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Abstract

Watermarking images is critical for tracking image provenance and proving owner-
ship. With the advent of generative models, such as stable diffusion, that can create
fake but realistic images, watermarking has become particularly important to make
human-created images reliably identifiable. Unfortunately, the very same stable
diffusion technology can remove watermarks injected using existing methods. To
address this problem, we present ZoDiac, which uses a pre-trained stable diffusion
model to inject a watermark into the trainable latent space, resulting in watermarks
that can be reliably detected in the latent vector even when attacked. We evaluate
ZoDiac on three benchmarks, MS-COCO, DiffusionDB, and WikiArt, and find
that ZoDiac is robust against state-of-the-art watermark attacks, with a watermark
detection rate above 98% and a false positive rate below 6.4%, outperforming
state-of-the-art watermarking methods. We hypothesize that the reciprocating
denoising process in diffusion models may inherently enhance the robustness of
the watermark when faced with strong attacks and validate the hypothesis. Our
research demonstrates that stable diffusion is a promising approach to robust water-
marking, able to withstand even stable-diffusion–based attack methods. ZoDiac is
open-sourced and available at https://github.com/zhanglijun95/ZoDiac.

1 Introduction

Digital image watermarking, a technique for subtly embedding information within digital images,
has become increasingly crucial and beneficial in the context of content protection and authenticity
verification [36, 10, 5, 4]. The advance in generative AI technologies [28, 30, 29], such as stable dif-
fusion, further underscores the need for watermarking solutions to distinguish between AI-generated
and human-created images.

Given an existing image, many methods have been proposed to embed a watermark that is invisible
and robust to watermark removal attacks. Conventional watermarking strategies have employed
various methods, such as embedding information in texture-rich regions [3], manipulating the least
significant bits [43], or utilizing the frequency domain [21]. The emergence of deep learning has
introduced neural network (NN)-based watermarking methods [53, 24, 35, 48, 47, 19], which have
shown promise in achieving high invisibility and robustness against traditional attacks, such as adding
Gaussian noise or applying JPEG compression.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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Figure 1: The watermark detection rate of exist-
ing methods and our ZoDiac before and after the
diffusion-based attack Zhao23 [51]. Two example
images show that ZoDiac’s watermarks are percep-
tually invisible.

Unfortunately, the recent advent of powerful
image generation techniques can circumvent ex-
isting watermarking methods. The most recent
work [51] shows that stable diffusion can be
used in a watermark removal attack, and none of
the existing watermarking techniques are robust
enough to that attack. Figure 1 shows that the
watermark detection rate (WDR) of six existing
watermarking methods (DwtDct, DwtDctSvd
[9], RivaGAN [48], SSL [16], CIN [25], StegaS-
tamp [35]) before and after the stable-diffusion-
based watermark removal attack [51] drops from
79%–100% before attack to only 0%–48% after
attack on the MS-COCO dataset [23].

To address the problem, we propose a novel
stable-diffusion–based watermarking frame-
work called ZoDiac. ZoDiac takes as input an
existing image and uses a pre-trained stable dif-
fusion model to inject into the image a watermark that can be reliably detected even when attacked.
The rationale behind ZoDiac is that a pre-trained stable diffusion maps a latent vector into an image
and that more than one latent vector can be mapped to perceptually the same image. Given an
existing image, ZoDiac identifies a latent vector that contains a watermark pattern and can also be
mapped to the same image using a pre-trained stable diffusion model. ZoDiac further allows mixes
of the original image and the watermarked image to enhance image quality with a minor influence
on watermark robustness. To detect watermarks, ZoDiac applies a diffusion inversion process that
remaps the image to the latent vector and then detects the watermark pattern in the latent vector by
statistical test. Recent trend [11, 15, 42] has used diffusion models for watermarking, but it can only
encode a watermark into synthetically-generated images when they are being generated. By contrast,
ZoDiac can watermark existing and real-world images.

ZoDiac has two distinctive features that make it robust and effective. First, ZoDiac injects watermarks
in the latent space that stable diffusion models operate on when sampling random noise to generate
synthetic images, making the watermarks both invisible and robust to even the most advanced stable-
diffusion–based attack method. We hypothesize that ZoDiac exhibits strong robustness because the
image generation process of the diffusion model serves as a powerful attack-defense mechanism by
default and empirically validate it in §4.3. Second, while existing watermarking methods typically
require the training of a dedicated model on a representative training dataset, ZoDiac builds on top of
pre-trained stable diffusion models, forgoing the time-consuming training process.

Our main contributions are:

• ZoDiac — a novel framework for embedding invisible watermarks into existing images using
pre-trained stable diffusion. To the best of our knowledge, ZoDiac is the first watermarking
method that is robust to the most advanced generative AI-based watermark removal attack.

• Empirically Demonstrated Strong Robustness Against Watermark Attacks — Our evalua-
tion on images from diverse domains, MS-COCO [23], DiffusionDB [41], and WikiArt
[27] datasets, shows that ZoDiac is robust against the state-of-the-art watermark attack
mechanism, with watermark detection rate (i.e., true positive rate) above 98% and false
positive rate below 6.4%, outperforming state-of-the-art watermarking methods. ZoDiac
also maintains invisible image quality degradation, underscoring its efficacy in achieving
robust watermarking with quality preservation (see examples in Figure 1).

• Robustness Against Combined Attacks — Prior watermarking method evaluations [42, 51]
focused on robustness to only a single attack at a time. We show that in a more realistic
scenario, where the attacker can combine multiple attacks, ZoDiac significantly outperforms
all existing methods. For example, when combining all attacks other than image rotation,
ZoDiac retains a detection rate above 50% while all existing methods fail with a detection
rate of 0%. Only one of the existing methods, SSL [16], is effective against rotation, but
it is ineffective against other attacks. We propose a method for making ZoDiac robust to
rotation (above 99%), only slightly increasing its false-positive rate (from 0.4% to 3.4%) on
MS-COCO dataset with appropriate hyperparameter settings.
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2 Preliminary and Related Work

We first introduce the image watermarking problem and then the diffusion model background
necessary to understand ZoDiac. We place our work in the context of the most related research;
Appendix A discusses related work in depth.

The Robust Image Watermarking Problem. Image watermarking aims to embed a predefined,
detectable watermark into an image while ensuring that the watermarked image is similar to the
original. This similarity is usually quantified using metrics such as the Peak Signal-to-Noise Ratio
(PSNR) and the Structural Similarity Index (SSIM) [40]. Malicious attacks can attempt to remove the
watermark, again, without significantly changing the image. A robust image watermarking method
should be able to detect the watermark even in attacked images.

Both image watermarking and watermark removal attacks have been studied extensively. The
development of deep neural networks (DNN) resulted in advanced learning-based watermarking
approaches, such as RivaGAN [48], StegaStamp [35], and SSL [15]. These methods train a dedicated
DNN model on large-scale representative image datasets to watermark images. Meanwhile, advances
in generative AI techniques have produced new attacks based on Variational AutoEncoders [2, 8] and
Stable Diffusion [29]. None of the existing watermarking approaches are sufficiently robust to these
advanced diffusion-based attacks.

Diffusion Models and DDIM Inversion. Diffusion models [31], which both the most sophisticated
attacks and our approach build on, are a class of generative AI models that generate high-resolution
images. To explain diffusion models, we first explain the forward diffusion process, in which a
data point sampled from a real data distribution x0 → q(x) is gradually converted into a noisy
representation xT through T steps of progressive Gaussian noise addition. This transformation yields
xT as an isotropic Gaussian noise, i.e., xT → N (0, I). Specifically, a direct generation of xt from x0

is:

xt =
↑
ω̄tx0 +

↑
1↓ ω̄tε, (1)

where ω̄t =
∏t

i=0(1↓ ϑi), ϑi ↔ (0, 1) is the scheduled noise variance that controls the step size, and
ε → N (0, I).

Diffusion models reverse this forward process, learning to retrieve the original image x0 from the
noise xT by estimating the noise at each step and iteratively performing denoising. The Denoising
Diffusion Implicit Model (DDIM) [33] is a prominent denoising method, known for its efficiency
and deterministic output. Formally, for each denoising step t, a learned noise predictor εω estimates
the noise εω(xt) added to x0, leading to an approximate of x0. Then DDIM reintroduces εω(xt) to
determine xt→1:

xt→1=
↑
ω̄t→1(

xt↓
↑
1↓ω̄tεω(xt)↑

ω̄t
)+

√
1↓ω̄t→1εω(xt). (2)

In this way, DDIM could deterministically recover the same image x0 from the specified noise xT .
DDIM also enables an inversion mechanism [14] that can reconstruct the noise xT from an image x0.
DDIM inversion adheres to the forward diffusion process in Eq. (1), substituting εt with εω(xt) at
each timestep.

We denote the denoising process, that is, the image generation process as G and its inversion as G↑.
A stable diffusion model [29] operates in the latent space. We use ZT and Z0 in the latent space to
represent the noise xT and the image x0 respectively. A pre-trained Variational Autoencoder (VAE)
carries out the transformation between the noise xT and its latent vector ZT (and also the image x0

and its representation Z0). Throughout this paper, we refer to ZT as the latent vector.

3 The ZoDiac Watermarking Framework

This section introduces ZoDiac, our novel watermarking technique that uses pre-trained stable
diffusion models to achieve watermark invisibility and strong robustness to attacks. The core idea is
to learn a latent vector that encodes a pre-defined watermark within its Fourier space, and can be
mapped by pre-trained stable diffusion models into an image closely resembling the original.

3



VA
E 

D
ec

od
er

* Inference Mode – Image Generation 𝒢

Frozen Unconditioned Stable Diffusion
× 𝑇

Denoising U-Net 𝜖𝜃

…

DDIM Inversion 𝒢′

𝒁0

DDIM Inversion 𝒢′ + FFT

3.
 A

da
pt

iv
e 

Im
ag

e 
En

ha
nc

em
en

t

Watermark Embedding

Watermark Detection

2. Watermark Encoding

FFT
1. Latent Vector Initialization

IFFT

Trainable 𝒁𝑇
Reconstruction 

Loss 𝓛

Backpropagation

Statistical Test 
Using Non-central 𝒳2 Distribution

Figure 2: Overview of ZoDiac with watermark embedding and detection phases. There are three
major steps in the embedding phase: 1) latent vector initialization, 2) watermark encoding, and 3)
adaptive image enhancement. In the detection phase, the watermark is decoded by performing DDIM
inversion, Fourier transformation, and statistical testing.

3.1 Overview of ZoDiac

Figure 2 illustrates both the watermark embedding and detection phases of the ZoDiac framework.
We first explain the high-level idea, and then §3.2 and 3.3 detail each step.

Watermark Embedding. Watermark embedding consists of three main steps, latent vector initializa-
tion, watermark encoding, and adaptive image enhancement. Algorithm 1 lists the pseudocode for
watermark embedding.

Algorithm 1 ZoDiac-Watermarking
Require: original image x0,watermark W
Require: pre-trained diffusion model G,

and its inversion G↑

Require: diffusion steps T, latent update steps N
Require: SSIM threshold s

↓

Ensure: watermarked image x̄0

1: ZT ↗ G↑(x0)
2: for i = 1 to N do
3: x̂0 ↗ G(ZT ↘W)
4: Take gradient descent on ≃ZTL(x0, x̂0)

{Eq. (6)}
5: end for
6: x̄0 = x̂0 + ϖ(x0 ↓ x̂0) {Eq. (7)}
7: Search ϖ

↓ ↔ [0, 1] s.t. S(x̄0, x0) ⇐ s
↓ {Eq.

(8)}
8: return x̄0

The original image x0 first undergoes a DDIM
inversion process to identify its latent vector ZT

(Latent Vector Initialization, Line 1, §3.2.1). Zo-
Diac then encodes a watermark in the latent
vector ZT and trains the watermarked latent
vector such that a pre-trained stable diffusion
model can use it to generate a watermarked im-
age similar to the original image (Watermark
Encoding, Lines 2–5, §3.2.2). To encode the
watermark into ZT , ZoDiac converts ZT to the
Fourier space, encodes a given watermark W,
and then transforms it back to the spatial domain
prior to being fed into the diffusion model. Zo-
Diac preserves the visual similarity between the
generated image x̂0 and the original image x0

by optimizing the latent vector via a carefully de-
signed reconstruction loss. The diffusion model
remains frozen and operates in inference mode
during the optimization. The gradient flow dur-
ing backpropagation is indicated by the dashed
red arrows in Figure 2. After image generation, ZoDiac mixes the watermarked image x̂0 with the
original one x0 to further enhance image quality (Adaptive Image Enhancement, Lines 6–7, §3.2.3).

Watermark Detection. Watermark detection detects watermarks. ZoDiac first reconstructs the latent
vector of the image under inspection via DDIM inversion, transforms the latent vector into the Fourier
space, and then conducts a statistical test to detect a potential watermark (§3.3).
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3.2 Watermark Embedding

3.2.1 Latent Vector Initialization

Finding a good initialization for the latent vector ZT allows a stable diffusion model to reproduce
the original image x0 rapidly, and is thus critical to reducing the time spent on optimizing that latent
vector. ZoDiac employs DDIM inversion to initialize the latent vector ZT = G↑(x0), from which
DDIM can then remap to the original image. Empirically, we find that using a randomly initialized
latent vector can require hundreds of iterations when remapping, while using an initial latent vector
from DDIM inversion converges in dozens of iterations while achieving a higher image quality (see
details in Appendix B.1).

3.2.2 Watermark Encoding

The watermark encoding step aims to encode a watermark into an image with minimal impact on its
visual quality. ZoDiac injects the watermark into the Fourier Space of the initialized latent vector from
§3.2.1, and then optimizes the watermarked latent vector to ensure that it can be used to synthesize an
image resembling the original. Our fundamental insights are two-fold: (1) injecting watermarks into
the latent space of images can effectively improve the watermark robustness thanks to the potential
attack-defense capability provided by the diffusion process (see §4.3); (2) injecting watermarks into
the Fourier representation of a latent vector helps preserve the quality of the watermarked image (see
Appendix B.7).

Watermark Injection. ZoDiac injects a concentric ring-like watermark into the Fourier space of
the latent vector, leading to a circularly symmetric watermark embedding in the low-frequency
domain. Such a pattern is proved to be resistant to geometric transformations and common image
distortions [32, 42].

ZoDiac assumes that elements of a watermark W are generated by randomly sampling from a
complex Gaussian distribution, noted as CN (0, 1). Elements that are of the same distance to the
center of the latent vector have the same value, making the watermark “ring-like”. Formally, let
F(ZT ) ↔ Cch↔w↔h be the Fourier transformed latent vector, where ch is the number of channels,
and w and h are the width and height. Let p = (i, j) be a coordinate, c = (h/2, w/2) be the latent
vector’s center, and d(p, c) be the Euclidean distance from a coordinate to the center. Each element
in the watermark W ↔ Cw↔h is:

Wp = w↗d(p,c)↘, where w↗d(p,c)↘ → CN (0, 1). (3)

ZoDiac also needs a binary mask that indicates the location where the watermark will be applied.
Mathematically, let M ↔ {0, 1}w↔h be a binary mask with a predefined radius d↓. Each item in the
mask M is

Mp =

{
1, if d(p, c) ⇒ d

↓;
0, otherwise.

(4)

Finally, the watermark W is applied to the Fourier-transformed latent vector F(ZT ) with the binary
mask M,

F(ZT )[ic, :, :]=(1↓M)⇑ F(ZT )[ic, :, :]+M⇑W, (5)

where ic is the watermark injecting channel and ⇑ denotes the element-wise product. We denote the
latent vector after watermarking as ZT ↘W.

Latent Vector Optimization. ZoDiac then seeks to find a latent vector ZT such that, when being
watermarked by W and then processed by the denoising process G, generates an image x̂0 that is the
most similar to the original image x0. To solve the optimization problem, we design a reconstruction
loss L that allows ZoDiac to iteratively refine ZT via standard backpropagation:

L = L2(x0, x̂0) + ϱsLs(x0, x̂0) + ϱpLp(x0, x̂0), (6)

where x̂0 = G(ZT ↘ W), L2 is the Euclidean distance, Ls represents the SSIM loss [50], Lp

corresponds to the Watson-VGG perceptual loss [12], and ϱs, ϱp are weighting coefficients. These
coefficients are set to balance the scale of each loss component.

5



3.2.3 Adaptive Image Enhancement

Adaptive image enhancement aims to improve the visual quality of the image x̂0 generated from the
watermark encoding step. To do this, it adaptively mixes x̂0 with the original image x0 such that the
mixed image can meet a desired image quality threshold. Mathematically, the mixed image x̄0 is:

x̄0 = x̂0 + ϖ(x0 ↓ x̂0), (7)

where ϖ ↔ [0, 1] is a modulating factor. A higher ϖ improves image quality at the cost of potential
watermark diminishing. Adaptive image enhancement automatically identifies the smallest ϖ that
results in desired image quality through binary search. It optimizes the following objective:

min ϖ, s.t. S(x̄0, x0) ⇐ s
↓
, (8)

where s
↓ is the desired image quality and S is an image similarity metric. We use the SSIM metric

by default.

3.3 Watermark Detection

In the watermark detection phase, our primary objective is to verify whether a given image x0 contains
watermark W. The detection process starts with transforming x0 to y = F(G↑(x0))[↓1, :, :] ↔ Cw↔h,
representing the last channel of the Fourier transformed latent vector. It then detects the presence
of W in y via a statistical test procedure. The statistical test computes a p-value, an interpretable
statistical metric that quantifies the likelihood of the observed watermark manifesting in a natural
image by random chance. A watermark is considered detected when the computed p-value falls
below a chosen threshold.

To compute the p-value, we first define the null hypothesis as H0 : y → N (0,ς2
, IC), where ς

2

is estimated for each image from the variance of y masked by the circular binary mask M, i.e.,
ς
2 = 1∑

M

∑
(M ⇑ y)2. This is because the DDIM inversion G↑ maps any test image x0 into

a Gaussian distribution [31], and the Fourier transformation of a Gaussian distribution remains
Gaussian.

To test this hypothesis, we define a distance score φ that measures the disparity between W and y in
the area defined by the binary mask M:

φ =
1

ς2

∑
(M⇑W ↓M⇑ y)2. (9)

Under H0, φ follows a non-central chi-squared distribution [26], characterized by
∑

M degrees of
freedom and a non-centrality parameter ϱ = 1

ε2

∑
(M⇑W)2. An image is classified as watermarked

if the value of φ is too small to occur by random chance. The probability of observing a value no
larger than φ, i.e., the p-value, is derived from the cumulative distribution function of the non-central
chi-squared distribution. Non-watermarked images will exhibit higher p-values, while watermarked
images yield lower values, indicating a successful rejection of H0 and confirming the watermark’s
presence. In practice, we treat (1 ↓ p)-value as the likelihood of watermark presence and set up a
detection threshold p

↓ to determine the watermark presence An image with (1↓p) > p
↓ is considered

to be watermarked.

4 Empirical Evaluation

This section evaluates ZoDiac’s efficacy using a diverse domain of images including real photographs,
AI-generated content, and visual artwork.

4.1 Experimental Setup

Datasets. Our evaluation uses images from three domains, photographs, AI-generated images, and
visual artwork. For each domain, we randomly sample 500 images from well-established benchmarks,
including MS-COCO [23], DiffusionDB, and WikiArt.
ZoDiac Settings. We use the pre-trained stable diffusion model stable-diffusion-2-1-base [29] with
50 denoising steps. We show ZoDiac is compatible with other diffusion models in § 4.4. We optimize
the trainable latent vector for a maximum of 100 iterations using the Adam optimizer [20]. It takes
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Table 1: Image quality in terms of PSNR, SSIM, and LPIPS, and watermark robustness in terms
of Watermark Detection Rate (WDR) before and after attacks, on MS-COCO, DiffusionDB, and
WikiArt datasets. We evaluate on ten individual attacks and two composite attacks: “All” that
combines all the individual attacks, and “All w/o ↭” that excludes the rotation attack. ⇓ and ⇔ indicate
whether higher or lower values are better. For each attack, we highlighted in gray the techniques with
the maximum WDR, and those within 2% of the maximum; ZoDiac is the only method within 2% of
the maximum WDR for all attacks, except Rotation. ZoDiac dominates all methods when facing the
most advanced Zhao23 attack (recall Figure 1) and the combined All w/o ↭.

Image Quality Watermark Detection Rate (WDR) ⇓ before and after Attacking

Pre-Attack Post-AttackWatermarking
Method PSNR ⇓ SSIM ⇓ LPIPS ⇔ Brightness Contrast JPEG G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All w/o ↭ Rotation All

DwtDct 37.88 0.97 0.02 0.790 0.000 0.000 0.000 0.687 0.156 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DwtDctSvd 38.06 0.98 0.02 1.000 0.098 0.100 0.746 0.998 1.000 0.452 0.016 0.032 0.124 0.000 0.000 0.000
RivaGAN 40.57 0.98 0.04 1.000 0.996 0.998 0.984 1.000 1.000 0.974 0.010 0.010 0.032 0.000 0.000 0.000
SSL 41.81 0.98 0.06 1.000 0.992 0.996 0.046 0.038 1.000 0.000 0.000 0.000 0.000 0.000 0.952 0.000
CIN 41.77 0.98 0.02 1.000 1.000 1.000 0.944 1.000 1.000 0.580 0.662 0.666 0.478 0.002 0.216 0.000
StegaStamp 28.64 0.91 0.13 1.000 0.998 0.998 1.000 0.998 1.000 0.998 0.998 1.000 0.286 0.002 0.000 0.000

ZoDiac 29.41 0.92 0.09 0.998 0.998 0.998 0.992 0.996 0.996 0.994 0.992 0.986 0.988 0.510 0.538 0.072

M
S-C

O
C

O

DwtDct 37.77 0.96 0.02 0.690 0.000 0.000 0.000 0.574 0.224 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DwtDctSvd 37.84 0.97 0.02 0.998 0.088 0.088 0.812 0.982 0.996 0.686 0.014 0.030 0.116 0.000 0.000 0.000
RivaGAN 40.60 0.98 0.04 0.974 0.932 0.932 0.898 0.958 0.966 0.858 0.008 0.004 0.024 0.000 0.000 0.000
SSL 41.84 0.98 0.06 0.998 0.990 0.996 0.040 0.030 1.000 0.000 0.000 0.000 0.000 0.000 0.898 0.000
CIN 39.99 0.98 0.02 1.000 1.000 1.000 0.942 0.998 0.998 0.624 0.662 0.660 0.498 0.002 0.212 0.000
StegaStamp 28.51 0.90 0.13 1.000 0.998 0.998 1.000 0.998 0.998 1.000 0.996 0.998 0.302 0.002 0.000 0.000

ZoDiac 29.18 0.92 0.07 1.000 0.998 0.998 0.994 0.998 1.000 1.000 0.994 0.992 0.988 0.548 0.558 0.086

D
iffusionD

B

DwtDct 38.84 0.97 0.02 0.754 0.000 0.000 0.000 0.594 0.280 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DwtDctSvd 39.14 0.98 0.02 1.000 0.096 0.094 0.698 1.000 1.000 0.668 0.034 0.072 0.116 0.000 0.000 0.000
RivaGAN 40.44 0.98 0.05 1.000 0.998 1.000 0.990 1.000 1.000 0.992 0.010 0.024 0.024 0.000 0.000 0.000
SSL 41.81 0.99 0.06 1.000 0.988 0.988 0.082 0.108 1.000 0.000 0.000 0.000 0.000 0.000 0.932 0.000
CIN 41.92 0.98 0.02 1.000 1.000 1.000 0.936 0.998 1.000 0.572 0.664 0.664 0.436 0.002 0.228 0.000
StegaStamp 28.45 0.91 0.14 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 0.182 0.002 0.000 0.000

ZoDiac 30.04 0.92 0.10 1.000 1.000 1.000 1.000 0.998 1.000 1.000 0.994 0.994 0.992 0.530 0.478 0.082

W
ikiA

rt

45.4 – 255.9s to watermark one image (details see Appendix D). We calibrate the weights for the
SSIM loss ϱs and the perceptual loss ϱp to 0.1 and 0.01, respectively, to balance the scales of the
various loss components. We set the watermark injecting channel ic to be the last channel of the latent
representation and the watermark radius d↓ to 10. To balance the image quality and detectability of
the watermark, we set the SSIM threshold s

↓ to 0.92 and the detection threshold p
↓ to 0.9, except

where explicitly noted otherwise. We evaluate other hyperparameter settings in the ablation study
(see §4.4 and Appendix B).

Watermarking Baselines. We compare ZoDiac to six watermarking methods.

• Traditional Methods: Two conventional techniques, DwtDct and DwtDctSvd [9], utilize fre-
quency decomposition. DwtDctSvd has been used to watermark stable diffusion models [29].

• Training-Based Methods: RivaGAN [48] is a pre-trained GAN-based model incorporating
an attention mechanism. SSL [16] is a latent-space–based watermarking method that uses self-
supervised learning for network pre-training. CIN [25] combines invertible and non-invertible
mechanisms to achieve high imperceptibility and robustness against strong noise attacks. StegaS-
tamp [35] applies adversarial training and integrates both CNN and spatial transformer techniques.

Considering the above methods inject bitstrings as the watermark, we use 32-bit messages for DwtDct,
DwtDctSvd, RivaGAN, SSL, and CIN, and 96-bit messages for StegaStamp. Detection thresholds
were set to reject the null hypothesis (i.e., H0: the image has no watermark) with p < 0.01, requiring
correct detection of 24/32 and 61/96 bits for the respective methods to form a fair comparison [51].

Watermark Attack Methods. We evaluate ZoDiac’s robustness against a comprehensive set of
attacks used in recent watermarking evaluations [51, 1]. The set of attacks employed includes:

• Adjustments in brightness or contrast with a factor of 0.5.
• JPEG compression with a quality setting of 50.
• Image rotation by 90 degrees.
• Addition of Gaussian noise with a std of 0.05.
• Gaussian blur with a kernel size of 5 and std of 1.
• BM3D denoising algorithm with a std of 0.1.
• VAE-based image compression models, Bmshj18 [2] and Cheng20 [8], with a quality level of 3.
• A stable diffusion-based image regeneration model, Zhao23 [51] with 60 denoising steps.
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Since the attack strength tuned by the hyper-parameters of different attack methods will influence the
presence and detection of the injected watermark, we evaluate the effectiveness of ZoDiac under other
settings in the ablation study (see §4.4 and Appendix B). Besides, unlike prior work, we go deeper
and evaluate against the composite attack that combines all the aforementioned attacks (named “All”)
and a variant without rotation (named “All w/o ↭”).

We also examine the robustness of ZoDiac under pipeline-aware attack, where the attacker has
partial or full knowledge of our watermarking method, in Appendix C.2. Our results confirm the
robustness of ZoDiac in the face of partial knowledge attacks and underscore the critical importance
of safeguarding the model weights and watermark configurations.

Evaluation Metrics. We evaluate the quality of the watermarked image (x̄) compared to the original
image (x) using three metrics: Peak Signal-to-Noise Ratio (PSNR)(x, x̄) = ↓10 log10(MSE(x, x̄)),
Structural Similarity Index (SSIM) [40] with range [0, 1], and LPIPS [49] that measures perceptual
similarity. For PSNR and SSIM, larger values correspond to higher image similarity; for LPIPS,
lower values do. To assess watermark robustness, we use the Watermark Detection Rate (WDR)
for watermarked images, which is the same as True Positive Rate (TPR), and False Positive Rate
(FPR) for non-watermarked images. Both WDR and FPR range from 0 to 1. We expect to achieve
high WDR and low FPR.

4.2 Results

Table 1 reports the watermarked image quality and WDR before and after attacks for ZoDiac and
baselines.

Image Quality. ZoDiac achieves satisfactory image perceptual similarity, as defined by [7] and [34],
of approximately 30dB PSNR and 0.92 SSIM. ZoDiac’s image quality outperforms the previously
most robust watermarking method, StegaStamp. Figure 11 in Appendix E illustrates the visually
imperceptible effect of ZoDiac’s and other methods’ watermarks. §4.4 examines how increasing
ZoDiac’s SSIM threshold can further improve image quality, trading off WDR.

Watermark Robustness. ZoDiac consistently exhibits high detection rates, within 2% of the
maximum WDR, against watermark removal algorithms as highlighted by the gray cells (except for
the Rotation attack). Traditional approaches, such as DwtDct and DwtDctSvd, consistently fail with
brightness and contrast changes, rotation, and advanced generated-AI-based attacks. RivaGAN and
SSL fail for advanced attacks, Bmshj18, Cheng20, and Zhao23. StegaStamp, despite being robust
across most attacks, fails for rotation and demonstrates significantly diminished detection rates under
the diffusion model-based attack Zhao23. When facing the composite attack excluding rotation (“All
w/o ↭” column), ZoDiac maintains a detection rate of about 0.5, while all baselines fail, with a WDR
close to 0. Appendix B.8 provides more discussions on composite attacks.

The exception of rotation is noteworthy. All methods, apart from SSL which incorporates rotation
during training, fail for rotational disturbances. In ZoDiac, this limitation stems from the non-rotation-
invariant nature of the DDIM inversion process; the latent representation derived from an image and
its rotated version differ significantly. However, rotation is not an invisible attack and its effects
are readily reversible, allowing users to manually correct image orientation to facilitate watermark
detection. Appendix C.1 presents an extended discussion on overcoming rotational attacks.

4.3 Why ZoDiac is Attack Resilient

Recall that the image generation process is an iterative algorithm that progresses from xT to x0,
involving the prediction of an approximate x0 at each step and the subsequent addition of noise to
obtain the noisy input for the next step. We hypothesize that this reciprocating denoising process
may inherently enhance the robustness of the watermark when faced with strong attacks. To validate
the hypothesis, we experiment with different denoising steps when reconstructing the watermarked
image on the MS-COCO dataset. In addition to the commonly-used 50 denoising steps, we further
evaluate denoising steps of 10, 1, and even 0, where 0 means utilizing only the well-trained image
autoencoder in the diffusion model without the diffusion process.

Table 2 reports the watermarked image quality in terms of PSNR when setting the SSIM threshold
s
↓ = 0.92 and the robustness when subjected to three representative attacks. Appendix B.2 contains

the full table with all attacks. We make two observations. First, the number of denoising steps
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Table 2: The effects of varying denoising steps
on image quality (PSNR) and watermark detec-
tion rate (WDR). The denoising step of 0 means
utilizing only the image autoencoder in the diffu-
sion model without the diffusion process.

Denoising
Steps PSNR≃

WDR≃ before and after attack

Pre-Attack Post-Attack

Rotation Zhao23 All w/o ↭
50 29.41 0.998 0.538 0.988 0.510
10 29.51 0.996 0.534 0.976 0.502
1 28.67 0.992 0.532 0.97 0.498
0 29.09 0.942 0.226 0.712 0.002

Table 3: The effects of varying detection thresh-
olds p

↓ ↔ {0.90, 0.95, 0.99} on watermark de-
tection rate (WDR) and false positive rate (FPR).
⇓ and ⇔ indicate whether higher or lower values
are better.

Detection
Threshold p→ FPR⇐

WDR≃ before and after attack

Pre-Attack Post-Attack

Rotation Zhao23 All w/o ↭
0.90 0.062 0.998 0.538 0.988 0.510
0.95 0.030 0.998 0.376 0.974 0.372
0.99 0.004 0.992 0.106 0.938 0.166
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Figure 3: The trade-off between the watermarked image
quality (SSIM) and the watermark detection rate (WDR)
on MS-COCO dataset. The image quality is controlled
by SSIM threshold s

↓ ↔ [0.8, 0.98] in increments of
0.03 and the robustness is evaluated post-attack with
four advanced attack methods.
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Figure 4: ZoDiac exhibits comparable re-
sults when using different pre-trained sta-
ble diffusion models, stable-diffusion-2-
1-base, stable-diffusion-v1-4, and stable-
diffusion-xl-base-1.0. Colors represent at-
tacks; “None” represents no attack.

do not significantly influence the watermarking performance. Regardless of the attack methods
employed, ZoDiac exhibits consistently high WDR while maintaining similar image quality with
different denoising steps. Second, even when reduced to a single denoising step, ZoDiac significantly
outperforms the variant without the diffusion process (i.e., when the denoising step is 0) in terms
of watermark robustness, thereby verifying the hypothesis that the diffusion model contributes
substantially to the robustness of the embedded watermark.

4.4 Ablation Study

Varying the SSIM Threshold s↓. While a high image quality threshold s
↓ can yield an image with

negligible quality loss, it conversely raises the risk of watermark elimination. This study explores the
impact of varying s

↓ on image quality and watermark robustness. Figure 3 illustrates the trade-off
curves on the MS-COCO dataset, subject to four advanced attack methods, by adjusting SSIM
thresholds s

↓ ↔ [0.8, 0.98] in increments of 0.03. Appendix B.3 reports results for eight other
attacks and two other datasets. Overall, against advanced watermark removal techniques, ZoDiac
consistently outperforms all baseline methods in terms of robustness. Although the adaptive image
enhancement step can also enhance the watermarked image quality of StegaStamp, the most robust
baseline method, it causes a significant decline in its watermark robustness, as shown by the pink
line in Figure 3. StegaStamp injects watermarks in the image space, making it more sensitive to the
enhancement. By contrast, ZoDiac injects watermarks in the latent space of images, benefiting from
the enhancement step and achieving a balance between high image quality and watermark robustness.

Varying the Detection Threshold p↓. Recall from §3.3 that an image is considered watermarked if its
(1↓p)-value exceeds p↓. A larger p↓ imposes a stricter criterion for watermark detection, reducing the
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Table 4: The PSNR of attacked watermarked images compared to those without being attacked and
the WDR of ZoDiac and StegaStamp under different strengths from 0.2 to 1.0 (i.e., no attack) of the
Brightness attack (left) and the Contrast (right) attack.

Detection
Threshold FPR WDR under Brightness Factor of

0.2 0.4 0.6 0.8 1.0

PSNR - - 11.41 14.56 27.95 33.58 100.0

StegaStamp 61/96 0.056 0.852 0.988 1.0 1.0 1.0
StegaStamp 60/96 0.094 0.890 1.0 1.0 1.0 1.0

ZoDiac p→ = 0.95 0.032 0.994 0.994 0.998 0.998 0.998
ZoDiac p→ = 0.90 0.062 0.996 0.998 0.998 0.998 0.998

Detection
Threshold FPR WDR under Contrast Factor of

0.2 0.4 0.6 0.8 1.0

PSNR - - 14.54 23.03 30.56 36.57 100.0

StegaStamp 61/96 0.056 0.730 0.98 1.0 1.0 1.0
StegaStamp 60/96 0.094 0.768 0.998 1.0 1.0 1.0

ZoDiac p→ = 0.95 0.032 0.998 0.996 0.998 0.998 0.998
ZoDiac p→ = 0.90 0.062 0.994 0.998 0.998 0.998 0.998

probability of both watermark detection for watermarked images, measured by watermark detection
rate (WDR), and false detection for non-watermarked images, measured by false positive rate (FPR).
Table 3 reports the effects of detection thresholds p↓ ↔ {0.90, 0.95, 0.99} on WDR and FPR before
and after three representative attacks on MS-COCO dataset. Appendix B.4 contains the full table
with all attacks for the three datasets and also provides the FPR of baselines for reference. The data
show that p↓ = 0.9 maintains a high WDR and an acceptable FPR, in practice.

Varying the Backbone Models. ZoDiac is compatible with different pre-trained stable diffusion
models. In this study, we extend our evaluation to the stable-diffusion-v1-4 and stable-diffusion-xl-
base-1.0 (in addition to stable-diffusion-2-1-base). Figure 4 shows the trade-off curves between the
watermarked image quality and the watermark detection rate without attack as well as with three
representative attacks, Rotation, Zhao23, and All w/o ↭. Appendix B.5 shows additional results
addressing other attacks. The data shows consistent performance (WDR and image quality in SSIM)
between the two models, as indicated by the almost overlapped solid and dashed lines, suggesting
that ZoDiac can seamlessly integrate with other pre-trained stable diffusion models, maintaining its
state-of-the-art efficiency, regardless of the backbone model employed.

Varying the Attack Strength. We also compare ZoDiac with the strongest baseline StegaStamp
under different hyper-parameter settings of the attack methods, in terms of WDR under different FPR
levels. Table 4 reports the image quality in terms of PSNR and the watermarking robustness when we
adjust the Brightness and Contrast attacks with a factor of 0.2 to 1.0 following WAVES [1]. As the
adjustment factors for brightness and contrast decrease from 0.9 to 0.2, the PSNR of the attacked
watermarked images drops significantly—from 37.79 to 11.41 for brightness and from 38.57 to 14.54
for contrast. Despite this degradation, ZoDiac consistently maintains a WDR above 0.99 across all
scenarios. Even at extreme settings, where PSNRs fall to 11.41 for brightness and 14.54 for contrast,
ZoDiac significantly outperforms StegaStamp, achieving higher WDR and lower FPR. This clearly
demonstrates ZoDiac ’s robustness even under severe quality degradation. Appendix B.6 includes
additional results when tuning other attacks.

5 Contributions

We have presented ZoDiac, a robust watermarking framework based on pre-trained stable diffusion
models. ZoDiac hides watermarks within the trainable latent space of a pre-trained stable diffusion
model, enhancing watermark robustness while preserving the perceptual quality of the watermarked
images. An extensive evaluation across three datasets of photographs, AI-generated images, and
art demonstrates ZoDiac’s effectiveness in achieving both invisibility and robustness to an array
of watermark removal attacks. In particular, ZoDiac is robust to advanced generative-AI-based
removal methods and composite attacks, while prior watermarking methods fail in these scenarios.
This robustness, coupled with the ability to achieve high-quality watermarked images, positions
ZoDiac as a significant advancement in the field of image watermarking. ZoDiac focuses on zero-bit
watermarking [17], only hiding and detecting a mark. ZoDiac is constrained to adhere to a Gaussian
distribution in the latent vector of the diffusion model, but future work will explore encoding
meaningful information, such as a message, in the watermark while preserving ZoDiac’s robustness.
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A Additional Related Work

Digital Image Watermarking. Digital watermarking, particularly in the image domain, has been a cornerstone
in computer vision for decades. Traditional methods have predominantly relied on frequency decomposition
techniques such as Discrete Fourier Transform (DFT) [37], Discrete Cosine Transform (DCT) [6], Discrete
Wavelet Transform (DWT) [44], or their combinations [9]. These frequency-based methods are advantageous
due to their inherent resilience to common image manipulations.

The development of deep neural networks (DNN) has introduced novel learning-based watermarking approaches.
HiDDeN [53] employs joint training of watermark encoder and decoder alongside noise layers that mimic image
perturbations. It leverages an adversarial discriminator for enhanced visual quality and has been expanded for
arbitrary image resolutions and message lengths in [22]. Regarding the watermark robustness, StegaStamp [35]
uses differentiable image perturbations during training to improve noise resistance and incorporates a spatial
transformer network for minor perspective and geometric changes. Distortion Agnostic [24] further brings
robustness to unforeseen transformations by introducing adversarial training. Considering the watermarking as
an image generation process, RivaGAN [48], SteganoGAN [47], and ARWGAN [19] resort to generative AI,
particularly Generative Adversarial Network (GAN), for enhanced performance and robustness in watermarking.
A comprehensive review is provided in [38]. With the demonstrated efficacy of diffusion models in image
generation [14], our work pioneers the use of pre-trained diffusion models for robust image watermarking.

Image Watermarking Attack. Watermarking attacks are typically categorized into two types [51]. Destructive
attacks treat the watermark as part of the image, seeking to remove it through image corruption. Common
methods include altering image brightness or contrast, applying JPEG compression, introducing Gaussian noise,
and so on. Constructive attacks, on the other hand, view the watermark as noise superimposed on the original
image, focusing on its removal via image purification techniques such as Gaussian blur [18], BM3D [13],
and learning-based methods like DnCNNs [46]. Recently, regeneration attacks have emerged, leveraging the
strengths of both destructive and constructive approaches. These attacks corrupt the image by adding Gaussian
noise to its latent representation, then reconstruct it using generative models such as Variational AutoEncoders
[2, 8] or Stable Diffusion [29]. We aim to effectively counter watermark removal attacks especially advanced
generative AI-based ones when watermarking given images.

Diffusion Model Watermarking. Rapid evolution in deep generative models has led to methods capable of
synthesizing high-quality, realistic images [14]. These models pose threats to society due to their potential
misuse, prompting the necessity to differentiate AI-generated images from those created by humans. Recent
efforts resort to watermarking the model itself, which focuses on enabling these models to automatically generate
watermarked images for easier identification later. One straightforward approach is to fine-tune diffusion models
with datasets containing watermarked images, leading these models to inherently produce watermarked outputs
[11, 39, 52, 45]. Alternatives like Stable Signature [15] focus on training a dedicated watermark decoder to
fine-tune only the latent decoder part of the stable diffusion model. Tree-Rings [42] takes a different route
by embedding watermarks in the initial noisy latent, detectable through DDIM inversion [14]. Although
these methods effectively lead diffusion models to generate watermarked images, they are not equipped for
watermarking existing images, a functionality our approach is designed to provide.

B Additional Ablation Study

B.1 Effectiveness of Latent Vector Initialization
Input Image 𝑖𝑡 = 0, ℒ2 = 0.0056 𝑖𝑡 = 5, ℒ2 = 0.0020 𝑖𝑡 = 20, ℒ2 = 0.0015 

(a) Images generated from prepared initial latent with DDIM
inversion

𝑖𝑡 = 20, ℒ2 = 0.0376 𝑖𝑡 = 200, ℒ2 = 0.0117 𝑖𝑡 = 500 ℒ2 = 0.0036 𝑖𝑡 = 0, ℒ2 = 1109 

(b) Images generated from random initial latent

Figure 5: Synthetic images along with the op-
timization iterations and L2 loss values. We
observe much faster convergence when (a)
using the latent vector initialized from the
DDIM inversion compared to (b) using a ran-
domly initialized latent vector.

Figure 5 compares the synthetic images at different op-
timization iterations when training the latent vector ini-
tialized with the vector from DDIM inversion (a) and a
vector randomly sampled from the Gaussian distribution
(b). The result shows the advantage of the latent vector
initialization step, which achieves a higher quality image,
measured by the L2 distance between the image and its
original counterpart within only 20 iterations. In contrast,
a randomly initialized latent vector requires more than hun-
dreds of iterations to produce a similar image whose quality
(L2 = 0.0036) still largely falls behind.

B.2 Why ZoDiac is Attack Resilient Continued

Table 5 completes Table 2 from §4.3, showing the effects
of different denoising steps when reconstructing the wa-
termarked images on WDR under all attacks. We measure WDR on watermarked images generated with the
SSIM threshold s→ = 0.92. Overall, ZoDiac exhibits consistently high WDR with different denoising steps,
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Table 5: The effects of varying denoising steps on image quality and watermark detection rate (WDR).
The denoising step of 0 means utilizing only the image autoencoder in the diffusion model without
the diffusion process. ⇓ and ⇔ indicate whether higher or lower values are better.
Denoising

Steps

Image Quality Watermark Detection Rate (WDR) ⇓ before and after attack

PSNR ⇓ SSIM ⇓ LPIPS ⇔ Pre-Attack Post-Attack

Brightness Contrast JPEG G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All w/o ↭ Rotation All

50 29.41 0.92 0.09 0.998 0.998 0.998 0.992 0.996 0.996 0.994 0.992 0.986 0.988 0.510 0.538 0.072
30 29.44 0.92 0.08 0.996 0.998 0.996 0.992 0.99 0.996 0.994 0.99 0.986 0.982 0.510 0.538 0.07
10 29.51 0.92 0.08 0.996 0.998 0.994 0.992 0.990 0.996 0.994 0.986 0.984 0.976 0.502 0.534 0.068
1 28.67 0.92 0.10 0.992 0.99 0.986 0.988 0.988 0.992 0.994 0.98 0.978 0.97 0.498 0.532 0.060
0 29.09 0.92 0.08 0.942 0.674 0.938 0.888 0.9 0.838 0.744 0.738 0.7 0.712 0.002 0.226 0.000

demonstrating that different denoising steps do not influence the watermark robustness. In the meanwhile, when
the denoising step becomes 0, the robustness drops significantly, which verifies the hypothesis that the diffusion
process contributes substantially to the robustness of the embedded watermark.

B.3 Varying the SSIM Threshold s↓ Continued

Recall from §3.2.3 that the final watermarked image x̄0 is derived by blending the raw watermarked image
x̂0 with the original image x0 to meet the desired image quality, specified by an SSIM threshold s→. While
setting a high threshold for image quality s→ can result in minimal loss of image quality, it simultaneously
decreases the likelihood of accurate watermark detection. Building on Figure 3 from §4.4, we explore the
impact of varying s→ values on the trade-off between image quality and watermark robustness on the full set
of attacks and datasets. Figures 6, 7, and 8 show the trade-off curves on the MS-COCO, DiffusionDB, and
WikiArt datasets, respectively. The x-axes show the watermarked image quality in SSIM and the y-axis shows
the watermark detection rate, subject to twelve various attack scenarios. ZoDiac’s image quality is controlled by
SSIM thresholds s→ → [0.8, 0.98] in increments of 0.03.

§4.4 summarized two main observations, which are confirmed by these further experiments: First, ZoDiac
produces watermark robustness that is on par with or surpasses that of the existing methods with similar image
quality. For instance, when brightness or contrast changes, ZoDiac’s WDR approximates that of RivaGAN
and SSL. Notably, against more advanced watermark removal techniques, as depicted in the final row of
Figures 6, 7, and 8, ZoDiac consistently outperforms all baseline methods in terms of robustness. Second,
although adaptive image enhancement can also enhance the watermarked image quality of StegaStamp, the most
robust baseline method, this approach markedly reduces its watermark robustness, as indicated by the pink lines
in Figures 6, 7, and 8. This decrease in robustness occurs because StegaStamp embeds watermarks directly in
the image space, rendering it more vulnerable to the proposed image quality enhancements. By contrast, ZoDiac
injects watermarks in the latent space of images, allowing it to benefit from the enhancement step in achieving a
balance between good image quality and high watermark robustness.
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Figure 6: The trade-off between the watermarked image quality in terms of SSIM and the watermark
robustness in terms of watermark detection rate (WDR) on MS-COCO dataset. The image quality is
controlled by SSIM threshold s

↓ ↔ [0.8, 0.98] with a step size of 0.03 as described in §3.2.3 and the
robustness is evaluated pre-attack and post-attack with different attack methods.
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Figure 7: The trade-off between the watermarked image quality and the watermark robustness on
DiffusionDB dataset similar to Figure 6.
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Figure 8: The trade-off between the watermarked image quality and the watermark robustness on
WikiArt dataset similar to Figure 6.
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B.4 Varying the Detection Threshold p↓ Continued

Table 6: The FPR for existing methods on the
MS-COCO dataset.

Method DwtDct DwtDctSvd RivaGAN SSL CIN StegaStamp
FPR 0.052 0.018 0.036 0 0.026 0.056

Table 7 completes Table 3 from §4.4, showing the ef-
fects of detection thresholds p→ → {0.90, 0.95, 0.99} on
WDR and FPR, under all attacks. We measure WDR on
watermarked images generated with the SSIM threshold
s→ = 0.92. The maximum WDR and WDR within 2%
of the maximum are highlighted in gray. As expected,
a higher p→ usually corresponds to lower rates of both
WDR and FPR. Specifically, under most attack conditions
except Rotation and All w/o ↭, WDR exhibits a marginal decline when p→ is increased. We further provide the
FPR of existing methods on the MS-COCO dataset in Table 6 as a reference. When investigating the results
in Table 1 in the main paper together with Table 6 and Table 7, we conclude that, under the same FPR level,
ZoDiac always achieves a higher Watermark Detection Rate (WDR), demonstrating its superiority on watermark
robustness.

Table 7: The effects of varying detection thresholds p↓ ↔ {0.90, 0.95, 0.99} on watermark detection
rate (WDR) and false positive rate (FPR) for all attacks. We measure WDR on watermarked images
generated with SSIM threshold s

↓ = 0.92. We highlighted in gray the techniques with the maximum
WDR, and those within 2% of the maximum. The data indicate that a higher p↓ usually corresponds
to slightly lower WDR.

Watermark Detection Rate (WDR) ≃ before and after attack
Detection
Threshold FPR ⇐ Pre-Attack Post-Attack

Brightness Contrast JPEG G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All w/o ↭ Rotation All

MS-COCO
0.90 0.062 0.998 0.998 0.998 0.992 0.996 0.996 0.994 0.992 0.986 0.988 0.510 0.538 0.072
0.95 0.030 0.998 0.996 0.998 0.992 0.996 0.996 0.994 0.986 0.978 0.974 0.372 0.376 0.028
0.99 0.004 0.992 0.990 0.990 0.978 0.984 0.988 0.988 0.960 0.954 0.938 0.166 0.106 0.000

DiffusionDB
0.90 0.050 1.000 0.998 0.998 0.994 0.998 1.000 1.000 0.994 0.992 0.988 0.548 0.558 0.086
0.95 0.018 1.000 0.998 0.996 0.994 0.994 1.000 1.000 0.992 0.988 0.952 0.418 0.356 0.028
0.99 0.004 0.998 0.992 0.99 0.982 0.990 1.000 0.994 0.974 0.984 0.902 0.174 0.130 0.006

WikiArt
0.90 0.064 1.000 1.000 1.000 1.000 0.998 1.000 1.000 0.994 0.994 0.992 0.530 0.478 0.082
0.95 0.024 1.000 1.000 1.000 0.998 0.996 1.000 0.998 0.994 0.990 0.980 0.392 0.330 0.032
0.99 0.004 1.000 1.000 1.000 0.992 0.994 1.000 0.998 0.980 0.964 0.944 0.192 0.104 0.002

B.5 Varying the Backbone Models Continued

Figure 9 completes Figure 4 from §4.4, which includes the trade-off curves between image quality and watermark
robustness under the ten individual attacks and the two composite attacks when using different backbone stable
diffusion models, stable-diffusion-2-1-base, stable-diffusion-v1-4, and stable-diffusion-xl-base-1.0. The figure
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Figure 9: The watermarking performance comparisons between three pre-trained stable diffusion
models, stable-diffusion-2-1-base, stable-diffusion-v1-4, and stable-diffusion-xl-base-1.0. The trade-
off curves between the watermarked image quality and the watermark detection rate with and without
attack are provided.
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shows the trade-off curves between the watermarked image quality and the watermark detection rate with and
without attack. Overall, the three backbone models exhibit similar watermarking performance.

B.6 Varying the Attack Strength Continued

We conducted additional experiments under various attack levels, following the settings in WAVES [1]. The
experiments span multiple attack scenarios:

• Tables 8 and 9: Adjustments in brightness or contrast with a factor of 0.2 to 1.0 (i.e., the watermarked images
without being attacked).

• Table 10: JPEG compression with a quality setting from 10 to 90
• Table 11: Gaussian noise with a standard deviation varying from 0.02 to 0.1
• Table 12: Gaussian blur with a kernel size of 5 to 19.
• Tables 13 and 14: Two VAE-based image compression models, Bmshj18 and Cheng20 with quality levels of 2

to 6.
• Table 15: A stable diffusion-based image regeneration model, Zhao23 with 40 to 200 denoising steps.

We compared ZoDiac and the strongest baseline, StegaStamp, in terms of WDR under different FPR levels,
leading to several insights:

Brightness and Contrast Attacks: As the adjustment factors for brightness and contrast decrease from 0.9 to
0.2, the PSNR of the attacked watermarked images drops significantly—from 37.79 to 11.41 for brightness and
from 38.57 to 14.54 for contrast. Despite this degradation, ZoDiac consistently maintains a WDR above
0.99 across all scenarios. Even at extreme settings, where PSNRs fall to 11.41 for brightness and 14.54 for
contrast, ZoDiac significantly outperforms StegaStamp, achieving higher WDR and lower FPR. Specifically,
ZoDiac records a WDR of 0.994 at an FPR of 0.032 compared to StegaStamp’s 0.852 at an FPR of 0.056 for
brightness, and a WDR of 0.998 at an FPR of 0.032 compared to StegaStamp’s 0.730 at an FPR of 0.056 for
contrast. This clearly demonstrates ZoDiac ’s robustness even under severe quality degradation.

JPEG, G-Noise, G-Blur, Bmshj18, and Cheng20 Attacks: With varying attack parameters, including the
quality settings for JPEG, Bmshj18, Cheng20, the standard deviation for G-Noise the kernel size for G-Blur,
the PSNR of the attacked watermarked images remains within the range of 20 to 40. In these scenarios, both
ZoDiac and StegaStamp consistently sustain a high WDR of around 0.98. The only exception is JPEG with
a quality setting of 10. Under this condition, the WDR of both ZoDiac and StegaStamp slightly decreases from
their usual range of 0.956-0.986 to 0.746-0.834 for ZoDiac, and from 0.996-1.0 to 0.758-0.806 for StegaStamp.

Zhao23: As the number of image regeneration steps in Zhao23 increases, the PSNR of the attacked watermarked
images decreases from 27.15 to 22.44. Despite this degradation, ZoDiac remains highly resistant across
most scenarios, with its WDR slightly decreasing from 0.998 to 0.898. In contrast, StegaStamp significantly
underperforms, completely failing when the regeneration steps exceed 120.

Table 8: The PSNR of attacked watermarked images compared to those without being attacked and
the WDR of ZoDiac and StegaStamp under different strengths from 0.2 to 1.0 (i.e., no attack) of the
Brightness attack.

Detection
Threshold FPR WDR under Brightness adjustment factor of

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

PSNR - - 11.41 13.21 14.56 21.89 27.95 30.84 33.58 37.79 100.0

StegaStamp 61/96 0.056 0.852 0.954 0.988 0.998 1.0 1.0 1.0 1.0 1.0
StegaStamp 60/96 0.094 0.890 0.990 1.0 1.0 1.0 1.0 1.0 1.0 1.0

ZoDiac p→ = 0.95 0.032 0.994 0.994 0.994 0.996 0.998 0.998 0.998 0.998 0.998
ZoDiac p→ = 0.90 0.062 0.996 0.996 0.998 0.998 0.998 0.998 0.998 0.998 0.998

Table 9: Results on different attack strengths of the Contrast attack .
Detection
Threshold FPR WDR under Contrast adjustment factor of

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

PSNR - - 14.54 17.50 23.03 28.62 30.56 33.05 36.57 38.57 100.0

StegaStamp 61/96 0.056 0.730 0.918 0.98 0.998 1.0 1.0 1.0 1.0 1.0
StegaStamp 60/96 0.094 0.768 0.956 0.998 1.0 1.0 1.0 1.0 1.0 1.0

ZoDiac p→ = 0.95 0.032 0.998 0.996 0.996 0.998 0.998 0.998 0.998 0.998 0.998
ZoDiac p→ = 0.90 0.062 0.994 0.996 0.998 0.998 0.998 0.998 0.998 0.998 0.998
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Table 10: Results on different attack strengths of the JPEG attack.
Detection
Threshold FPR WDR under JPEG quality setting of

10 20 30 40 50 60 70 80 90

PSNR - - 28.05 30.82 32.28 33.23 34.02 34.68 35.62 36.88 39.09

StegaStamp 61/96 0.056 0.758 0.996 1.0 1.0 1.0 1.0 1.0 1.0 1.0
StegaStamp 60/96 0.094 0.806 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

ZoDiac p→ = 0.95 0.032 0.746 0.956 0.982 0.986 0.992 0.994 0.994 0.994 0.996
ZoDiac p→ = 0.90 0.062 0.834 0.986 0.99 0.99 0.992 0.996 0.996 0.996 0.998

Table 11: Results on different attack strengths of the G-Noise attack.
Detection
Threshold FPR WDR under G-Noise standard deviation of

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

PSNR - - 34.04 30.59 28.14 26.26 24.71 23.41 22.29 21.32 20.45

StegaStamp 61/96 0.056 1.0 1.0 1.0 0.998 0.998 0.998 0.998 0.998 0.996
StegaStamp 60/96 0.094 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.998

ZoDiac p→ = 0.95 0.032 0.998 0.998 0.998 0.996 0.996 0.996 0.996 0.996 0.994
ZoDiac p→ = 0.90 0.062 1.0 0.998 0.998 0.996 0.996 0.996 0.996 0.996 0.996

Table 12: Results on different attack strengths of the G-Blur attack.
Detection
Threshold FPR WDR under G-Blur kernel size of

5 7 9 11 13 15 17 19

PSNR - - 32.17 29.42 28.00 27.04 26.22 25.60 25.08 24.59

StegaStamp 61/96 0.056 1.0 1.0 0.998 0.998 0.998 0.998 0.996 0.99
StegaStamp 60/96 0.094 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.996

ZoDiac p→ = 0.95 0.032 0.996 0.994 0.994 0.994 0.994 0.994 0.994 0.992
ZoDiac p→ = 0.90 0.062 0.996 0.996 0.994 0.994 0.994 0.994 0.994 0.994

Table 13: Results on different attack strengths of the Bmshij18 attack.
Detection
Threshold FPR WDR under Bmshij18 quality setting of

2 3 4 5 6

PSNR - - 30.70 32.26 33.90 35.44 37.17

StegaStamp 61/96 0.056 0.996 0.998 0.998 1.0 1.0
StegaStamp 60/96 0.094 0.998 1.0 1.0 1.0 1.0

ZoDiac p→ = 0.95 0.032 0.986 0.986 0.99 0.99 0.992
ZoDiac p→ = 0.90 0.062 0.968 0.992 0.992 0.996 0.996

Table 14: Results on different attack strengths of the Cheng20 attack.
Detection
Threshold FPR WDR under Cheng20 quality setting of

2 3 4 5 6

PSNR - - 31.79 33.22 35.07 36.58 37.98

StegaStamp 61/96 0.056 0.994 1.0 1.0 1.0 1.0
StegaStamp 60/96 0.094 0.996 1.0 1.0 1.0 1.0

ZoDiac p→ = 0.95 0.032 0.97 0.978 0.98 0.992 0.994
ZoDiac p→ = 0.90 0.062 0.984 0.986 0.99 0.99 0.994

Table 15: Results on different attack strengths of the Zhao23 attack.
Detection
Threshold FPR WDR under Zhao23 denoising steps of

40 60 80 100 120 140 160 180 200

PSNR - - 27.15 26.28 25.56 24.91 24.35 23.81 23.33 22.86 22.44

StegaStamp 61/96 0.056 0.588 0.286 0.098 0.032 0.01 0.002 0.002 0.0 0.0
StegaStamp 60/96 0.094 0.674 0.386 0.144 0.06 0.024 0.004 0.002 0.0 0.0

ZoDiac p→ = 0.95 0.032 0.98 0.974 0.95 0.94 0.924 0.912 0.894 0.866 0.818
ZoDiac p→ = 0.90 0.062 0.988 0.988 0.964 0.97 0.952 0.946 0.938 0.926 0.898
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B.7 Injecting Watermark into Frequency Space VS Spatial Space

We compare adding watermarks in the spatial domain of the noisy latent, denoted as ZoDiac w/o FT, where FT
stands for Fourier Transformation, to our frequency-domain-based approach. As illustrated in Table 16, operating
in the spatial domain results in a degraded PSNR, underscoring the importance of utilizing the frequency domain
to maintain image quality. More significantly, we observe distortions that are visible to the naked eye in the
central region of the image, as shown in Figure 10. This indicates that adding watermarks directly to the spatial
domain of the noisy latent representation leads to conspicuous patterns in the generated watermarked images,
thereby achieving robust watermarking at the expense of unacceptable visual artifacts.

Table 16: The watermarked image quality and watermark robustness in terms of watermark detection
rate (WDR) before and after attack for ZoDiac and its variant ZoDiac w/o FT. The SSIM threshold is
set to s

↓ = 0.92.

Method
Image Quality Watermark Detection Rate (WDR) before and after attack

PSNR SSIM LPIPS Pre-Attack Post-Attack

Brightness Contrast JPEG G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 Rotation

ZoDiac w/o FT 26.47 0.92 0.09 1 1 1 1 1 1 1 1 1 1 0.998
ZoDiac 29.41 0.92 0.09 0.998 0.998 0.998 0.992 0.996 0.996 0.994 0.992 0.986 0.988 0.538

ZoDiac w/o FT

ZoDiac

Original Image

Figure 10: Visual comparisons between watermarked images generated by ZoDiac and its variant
ZoDiac w/o FT.

B.8 Discussion on Composite Attack

When performing composite attacks, the order of executing individual attacks may influence the watermarked
detection rate. We evaluate with another composite attack "All w/o ↭ Rev.", which is the reversed order of "All
w/o ↭ " in Table 17. The slightly decreasing WDR of All w/o ↭ Rev., from 0.510↑ 0.548 to 0.456↑ 0.490,
indicates that the order of the attack execution also plays a role in attacking watermarked images. It is worthwhile
to deeply investigate composite attacks and develop image watermarking methods robust to various cases in the
future.

Table 17: ZoDiac’s watermark detection rate (WDR) two composite attacks, “All w/o ↭ ” that
combines all the individual attacks but excludes the rotation, and "All w/o ↭ Rev." that in the reversed
order.

Attack ZoDiac Watermark Detection Rate (WDR)⇓
MS-COCO DiffusionDB WikiArt

All w/o ↭ 0.510 0.548 0.530
All w/o ↭ Rev. 0.490 0.508 0.456
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C More Attack Discussion

C.1 About Rotation Attack

The rotation attack presents a significant challenge for most existing watermarking methods, including ZoDiac
(see Table 1). There are two strategies to mitigate this issue. The first approach, exemplified by SSL, integrates
rotation into the model’s training phase as a type of data augmentation. However, this method is incompatible with
ZoDiac’s zero-shot nature. The second approach involves rectifying the image’s orientation prior to watermark
detection. This correction can be achieved manually or via an automated process by systematically rotating
the image through a series of predetermined angles, spanning the full 360-degree spectrum and performing
watermark detection at each increment. We call this the “rotation auto-correction” defense.

Table 18: ZoDiac’s watermark detection rate
(WDR) and false positive rate (FPR) under Ro-
tation attack, with automatic correction of image
orientation.

MS-COCO, s→ = 0.92 Detection Threshold p→ WDR FPR

No Correction 0.9 0.538 0.062
0.99 0.376 0.004

5 0.9 0.998 0.676
0.99 0.992 0.034

Correction Rotation 10 0.9 0.998 0.432
Step Size 0.99 0.992 0.016

30 0.9 0.998 0.244
0.99 0.992 0.014

In this study, we test rotation auto-correction with
ZoDiac. We conduct experiments using intervals of 5,
10, and 30 degrees and report the Watermark Detec-
tion Rate (WDR) for watermarked images subjected
to the 90-degree rotation attack, and the False Positive
Rates (FPR) for unmarked images. Table 18 reports
the results on the MS-COCO dataset. As expected,
applying rotation auto-correction enables ZoDiac to
achieve a higher WDR. However, it also increases the
risk of detecting a watermark in unmarked images,
leading to a higher FPR. A higher detection threshold
p→ = 0.99 can greatly suppress FPR with a slight
decrease in WDR, decreasing from 0.244 – 0.676 to
0.014 – 0.034. Therefore in practice, to deploy the
rotation auto-correction defense, the higher detection
threshold is appropriate.

C.2 About Pipeline-Aware Attack

Conducting a pipeline-aware attack involves simulating what a knowledgeable attacker would do if they were
aware of how our watermarking works. The goal is to evaluate the robustness of ZoDiac against real-world
threats where attackers might have insights into the defense strategies used. Specifically, we assume the attacker
can inject another watermark to potentially disrupt or overwrite the original one by using ZoDiac, while testing
whether the original watermark can still be preserved.

Table 19: The Watermark Detection Rate (WDR)
for both the original and newly injected water-
marks under four scenarios according to whether
the attacker knows the model weights and the in-
jection configurations of the original watermark.

Model Weights Watermark Setting Original WDR New WDR
! ! 0.998 0.952
!

⇒
0.992 0.998⇒

! 0.998 0.98⇒ ⇒
0.106 0.998

Table 19 reports the Watermark Detection Rate
(WDR) for both the original and newly injected wa-
termarks under four scenarios according to the extent
of information available to the attacker. When the
attacker has only partial knowledge of our watermark-
ing method, such as lacking the model weights (i.e.,
the second row) or being unaware of the watermark in-
jection configurations, including the injection channel
and watermark radius (i.e., the third row), or both (i.e.,
the first row), the original watermark remains undis-
turbed by the new one and it is successfully detected
with a high WDR. However, when the attacker has
complete knowledge of the watermarking pipeline
used for injecting the original watermark (i.e., the
fourth row), the original watermark is unfortunately overwritten by the new one. The results confirm the
robustness of our proposed ZoDiac in the face of partial knowledge adaptive attacks and also underscore the
critical importance of safeguarding the model weights and watermark configurations to ensure security.

D GPU Usage and Time Cost

The GPU usage of ZoDiac is 15,552MiB when operating with 32-bit floating-point precision. This memory is
primarily attributed to the activation maps and model parameters required for the diffusion model computations,
where the model parameters take 5,308MiB memory. All the experiments are conducted with 1 NVIDIA
RTX8000.

Since ZoDiac is a zero-shot watermarking method based on the well-trained diffusion model, the time cost is
solely attributed to optimizing the noisy latent representation of the given image embedded with the watermark.
Therefore the time cost is influenced by the selected denoising step during the reconstruction of the watermarked
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image. The completion of reconstruction is determined when the SSIM loss falls below 0.2 (i.e., the SSIM metric
for the watermarked image quality exceeds 0.8) or the maximum number of iterations (i.e., 100) is reached.

Table 20: Average convergence iterations,
time cost per iteration, and time cost per
image when utilizing different denoising
steps for watermarking one image.

Denoising
Steps

Avg.
Iteration

Time Cost
(s/iter)

Time Cost
(s/Img)

50 43.9 5.83 255.94
30 42.3 3.77 159.47
10 38.9 1.68 65.35
1 68.1 0.66 45.41

As shown in Table 20, the larger the denoising step, the longer
each iteration will take, consequently increasing the overall
time cost. Regarding average convergence iterations, as the
denoising step decreases, ZoDiac requires slightly fewer itera-
tions to achieve similar performance. This might be attributed
to the shallower steps of gradient backpropagation, leading to
faster convergence. Notice that when the denoising step is de-
creased to 1, it becomes harder to reconstruct a watermarked
image with a quality above 0.8, making it more challenging
to trigger the early exit condition based on the SSIM loss
threshold. Consequently, it leads to longer convergence itera-
tions in this case. Additionally, we have demonstrated that the
denoising steps do not significantly impact the watermarking
performance. The detailed results and analysis are provided
in Appendix B.2. Therefore, we could always choose small
denoising steps to effectively embed robust watermarks while maintaining a reasonable time cost.

E Visual Examples

Figure 11 shows several image examples, taken from each of our three datasets. For each image, we show the
original, watermarked versions with seven watermarking methods, including ZoDiac, and the residual images
(i.e., the watermarked image minus the original image). We observe that ZoDiac does not introduce significant
visible degradation. We can hardly observe image differences for the DwtDct, RivanGAN, and SSL methods,
a small amount of differences for DwtDctSvd, CIN, and our proposed ZoDiac, and a significant amount for
StegaStamp. Notably, DwtDct, RivanGAN, and SSL suffer from poor robustness against advanced attacks, while
ZoDiac achieves a favorable trade-off between visual quality preservation and robust watermarking.

Input Image DwtDct DwtDctSvd RivaGAN SSL StegaStamp ZoDiacCIN

Figure 11: Visual examples of different invisible watermarking methods together with corresponding
residual images (zoom in for details). The top two rows show real photos from the MS-COCO dataset,
the next two rows show AI-generated content from DiffusionDB, and the last two rows are artworks
from WikiArt. The SSIM threshold for ZoDiac is 0.92 for these examples.

F Impact Statement

Our work advances the robust image watermarking research field. In particular, we produce the first diffusion-
model-based image watermarking method that is resilient to advanced watermark removal attacks, such as a
diffusion-model-based attack and attacks composed of multiple, individual attack methods. Our method enables
content protection and authenticity verification, positively impacting visual artists and other visual content
creators. Our technique may use machine learning and is thus susceptible to some of the pitfalls of machine
learning, such as bias, which may result in negative societal impact.
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