputs X.

from the integer domain, while X2 is Boolean. Based on
the input values from Fig. 2a, the observed output values are
z = {z1, z2, z3} = {T, T, F}. Assume that the ground truth
is ẑ = {F, T, T}, where the erroneous results are underlined.
Suppose first that we restrict the output variable to Z1 (thus,
ignore Z2, Z3). Both X1 and X2 are counterfactual causes
of Z1: changing the value of X1 (e.g. X1 = 12), or the
value of X2 from T to F, would make Z1 F. However, if we
take into account all three output variables, then X2 is not a
VCC cause of z|ẑ: if X2 is switched to F, Z1 would be “cor-
rected” but Z2 would also become F, which would contradict
the ground truth ẑ. In this example, there is a unique VCC
cause of z|ẑ, which is the set of inputs {X1, X3}: switching
their values to 12 and 4, respectively, sets all views to the
desired output ẑ.

Actual causes in view-conditioned causality are defined in
a similar manner based on contingency sets.

Definition 5 (VC Cause). Consider input values x for
the input variables X, a transformation Φ computing the
output values z, and a ground truth ẑ. A variable Xi ∈ X
is a view-conditioned cause (VC cause) of z|ẑ, if there ex-
ists a set Γ ⊂ X called the contingency of Xi, such that
{Xi} ∪ Γ is a VCC cause of z|ẑ.

Note that every variable Xi in a VCC cause Xc of z|ẑ is
an VC cause with contingency Xc \ {Xi}. Also, every VCC
cause is a VC cause with an empty contingency set. There-
fore, in Example 4, X1 is a VC cause of z|ẑ with contingency
X3, and X3 is a VC cause with contingency X1. Hence, even
though in our example only sets of input variables are VCC
causes, there are also individual input values which are VC
causes.

Finally, we define the notion of responsibility, which mea-
sures the degree of causality.

Definition 6 (Responsibility). Let X be a set of in-
puts to a set of views Z, and assume z and ẑ to be the
actual and ground truth values of those views, respectively.
If Xi ⊆ X is a VC cause of z|ẑ, then its responsibility is
defined as

ρXi =
1

1 + minΓ |Γ|
where Γ is a contingency for Xi.

The responsibility is a function of the minimal number of
input variables that need to be modified together with Xi

in order to achieve the output ẑ for the views. If Xi is cou-
nterfactual, then its contingency set is empty, and therefore
ρXi = 1. If Xi is not a cause, by convention ρXi = 0.

Our approach to the error tracing problem: Given
x, X,Φ, ẑ, we will compute all causes Xi, and rank
them by their responsibility ρXi . This ranking is a
good indicator for tracing the errors in the input data.
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Figure 3: Structure of a classifier system.

We end this section by comparing our definition of cau-
sality and responsibility to prior work [17, 28]. In the prior
definition, there is only one output variable, and this allows
the definition of a counterfactual cause to be restricted to
a single input variable. As we have seen, in error tracing
applications we need to consider multiple output variables
(some correct and some incorrect), and here the simple def-
inition of counterfactual cause no longer works (as we saw
in Example 4). Our new Def. 3 is an important extension
to sets of counterfactual causes. On the other hand, this
extension allows us to simplify (somewhat) the definition of
an actual cause, in that the contingency set Γ is simply part
of a counterfactual cause.

Example 7. Continuing our running example, we show
it can be modeled in our formalism. Our application is a
classification system with several sensor signals, and sev-
eral classifiers determining user activities and status based
on the sensor data. Sensor measurements can be in general
vectors of values, like a time sequence of a signal. Before
this data can be useful for the classification, it often under-
goes some initial mathematical transformation to compute
several useful metrics of the input signals (e.g. frequency,
signal strength etc). We are not interested in the raw sig-
nal, but rather these computed metrics that serve as inputs to
the classifiers. These represent our input x = {x1, . . . , xn}.
There are m classifiers {C1, . . . , Cm}, producing a set of out-
puts Z = {Z1, . . . , Zm}. As an example, Z may represent a
classification of the user’s current activities (walking, driv-
ing, in a meeting).

An abstraction of the architecture of the system is shown
in Fig. 3. The classifier inputs x are continuous values,
or Boolean values. Each classifier Cj uses a subset of the
transformed values xj ⊆ x to compute a classification result
Zj. Within each classifier Cj, each variable xi ∈ xj is com-
pared against one or more predetermined thresholds, result-

ing in a Boolean variable Y
(j)

i . These thresholds are usually
selected using machine learning techniques over some train-

ing data. In general, Y
(j)

i = (xi op ti), where op is one of
{<, >,≤,≥}, and ti is a threshold value. The final output Zj

of the classifier is determined by a Boolean function Φj(Yj).

4. REDUCTION TO SAT AND MAXSAT
Computing the causality and responsibility are known to

be NP-hard [14], and the same holds for view-conditioned-
causality. Our approach for tracing errors to the data source
is to reduce the causality/responsibility problem to the SAT
problem, and to partial weighted MaxSAT problem respec-

tively. This is an intensively studied research area (an ex-
tensive survey is in [4]) and there exist several highly op-
timized tools both for SAT and weighted MaxSAT. In this
section we describe an algorithm for reducing the causa-
lity/responsibility problem to the SAT/MaxSAT problem.
In the next section we show how to convert the resulting
Boolean expressions into CNF, so we can feed them directly
into some of these tools.

The algorithm consists of the following steps

1. Map from input variables with continuous domain to
Boolean variables called partitioned variables.

2. Construct the constraint expression Ψ that captures
the correlations between the partitioned variables.

3. For each input Xi, construct a Boolean expression
ΦSAT that is satisfiable iff Xi is a VC cause. ΦSAT

is a hard constraint.

4. Construct “soft” constraints to account for the contin-
gency set: the more soft constraints are violated while
satisfying ΦSAT the larger the contingency set.

4.1 Mapping to Boolean Variables
Recall that while all the outputs Z are Boolean variables,

some of the inputs X can be numerical values, and the
Boolean expressions Φ are over threshold predicates over
these inputs, e.g., Φ3 = (X1 < 2.5) ∨ (X6 > 20). Since we
need to map all inputs to Boolean variables, a first attempt is
to create one Boolean variable for each threshold predicate,
call it a threshold variable. An example threshold variable is

Y
(3)
1 ≡ (X1 <2.5), where the subscript 1 refers to the input

variable X1, and the superscript (3) refers to the classifier
Φ3. But threshold variables are not independent, and this
prevents us from using them in our translation.

Example 8 (Boolean mapping). Assume 3 classifica-
tions over 6 inputs:

Φ1 =
`
(X1 > 10) ∧ (X2 < 7)

´
∨
`
(X5 > 10) ∧ (X3 > 20)

´
=
`
Y

(1)
1 ∧ Y

(1)
2

´
∨
`
Y

(1)
5 ∧ Y

(1)
3

´
Φ2 =

`
(X1 < 4) ∧ (X4 < 5)

´
=
`
Y

(2)
1 ∧ Y

(2)
4

´
Φ3 = (X1 < 2.5) ∨ (X6 > 20)

= Y
(3)
1 ∨ Y

(3)
6

The three threshold variables Y
(1)
1 , Y

(2)
1 and Y

(3)
1 for the

input X1 are dependent in different ways: Y
(1)
1 cannot be

true together with Y
(2)
1 or Y

(3)
1 , whereas there exist values of

X1 for which Y
(2)
1 and Y

(3)
1 can both be true.

Therefore, we take a different approach. For a given vari-
able Xi, let {t1, . . . , tTi} be the set of all thresholds that
appear in threshold predicates associated with variable Xi

across all transformations. We define a set of 2Ti+1 Boolean
partition variables X[i] = {X[i,1], . . . , X[i,2Ti+1]} as follows:

X[i,1] ≡ (Xi < t1)

X[i,2j] ≡ (Xi = tj) 1 ≤ j ≤ Ti

X[i,2j+1] ≡ (tj < Xi < tj+1) 1 ≤ j < Ti

X[i,2Ti+1] ≡ (Xi > tTi)

Denote X[] the set of all partition variables, X[] =
S

i X[i].
Then, we rewrite each threshold predicate as a disjunction



of these variables, and we rewrite each Boolean expression

Φj in terms of the partitioned variables, denoting Φ
[]
j the

rewritten expression; when it is clear from the context, we
drop the superscript [] and use Φj also for the translated
expression. Note that the use of partition variables only
linearly increases the number of variables with the number
of thresholds per variable, with two new variables created
for every threshold.

Example 9 (Example 8 continued). The partition vari-
ables of X1 are given as:

X[1,1] ≡ (X1 < 2.5) X[1,5] ≡ (4 < X1 < 10)

X[1,2] ≡ (X1 = 2.5) X[1,6] ≡ (X1 = 10)

X[1,3] ≡ (2.5 < X1 < 4) X[1,7] ≡ (X1 > 10)

X[1,4] ≡ (X1 = 4)

The partition variables divide the domain of X1 into non-
overlapping ranges, and therefore exactly one of them is true
for any given value x1. The rewritten threshold predicates
are:

Y
(1)
1 ≡ X[1,7]

Y
(2)
1 ≡ X[1,1] ∨X[1,2] ∨X[1,3]

Y
(3)
1 ≡ X[1,1]

Thus, each Φ
[]
j now depends on the new partition variables.

Every value assignment x of X defines a unique Boolean
assignment θx of X[], such that X[i,j] is true in θx iff the
value Xi = xi satisfies the partition predicate corresponding
to the variable X[i,j]. Then, one can check that, for every j,

x |= Φj iff θx |= Φ
[]
j .

If the input variable Xi is already a Boolean variable, it
does not need to be re-written with this process, but for
consistency of notation we map it to the partition variables
X[i,1] = Xi, and X[i,2] = ¬Xi.

4.2 The Partition Variable Constraint Ψ
The Boolean variables X[i] are subject to the constraint

that exactly one of these variables is true. This is captured
by the following formula:

Ψi =

 _
j

X[i,j]

! ^
j<l

`
¬X[i,j] ∨ ¬X[i,l]

´!
Ψi is a conjunction of 2(Ti + 1) clauses, where Ti is the

number of thresholds associated with variable Xi. Taking
the conjunction over all input variables, we obtain the fol-
lowing constraint expression Ψ:

Ψ =
^
i

Ψi (1)

We have the following:

Lemma 10. For any assignment θ, θ |= Ψ iff there exists
values x such that θx = θ.

The proof is straightforward and omitted. The lemma
says that any assignment satisfying the constraint Ψ corre-
sponds to some values x. Note that these values are not
necessarily uniquely defined: in Example 9 if θ says that
X1,3 is true, then we know that 2.5 < X1 < 4, without
knowing the actual value of x1.

4.3 The Hard Constraint ΦSAT

Given the observed output values z and the ground truth
output values ẑ, we define here two Boolean expressions,
called VC-expressions, which state that the outputs are z,
or that the outputs are ẑ respectively:

Φ[] =

 ^
i.zi=T

Φ
[]
i

!
∧

 ^
i.zi=F

¬Φ
[]
i

!
(2)

Φ̂[] =

0@ ^
i.ẑi=T

Φ
[]
i

1A ∧

0@ ^
i.ẑi=F

¬Φ
[]
i

1A (3)

The superscript [] is intended to remind us that these ex-
pressions are over the partition variables X[]; we will drop
the superscript from here on, unless it is needed to clarify
the context. The expression Φ checks if the output is the
“observed output” z. The expression Φ̂ checks if the output
is the “ground truth” ẑ. If at least one error is detected
in the output (z 6= ẑ) then Φ and Φ̂ cannot be satisfied
simultaneously.

Example 11 (Example 9 continued). Assume the ob-
served output is z = {z1, z2, z3} = {T, T, F} and the ground
truth is ẑ = {F, T, T}. Then (we drop superscripts []):

Φ = Φ1 ∧ Φ2 ∧ ¬Φ3

Φ̂ = ¬Φ1 ∧ Φ2 ∧ Φ3

We give next a technical definition, which measures the
distance between two assignments:

Definition 12 (Constrained Distance). The distance

between two assignments θ |= Ψ and θ̂ |= Ψ of X[] under
constraint Ψ is

d(θ, θ̂) =
1

2
h(θ, θ̂)

where h(θ, θ̂) is the hamming distance between the two Boolean

vectors θ(X[]) and θ̂(X[])

If we have two input values x and x̂ that differ in exactly one
variable Xi, then their corresponding assignments θx and θx̂

will differ in exactly two variables, hence, by our definition,
d(θx, θx̂) = 1.

The crux of our translation is captured by the next defi-
nition and theorem. They map the notion of VC-causes of
z|ẑ into the a problem of “causes for Ψ, Φ, Φ̂”.

Definition 13. Consider the Boolean expressions Ψ, Φ,
Φ̂ given by (Eq. 1), (Eq. 2), and (Eq. 3), and let θ be an
assignment of the partition variables X[]. Assume the fol-
lowing:

• θ |= Ψ (it satisfies the constraints)

• θ |= Φ (it generates the “observed” output)

A variable X[i,j] is a cause for Ψ, Φ, Φ̂ if there exist two

assignments θΓ and θ̂ such that:

• θΓ |= Ψ and θ̂ |= Ψ (both satisfy the constraint)

• θ̂(Xij) 6= θΓ(Xij) = θ(Xij) and d(θΓ, θ̂) = 1 (they
differ in only one input variable)

• θΓ 6|= Φ̂ and θ̂ |= Φ̂ (θΓ does not yet generate the

ground truth, but θ̂ does generate the ground truth)



We call the set Γ = {X[u,v] | θΓ(X[u,v]) 6= θ(X[u,v])} a con-

tingency of X[i,j], and θΓ is the contingent assignment.

Theorem 14 (VC cause equivalence). X[i,j], with

θ(X[i,j]) = T, is a cause of Ψ, Φ, Φ̂ iff Xi is a VC-cause
of z|ẑ.

The proof is in the appendix. Thus, we reduce the prob-
lem of computing VC-causes of z|ẑ to the problem of com-

puting causes for Ψ, Φ, Φ̂. We reduce the latter to the
satisfiability problem.

Given a variable X[i,j], we will construct a Boolean for-
mula that is satisfiable if and only if X[i,j] is a cause of Ψ,

Φ, Φ̂. We denote with Φ̂
ˆ
θ(X[i,j])

˜
the Boolean expression

that results from Φ̂ after assigning X[i,j] to its value under

θ, whereas Φ̂
ˆ
¬θ(X[i,j])

˜
denotes the expression that we get

by assigning to it its negation. Similarly, Φ̂
ˆ
θ(X[i])

˜
denotes

the expression that results from assigning to Φ̂ all variables
in X[i] to their values under θ.

If X[i,j] is a cause of Ψ, Φ, Φ̂, then there must exist an
assignment that makes the following formula true:

ΦSAT = ¬Φ̂
ˆ
θ(X[i])

˜
∧ Φ̂

ˆ
¬θ(X[i,j])

˜
∧Ψ

ˆ
¬θ(X[i,j])

˜
(4)

In the above formula, Φ̂ denotes the Boolean formula from
Eq. 3, while Ψ is the constraint expression, as defined in
Sect. 4.2. The first term (¬Φ̂

ˆ
θ(X[i])

˜
) ensures the require-

ment that θΓ 6|= Φ̂: when X[i] is set to its original val-

ues the assignment does not satisfy Φ̂. The second term
(Φ̂
ˆ
¬θ(X[i,j])

˜
) ensures that θ̂ |= Φ̂: when Xi switches val-

ues (since X[i,j] is forced to its negation) the assignment

should satisfy Φ̂. Finally, the third term enforces the con-
straint over the partition variables, under the assumption
that the value of Xi should change.

We can state now our main result for the reduction from
causality to SAT:

Theorem 15. Xi is a VC-cause of z|ẑ iff ΦSAT given by
(Eq. 4) is satisfiable.

Note that we cannot yet use a standard SAT solver to solve
the satisfiability of Eq. 4, because these require the expres-
sion to be translated into CNF. Translating Eq. 4 into CNF
is a non-trivial task that can result in an exponential increase
in size, and we address it in Sect. 5. First we show how to
extend this construction to compute the responsibility.

4.4 Computing Responsibility
We can now define responsibility:

Definition 16. Fix the Boolean expressions Ψ, Φ, Φ̂ over
variables X[]. The responsibility of X[i,j] is:

ρ =
1

1 + minθΓ d(θ, θΓ)

where θΓ is a contingent assignment of X[i,j].

Like causality, we can also determine the responsibility of
the input variables X over the Boolean partition variables
X[].

Theorem 17 (Responsibility Equivalence). A vari-

able X[i,j], with θ(X[i,j]) = T is a cause for Ψ, Φ, Φ̂ and has
responsibility ρ if and only if Xi is a VC cause of z|ẑ with
responsibility ρ.

Computing the responsibility of a cause is a harder prob-
lem, as it requires finding the minimum size contingency set
Γ. Following Def. 13, that corresponds to determining the
assignment θ̂ that differs the least from the original assign-
ment θ, which satisfies ΦSAT.

We will solve the responsibility problem by creating an
instance of a partial weighted MaxSAT problem [15]. In
partial weight MaxSAT each clause is given a weight, with
a maximum weight identifying hard constraints, which are
the clauses that are required to be satisfied. A solution to
the problem finds an assignment that satisfies all the hard
constraints, and maximizes the weight of the satisfied soft
constraints.

In our case, ΦSAT (Eq. 4) defines hard constraints: all of
its clauses should be satisfied for a variable to be a cause.
In addition we ask the solver to find an assignment that is
as close as possible to θ. We do this by adding the following
formula:

Φθ =
^

θ(X[i,j])=T

X[i,j]

^
θ(X[i,j])=F

¬X[i,j] (5)

Φθ represents in a Boolean expression the given assign-
ment θ. Note that Φθ is already written in CNF, and each
clause consists of exactly one variable X[i,j], possibly negated.
We assign to each clause a weight of 1, thus asking the solver
to violate as few clauses as possible. The only assignment
that makes Φθ true is θ. For any other assignment θ̂, the
number of clauses in Φθ that are false is precisely d(θ, θ̂).
Thus, a partial weighted MaxSAT solution will find the as-
signment that satisfies the hard constraints ΦSAT, and differs
the least from the assignment θ. We state this formally:

Theorem 18. Consider the MaxSAT problem consisting
of the hard constraint ΦSAT and the soft clauses in Φθ, and
let t be the minimum number of clauses in Φθ that are false
under any assignment. Then, the responsibility of Xi for
z|ẑ is ρ = 1/(1 + t

2
).

Note that t is divided by 2 in the responsibility compu-
tation due to the constraint over the partition variables: a
distance of 2 in an assignment in the partition space corre-
sponds to a single variable change in the input space.

5. CONVERSION INTO CNF
In the previous section, we described how the problem of

determining view-conditioned causes and their responsibili-
ties can be translated into a general satisfiability problem.
While satisfiability is well known to be hard in general, there
are highly optimized tools available that can solve satisfia-
bility for CNF expressions [18]. Hence, we need to convert
our general expression ΦSAT in Eq. 4 into CNF before test-
ing causality and responsibility for individual variables. The
time complexity of CNF conversion is linear [30], but it can
introduce exponential blow-ups in the size of the expression.
The problem comes from the necessity to negate, at sev-
eral steps, CNF formulas, but then reformulate the result
as CNF. The standard way to do push the negation into
the literals by applying De Morgan’s laws and distributiv-
ity. There are more sophisticated conversion algorithms that
can be employed (e.g. [30]), but the optimization that we
propose here is orthogonal to those, and can be used in con-
junction with other conversion methods. In our problem,
there are two critical points in the conversion, that is ex-
pressing Φ̂ as CNF, and that of expressing its negation ¬Φ̂.



In this section we present an optimization that exploits
the constraints of the Boolean partition variables in order
to reduce the size of the converted CNF expression. Al-
gorithm 1 provides a conversion that completely solves the
problem for Φ̂ (Φ̂ is constructed in a way that ensures it is

already in CNF) and ameliorates the size increase for ¬Φ̂.
The algorithm exploits the fact that a threshold predicate

Y
(j)

i can either be written in the standard form given in
Sect. 4, or alternatively in what we call its dual form. For
this section, we assume that the initial classifiers are given in
CNF, but the proposed optimization can be beneficial even
when that is not the case. Assume we have the following
m = 2 classifiers over n = 3 inputs:

Φ1 = (X1 < 6) ∧ (X2 ≤ 8)

Φ2 = (X1 < 5) ∧ (X3 ≥ 7)

Then the threshold predicate Y
(1)
1 = (X1 < 6) over the

partitioned variables can be expressed with either of the fol-
lowing two forms:

Y
(1)
1 ≡ X[1,1] ∨X[1,2] ∨X[1,3]

Y
(1)
1D ≡ X̄[1,4] ∧ X̄[1,5]

Here we use the optional subscript D to indicate the dual
form and write X̄i as short form for ¬Xi. When construct-
ing ΦSAT, Algorithm 1 chooses at each step an equivalent
expression that minimizes the total number of clauses in the
resulting CNF: Line 2 to line 4 encode the conversion for Φ̂
and add clauses for Φj or ¬ΦjD, depending on whether ẑj

is true or false, respectively. Here, again the subscript D in-

dicates that ¬ΦjD is calculated starting from the duals Y
(j)

iD

instead of the standard form, and becomes only one clause.
For example,

¬Φ1D =
`
X[1,4] ∨X[1,5] ∨X[2,3]

´
whereas starting from the standard form would result in

¬Φ1 =
`
X̄[1,1] ∨ X̄[2,1]

´
∧
`
X̄[1,1] ∨ X̄[2,2]

´
∧`

X̄[1,2] ∨ X̄[2,1]

´
∧
`
X̄[1,2] ∨ X̄[2,2]

´
∧`

X̄[1,3] ∨ X̄[2,1]

´
∧
`
X̄[1,3] ∨ X̄[2,2]

´
Denoting with f the number of ground truth values F, Φ̂ is
converted into O

`
(m−f)n

´
clauses as follows:

Φ̂ = ¬Φ1D ∧ . . . ∧ ¬ΦfD| {z }
f clauses

∧Φf+1 ∧ . . . ∧ Φm| {z }
O

`
(m−f)n

´
clauses

whereas the naive conversion would lead intoO(fkn) clauses.
This difference becomes even more pronounced for con-

verting ¬Φ̂, where an exponential blow-up is unavoidable.
Here, Line 5 to line 11 first construct the following formula:

¬Φ̂ = Φ1 ∨ . . . ∨ Φf| {z }
β: f conjuncts
with n clauses

∨¬Φf+1D ∨ . . . ∨ ¬ΦmD| {z }
α: 1 clause

Converting this formula to CNF results in O(nf ) clauses,
and this exponential size increase cannot be avoided. In
contrast, the naive conversion would even lead to a double
exponential number of clauses.

Finally, line 12 to line 14 adds the constraint expression Ψ
by adding O(mk2) clauses, where k is the maximum number
of partitions for any input variable.

Algorithm: CNF conversion of a VC causality problem
Input: Partitioned variables X[], ground truth ẑ

Boolean expressions Φj and ¬ΦjD for all j
Output: General ΦSAT in CNF

1 Let ΦSAT be a conjunction of disjunctions (CNF)

2 //Add clauses for Φ̂
3 ∀j ∈ [m] with ẑj = T: add Φj to ΦSAT

4 ∀j ∈ [m] with ẑj = F: add ¬ΦjD to ΦSAT

5 //Add clauses for ¬Φ̂
6 Let α be a disjunction of literals
7 ∀j ∈ [m] with ẑj = T: add ¬ΦjD to α
8 Let β be a disjunction of conjuncts
9 ∀j ∈ [m] with ẑj = F: add Φj to β

10 Convert γ ← α ∨ β from DNF into CNF with De Morgan
11 Add γ to ΦSAT

12 //Add clauses for Ψ

13 ∀i ∈ [n]: add
` W

k∈[ki]
X[i,k]

´
to ΦSAT

14 ∀i ∈ [n], j < l ∈ [ki]: add
`
X̄[i,j] ∨ X̄[i,l]

´
to ΦSAT

Algorithm 1 converts the problem of finding VC causes
into solving a general CNF formula. The actual evaluation
later replaces some clauses with actual values for variables.

6. EXPERIMENTAL EVALUATION
We validate our approach by using a real data set col-

lected from a practical application that operates along the
lines of our classification example. The application, called
CARE (Context-Aware Recommendation Engine), collects
various sensor data from a user’s smartphone, uses it to in-
fer the current context (e.g., whether the user is walking or
driving), and provides various context-aware services. For
example, CARE allows a user to search for restaurants. If
CARE thinks that the user is walking alone, it will show
search results or ads of restaurants within the user’s walk-
ing distance from the current location. On the other hand,
if it believes that the user is driving with their family, it will
provide a list of family restaurants within driving distance.1

CARE relies on (i) a set of extractors equivalent of the
pre-processing layer of Fig. 3, which extract useful features
from sensor data (e.g., user’s speed from GPS data) and (ii)
a set of classifiers that infer the user’s current context based
on the values of the features. These features are used as our
input variables, and all the classifier outputs comprise our
views. Assuming correctness of the classifier functions, er-
rors in the classification can still occur due to various factors,
such as innate unreliability of some of the sensory input, or
even unpredictable user behavior (e.g., the user is outdoors
with the phone in their pocket, resulting in invalid light sen-
sor data). CARE receives feedback on the correctness of
the classifier outputs either directly from user input, or in-
directly through the user response to the context-based rec-
ommendations. In cases of errors, it is important for CARE
to determine which input is responsible for the errors, and
thus ignore the corresponding classifiers in the recommen-
dation process.

For the experiments in this section, we collect data using
CARE’s data collection software. We use the software on
Android-based HTC Desire smartphones. When instructed,
the software collects data from various phone sensors such
as accelerometer, GPS, microphone, light sensor, and cell

1In addition to the current inferred context, CARE also uses
user preferences and historical data in making such recom-
mendations.
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Figure 4: Structure of our classifier system based on
sensory input from a mobile device.

phone signal strength. During data collection, the software
also asks the user to annotate the data with the true context
(e.g., walking or not) and validity of various sensor inputs
(e.g., a light sensor input is invalid if the phone is inside
a bag). The data and annotations are then used to build
one machine learning classifier (i.e. a decision tree) for each
context of interest. The resulting classifiers with five target
contexts are shown in Fig. 4.

The dataset used in the experiments in this section was
collected from three individuals, who carried our instru-
mented smartphones over a period of three weeks and col-
lected data during their daily activities. The dataset con-
tains in total 801 different contexts, spanning a time range of
over 149 hours in a three-week period. Each of the contexts
in the dataset has its start and end times, associated data
from all sensors, its true label, the label given by classifiers,
and the validity of each sensor input. Thus, for each case
of misclassification, we use the sensor validity as the ground
truth for causality against which we validate our approach.

Implementation. Our satisfiability reduction algorithm
was implemented in Java.2 For every instance of the input
data, our algorithm constructs the appropriate data files in
standard DIMACS CNF and WCNF format [21]. We use
the minisat [32] and MiniMaxSat [18] solvers, to solve the
SAT and partial weighted MaxSAT instances, respectively.

6.1 Effectiveness
In our experiments we want to validate the quality of infor-

mation of the view-conditioned responsibility ranking over
possible sources of error. We ran our algorithms over the test
data collected through the CARE system, and each test case
took only a couple of seconds to complete. We first evaluate
the effectiveness of our approach compared to other schemes
using average precision as the metric of comparison [23]. Av-
erage precision (AP) quantifies the accuracy of a ranking in
identifying points of relevance. Given the ground truth on
the validity of the sensory input, an average precision of 1
means that the faulty sensors were indeed ranked first in the
ranking of most likely errors.

We compare view-conditioned causality against three other
techniques that can be used to produce error rankings: (i)
Boolean variable influence, (ii) view-conditioned counter-
factuals, and (iii) causality without conditioning. Boolean
influence produces a static ranking of the input parameters

2In practice, the algorithm would be running on the phone
itself. If the implementation is heavy weight, it can run on
the Cloud and the phone can communicate with it when
needed.

for each classifier. The influence of a variable Xi in formula
Φ is defined as the probability that Φ remains undetermined
when values are assigned to all variables except Xi [24]. For
example, in the simple formula Φ = A ∨ (B ∧ C), the influ-
ence of A is 0.75, whereas the influence of B is 0.25. Note
that influence quantifies the importance of a variable within
a function over all possible assignments. On the other hand,
causality-based schemes quantify this importance based on
the actual assignment. Intuitively, we expect schemes that
take into account the current state of the world to be more
accurate in error identification.

Figure 5a shows the results of this first set of experiments.
The horizontal axis shows the number of faults in the input
parameters, starting from a single parameter failing, and
going up to 7 (recall from Fig. 4 that the classifiers operate
over 8 parameters in total). Causality-based schemes are
depicted with solid lines. Also depicted are random aver-
age precision and the worst case average precision for each
fault range.3 Note that view-conditioned causes are always
a better predictor for errors than view-conditioned counter-
factuals or causes without conditioning. And this difference
gets more pronounced with the number of faults. Also note
that that the precision of counterfactual causes follows that
of random ranking from a point on. It is normal because as
the number of faults increases, we stop having any counter-
factual causes at all.

The dip observed across all schemes at the instances with
2 faults is due to the lack of granularity in the ground truth
of sensor validity. Our ground truth is restricted to the
level of the sensors (e.g. GPS), rather than the individual
parameters (e.g. h). So when the GPS is considered faulty,
the features h and s are both deemed incorrect. However,
with this few errors, only one or two classifiers are wrong,
and they are likely to only include h (not s). The result is
that s is not really a cause (it is not part of the classifiers
that failed), but because it is always considered to fail with
h in the ground truth, it is reflected as loss in precision.

In Figure 5b we studied the next step: how well can we
correct errors in the classifiers, once the likely input errors
are identified. The graph displays the portion of errors in the
particular classifier that can be corrected if the top ranked
view-conditioned cause is omitted from the calculation of the
classifier result. This involves a modification in the classifier
function. For example, the driving classification is a strict
majority function between 4 predicates; if feature p is omit-
ted, then it becomes a strict majority among the other three
predicates. An interesting observation in our experiments is
that certain classifiers can achieve better correction ratios
than others. For example, omitting features r or s corrects
more than 85% of the errors of the driving classification,
whereas omitting parameter s corrects the walking classifier
by only 25%. This behavior may seem random or surprising
at first, but in fact it highlights a very important insight
that causality brings into error correction. This can be un-
derstood from Fig. 5c, which focuses on three of the classi-
fiers (walking, driving, and meeting) to explain the reasons
for this difference in corrections: Note that the driving clas-
sification, as seen in Fig. 4, uses 4 features (p, r, s and h),
two of which (r and s) are counterfactual (ρ = 1 in Fig. 5c),
whereas the other two have zero responsibility. This is very

3Random AP is the expected AP when a list of k relevant
and n total items is randomly sorted. Worst case AP is
when those k are sorted last in the list of n total items.
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Figure 5: (a): Mean average precision across different approaches: View-conditioned causality outperforms
the static and simpler causality schemes. (b): Portion of errors that get corrected when the parameter
with the highest responsibility is omitted from the computation. (c): Comparison among the responsibility
rankings for different classifiers. (b & c): The ratio of correction actually depends on whether there exist
variables reliable for the classifier (compare walking and driving).

important, as it means that the parameters h and p are very
unlikely to cause errors in the driving classification, and are
thus reliable predictors for it. Thus, when omitting r or s
from the classifier function, the result becomes much more
reliable. On the other hand, the walking classifier does not
have reliable features, as all of them have fairly high respon-
sibility across our test cases. When all features of a classifier
have high responsibility, it means that all of them are likely
causes of error. Without a single reliable predictor, it is less
likely that we can achieve corrections by simply removing
a parameter and not changing the classifier function other-
wise. The meeting classifier stands on a middle ground: it
has one reliable predicate (based on parameter i), but still
contains 3 unreliable ones resulting in less gain compared
to the driving classification. Hence, using responsibility to
determine the reliability of features is very important in this
application, as it can quantify the quality of a classifier, and
implies possible ways to improve it. For example, in the
driving classification, the vast difference between the reli-
able and unreliable features is an indication that parameters
r and s should be disregarded in this classifier altogether,
whereas the absence of reliable predicates for walking likely
means that the learned models need to be improved.

6.2 Scalability
In our second set of experiments we study how our ap-

proach performs for bigger problem sizes. We generate syn-
thetic data with a similar structure to the one in CARE. We
randomly generate classifier functions as a conjunction over
ranges of the different parameters, and randomly assign clas-
sification failures with a probability of about 10%, following
the failure rate that we observed in the real data. In the
context of an application like the CARE system we do not
expect to have more than 15-20 parameters/features and 20-
30 classifiers. Yet in this evaluation, we generate instances
from 5 to 70 parameters, and from 5 to 60 classifiers.

Figure 6a and Fig. 6d show the execution time of our CNF
conversion algorithm 1, which takes as input the classifica-
tion formulas, variable assignments and observed errors, and
produces instances of SAT and partial weighted MaxSAT.
Note that the vertical axis of these graphs is in log scale.

As discussed in Sect. 5, conversion of the computed formu-
las into CNF is required in order to be solved by standard
satisfiability tools. As the problem size grows with more
variables or classifiers, thus generating larger formulas, our
algorithm is more likely to suffer the effects of exponential
growth during the necessary CNF conversion. Note however
that this conversion is not an inherent part of our reduction
from view-conditioned causality to SAT, which is polyno-
mial in size, but rather a complication imposed by the CNF
requirement of currently available SAT solvers. In spite of
the CNF conversion step, the runtime of our algorithm re-
mains feasible with average runtime of around one minute
for the larger problem sizes, and around one second for sizes
of parameters and classifiers what an application along the
lines of CARE would actually need or have available.

Figure 6b and 6e show that our optimized conversion
produces CNF formulas of at least an order of magnitude
smaller than a naive conversion. Smaller expression sizes
are desirable, as on expectation they are likely to improve
both the runtime of our own conversion algorithm, and the
execution times of the SAT solvers.

Through these experiments, we also verify the rationale
of our initial premise, which was to reduce view-conditioned
causality to a satisfiability problem in order to be able to use
existing efficient tools to solve it. Even though satisfiability
is hard in general, current tools can very efficiently handle
a large space of problems. Figure 6c and 6f demonstrate
the execution times of the SAT solver (minisat) and par-
tial weighted MaxSAT solver (MiniMaxSat), which remain
highly competitive. In our problem structure, it seems that
the solvers are barely affected by the number of classifica-
tions with their runtime kept well below a second. When
increasing the number of parameters, the minisat runtime
remains fairly stable. The runtime of MiniMaxSat does in-
crease, but is still under 7sec for our larger problem size.

7. CONCLUSIONS
In this paper we considered data transformations that

map a source database to a target database, and studied
the problem of tracing errors detected in the target data
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Figure 6: Scalability when varying the number n of input variables (a-c), and the number m of classifiers (d-f),
averaged over N = 10 random input problems. As expected, the runtime of converting a view-conditioned
causality problem to a CNF satisfiability problem is exponential in n (a) and m (d). However, the size of
the CNF produced by our optimized conversion is considerably smaller than a naive conversion (b,e). The
runtime of the SAT solvers is exponential in n (c), but for the structure of the formulas in our setting it does
not seem to be affected by m (f).

back to the source data. Our source data is described by
a set of numerical or Boolean variables, the target data is
given by a set of Boolean variables, and the transforma-
tion is given by a set of Boolean expressions. We proposed
view-conditioned causality and responsibility as a solution to
trace errors from transformations to source data. Next, we
described an algorithm that reduces the view-conditioned
responsibility problem to general satisfiability, which can be
solved with existing tools. We also illustrated the effective-
ness of using our techniques for tracking, and even correcting
errors in a real application.

We believe that the data-level transformations studied in
this paper can be improved in future work by considering the
query that generated the transformations. By taking into
account the query expression it may be possible to extend
our algorithm for view-conditioned responsibility to handle
larger scale transformations, as found in data integration
and ETL tools.
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APPENDIX
A. PROOFS

Proof (Theorem 14). Let X[i,j] be a VC cause of z|ẑ
with responsibility ρ. Then ∃θΓ as per the conditions of
Def. 13. Assign Γ′ = {X[u,v] | θΓ(X[u,v]) 6= θ(X[u,v])}. Γ′

contains exactly those variables X[u,v] that changed their as-

signment between θ and θΓ. Since θΓ |= Ψ, for each X[u,v1] ∈
Γ′ there exists a second X[u,v2] ∈ Γ′ corresponding to the
same variable Xu. Let Γ be the set {Xu |X[u] ∩ Γ′ 6= ∅}.
Then |Γ| = |Γ′|

2
= d(θ, θΓ). Since θΓ 6|= Φ̂, we know that Γ

is not counterfactual for z|ẑ. But θ̂ |= Φ̂, which means that
Xi ∪ Γ is counterfactual, and therefore Xi is a cause with
contingency Γ. We will now prove the reverse. Let Xi be
a cause of z|ẑ. Then there exists set Γ such that Xi ∪ Γ
is counterfactual for z|ẑ. That means that there exist val-
ues x̂u for each Xu ∈ Γ, different from the original values,
and x̂i 6= xi, that switch the output to ẑ. Also, Xi ∪ Γ is
minimal, which means that none of the value changes are
redundant. Therefore, each value change xu → x̂u results in
value changes for two partition variables X[u,v1] and X[u,v2].

Let θΓ be the assignment of the partition variables after we
apply all the value changes xu → x̂u. Since Γ is not cou-
nterfactual, we know that θΓ 6|= Φ̂. Let θ̂ be the Boolean
assignment after we apply the value change xi → x̂i to θΓ,
which results in two changes in the partition variables X[i]:
X[i,j] switching from Tto F, and some other variable in X[i]

switching from Fto T. Since Xi ∪Γ is counterfactual for z|ẑ,

we know that θ̂ |= Φ̂. So, X[i,j] is a VC cause for z|ẑ.

Proof (Theorem 15). Let Xi be a VC cause. Then,
from Theorem 14 variable X[i,j] is a VC cause and there

exists assignment θΓ |= Ψ, such that θΓ 6|= Φ̂, and θ̂ = θΓ ∪
{X[i, j] = F} |= Φ̂. But that means that θΓ satisfies ΦSAT.

Now let θΓ |= ΦSAT. Then θΓ |= ¬Φ̂
ˆ
θ(X[i])

˜
⇒ θ 6|= Φ̂, θ |=

Ψ, and θ |= Φ̂
ˆ
¬θ(X[i,j])

˜
⇒ θΓ ∪ {X[i, j] = F} |= Φ̂. But

then θΓ is a contingent assignment for X[i,j], and therefore
Xi is a cause.

Proof (Theorem 17). The result is straightforward from

the proof of Theorem 14: we have |Γ| = |Γ′|
2

= d(θ, θΓ),
which means the responsibility ρ is the same.

Proof (Theorem 18). Let θΓ be the assignment that is
the solution to the partial weighted MaxSAT. Then θΓ vi-
olates the minimum number of clauses (since all soft con-
straints have the same weight). If θ is the original as-
signment, t is the number of clauses that θΓ violates, then
d(θ, θΓ) = t

2
.

B. NOMENCLATURE
X Set of input parameters: X = (X1, . . . , Xn)
x Actual value assignment for input parameters:

x = (x1, . . . , xn) with xi ∈ Di and Di its domain
n Number of input variables
X[n] Boolean partitions of input variable Xn:

X[n] = (X[n,1], . . . , X[n,kn])
x[n] Actual value assignment for partitions of input variable Xn:

x[n] = (x[n,1], . . . , x[n,kn]) with x[n,i] ∈ {T, F} and exactly
one x[n,j] true, the rest are false

kn Number of partitions for input variable Xn

X[] Set of all partitioned input variables:
X[] = (X[1,1], . . . , X[1,k1], X[2,1], . . . Xn,1, . . . X[n,kn])

Z Set of Boolean output variables: Z = (Z1, . . . , Zm)
z Observed values of classifiers: z = {z1, . . . , zm}
ẑ Actual ground truth for outputs: ẑ = {ẑ1, . . . , ẑm}
m Number of output variables (classifiers)
Φm Boolean expression for classifier Cm

Y (m) Set of threshold predicates for classifier Cm, e.g.

Y
(m)
n ≡ (Xn > t

(m)
n )

ti One of several thresholds for variable Xi

Ti Number of threshold values for variable Xi

θ Boolean assignment of X[]
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