
Supporting Undo and Redo in Scientific Data Analysis

Xiang Zhao Emery R. Boose Yuriy Brun Barbara Staudt Lerner Leon J. Osterweil
University of Massachusetts, Amherst

Harvard University
Mount Holyoke College

Abstract

This paper presents a provenance-based technique to
support undoing and redoing of data analysis tasks. The
technique targets scientists who experiment with combi-
nations of approaches to processing raw data into pre-
sentable datasets. Raw data may be noisy and in need
of cleaning, it may suffer from sensor drift that requires
retrospective calibration and data correction, or it may
need gap-filling due to sensor malfunction or environ-
mental conditions. Different raw datasets may have dif-
ferent issues requiring different kinds of adjustments,
and each issue may potentially be handled by different
approaches. Thus, scientists must often experiment with
different sequences of approaches. In our work, we show
how provenance information can be used to facilitate this
kind of experimentation with scientific datasets. We de-
scribe an approach that supports the ability to (1) undo
a set of tasks while setting aside the artifacts and conse-
quences of performing those tasks, (2) replace, remove,
or add a data-processing technique, and (3) redo auto-
matically those set aside tasks that are consistent with
changed technique. We have implemented our technique
and demonstrate its utility with a case study of a com-
mon, sensor-network, data-processing scenario showing
how our approach can reduce the cost of changing inter-
mediate data-processing techniques in a complex, data-
intensive process.

1 Introduction

Environmental science has been significantly advanced
by the advent of sensor networks, which make it pos-
sible to collect unprecedented amounts of information.
But with this advance come new challenges related to the
size of the datasets, the urgency of handling streaming
data, and the complexity of near-real-time quality con-
trol. Though the raw sensor data are typically archived
unchanged, data products of value to users must go

through a series of complex transformations, which may
be revisited at a later time as more information becomes
available. This presents a problem for data providers,
who, in an ideal world, would carefully document how
different versions of the data were derived and when they
were made available to users (who, in turn, may, for ex-
ample, have used a particular version in a publication). In
practice, this is rarely done because of the time and effort
required. There is a pressing need for automated systems
that provide this service through the use of provenance.

In this paper, we describe a simple case study that nev-
ertheless captures some of the key data transformations
required for sensor data and permits the scientist to up-
date these transformations over time. The example in-
cludes three transformations that must be performed in
the following order:

(1) Sensor calibration. Many electronic sensors are
subject to drift over time and must be periodically
re-calibrated or replaced. In some cases (e.g., where
there are redundant sensors), it may be possible to
check and correct sensor readings in real time. But
more often, the sensor is periodically returned to the
manufacturer for recalibration. The scientist may
then adjust previous readings by using new informa-
tion on how the sensor has drifted over time.

(2) Quality control. Quality control procedures for sen-
sor data include tests for outliers (range), excessive
rate of change (slope), and repeated values (con-
stant). For example, the climatic history of a site may
help the scientist establish reasonable bounds on the
minimum and maximum air temperature, the maxi-
mum change in air temperature over a given period
of time, and how long air temperature is likely to re-
main constant. This information (which may change
over time) can be used to flag certain values as miss-
ing (e.g., an impossibly large precipitation amount)
or questionable (e.g., an excessively long period of
zero wind speed).



(3) Model-based gap filling. Models can fill gaps (e.g.,
missing and questionable values) in the sensor data.
Such models may be based, for example, on an em-
pirical relationship between the missing parameter
and other measured parameters. Often there are
many possible models from which to choose, and
scientist’s choices may evolve over time.

In addition to allowing the scientist to retrieve or re-
derive earlier versions of the data, provenance can facil-
itate the development, testing, and application of these
transformations by supporting the ability to undo and
redo. For example, the use of models to fill gaps may
require repeated adjustment, application, and evaluation
of the model. By using provenance to undo part of a
computation, the scientist can take advantage of some
calculations without having to restart the analysis from
scratch each time the model changes. Since this process
may be repeated many times, the ability to back up and
move forward, and to record all choices made so far, may
represent a significant savings in time and effort.

The rest of this paper outlines our approach in Sec-
tion 2, demonstrates how provenance can aid undo and
redo on a scientific data-processing example in Section 3,
places our work in terms of related research in Section 4,
and summarizes our contributions in Section 5.

2 Our Undo and Redo Approach

To support scientists performing such data analysis, we
have developed a system that allows users to undo se-
quences of data processing activities by reverting back
to a previous state of the process execution. This allows
the scientist to set aside previous processing results, re-
visit and change a previous decision, and move forward
again, possibly automatically re-applying sequences of
previously performed steps.

Using a detailed model of the process a scientists fol-
low to process data (Figure 1), our approach tracks the
history of the process execution as the scientist executes
it. Since the process consists of steps, each of which
modifies data artifacts, the state of the execution of the
process at time t consists of the current step and the set of
values of the artifacts. To revert to an previous point, the
process has to revert both the control-flow and the arti-
fact values. For example, when a scientist reverts back to
the state of picking a gap-filling model, the expectation
is that all data are restored to that point in the process,
and the next step is to re-select a gap-filling model.

The detailed model of the process the scientist fol-
lows is critical to our approach, as is the Data Deriva-
tion Graph (DDG), the process-provenance structure that
describes the history of the process execution [6]. The
DDG records the history of all artifact creations and







 



















 

  

































 



 















Figure 1: A scientific data-processing process definition,
written using the Little-JIL process specification lan-
guage [10]. In this process, a scientists collects data from
sensors (Retrieve Data) and applies sensor calibration
(Apply Calibration), quality control (Apply QC), and
model-based gap filling to the data (Apply Model).

modifications, from which each historical execution state
can be derived. When choosing to undo operations, our
system presents the user with a visualization of the DDG
(Figure 3) and enables the user to select the point to
which to revert. Our approach requires explicit label-
ing of which steps are revertible (Figure 2) in the pro-
cess specification. Thus, the operations that can be revis-
ited must be defined priori. Theoretically, all steps can
be revertible, allowing the user to undo arbitrary opera-
tions. After revisiting a step, subsequent operations can
be reapplied automatically, either if they require no user
inputs or by reusing the inputs from the previous execu-
tion, to the newly modified artifacts.

3 Scientific Data-Processing Case Study

We now illustrate our approach with a concrete exam-
ple. As we mentioned in Section 2, our approach re-
lies on a detailed definition of the process the scientist
will follow in processing the data. Consider the fol-
lowing process (depicted graphically as we describe be-
low, in Figure 1): The scientist collects raw data from
sensors (we call this step Retrieve Data), and then
chooses to either start to process the data using de-

2




















Figure 2: The refined definition of the Undo Update
Model step from Figure 1. This exception handler guides
the scientist to undo changes to modeldata and reapply
a new model to qcdata that is recovered from an earlier
point in the history.

fault parameters (Process Data), or update one of the
parameters (Update Process) and reprocess the data
(Process Data). The scientist evaluates the reprocessed
data (Evaluation) and decides if anything needs to be
undone and adjusted.

Figure 1 defines this process using the Little-JIL
graphical process specification language [11]. Little-JIL
has been used to support the definition of complex pro-
cesses in the medical, election, software development,
and other domains [4, 8, 12]. We describe only enough
Little-JIL language to facilitate understanding of our ex-
amples, and refer the reader to previous work [11, 10] for
to a detailed specification.

A Little-JIL process definition is a tree representation
of the steps of a process, the artifacts created and modi-
fied in each step, and the resources required for each step.
The tree diagram in Figure 1 is a hierarchical decompo-
sition of the steps; each step denoted graphically by a
black rectangular bar. The steps execute in the depth-first
order, from left to right. A special sequencing badges
denotes when a step’s substeps (children) are to be exe-
cuted sequentially (e.g., the arrow to the left of Process
Data indicates that Apply Calibration, Apply QC,
and Apply Model should execute sequentially), or one is
to be chosen out of a set to be executed (e.g., the slashed
circle sequencing badge on Update Data indicates a
choice between Process Data and Update Process).
Note there are two different Process Data steps. Pro-
cesses may include recursion, referencing other parts of
the tree, as, for example, Process Data does. Edge la-
bels specify which artifacts may be accessed or modi-
fied. Red edges indicate exception-handling steps, which
can alter the process’ control flow, and which we use
to implement our undo mechanism. For example, in














































































































Figure 3: A DDG snippet shows the process execution
history of a scientist reverting twice: to update the gap-
filling model (Apply Model) and then again to update
the quality control procedure parameter (Apply QC).

Figure 1, if during Evaluation, the scientist decides
to undo the Update Model step, the system will throw
an UndoUpdateModel exception. The execution control-
flow will be brought to the Undo Update Model excep-
tion handler (see Figure 2).

Figure 2 details this Undo Update Model exception
handler. The first leaf step, Revert, outputs all the ar-
tifacts that exist in the process, allowing setting aside
changes and reverting to a previous state in the execution.
(Note that in our implementation, the execution history

3



is immutable, so a revert creates a new copy of the old,
reverted-to state, saving the history of all states.) The sci-
entist can then revisit the Update Model step, and later
be able to undo again, if desired, with a recursive excep-
tion handler call.

Figure 3 shows a snippet of the DDG generated by
the process from Figure 1. In the DDG, ovals represent
step execution instances (leaf steps are yellow and non-
leaf steps green) and rectangles represent data instances.
Exceptions (brown rectangles) are special data instances.

Here, the scientist has reverted twice. First,
to re-update the gap-filling model, the scientist is
directed to UndoUpdateModel step in response to
UndoUpdateModelException, with Revert producing
qcdata[1]=qcdata[0]. Once selected, the new gap-
filling model (model[2]) is applied automatically to pro-
duce modeldata[2]. Second, to re-update the qual-
ity control procedure parameter, the scientist has two
options: (1) Reverting to the point of starting Apply
QC[0], updating qc parameter, and proceeding with
the newly selected quality control parameter and de-
fault calibration[0] and model[0] values. Or (2) re-
verting to the point of starting Apply Model[1], up-
dating qc parameter and proceeding with the default
calibration[0] and the previously updated model[2]
parameters. In this example, the scientist elects to use
the earlier selection of model parameter, selecting Apply
Model[1] in the DDG.

Our approach allows backtracking while keeping exe-
cuted steps’ provenance. We have implemented this ca-
pability as a command-line tool, which guides the sci-
entist in performing data-processing tasks, allowing for
revisiting and modifying earlier-made decisions.

4 Related Work

Provenance Map Orbiter [7] captures large provenance
graphs and provides navigation mechanism using graph
summarization and semantic zoom. Similar visualiza-
tion mechanisms [1, 3] deliver the provenance informa-
tion to the scientist using metadata queries. In contrast,
our DDG is visual and takes advantage of Little-JIL’s hi-
erarchical structure.

Leeman proposed a formal approach to undo opera-
tions [5]. Some of the primitives he proposed are sim-
ilar to ours. The notions of undo list to keep track of
chronologically-ordered, program-state derivations and
time to mark an event in the program, are similar to our
proposed DDG and process control-flow definitions in
the process domain. Rhyne and Wolf proposed adding a
log of user actions, in addition to the history list that only
keeps program state derivations [9]. This, like the DDG,
joins control-flow and data-flow, but again, does not ad-
dress the process. The selective undo model [2] allows

the user to undo a number of operations, revisit a process
step, and then automatically redo the other undone oper-
ations. Our model applies the redone operations to the
modified artifacts, thus avoiding creating an inconsistent
conflict between operations.

5 Contributions

We have developed a provenance-based approach for
supporting undo and redo and scientific data process-
ing. The approach uses provenance data, expressed as
a DDG, to track the execution history of data processing
and to allow scientists to explore that history to revisit,
undo, and modify previous decisions. After revisiting a
decision, our approach can guide the scientist in redo-
ing previously executed steps in the new context. While
a full, empirical evaluation of the benefits of our ap-
proach remains future work, our case study of a common,
sensor-network, data-processing scenario shows promise
that provenance-based support can reduce the cost of
changing intermediate data-processing techniques in a
complex, data-intensive process.

References
[1] M. K. Anand, S. Bowers, and B. Ludäscher. A navigation model

for exploring scientific workflow provenance graphs. In WORKS,
pages 2:1–2:10, 2009.

[2] T. Berlage. A selective undo mechanism for graphical user in-
terfaces based on command objects. ACM TCHI, 1(3):269–294,
1994.

[3] O. Biton, S. Cohen-Boulakia, S. B. Davidson, and C. S. Hara.
Querying and managing provenance through user views in scien-
tific workflows. In ICDE, pages 1072–1081, 2008.

[4] L. A. Clarke, Y. Chen, G. S. Avrunin, B. Chen, R. Cobleigh,
K. Frederick, E. A. Henneman, and L. J. Osterweil. Process pro-
gramming to support medical safety: A case study on blood trans-
fusion. In Unifying the Software Process Spectrum, volume 3840,
pages 347–359. 2006.

[5] G. B. Leeman, Jr. A formal approach to undo operations in pro-
gramming languages. ACM TPLS, 8(1):50–87, 1986.

[6] B. Lerner, E. Boose, L. J. Osterweil, A. Ellison, and L. Clarke.
Provenance and quality control in sensor networks. In EIMC,
2011.

[7] P. Macko and M. Seltzer. Provenance map orbiter: Interactive
exploration of large provenance graphs. In TaPP, 2011.

[8] M. S. Raunak, B. Chen, A. Elssamadisy, L. A. Clarke, and L. J.
Osterweil. Definition and analysis of election processes. In IC-
SPSM, pages 178–185, 2006.

[9] J. R. Rhyne and C. G. Wolf. Tools for supporting the collaborative
process. In UIST, pages 161–170, 1992.

[10] A. Wise. Little-JIL 1.5 language report. Technical Report UM-
CS-2006-51, University of Massachusetts, Amherst, 2006.

[11] X. Zhao, B. S. Lerner, L. J. Osterweil, E. R. Boose, and A. M.
Ellison. Provenance support for rework. In TaPP, page 14, 2012.

[12] X. Zhao and L. J. Osterweil. An approach to modeling and sup-
porting the rework process in refactoring. In ICSSP, pages 110–
119, 2012.

4


