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Abstract—Toward improving the ability to evaluate self-
adaptation mechanisms, we present the automated traffic rout-
ing problem. This problem involves large numbers of agents,
partial knowledge, and uncertainty, making it well-suited to
be solved using many, distinct self-adaptation mechanisms.
The well-defined nature of the problem allows for comparison
and proper evaluation of the underlying mechanisms and the
involved algorithms. We (1) define the problem, (2) outline
the sources of uncertainty and partial information that can
be addressed by self-adaptation, (3) enumerate the dimensions
along which self-adaptive systems should be evaluated to
provide a benchmark for comparison of self-adaptation and
traditional mechanisms, (4) present ADASIM, an open-source
traffic routing simulator that allows easy implementation and
comparison of systems solving the automated traffic routing
problem, and (5) demonstrate ADASIM by implementing two
traffic routing systems.
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I. INTRODUCTION

Self-adaptation is one approach to handling the growing
complexity of software systems [4], [9]. Self-adaptive sys-
tems observe their environments and determine when some-
thing prevents them from meeting their requirements. The
systems then adapt to satisfy those requirements.

Self-adaptation is a popular area of research, e.g., [3],
[7], [8], [14], [15], [25]. Yet, the lack of a high-level orga-
nization of the research and a standardized framework for
comparing techniques and evaluating approaches has been
hurting progress. Further, the adoption of self-adaptation has
been hindered by poor understanding of how self-adaptation
techniques compare to other, more traditional approaches.

We, as well as others, have previously argued that to
facilitate comparison, it is helpful to produce benchmarks
with clearly identified evaluation dimensions [2], [4], [6]. In
this paper, we present one such benchmark, the automated
traffic routing problem. This problem deals with traveling
vehicles on a constrained set of roadways. Each vehicle has
a starting and an ending location and a time at which it
starts its journey. On each road, speed limits and traffic affect
how fast cars may travel. Some events, such as accidents,
or construction, can unexpectedly affect this speed and even
close some roads. There are numerous quantities and qualities
that a traffic routing system may choose to optimize, such as
the total travel time, the worst-case vehicle’s travel time, or

the environmental pollution. Because the automated traffic
routing problem involves large numbers of agents, partial
knowledge, and uncertainty, it is well-suited to be solved
using self-adaptation mechanisms.

The systems that solve the automated traffic routing prob-
lem can be non-adaptive, centralized self-adaptive, or decen-
tralized self-organizing. The techniques can be evaluated on
scalability, robustness to noise in observation, robustness to
vehicle and goal churn, answer quality, and resource con-
sumption. Some existing research has tackled related prob-
lems, e.g., [10], [15]. However, without a formal, standard-
ized, and consistent problem statement and clear evaluation
dimensions, comparing these techniques has been nearly im-
possible.

This paper addresses this shortcoming. Section II presents
such a problem statement for the automated traffic routing
problem. Section III outlines the sources of uncertainty and
partial information. Section IV provides a benchmark for
self-adaptation and traditional mechanisms by identifying the
automated traffic routing problem’s evaluation dimensions.
Section V describes ADASIM, an open-source traffic routing
simulator that allows easy implementation and comparison
of systems solving the automated traffic routing problem and
Section VI demonstrates our experience using ADASIM to
implement, simulate, and compare techniques. Section VII
places our work in the context of related research. Finally,
Section VIII summarizes our contributions.

II. THE AUTOMATED TRAFFIC ROUTING PROBLEM

In this section, we first describe the automated traffic
routing problem informally. This description is sufficient to
understand the problem, the inherent uncertainty and di-
mensions along which techniques can be evaluated, and our
simulator. We then, for completeness, formalize the defini-
tions. The formalism can give a deeper understanding of
the problem and resolve ambiguities that often result from
informal descriptions.

A. Intuitive Description

The automated traffic routing problem involves vehicles,
traveling on a map. Each vehicle has a starting and a target
point and a starting time. The goal of each vehicle is to
traverse the map, along its streets, from the starting to the
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target point. The vehicles compete for resources. The streets
impose speed limits, and as the number of vehicles and
congestion on a given street increases, the maximum allowed
speed decreases. Some events, such as traffic accidents or
road closures, can cause further slowdowns.

Solving the automated traffic routing problem requires
decision making. The vehicles themselves are a natural set of
decision-making agents, but it is also possible for the streets,
intersections, and other virtual agents to make decisions. It
is possible for the agents to have a complete and accurate
view of the world, though it is more realistic for each agent
to only be able to observe a small, local part of the world.
Further, such observations are likely to be noisy and create
uncertainty. As we describe in Section III, these properties
and large instance sizes make this problem ideal to be solved
with self-adaptation.

Systems that solve the automated traffic routing problem
will differ in two important ways: First, their answers to
instances of the automated traffic routing problem differ. For
example, with reasonable assumptions, a centralized solution
may be able to always find the answer that minimizes the sum
of the travel times of all the vehicles. In contrast, a decen-
tralized solution is unlikely to always minimize this quantity.
Second, the characteristics of the approach the solutions
take to find the answers differ. For example, a centralized
solution may require knowing all vehicles’ goals ahead of
time, perform the bulk of its computation before movement
can begin, and contain a single point of failure. In contrast,
a decentralized solution may require no a priori knowledge,
allow vehicles to start moving as soon as they wish, and
contain no single point of failure. Further, a decentralized
solution likely has lower communication costs and scales
better with the number of vehicles.

B. Formal Definitions
We now formalize the automated traffic routing problem.
An instance of the automated traffic routing problem con-

sists of: (1) a node-weighted, directed graph, with a mono-
tonically non-decreasing, non-negative traffic delay function
associated with every node, and (2) a set of vehicles, each
with a starting and an ending node and a starting time.

Definition 1 (Automated Traffic Routing Problem Instance).
Let N be a set of nodes. Let C be a set of directed connections
between nodes c ∈ N2. Let w : N → Z≥0 map nodes to
non-negative integer weights. Then G = 〈N,C,w〉 is a node-
weighted, directed graph.

Let F be the set of all f : Z≥0→ Z≥0 monotonically non-
decreasing, non-negative functions. Then let d : N → F map
each node to one such function.

Let V be a set of vehicles, where each vehicle v = 〈sv ∈
N, fv ∈ N, tv ∈ Z≥0〉 is a triple of a starting and ending vertex
in G and a starting time.

Then an automated traffic routing problem instance is the
triple P = 〈G,d,V 〉.

An answer to an instance of the automated traffic routing
problem is, for each vehicle, a path along the graph that will
take that vehicle from its starting to its ending vertex.

Definition 2 (Automated Traffic Routing Answer). Let P =
〈G,d,V 〉 be an instance of the automated traffic routing prob-
lem. For all z ∈ Z≥0, for each v ∈V , let av = 〈n1,n2, . . . ,nz〉,
be such that:
• each ni is a node in G,
• the sequence 〈n1,n2, . . . ,nz〉 forms a valid path within G,
• n1 = sv, and
• nz = fv.
Let A be a set of av, one for each v ∈ V . Then A is an

answer to P .

A measurement uncertainty filter defines how each entity’s
properties’ values are distorted when observed.

Definition 3 (Measurement Uncertainty Filter). Let E be a
finite alphabet of entities. Let V be a finite alphabet of values
that properties can take on. For all e ∈ E, let Pre be the set
of e’s properties. Then for each pre ∈ Pre, a measurement
uncertainty filter mpre : V → V ∪ { }, where ( is a special
blank symbol).

A data privacy policy defines which entity’s properties
which agents can access.

Definition 4 (Data Privacy Policy). Let A be a finite alphabet
of agents. Let E be a finite alphabet of entities. Let V be a
finite alphabet of values that properties can take on. For all
e∈ E, let Pre be the set of e’s properties. Then for each a∈ A,
for each pre ∈ Pre, a data privacy policy ra,pre : V →V ∪{ },
where ( is a special blank symbol).

Finally, an automated traffic routing problem solution pro-
duces answers to problem instances. A solution consists of:
(1) a set of sensors (measurement uncertainty filter and data
privacy policy pairs), and (2) a set of agents and agent
algorithms such that each vehicle is assigned to exactly one
agent.

Definition 5 (Automated Traffic Routing Solution). Let A
be a finite alphabet of agents. Let E be a finite alphabet of
entities. Let Pr be the set of all possible properties of all
possible entities. Let P̂ be the set of all possible automated
traffic routing problem instances. Then for each P ∈ P̂ , let
MP map pr ∈ Pr to a measurement uncertainty filter. And
for each P ∈ P̂ , for each agent a ∈ A, let RP map each pair
〈a, pr ∈ Pr〉 to data privacy policy.

Let V̂ be the set of all possible vehicles. Then let â : V̂ → A
assign each vehicle to an agent.

Let Â be the set of all possible automated traffic routing
answers. Then let S : P̂ → Â such that S(P ) = A ⇒ A is a
valid answer for P , and let S̄ be the set of algorithms, one per
agent, that execute to compute S .

Then, if V is the set of vehicles in P , and if S̄ operates with



the set of agents Â⊆ A, and if each agent a ∈ Â only operates
on vehicles v if â(v) = a, and if for all entities e, for each
of e’s properties pre, for all values v of pre, in the process
of S̄ ’s execution, the only information a accesses about e is
(MP (pre))((RP (a, pre))(v)), then S̄ is a set of algorithms
that make up the automated traffic routing solution S .

III. APPLICABILITY TO SELF-ADAPTATION

The automated traffic routing problem is well suited for
some self-adaptation techniques for three reasons: (1) it in-
volves a large number of agents, (2) each agent has access
only to partial information, and (3) each agent’s view may
involve significant uncertainty.

Problems with a small number of agents lend themselves to
centralized, static solutions because collecting and managing
information about all the agents is feasible. In contrast, the
automated traffic routing problem can involve numerous ve-
hicles, streets, and intersections. Solutions that realistically
represent the real world of vehicular traffic must take into
account changing goals at runtime (e.g., drivers may suddenly
decide to change their destinations), and locally-made deci-
sions (e.g., drivers select their own routes, without notifying
a centralized agent).

Problems for which it is possible for a single agent to
have complete knowledge of the environment again lend
themselves to centralized, static solutions. In contrast, the
decision-making agents in most realizations of the automated
traffic routing problem, such as the vehicles, streets, and
intersections, have only a partial view of the world. For
example, a driver may only see the traffic conditions on
its currently-traveled street. The partial views may cause
agents to make globally-suboptimal choices and require their
strategies to change at runtime, as information changes or
becomes available to the agents.

Finally, problems with exact environmental descriptions
that can be sensed precisely also lend themselves to cen-
tralized, static solutions that do not need to adapt at run-
time. In contrast, the automated traffic routing problem has
numerous sources of uncertainty that may cause agents to
make suboptimal decisions that need to be changed later. For
example, a vehicle’s sensors may be noisy, and knowledge
among agents may be inconsistent. Additionally, sudden en-
vironmental changes, such as accidents, can change traffic
and other conditions unpredictably, invalidating some of the
vehicles’ knowledge. The ADASIM simulator we describe in
Section V allows for explicit modeling of each of these kinds
of uncertainty.

IV. SOLUTION COMPARISON DIMENSIONS

There are many paths each vehicle in an instance of the
automated traffic routing problem could follow. Some solu-
tions may select these paths once and never change them.
Other solutions may adapt these paths as traffic conditions

change. Because solutions can employ such drastically dif-
ferent approaches, comparing them is a difficult task. How-
ever, without careful, methodical comparison, research can-
not make steady progress [2]. In this section, we describe
several dimensions along which solutions to the automated
traffic routing problem should be evaluated and compared.
While this list is not exhaustive, we try to identify the most
important dimensions.

Answer Quality: The answers to each problem instance
can vary in quality. Vehicles may reach their goals quickly
or be delayed by traffic or long routes. As solutions generate
answers, they may aim to optimize different measures. For
example, solutions may choose to minimize the sum of all
vehicles’ travel times, the maximum time a vehicle travels,
etc. Since producing answers is the main goal of the auto-
mated traffic routing problem solutions, this is an important
comparison dimension.

Scalability: The automated traffic routing problem so-
lutions need to scale well in two dimensions: the number
of vehicles and the size of the map. For each dimension,
it is important to consider the growth of the computation
and communication costs. Both the worst-case asymptotic
complexity and the typical-case in practice analyses are ap-
propriate. Simulation or experimentation may assist with the
latter analysis. Further, it is important to consider where the
computation takes place. For example, a single, centralized
agent may be powerful enough to execute complex algorithms
far faster than the vehicles themselves.

Robustness to Sensor Uncertainty: As the agents ob-
serve their environment, the data their sensors return about
other vehicles’ speed and street congestion are noisy. A solu-
tion that is robust to noise does not produce vastly different
answers when experiencing small sensor reading differences.
If a small perturbation results in a large change to the answer,
then the solutions will likely be ineffective at dealing with
noisy, dynamically-changing, real-world data.

Robustness to Agent and Street Failure: Vehicles and
other agents may fail at any time. A solution that is robust
to agent failures can withstand such failures with minimal
effects on the answer it produces. For example, if one vehicle
fails, a robust solution would not negatively affect other
vehicles. Further, robust solutions would adjust the paths
of other vehicles once failures occur if those paths can be
improved given the failures.

Streets can also fail and become closed. Some such failures
can prevent certain vehicles from reaching their destinations,
while only delaying others. A solution that is robust to street
failures can react, at runtime, to such failures and reroute
vehicles as necessary.

Robustness to Churn: The automated traffic routing
problem allows for vehicles to start and finish at different
times. A solution that is robust to churn does not require
knowing about vehicles until their starting times and can
accommodate new vehicles that choose to join. Further, the



answers such a solution produces are not greatly affected by
vehicles deciding to halt their travel in the middle of their path
or change their destination.

Resource Consumption: Agents consume resources. For
example, the computation and communication the agents
perform cost energy. Thus, solutions can be compared based
on their resource consumption. Further, solution resource
consumption can be compared to the minimal amount of
resources required to solve the problem.

V. THE ADASIM SIMULATOR

We have built the ADASIM simulator for evaluating and
comparing automated traffic routing problem solutions (http:
//adasim.googlecode.com). ADASIM is written in Java and is
configurable and extendable, as we discuss in Section V-B.
ADASIM makes up a significant part of the contribution of
this paper as eases the comparison of the automated traffic
routing problem solutions along the dimensions outlined in
Section IV. ADASIM implements most of the features we
described in Section II, though it is an ongoing project with
new features being added regularly. We encourage ADASIM
users to submit feature requests and, of course, bug reports,
via http://adasim.googlecode.com. Since ADASIM is open-
source, we also welcome code contributions for specific
issues in the project’s issue tracker.

The remainder of this section will first overview ADASIM’s
high-level design and then describe how to use ADASIM to
evaluate solutions. Then, Section VI will discuss our experi-
ence using ADASIM to evaluate two specific solutions.

A. ADASIM Design

ADASIM is a discrete event simulator that tracks vehicles
traveling on a map. Each vehicle has a starting and an ending
point. The speed of a vehicle traveling on a street depends
on that street’s traffic delay function and the number of
other vehicles on that street. Since the simulation is discrete,
during each simulation cycle, each vehicle gets a chance to
perform an action. Vehicles can move along a street, move
to a connecting street at an intersection, or stop. All notions
of time in the model are discrete as well. The travel time is
measured in cycles, and all measures of distance, speed, and
traffic delay are expressed in terms of cycles. For example,
a street may take 10 cycles to travel if no other vehicles are
present, but the travel time may increase to 100 cycles if 100
other vehicles are traveling the same street at the same time.

ADASIM has six kinds of abstract entities: (1) a map, (2)
vehicles, (3) agents that make routing decisions and collect
and store information, (4) sensors that allow agents to observe
the environment, (5) measurement uncertainty filters that
control the noise and other sources of uncertainty in the
sensor measurements, and (6) data privacy policies that allow
vehicles and streets to restrict part or all information about
themselves from sensors.
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Figure 1. An example map of an intersection (a) and the corresponding
ADASIM graph.

The map is represented by a node-weighted graph. The
nodes in the graph represent street segments, and the edges
represent connections between segments. There are several
advantages to this representation of street segments as nodes.
For example, it enables modeling intersections with restric-
tions on which turns vehicles can make (e.g., a disallowed left
turn). Figure 1(a) shows a sample intersection of four street
segments. The arrows illustrate the six legal travel directions
in this intersection. Figure 1(b) shows the ADASIM graph that
represents this intersection. Note that the graph has six edges,
one for each legal travel direction in the intersection.

Each vehicle starts traveling at its starting simulation cycle
from its starting street segment and aims to reach its target
street segment. Each vehicle has associated with it an agent
responsible for deciding that vehicle’s next action. Vehicles
can sense the environment, as we describe below. Once a
vehicle reaches its target, it is removed from the simulation.
The vehicle’s agent may also decide to remove the vehicle.

The ADASIM agents make routing decisions on behalf
of the vehicles. Each agent has associated with it a routing
algorithm that it uses to decide what its vehicles will do next.

Sensors allow agents to observe the environment. Each
sensor is associated with a single entity, such as an agent,
a vehicle, or a street segment. The sensor’s entity registers
with the sensor what quantities may be sensed about that
entity. For example, a vehicle may allow its sensor to share its
speed and current location, but not its starting and target street
segments. Other agents can query the sensors for this in-
formation. Before revealing the queried information, sensors
apply two filters: one that injects measurement uncertainty
and one that preserves the underlying entity’s privacy.

Each entity specifies the measurement uncertainty filter
that is applied to each of its sensed pieces of information. For
example, a filter may add 10% Gaussian noise to the speed
of a vehicle, or return a set of neighboring street segments
instead of a single current position.

Finally, each entity specifies the data privacy policy that
sensors apply to its information before sharing it. For ex-
ample, vehicles may be willing to share their location with
intersection agents but not with other vehicles’ agents.

The current implementation of ADASIM places some lim-
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itations on the features we describe above. We made these
simplifications to limit the scope of ADASIM’s supported
features and improve the quality of the current release. The
current ADASIM implementation allows only for vehicles
themselves to act as agents, and there are some limits on
the diversity of measurement uncertainty filters. Since data
privacy filters use the same mechanism, they are subject to
the same limitations. We plan to add the full set of features in
the next release. In the future, we envision that agents can be
positioned anywhere: on vehicles; on intersections; on street
segments; on collections of vehicles, intersections, and street
segments; or virtually, without a physical location.

B. Using and Extending ADASIM

ADASIM simulates the execution of an automated traffic
routing problem solution on an automated traffic routing
problem instance. Thus, to execute an ADASIM simulation,
one must specify the solution and the problem instance.
Doing so consists of defining the necessary concrete instances
of the six abstract entities defined in Section V-A. The map,
vehicle set, measurement uncertainty filters, and data privacy
policies define the instance of the problem. The agents and
sensors define the solution.

The user specifies the problem instance and solution using
an ADASIM XML configuration file (see http://code.google.
com/p/adasim/wiki/XML config). Each street segment’s traf-
fic delay function, each agent’s routing algorithm, each mea-
surement uncertainty filter, and each data privacy policy is
specified via the name of a Java class. Several such classes are
built into the ADASIM release. For example, ADASIM ships
with traffic delay functions that increase the travel time on
a street segment linearly and quadratically with the number
of traveling vehicles once that number passes a threshold. In
Section VI, we will discuss several routing algorithms also
built into ADASIM.

For other functions, algorithms, filters, and policies, the
user writes a new Java class (implementing the appropriate
Java interface) and specifies that class in the configuration.
This allows specifying arbitrary routing algorithms and re-
stricting the problem with traffic load, sensor noise, and
privacy constraints. Thus, ADASIM can simulate and evaluate
a vast range of automated traffic routing problem solutions.

Once ADASIM loads the solution and problem instance,
it simulates the discrete event execution of the vehicles
traveling around the map. Whenever a vehicle arrives at its
destination, attempts to make an illegal transition on the map,
or is told to stop by its agent, that vehicle is removed from
the simulation. The simulation halts when no more vehicles
remain. Since it is possible for vehicles to enter infinite loops,
the user can halt the simulation at any time.

ADASIM logs all vehicle events that take place. These
logs contain each vehicle’s path, the conditions each agent
encountered when it made decisions, and the decisions them-
selves. Of course, ADASIM also logs illegal actions and ve-

hicle removal. From the logs, it is possible to reconstruct the
travel time for each vehicle as well as congestion information
at each node during each simulation cycle. The ADASIM
release includes several scripts for parsing log files, docu-
mented at http://code.google.com/p/adasim/wiki/Scripts.

VI. ADASIM EXPERIENCE

To demonstrate the ease of using ADASIM to compare
automated traffic routing problem solutions, we implemented
two such solutions and evaluated them along the answer
quality dimension. The first solution uses a non-adaptive
technique while the second self-adapts to traffic conditions.
In this experience, we discovered several surprising results
about the seemingly simple solutions that would have been
hard to identify and understand without a simulation or a
prototype deployment. For example, whereas we expected
that with heavy traffic, the self-adaptive solution would sig-
nificantly outperform the solution that ignored traffic, we
found that properties of the map on which the vehicles were
traveling significantly affected the benefits of self-adaptation.
Further, we found that the self-adaptive solution can cause
unintended and undesired behavior, such as livelock.

The goal of this section is not to exhaustively demonstrate
ADASIM’s features, but only to show the ease of (1) creating
new solutions and (2) evaluating and comparing them.

A. Solutions and Problem Instances

We implemented two solutions to the automated traffic
routing problem. The first, called SHORTESTPATH, is non-
adaptive. The second, called TRAFFICLOOKAHEAD, adapts
to traffic conditions.

In SHORTESTPATH, each vehicle has its own agent. The
agent uses Dijkstra’s algorithm to find the shortest path
from the vehicle’s start to its destination without taking into
account the traffic conditions. The vehicle then follows that
path without making adjustments.

In TRAFFICLOOKAHEAD, each vehicle also has its own
agent. Each agent can see the traffic conditions at a fixed
radius of street segments around its vehicle. The agent also
uses Dijkstra’s algorithm to compute the fastest path to the
destination given its partial view of the traffic conditions and
the vehicle begins following that path. After traveling through
a street segment, the agent updates its traffic information and
recomputes the path from the current location. The vehicle
then adjusts its travel accordingly.

We ran our experiments on two types of maps, each
having 168 street segments. The first type, called random,
is randomly-generated. For each ordered pair of street seg-
ments, we connected those segments with the probability that
led to each segment having, on average, four connections. We
chose four because most real-life intersections are four-way.
We chose each street segment’s length uniformly randomly
from {3, 4, 5, 6} and the time to travel each segment increases
linearly with the number of cars on that segment.
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Figure 2. A comparison of the TRAFFICLOOKAHEAD and the SHORTESTPATH solutions on the random (a) and city (b) maps. In heavy traffic, on random
maps, SHORTESTPATH vehicles travel 15% longer than TRAFFICLOOKAHEAD vehicles. In contrast, in heavy traffic, on city maps, SHORTESTPATH vehicles
travel 28% longer than TRAFFICLOOKAHEAD vehicles.

The second type of map, called city, is a more realistic
representation of a real city map. Figure 3 graphically de-
picts the city map, a regular 6× 6 block grid made up of
seven horizontal and seven vertical streets (resulting in 168
directed, or one-way, street segments). At each intersection,
each street segment connects to every other street segment
at this intersection, and additionally allows turning around.
Each segment has a length of 5. The 2 six-segment streets that
divide the city map into four equal quadrants (thicker lines
in Figure 3) represent highways that can handle 1000 cars
without being affected by traffic. After 1000, the number of
cycles necessary to traverse each segment increases linearly
with each new vehicle. All other street segments have the
same traffic delay functions as the random map.

B. Experimental Setup

To explore how traffic conditions impact our two solutions,
we produced problem instances with 10 · 2i vehicles, for
each i ∈ {0,1,2,3, . . . ,9}. We chose each vehicle’s starting
and ending points uniformly randomly from the map’s street
segments. We allowed each TRAFFICLOOKAHEAD agent to
see the traffic conditions up to five street segments away from
the agent’s location. The agents recomputed the vehicles’
paths at every intersection. We did not model measurement

Figure 3. A city map is a regular, 6× 6 block grid with seven horizontal
and seven vertical streets. Each street segment has the same length but the
bold segments represent highways and have a significantly higher tolerance
for traffic.

noise for these experiments. We repeated the experiments on
the random and city maps, and ran each experiment enough
times to average the travel times of 10,000 vehicles.

C. Results and Discussion

Figure 2 shows the average travel time for the SHORTEST-
PATH and TRAFFICLOOKAHEAD solutions on random and
city maps. Our simulations revealed several counterintuitive
and surprising results. First, TRAFFICLOOKAHEAD only
slightly outperforms SHORTESTPATH on the random maps.
On random maps, in heavy traffic, SHORTESTPATH vehi-
cles travel 15% longer than TRAFFICLOOKAHEAD vehicles.
On city maps the difference is 28%. This finding indicates
that the presence of highways can effectively relieve traf-
fic load, whereas the same number of non-highway streets
cannot. Second, in a simulation with half the vehicles us-
ing SHORTESTPATH and half using TRAFFICLOOKAHEAD,
the difference in vehicle travel times was small (data not
shown). This finding indicates that while TRAFFICLOOK-
AHEAD vehicles can relieve traffic load, both types of vehi-
cles benefit from such relief. Third, TRAFFICLOOKAHEAD
can sometimes cause livelock, a significant problem from
which SHORTESTPATH does not suffer (data not shown).

ADASIM allows for directly comparing SHORTESTPATH
and TRAFFICLOOKAHEAD because both solutions execute
within the same framework and under the same conditions.
This allows for more-precise comparisons than through de-
riving measures across different evaluation platforms. Here,
ADASIM allowed us to quickly and easily identify and un-
derstand situations in which one solution’s benefits were
diminished, despite our earlier intuition.

The total effort required to perform these comparisons
using ADASIM is rather small. We had to write one Java
class totaling 134 non-comment lines of code. We also had
to create scripts to generate the configuration files and maps,



totaling 60 lines of Python code. These scripts and maps,
of course, are reusable for future experiments, both on eval-
uating new solutions, and on comparing those solutions to
SHORTESTPATH and TRAFFICLOOKAHEAD.

VII. RELATED WORK

In this paper, we propose a benchmark problem, and a
simulator for solutions to that problem, to help evaluate
and compare self-adaptive algorithms. Other, more mature
research fields have well-established benchmarks to evaluate
new techniques against the state-of-the-art. For instance, the
software testing and analysis community has the Siemens
benchmark suite [16], and the SIR [17] and iBugs [5]
repositories, and the programming languages community has
DaCapo [1] and SPEC [18] as popular benchmarks. These
benchmarks could be adopted for evaluating self-adaptive
algorithms along some of the comparison dimensions we
discuss in Section IV. For example, the fault data could be
used to compare the answer quality of techniques that attempt
to heal or avoid functional failures [3], and the performance
benchmarks could be used to evaluate the performance and
scalability of the techniques. However, to properly evaluate
self-adaptive solutions, we need benchmarks that lend them-
selves specifically to such solutions.

To the best of our knowledge, ZNN.com [26] is the
only other attempt to define a common benchmark for self-
adaptive techniques, and thus it is the most closely related
work to the automated traffic routing problem. ZNN.com is
a news content service that serves multimedia content to its
customers. ZNN.com has requirements on the timeliness of
query responses and operating costs, while environmental
conditions, such as spikes in user load, create a need for
self-adaptation. Two of ZNN.com’s possible adaptations are
changing the server pool size and switching between multi-
media and text-only content. While ZNN.com is well-suited
for systems that make a limited number of pre-specified
adaptation decisions, it severely restricts the possibility for
creating new solutions with new adaptation mechanisms. In
contrast, the automated traffic routing problem offers a wide
range of environmental conditions that can influence self-
adaptation, and also allows more parts of the overall system to
be adapted. This, in turn, creates a large decision space with
room for innovative solutions. ZNN.com and the automated
traffic routing problem complement each other, allowing for
more diversity in the types of self-adaptive techniques one
can evaluate.

Frameworks that allow building multiple self-adaptive so-
lutions can also aid the evaluation of such solutions. Villegas
et al. survey several self-adaptive techniques and provide a
framework that considers the adaptation goals and quality
attributes that have to be satisfied by the controller and the
monitored system [19]. However, this framework does not
lead to empirical evaluation of how well techniques meet

their goals. In contrast, in this paper, we have proposed a chal-
lenging problem that lends itself to self-adaptive solutions,
and a simulator to empirically evaluate and compare those
solutions.

Simulators are a common way to aid evaluation. There
are several network and wireless sensor simulators, such as
OMNet++ [12], NS-3 [11], and QualNet [13]. These simu-
lators are widely used among researchers in the networking
community and are highly customizable, but deliver only
the low-level abstractions of networks. In contrast, ADASIM,
is less customizable with regard to the underlying network
model, but includes traffic-related abstractions, making im-
plementing solutions to the automated traffic routing problem
much easier than with existing network simulators.

Finally, route finding and adaptive traffic control are widely
popular research areas. For example, the MACODO mid-
dleware for context-driven dynamic agent organizations has
been used for routing traffic via traffic light agents [23].
The particular version of the routing traffic problem [23]
has also been used elsewhere [22], [21], [24], [20]. Mean-
while, another approach uses self-adaptive cruise control
to adjust vehicle speeds based on traffic conditions [15].
These approaches could both be implemented, simulated,
and compared using ADASIM. Further, ADASIM allows the
direct exploration of the effects of combining the approaches,
perhaps learning that they complement or interfere with one
another. Instead, today, researchers build their own custom
simulators and define their problems independently, making
comparison difficult [15], [23].

VIII. CONTRIBUTIONS

As a step toward improving the evaluation of research
into self-adaptive systems, we have presented the automated
traffic routing problem, an exemplar problem that lends itself
to a variety of self-adaptive solutions. Our goal is to provide
a canonical problem to allow (1) researchers to evaluate and
compare self-adaptation techniques and (2) students to study
self-adaptation techniques in the realm of a well-understood
problem. In addition to formally defining the problem, we
have outlined a set of dimensions along which solutions
should be evaluated. We have also built ADASIM, an open-
source, discrete event simulator for automated traffic routing
problem solutions. ADASIM is available for download at
http://adasim.googlecode.com and allows for fast and simple
implementation and comparison of the solutions. Our vision
is that this exemplar becomes part of a benchmark portfolio
that helps coordinate and advance self-adaptation research.
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