
Behavioral Execution Comparison:
Are Tests Representative of Field Behavior?

Qianqian Wang Yuriy Brun Alessandro Orso

School of Computer Science College of Information and Computer Science

Georgia Institute of Technology University of Massachusetts

Atlanta, GA, USA 30332-0765 Amherst, MA, USA 01003-9264

{qianqian.wang, orso}@cc.gatech.edu brun@cs.umass.edu

Abstract—Software testing is the most widely used approach
for assessing and improving software quality, but it is inherently
incomplete and may not be representative of how the software
is used in the field. This paper addresses the questions of to
what extent tests represent how real users use software, and
how to measure behavioral differences between test and field
executions. We study four real-world systems, one used by end-
users and three used by other (client) software, and compare
test suites written by the systems’ developers to field executions
using four models of behavior: statement coverage, method
coverage, mutation score, and a temporal-invariant-based model
we developed. We find that developer-written test suites fail to
accurately represent field executions: the tests, on average, miss
6.2% of the statements and 7.7% of the methods exercised in the
field; the behavior exercised only in the field kills an extra 8.6%
of the mutants; finally, the tests miss 52.6% of the behavioral
invariants that occur in the field. In addition, augmenting the
in-house test suites with automatically-generated tests by a tool
targeting high code coverage only marginally improves the tests’
behavioral representativeness. These differences between field
and test executions — and in particular the finer-grained and
more sophisticated ones that we measured using our invariant-
based model — can provide insight for developers and suggest a
better method for measuring test suite quality.

Index Terms—software testing; field data; model inference

I. INTRODUCTION

Despite its inherent limitations, testing is the most widely

used method for assessing and improving software quality. One

common concern with testing is that the test cases used to

exercise the software in house are often not representative, or

only partially representative, of real-world software use. This

limits the effectiveness of the testing process. Although this

limitation is well known, there is not a broad understanding of

(1) the extent to which test cases may fall short in representing

real-world executions, (2) the ways in which tests and real-

world executions differ, and (3) what can be done to bridge

this gap in an effective and efficient way. As a step toward

addressing these open questions, in this paper we measure

the degree to which in-house tests use software in ways

representative of how real users use the software in the field.

To that end, we studied four software systems: JetUML,

Apache Commons IO, Apache Commons Lang, and Apache

Log4j. JetUML has two in-house test suites that achieve a

relatively high coverage, and Commons IO, Commons Lang,

and Log4j each have a test suite that achieves over 75%

statement coverage. Because software can be used by end-

users or by other (client) software, we examined both cases.

We collected end-user executions for JetUML and executions

through client code for Commons IO, Commons Lang, and

Log4j. Specifically, we deployed JetUML to 83 human subjects

who used it to perform several modeling tasks, and we collected

traces of Commons IO, Commons Lang, and Log4j being used

by real-world projects selected from GitHub (see Section IV-A).

To compare the behavior of in-house tests and field execu-

tions, we used four behavioral models: two coverage-based

models (statements and methods covered), a mutation-based

model (killed mutants, applied only to the library benchmarks

because of a limitation in the execution recording tool we

used), and a temporal-invariant-based model (kTails-based

invariants [6], [10]). The coverage-based models represent

the state of the practice in industry today for evaluating test

suite quality [1], [22], [27], [28], [30]. The mutation model

is the state of the art for test suite quality evaluation, but it

is used sparingly in industry [33]. Finally, we designed the

invariant model to further differentiate field executions from

test executions at a finer-grained level. We hypothesize that the

finer-grained model is better suited for identifying behavioral

differences and is thus more useful in assessing test suite

quality than coverage and mutation.

The results of our behavioral comparison show that, for all

four models considered, field executions are different from

developer-written tests in terms of the behavior they exercise.

For the four systems analyzed, on average, 6.2% of statements

and 7.7% of the methods executed in the field were not executed

by the tests. Moreover, mutation analysis showed that adding

behavior exhibited by the field executions kills 8.6% more

mutants than the behavior exhibited by the developer-written

tests. Finally, we found that the invariant model identified even

more sizable differences between developer-written tests and

field executions: 52.6% of the invariants detected in the field

were missed by the tests, on average.

We also investigated whether automated test generation could

help improve the representativeness of in-house tests. To do so,

we augmented the developer-written tests using EvoSuite [23],

an automatic test generation tool, and analyzed whether these

additional tests helped decrease the gap between behavior

exercised by tests and in the field. Our results show that

10th IEEE International Conference on Software Testing, Verification, and Validation

978-1-5090-6031-3/17 $31.00 © 2017 IEEE

DOI 10.1109/ICST.2017.36

321

EvoSuite-generated tests slightly improved the test suites in

terms of coverage, but not at all in terms of killed mutants and

behavioral invariants. The augmented test suites still failed to

exercise the behavior exercised by the user executions.

Based on the observed differences in our results, we can

conclude that not only did field executions exercise code that

was not tested in-house, but also — and more interestingly —

some code exercised by both tests and field executions was used

in a behaviorally different way in the two cases. Our findings

provide initial evidence supporting the intuition that even

high-quality test suites, both written manually and generated

automatically, are typically only partially representative of field

executions.

Our findings also suggest that techniques that map behavior

exercised in the field to new tests are of value. We found that

while coverage-based models may be too crude to provide

useful information when measuring differences between tests

and field executions, a mutation-based model reveals more

meaningful differences that capture input domains missed by

in-house tests, and a more sophisticated behavioral model based

on temporal invariants captures untested execution sequences

and contexts. For instance, only temporal invariants revealed

behavioral differences between a field execution that triggered

a defect in one of the benchmarks (JetUML) and the in-house

tests. This suggests that instead of using coverage or mutation

scores as a guide for improving in-house test suites, as is

common in practice, using behavioral invariants may be more

effective.

The main contributions of this paper are:

• A study of the differences between field executions, in-

house test suites, and test suites augmented with automati-

cally generated tests on four real-world systems.

• A methodology and a set of models for evaluating the be-

havioral differences between executions, including the use

of temporal invariants for detecting fine-grained differences.

• A publicly available dataset of test and field executions for

four real-world systems that can be used to replicate and

advance our results.

The remainder of the paper is structured as follows. Sec-

tion II motivates analyzing the differences between tests and

field executions. Section III describes our behavioral models.

Sections IV and V describe our experimental methodology and

our findings, respectively. Finally, Section VI discusses related

work and Section VII summarizes our contributions.

II. IN-HOUSE VS. FIELD EXECUTIONS

The goal of in-house testing is to validate that software

executions adhere to an expected behavior. But the behavior

tests validate may differ from the behavior exercised in the

field.

While testing is the most widely used approach for assessing

and improving software quality [1], it is subject to the

developers’ assumptions about the users’ environments and

behavior. These assumptions are necessary because non-trivial

software cannot be tested exhaustively, and because of the

vast diversity of the environments in which the software may

execute, in terms of the underlying hardware, the operating

system and its configuration, co-executing software, and so on.

Even if it were possible to test the software in the multitude

of environments representative of the users’ environments,

developers cannot predict all the ways in which users will use

the software. In fact, developers and independent testers often

envision the software is used in a prescribed manner, and these

assumptions restrict the space of possible behavior considered.

Beta testing aims to use real users to better approximate field

executions, but beta testing is not automated, not repeatable, and

only demonstrates a small slice of real-world field executions.

As a result, released software typically contains bugs [3], [38],

[59], most of which are unknown to the developers and do not

have tests that expose them. In fact, the existence of behavioral

differences between field executions and in-house tests implies

that software ships with untested behavior, and thus likely

unknown bugs. Thus, the quality of the software cannot be

properly assessed with existing test suites, and resources cannot

be properly assigned to maintenance tasks. Our work aims to

identify and analyze the differences between in-house test

suites and field executions from the point of view of behavior

missed by the tests. This identification and analysis can provide

insight into the behavior commonly missed by tests and help

bridge the gap between tests and field executions, ultimately

improving the effectiveness of testing.

The magnitude of the differences between tests and field

executions has not been studied in detail, and there are no

well understood ways of measuring these differences. While

many development organizations collect data on the way their

applications are used in the field, to the best of our knowledge

there is no literature on the use of such data for test suite

evaluation or augmentation, and no prior study has attempted

to analyze and understand the differences between tests and

field executions in a systematic way. Accordingly, our goals

include developing a methodology for comparing executions’

behavior and applying it to tests and field executions. There

are two main challenges to our work:

1. There are no established standards for comparing
the behavior of sets of executions. While executions can

be characterized in various ways, and significant work on

behavioral model inference has tackled the problem of sum-

marizing a set of executions (e.g., [6], [7], [10], [13], [15],

[39], [40], [41], [42], [43], [46], [51], [57]), this work has not

considered directly comparing sets of executions. No behavioral

execution representation is perfect for accurately representing

all characteristics of that execution. For example, representing

executions concretely with the complete trace of all executed

instructions may expose trivial differences that are immaterial

to the system’s behavior. At the same time, a higher-level

representation, such as the set of statements covered by a set

of executions (a common coverage-based metric of test suite

quality) is likely to fail to distinguish between two sets of

executions that cover different behavior but happen to execute

the same statements in alternate orders. In other words, it

is difficult to filter trivial differences without also filtering

important ones.

322

2. Collecting field-use data is difficult. It is difficult to

collect field data, as it requires a large number of users who

utilize the software in a real-world setting. There are costs

associated with collecting field data in terms of computational

overhead and storage space that may affect the users’ expe-

rience. These costs must be weighed against the benefits of

collection. Furthermore, collecting data from real users poses

a privacy challenge.

We address the first challenge by considering four behavioral

models: statement coverage, method coverage, a mutation-

based model, and a temporal invariant model of behavior. We

compute differences with respect to each of these models

between in-house tests and field executions and evaluate each

model’s effectiveness at representing behavioral differences.

Section III-A describes these models.

We address the second challenge in two ways. First, we

turn to the Massive Open Online Course (MOOC) medium.

MOOCs have gained popularity in recent years, and this

popularity has provided us the opportunity to conduct studies

with professional developers taking MOOCs. By targeting

MOOCs, we were able to access a relatively large user base and

evaluate software already used as part of the course, providing

us with realistic executions. Second, we turn to the open-source

software movement to access real-world systems that use library

software and exercise that library software in realistic ways

representative of field executions.

III. BEHAVIORAL MODELS FOR DIFFERENCE MEASURING

We use four behavioral models (Section III-A) to measure the

differences (Section III-B) between test and field executions.

A. Behavioral models

A behavioral model is a set of entities that describe behavior

exhibited in an execution. We present four behavioral models:

a set of source code statements covered by executions, a set

of methods covered by executions, a set of mutants killed

by executions, and a set of temporal invariants over executed

methods that hold over the executions.

Coverage, a commonly-used measure of test-suite quality

(e.g., [1], [22], [27], [28], [30]), measures the fraction of

statements, methods, branches, paths, or other code elements

touched by a set of executions. For example, statement coverage

of a test suite is the fraction of the source code statements

in the system under test that are executed by that test suite.

Coverage can typically be computed during execution with a

relatively low overhead. Our coverage models model behavior

exercised by an execution as the set of executed statements

and the set of executed methods in that execution.

Mutation testing [17] can be used to evaluate the quality of

existing tests [33] and create new tests [24]. It generates mutants
by systematically seeding the program with artificial faults by

using a set of mutation operators. Each mutant may behave

slightly differently from the original program and represents a

potential error a developer may have made. If a test that passes

on the program fails on a mutant, the test is said to kill the

mutant. Our mutation model uses the set of killed mutants in

Trace A: read, readFirstBytes, getBOM, close
Trace B: read, readFirstBytes, getBOM, length

kTails invariants:

getBOM → length → END
getBOM → close → END
readFirstBytes → getBOM → length | close
close → END
read → readFirstBytes
length → END
readFirstBytes → getBOM
read → readFirstBytes → getBOM
getBOM → length | close
START → read
START → read → readFirstBytes

Fig. 1: Two example Commons IO execution traces and the

kTails invariants in those traces. → means “can be immediately

followed by”, and each invariant can have up to k →s (k = 2 in

our case). | means “or”, and we use it as shorthand to display

multiple invariants.

an execution to represent the behavior of that execution. For

example, mutants killed by field executions but not by tests

represent a difference between field and test behavior.

Temporal Invariants. Extensive work on behavioral model

inference (e.g., [6], [7], [10], [13], [15], [39], [40], [41], [42],

[43], [46], [51], [57]) has identified techniques for inferring

precise models that describe software behavior. Our intent is to

use a representative model inference algorithm, kTails [10], as a

way of modeling the behavior exhibited by a set of executions.

Section VI discusses other model inference algorithms and how

our approach can be extended to use them. kTails serves as the

basis for many other behavioral model inference algorithms

(e.g., [15], [35], [39], [40], [41], [42], [43], [51]) and has been

shown to (1) infer precise models [35] and (2) scale to large

sets of executions [6].

The inputs of the kTails algorithm are an integer k and a set

of execution traces, each a totally-ordered set of events that

take place during one execution. The algorithm represents each

trace as a linear finite state machine and iteratively merges the

events that are followed by the same sequence of up to length

k. A recent formulation of the kTails algorithm, InvariMint,
demonstrated that the final FSM can be uniquely described

by the set of specific types of temporal invariants mined from

the execution traces [6], [7]; we use this formulation in our

work. That is, we use InvariMint to mine temporal kTails

invariants from the field and from test execution logs and

compare those sets of invariants. For our experiments, we

found that using k = 2 worked well in practice, whereas larger

k caused InvariMint to run out of memory for some long traces.

Models using larger k values would capture more execution

data, but we leave for future work the investigation of whether

the extra data captures useful behavioral information that would

otherwise be missed.

323

We mine invariants at the level of methods executed by

a trace. For example, if during an execution method open
executed just before method close, then we would mine the

invariant open → close. We elected to work at the method

level because prior work has argued that method call sequences

represent the best cost-benefit tradeoff for reproducing field

failures [31]. Fig. 1 shows two examples of simplified traces

from Commons IO executions and the kTails invariants (k = 2)

mined from them. For example, the line readFirstBytes
→ getBOM → length | close represents two invariants: one

that says that methods readFirstBytes, getBOM, and length
occurred consecutively in an execution; and another that says

tha methods readFirstBytes, getBOM, and close did as well.

B. Behavioral comparison metrics

For each of the behavioral models considered, we measure

the similarity (S) and unidirectional difference (D) between

field and test executions:

S=
|covered(field)∩ covered(test)|
|covered(field)∪ covered(test)| (1)

Dtf =
|covered(test)\ covered(field)|

|covered(test)| (2)

Dft =
|covered(field)\ covered(test)|

|covered(field)| (3)

where covered(field) is the set of entities (e.g., statements,

methods, mutants, or invariants) covered by field executions

and covered(test) is the set of entities covered by tests.

Similarity (S) measures the fraction of the entities that are

common to the field and test executions. By contrast, difference

(D) measures the fraction of the entities present in one set of

executions that are not present in the other set. For example,

Dft is the fraction of the behavior exercised in the field that is

not exercised by the tests.

IV. EXPERIMENT METHODOLOGY

Our study aims to answer three research questions:
RQ1: How does in-field behavior differ from the behavior

exercised by developer-written tests?

RQ2: Does augmenting developer-written tests with

automatically-generated tests help make in-house test suites

more representative of field behavior?

RQ3: Which of the four behavioral models considered

are most effective for comparing developer-written tests and

field executions?

For RQ1 and RQ2, we computed each of the four behavioral

models considered (see Section III-A) for each of the four

benchmarks described in Section IV-A.1 We then computed

the S and D metrics (see Section III-B). We also manually

qualitatively examined the behavior identified by the models

as being exercised in the field but not by the tests.

1We did not analyze mutation models for JetUML due to a limitation of
the record-and-replay tool we used to log JetUML field executions, which
prevented us from replaying executions on mutated code.

benchmark #methods LOC #tests stmt. cov.

JetUML 603 8,836 � 79.9%

unit tests 53 26.4%

system tests 97 72.9%

Commons IO 940 9,682 1,125 88.8%

Commons Lang 2,647 25,570 3,735 93.3%

Log4j 1,874 21,326 591 76.8%

Fig. 2: The four benchmarks used in our study and their

developer-written tests. �JetUML has developer-written unit

and system tests; their combined statement coverage (stmt.
cov.) is 79.9%. The system tests consist of 97 steps.

For RQ2, we also augmented the developer-written test suites

for our benchmarks with EvoSuite [23], an automated input

generation tool for Java programs that is used frequently in

software engineering research (e.g., [4], [52], [54]). For each

benchmark, we ran EvoSuite five times with different seeds,

its default configuration, and a 5-minute time limit per class.

This process generated five test suites per benchmark, where

each of the test suites took between 7 to 12 hours to generate.

We then measured how adding each generated test suite to the

developer-written tests affected the metrics with respect to the

field executions.

For RQ3, we compared the behavioral differences between

field executions and developer-written tests found by our four

models. We measured how much extra behavior exercised in

the field each of the four models could find. We also identified

which models revealed behavioral differences between the in-

house tests and a field execution that triggered a defect in one

of the benchmarks (JetUML).

A. Software Benchmarks

Fig. 2 describes the four benchmarks used in our study.

JetUML (http://cs.mcgill.ca/˜martin/jetuml) is a mature editor

for UML diagrams. To obtain field uses for JetUML, we

had 83 human subjects use JetUML Version 0.7 to design

class diagrams for their course projects. The subjects were

students enrolled in Georgia Tech’s Online MS in CS (OMSCS)

program (http://www.omscs.gatech.edu) whose participants are

predominantly professional developers. Our study did not

introduce JetUML to the students; rather, we selected to use

JetUML in part because it was already used regularly in the

class prior to our study. We believe that uses of JetUML in this

setting can be considered realistic field uses, as they involve

real users that utilize the tool to create an actual design.

The version of JetUML we used has two test suites (this

changed for later versions of JetUML): a JUnit test suite and a

set of system tests, both written by JetUML’s developers. The

JUnit tests exercise the functionality of JetUML’s underlying

framework. The system tests consist of a set of steps to

be executed manually. As the instructions describe a single,

continuous execution, we consider this as a single system test,

made up of 97 steps that exercise the major functionality of the

GUI, such as node and edge creation and manipulation. Fig. 2

324

summarizes the size of JetUML and its two test suites. together,

the two test suites achieve a relatively high coverage, with the

system tests achieving a considerably higher coverage than the

unit tests, so we consider JetUML well tested in-house.

Apache Commons IO, Apache Commons Lang, and Apache

Log4j are software libraries that provide other programs well-

defined APIs. We call client projects other software that uses

these libraries and consider these uses field uses. The three

libraries we selected are widely popular and in the top 1%

of projects with the highest number of client projects [53].

Moreover, these libraries have developer-written unit test suites

with statement coverage of 77% or above. Fig. 2 provides

summary information on the libraries and their test suites.

Collecting field executions. JetUML and the library bench-

marks required different methods for collecting field executions.

For JetUML, we collected field data by recording the executions

performed by real users as they used the software. To do so,

we used Chronon (http://chrononsystems.com), a record-replay

tool for Java programs. During replay, in particular, we used

the Post Execution Logging plugin of Chronon to log traces of

executed methods and statements. Overall, 147 human subjects

submitted their recorded JetUML executions. We filtered out

submissions that were missing metadata needed to replay the

executions or consisted entirely of opening and immediately

closing the application, leaving us with field execution data

from 83 human subjects.

To collect field executions for the three library benchmarks,

we selected five open-source client projects for each library.

To do so, we considered the results of a search on GitHub for

projects whose Maven build file (pom.xml) listed a dependency

on that library. For example, for Log4j, we searched for

“pom.xml contains 〈artifactId〉log4j〈/artifactId〉”. Maven is one

of the most popular Java build tools [45] and all the benchmark

libraries we considered use Maven. We thus looked for client

projects that build with Maven as well to simplify our data

collection process. We eliminated projects that did not have

a README file with instructions on how to build and use

the software, did not compile with the latest version of the

benchmark library, or did not have tests that exercised the

library. We kept the first five projects in the order of GitHub’s

search results that satisfied these criteria.

We then ran the client projects’ tests. We consider these tests

a reasonable proxy for field uses of the libraries, as they use

the library as is needed by the client project [35]. Critically,

these executions are not library test suites but rather tests of

the projects that use the libraries, and thus accurately represent

how the libraries are used in the field.

Building models. To compute method and statement cov-

erage for our coverage analysis, we used Cobertura (http:

//cobertura.github.io/cobertura/), a widely used code coverage

tool. To record method sequences and build invariant models

with InvariMint [6], [7], we built an instrumentation engine

on top of ASM (http://asm.ow2.org/). To generate mutants,

we used the Defects4J framework [32]. Defects4J mutation

analysis is built on top of the MAJOR mutation framework [34].

To check if client project executions killed mutants, we ran

the tests of the client projects using mutated versions of the

libraries.

It is worth noting that, because JetUML is a comprehensive

UML editor that supports the creation and editing of many

kinds of diagrams, its tests cover behavior related to all such

diagrams. Since our users were only asked to create class

diagrams, in our study we selected the JetUML tests that

exercised features related to class diagrams. Similarly, for the

library benchmarks, most client projects only used a small part

of the libraries considered. In our study, we therefore excluded

the classes that none of the client projects executed and the

mutants therein.

B. Computing behavioral comparisons

Fig. 3 summarizes our methodology for comparing tests and

field executions, which consists of four steps:

Step 1: For each benchmark, we ran developer-written

tests to generate execution traces and build four behavioral

models for those tests: (1) a statement coverage model, (2) a

method coverage model, (3) a mutation model (only for library

benchmarks), and (4) a method-level invariant model.

Step 2: We used EvoSuite to augment three of our bench-

marks’ developer-written test suites (see Section IV).2 We

generated five test suites for each system; each augmented test

suite consisted of all the developer-written tests and one of

the five EvoSuite-generated suites. We then computed, also

for these augmented test suites, the four behavioral models

considered. (Recall, however, that we did not compute mutation

models for JetUML because our record-replay framework did

not allow us to replay field executions on mutants.)

Step 3: For each benchmark, we collected field executions

and computed our four behavioral models for those executions.

Step 4: For each of the four types of models, we computed

the similarity (S) and difference (D) metrics (see Section III-B)

between field and developer-written test executions, and field

and automatically-augmented test executions.

C. Publicly released dataset

Our dataset includes:

• Source code and developer-written unit and system test

cases for JetUML Version 0.7.

• Recorded JetUML field executions from 83 real users. The

recorded executions can be used to extract code coverage,

execution traces, and program states.3

• Source code and test suites of Commons IO, Com-

mons Lang, Log4j, and the client projects we used in

our study.

• Test suites automatically generated by EvoSuite (five per

benchmark).

• Instructions on how to instrument, configure, and run the

benchmarks.

2The version of Log4j we used is incompatible with the version of EvoSuite
that generates Java 7 test suites, which are required by the Major mutation
framework.

3The executions can be replayed using Eclipse (http://eclipse.org)
and Chronon Time Travelling Debugger (http://chrononsystems.com/
products/chronon-time-travelling-debugger).

325

Fig. 3: Overview of the experiment setup: field data collection, model inference, and execution comparison.

Our dataset, available at http://www.cc.gatech.edu/˜orso/

software/ExecutionComparison/, can be used for analyzing the

difference between test and field execution. We believe that it

can also be used for studying other software engineering tasks,

such as debugging and test generation.

V. RESULTS AND DISCUSSION

RQ1: How does in-field behavior differ from the

behavior exercised by developer-written tests?

Fig. 4 shows the computed S and D metrics for the four

models for each of the four benchmarks.

Statement coverage. The similarity between field and

developer-written test executions ranges from 18.3% (Commons

Lang) to 62.1% (JetUML), with an average of 36.9%. Similarity

can be low when one of the sets of executions does not exercise

much of the system behavior. Because the field executions that

we considered involve a relatively small subset of the user

population (both in the case of actual JetUML users and in the

case of client projects for the considered libraries), it is not

surprising that they use only a subset of the functionality (e.g.,

methods) of the classes considered. This is also confirmed by

the relatively high Dtf measures, which are between 31.0%

(JetUML) and 81.7% (Commons Lang), with an average of

60.7%. Note that higher fractions of statements covered in

testing that are not covered in the field result in lower similarity

values.

The fraction of statements covered in the field that are not

covered in testing, conversely, is relatively low, ranging from

0.3% (Commons Lang) to 13.0% (JetUML), with an average of

6.2%. Thus, overall, the statement coverage metric shows that

field executions do differ from test executions, with 6.2% of

the statements executed in the field not having been executed

during testing.

For JetUML, system tests are much more similar to field

executions than unit tests are (62.2% vs. 8.3%), but still 16%

of the statements executed in the field are not executed by

system tests. Combining unit tests and system tests reduces the

similarity only by 0.1% but reduces the untested statements

by 3.0%, supporting the intuition that system and unit tests

complement each other. JetUML’s unit tests have low coverage

(recall Fig. 2) so it is not surprising that they miss statements

covered in the field.

To get a better idea of the specific field behavior that in-house

test may miss, we looked at the details of JetUML’s statement

coverage. We observed that often tests missed exceptional or

corner cases. For example, they missed exception-handling

code, cancellation of operations, and null inputs. Although it

is not totally surprising that developers may miss special cases

when testing, it is useful to see this confirmed in our results.

Method coverage. The fraction of methods exercised by

both developer-written tests and field executions ranges from

22.6% (Commons Lang) to 64.9% (Log4J), with an average of

40.9%. The similarity is again low because the field executions

do not use many parts of the systems considered. Again, the

fraction of methods executed in testing that are not executed in

the field is high, averaging 56.1%. The fraction of statements

executed in the field that are not executed during in-house

testing, conversely, ranges from 0.8% (Commons Lang) to

15.4% (JetUML), with an average of 7.7%, slightly higher than

what we observed for statement coverage. Thus the method

coverage metric also finds that field executions do differ from

test executions.

As with statement coverage, for JetUML, system tests are

more similar to field executions than unit tests (57.1% vs.

26.9%), but are better combined. Adding unit tests to the

system tests reduces the fraction of methods executed in the

field that are not executed by the tests from 21.2% to 15.4%. In

addition to the relatively low coverage of the unit tests (recall

Fig. 2), the unit tests also call methods directly, bypassing GUI

event handling that takes place during field executions, and

thus fail to exercise GUI interactions.

Also in this case, we looked at the details of JetUML’s

method coverage in more detail to get a better understanding

of the behavioral differences between in-house tests and field

326

executions. In this case, we noticed that the tests missed many

wrapper methods that encapsulate calls to external libraries,

which may be due to the fact that developers trusted the libraries

and considered the wrapper code to be too simple to test.

Mutation. The fraction of mutants killed by both developer-

written tests and field executions ranges from 15.1% (Log4j)

to 47.4% (Commons IO), with an average of 30.8%. The

similarity results for mutation were higher than those for

coverage for some projects, and lower for others. The mutation

model captures at least all the statement-coverage behavioral

differences, in that mutations in a statement cannot be killed

by the tests if the tests do not cover that statement. However,

because mutants are not evenly distributed among statements,

there is no expectation of a direct relationship between coverage

and mutation measures. As before, the field executions do not

cover large parts of the systems: 67.4% of the mutants killed

by the tests are not killed by the field executions.

The fraction of mutants killed in the field that are not

killed by in-house testing ranges from 1.2% (Commons Lang)

to 18.2% (Commons IO), with an average of 8.6%, which

is slightly higher than what we observed for the coverage

metrics. Therefore, the mutation similarity metric finds that field

executions differ from test executions. And if killing mutants is

representative of revealing real-world defects [33], 8.6% of the

potential defects the field executions encounter would not be

caught by in-house testing. This suggests a stronger notion of

behavioral differences between field executions and in-house

testing than the coverage metrics do.

Mutants killed in the field can survive the tests in two ways:

the tests may not execute the mutated line or the tests may

execute the line but not trigger anomalous behavior. The first

case accounts for 83% of these mutants in our experiments.

Both cases can help developers improve test suites; the first

reveals an important line to cover with a new test, and the

second provides a new input domain uncovered by the existing

tests.

Temporal Invariants. The coverage and mutation models

show average similarity between developer-written tests and

field executions between 30.8% and 40.9%. They also show

that 6.2% to 8.6% of the behavior exercised in the field

was not exercised by the tests. The temporal invariant model

shows much starker behavioral differences. The similarity in

the temporal invariants mined from the executions ranges

from 9.1% (Commons Lang) to 16.8% (JetUML), averaging

12.7%. Of the invariants observed in the tests, from 47.0%

(JetUML) to 90.1% (Commons Lang) were not observed in

the field. Meanwhile, between 24.3% (Commons Lang) and

80.5% (JetUML) of the invariants observed in the field were

not observed during in-house testing. Despite the high coverage

achieved by the JetUML test suite, in particular, 80.5% of the

in-field behavior, as captured by behavioral invariants, did not

occur during testing. Even for Commons IO and Commons

Lang, for which test suites failed to cover less than 3% of

the statements and methods that executed in the field, 35.4%

and 24.3%, respectively, of the invariants observed in the field

were not observed during testing. On average, 52.6% of the

in-field invariants did not occur during testing, suggesting the

test suites are very different from the field executions in terms

of the temporal relationships between method executions.

We examined the behavior exercised in the field but not

by the tests for JetUML, for which the difference is most

pronounced. We found that such behavior occurs for three

reasons: (1) field executions exercise code that is not covered

by the tests; (2) users perform operations in a different order

than the tests; and (3) users perform operations in a different

program state than the tests. Most of the cases are of the 2nd

variety, suggesting that some operation order is interchangeable,

and that the developers who write tests sometimes incorrectly

assume the order in which users perform operations. For

example, all JetUML tests assume that every copy operation

is immediately followed by a paste, whereas users sometimes

performed a copy, cut, paste instead. This order of operations

was never tested in-house. While such ordering may not affect

functionality in some cases, when answering RQ3 we will

show an example of a bug discovered in the field that the test

suite missed for exactly this reason.

RQ2: Does augmenting developer-written tests with

automatically-generated tests help make in-house

test suites more representative of field behavior?

For each of the systems considered in our study, we generated

five test suites using EvoSuite (recall Section IV), augmented

the developer-written tests with each of the five generated

suites, and again measured the S and D metrics comparing

the field executions with the augmented test suites. Fig. 5

presents these results; each cell represents the mean over the

five augmented test suites for each benchmark.

The augmented test suites improves the statement coverage

of the developer-written test suite for JetUML by 7.3%, for

Commons IO by 4.8%, and for Commons Lang by 3.8%.

For JetUML, the augmented test suites have a slightly lower

similarity with field executions with respect to the statement

coverage (58.3% vs. 62.1%). The decrease is due to the

generated tests covering more code that the field executions do

not exercise. With respect to method coverage and invariant

models, the similarity is higher (59.3% vs. 51.6% and 17.4%

vs. 15.3%, respectively). The increase is caused by the fact that

EvoSuite-generated tests are able to cover some field-executed

methods that are missed by developer-written tests.

For Commons IO and Commons Lang, the augmented

tests result in decreased similarity beween test runs and field

executions with for all four models (see the last two rows of

Fig. 5). Also in this case, the change is due to the generated

tests covering additional code, mutants, and invariants that field

executions did not exercise.

The augmented test suites capture more in-field behavior

than the developer-written test suites for statement coverage,

method coverage, and invariant models for all benchmarks.

With respect to the statement coverage model, the augmented

tests miss 10.9% and 0.398% of the in-field behavior (for

JetUML and libraries, respectively), as compared to 13.0%

and 0.403% for the developer-written tests. For the method

327

statement method mutation temporal invariants
benchmark tests S Dtf Dft S Dtf Dft S Dtf Dft S Dtf Dft

JetUML
unit 0.083 0.745 0.893 0.269 0.532 0.612 0.054 0.682 0.939
system 0.622 0.288 0.160 0.571 0.326 0.212 0.133 0.518 0.845
both 0.621 0.310 0.130 0.516 0.431 0.154 0.153 0.586 0.805

Commons IO 0.217 0.782 0.005 0.246 0.753 0.022 0.474 0.471 0.182 0.111 0.882 0.354
Common Lang 0.183 0.817 0.003 0.226 0.773 0.008 0.298 0.702 0.012 0.091 0.901 0.243
Log4j 0.456 0.518 0.108 0.649 0.287 0.122 0.151 0.848 0.065 0.136 0.799 0.704

average 0.369 0.607 0.062 0.409 0.561 0.077 0.308 0.674 0.086 0.127 0.763 0.526

Fig. 4: S and D metrics comparing field executions to developer-written tests, for statement and method coverage, mutation,

and invariant models computed for the four benchmarks considered. (Recall that the record-and-replay framework did not allow

us to replay JetUML field executions on mutants.) The differences observed in the field but not in the tests are highlighted.

The average row uses JetUML’s combined unit and system tests.

#gen augmented statement method mutation temporal invariants
benchmark tests stmt. cov. S Dtf Dft S Dtf Dft S Dtf Dft S Dtf Dft

JetUML 768 87.2% 0.583 0.370 0.109 0.593 0.355 0.119 0.174 0.598 0.767

IO 2,148 92.5% 0.167 0.827 0.005 0.237 0.762 0.015 0.430 0.501 0.182 0.093 0.902 0.329
Lang 4,769 97.1% 0.174 0.825 0.003 0.216 0.784 0.000 0.287 0.813 0.012 0.076 0.922 0.224

average 3,459 94.8% 0.171 0.826 0.004 0.227 0.773 0.008 0.359 0.657 0.097 0.085 0.912 0.277

average (developer tests) 0.200 0.799 0.004 0.236 0.763 0.015 0.386 0.587 0.097 0.101 0.892 0.299

Fig. 5: S and D metrics comparing field executions to developer-written test suites augmented with EvoSuite, for statement and

method coverage, mutation, and invariant models for JetUML, Commons IO, and Commons Lang. We were unable to perform

this analysis for Log4j because the version of Log4j in our study is incompatible with versions of EvoSuite that generate tests

compatible with the Major mutation framework. Differences observed in the field but not in the tests are highlighted. For

comparison, we include the average of developer-written tests for IO and Lang.

coverage model, the augmented tests miss 3.9% and 0.8% of

the in-field behavior, as compared to 15.4% and 1.5% for the

developer-written tests. For the mutation model, conversely,

there is no change in terms of missed mutants covered in the

field executions (both 9.7%). Finally, for the invariant model,

the augmented tests miss 76.7% and 27.7% of the in-field

behavior, as compared to 80.5% and 29.9% for the developer-

written tests. Overall, while the representativeness of the tests is

improved, there are still significant differences with the in-field

behavior.

It is worth mentioning that the EvoSuite-generated tests cover

more of the exceptional behavior than the developer-written

tests. This is the main reason why the augmented test suites re-

duced the number of statements covered in the field but missed

by the tests. However, the new tests that cover exceptional

flows are mostly trivial and typically consisted of passing null

values; most other control flows related to corner cases are not

covered by the new tests. Also, EvoSuite-generated tests were

unable to kill mutants that are missed by developer-written

tests. With respect to invariants, new invariants induced by the

new tests are largely due to the fact that EvoSuite checks a

value after setting it whenever possible. This is the case, for

instance, for the new invariant GraphPanel.setModified →
GraphPanel.isModified. These invariants are likely not as

useful for capturing important field behavior as those mined

from developer-written tests.

Overall, coverage driven automated test generation helped

only marginally in reducing the differences between field

executions and in-house tests. Most importantly, it mainly

helped in the trivial case of code for which no developer tests

existed.

RQ3: Which of the four behavioral models consid-

ered are most effective for comparing developer-

written tests and field executions?

Overall, all models were able to detect some differences

between test and field executions. The mutation models

identified more differences than the statement and method

coverage models (Fig. 4 and 5). In general, there is not

a subsumption relationship between mutation and structural

coverage. On the one hand, statement and method coverage

models can reveal differences in behavior that mutation does

not detect; for an example, consider the case of a statement

that is covered in the field but not in house and is not selected

for mutation. On the other hand, mutation models can reveal

differences in behavior that statement and method coverage

would miss; consider, for instance, the case of a statement that

is mutated, is covered both in the field and in house, and only

in the field is executed under a state that kills the mutant.

The invariant model is strictly more inclusive than method

coverage models: if an invariant involving a method is mined,

that method must have been executed. Using invariant models

328

to characterize differences between field and test executions

cannot therefore miss any information reported by method

coverage models. Statement coverage models could identify

finer-grained differences than method-level invariants report,

but the data in Fig. 4 suggest that this was uncommon. (We

did not consider statement-level temporal invariant models,

which would capture all such differences, but would also be

impractically large.) In general, the invariant model finds more

sophisticated differences than the coverage models, such as

different orders of method executions, and the execution of the

same methods under different program states.

We found some evidence that the differences between field

and test executions that the invariants model finds but other

models miss can be important. For a concrete example, when

starting JetUML, users have to either select a type of diagram

to create, or use the File menu to open or create a file. The

invariant model found that users sometimes selected Undo
from the Edit menu as the first action. This unexpected

operation caused an exception that crashed the program. Neither

developer-written nor EvoSuite-augmented test suites found this

error, and the coverage and mutation models did not identify

this difference. The JetUML developers have identified this

as a real defect and have fixed it. In more general terms, our

results suggest that (1) invariant models may be better than

simpler models at discovering important behavioral differences

between in-house and field executions and (2) these differences

can reveal relevant behavior (including defects).

A. Summary findings

Here is a summary of our findings for the systems and

executions we considered:

• Field executions can differ considerably, in terms of the

behavior they exercise, from in-house test executions.

• Automatically generated tests can only marginally improve

the representativeness of in-house tests.

• All behavioral models can find differences between in-

house testing and field executions. Specifically, statement

coverage models can identify corner cases missed during

testing, while method coverage models can find high-level

differences in the features used. Mutation models can miss

some differences identified by the simpler coverage models,

but they may be able to identify specific states not covered

by the tests. Finally, invariant models subsume (at the

method level) coverage models and can identify richer

differences, such as differences in operation order and

context.

• Unsurprisingly, using the state of the practice (coverage)

or the state of the art (mutation) to assess the quality of a

test suite falls short of precisely measuring how well the

test suite represents field executions. An invariant-based

model may be a better adequacy and selection criterion,

but further investigation on infeasibility issues is required.

B. Recommending test cases based on field executions

If software could be deployed together with a model

computed for the in-house test suite, then field behavioral

differences with respect to that model could be used to

recommend developers new tests that can improve the test

suite’s representativeness.

Coverage-based metrics can recommend the methods and

statements uncovered by the tests that are executed in the field,

as also suggested in previous work [49]. It is usually impossible

to achieve 100% coverage during testing because of resource

constraints and because complex code may make it difficult to

devise test inputs that reach particular code elements. Field-

based traces can help in two ways: first, by identifying which

code elements need attention because they are used in the field;

and second, by using inputs from the field to help cover these

elements (e.g., [14], [31]).

While collecting field coverage data is practical in many

situations, using mutation analysis is more complex. Theo-

retically, the in-field executions could use other cores or the

cloud to simultaneously execute the system on mutants. This is

an expensive proposition, but could identify interesting states

unexplored during testing.

Finally, invariant models can also be computed in a fairly

lightweight manner at runtime and can reveal sequences of

operations users perform that the tests miss. Our results show

that these differences can identify executions that lead to

code defects but are missed by other models, suggesting that

invariants may be the most useful field information to improve

test suites. Developers who create tests based on assumptions

about how the code is used in the field can consider in-field

invariant violations as violations of (some of) these assumptions

and may use that information to refine such assumptions and

ultimately improve their tests.

In future work, we plan to investigate some of the above

directions and identify practical and effective ways in which

information from the field can be used to improve, possibly in

an automated way, in-house test suites.

C. Threats to validity

Construct: We simulated library field executions by running

the test suites of client projects of the libraries considered.

These tests are written by the client project developers, who are

the intended users of the libraries, without any involvement of

the library developers. We therefore believe that our assumption

that the client tests are representative field uses of the libraries

is reasonable.

Internal: There are potential errors and mistakes in the

process of writing infrastructure, building benchmarks, running

experiments, and analyzing results. To reduce this threat, we

carefully examined the a sample of our results to check their

correctness.

External: We used four systems in our study, so our results

may not generalize to other systems and executions. This

limitation is an artifact of the complexity of collecting real-

world field executions and of performing experiments in general.

We mitigated this threat by collecting different kinds of systems,

one GUI and three libraries. Another threat is that statement

and method coverage models may not represent behavior as

well as other coverage metrics. We used them nevertheless

329

because they are the two most common coverage metrics used

in practice. We used EvoSuite as a representative automated

test generation tool, in part because a recent study found it to

be one of the most effective tools in that arena [55].

VI. RELATED WORK

Our research is related to work in field data (Section VI-A)

and behavioral representation (Section VI-B).

A. Using field data in software engineering

Researchers have investigated for over a decade the use of

field data to aid various software engineering tasks traditionally

performed in-house. The Gamma project, for example, aims to

leverage field data to help software maintenance tasks, such as

impact analysis and regression testing [47], [48]. For another

example, Elbaum and Diep have investigated the potential

benefit of using field data to improve software profiling [19],

[20]. Our work is related to these techniques, as its ultimate

goal is to use field data to improve in-house testing activities.

Our work is also related to that of Pavlopoulou and Young,

who developed a technique for collecting field data about

statements covered in the field but not in-house [49]. In fact,

their approach could be used in our context. Hilbert and

Redmiles [29] propose an agent-based approach for collecting

field usage data and feedback that can provide developers with

usage- and usability-related information [29]. This information

can help detect and resolve mismatches between developers’

expectations and actual software use. By contrast, our effort

focuses on modeling and analyzing field executions.

Bug reports can also shed light on field executions and

are one of the most commonly used field data types. For

example, models for fault localization and automatic retrieval

of faulty files based on bug reports can aid debugging [50].

These models are at least as effective as other automated

debugging techniques. However, most human-written bug

reports contain limited information, which reduces their utility

in practice [58]. Meanwhile, automatically generated crash

reports contain rich data that can help triage reports and locate

bugs. ReBucket clusters duplicate crash reports collected in the

field by grouping crash reports based on call stack similarity

calculated using the Position Dependent Model [16]. Similarly,

CrashLocator uses call stacks from the crash reports to generate

approximate crash traces by stack expansion and uses the

expanded traces to locate faulty methods [60]. Both techniques

require large numbers of crash reports to be effective.

B. Behavioral representation

Code coverage has long been the standard metric for test

suite quality [1], [12], [22], [26], [27], [28], and executions can

be characterized using variations in coverage (e.g., via basic

block vectors [56]). However, recent studies have shown that

coverage may not be a great indicator of test suite effectiveness

at finding faults [30], and that mutation kill scores are a better

metric [33]. Still, stronger proxies for representing system

behavior may be desirable, such as invariants-based descriptions

of the behavior [21] or finite-state-machine-based models of

the behavior [6], [7], [13], [15], [35], [39], [40], [41], [42],

[43], [46], [51], [57].

There are numerous algorithms to mine temporal invariant

instances [2]. For example, Javert [25] infers property specifi-

cations by composing simpler micro-patterns into larger ones,

focusing on efficiency. N-grams can represent executions in

terms of substrings of kernel-call or application-server-call

sequences [44], which is a similar representation to kTails.

We use InvariMint [6], [7] to mine behavioral properties,

but our work is easily extendable to other property-mining

algorithms, and advances in the richness of these algorithms

are complementary and beneficial to our work. Another kind of

property that our work does not include is structural, data-value

properties that relate internal program variables, often described

with variable values and can encode method pre- and post-

conditions, as well as class-level property types. Our work can

be extended to use such properties (e.g., mined by Daikon [21]

from program executions), and again, advances in the inference

of such properties are complementary and beneficial to our

work. Combining structural and temporal properties is likely

to increase the precision of behavioral difference measurement

between test and field executions.

Finite-state-machine-based models that describe system

behavior are similarly complementary to our work. The kTails

algorithm [10] is the basis for numerous behavioral model-

inference algorithms [15], [35], [39], [40], [41], [42], [43],

[51]. Our work uses the behavioral invariants that precisely

describe the models inferred by kTails, but could be adapted to

use the invariants that describe the behavioral models inferred

by each of these algorithms. InvariMint [6], [7] focuses on

decomposing behavioral model inference algorithms into such

invariants, including for the kTails [10] and the Synoptic [5],

[9] algorithms. Here, we used InvariMint to infer the behavioral

invariants, which facilitates expanding the work to include other

kinds of invariants. However, some model-inference techniques

require richer than standard FSM models, and may not be

represented precisely and completely by behavioral, temporal

properties. GK-Tails [43] requires EFSMs, and RPNI [13]

requires Probabilistic FSMs. The Alergia algorithm [13] cannot

be easily specified using InvariMint because of reliance on

transition probabilities updated dynamically during the model

inference procedure.

User-specified LTL formulae of desired system behavior

can be combined, checked by a model checker, and used as

constraints on inferring a single behavioral model [57]. By

contrast, our work does not require the user, nor the developer,

to know the desired system properties, instead comparing test

executions to field executions. However, it is conceivable that

checking for differences between user-specified properties in

test and field executions may lead to further insights. Other

representations of behavior are also possible, including UML

sequence diagrams [61], communicating automata [8], [11],

and symbolic message sequence graphs [36]. These behavioral

representations are outside the scope of our work, but our

analysis could be extended to these representations as well.

330

VII. CONCLUSIONS

This paper presents the first study whose goal is to under-

stand, quantify, and analyze similarities and differences between

in-house testing and in-field usage. To do so, we have used

four models of software behavior — two based on coverage,

one based on mutation analysis, and one based on temporal

behavioral invariants. Our results show that, for all the four

models considered, there are gaps between how developers

test, or how they expect users to use their software, and how

users actually use this software in the field.

Although still preliminary, we believe that our results are

significant because they were obtained from analyzing field

data collected from real systems used by real users or real

developers (in the case of the libraries and their client projects).

In addition, our results provide evidence of potential for several

research direction that aim to bridge the gap between the way

software is tested and the way it is used.

First, our findings can be used as a starting point for

developing techniques that use the differences between in-house

and field behavior to guide the generation of new test cases.

One natural way to do so would be to generate test cases that

(1) cover code exercised in the field but missed in-house, and

(2) cover execution sequences that violate in-house invariants.

While this approach may raise privacy concerns related to

sharing detailed in-field execution data with developers, prior

work has made progress addressing these concerns [14].

Second, research on using the temporal invariant model to

assess test suite completeness and quality may provide a better

metric for the purpose than statement coverage and mutation

testing. Our results show that the temporal invariants we used

are able to discriminate failing executions that coverage and

mutation fail to discriminate and for which automated test

generation could not generate revealing tests. A first step in

this direction would be a systematic evaluation on real-world

defect benchmarks (e.g., Defects4J [32] or ManyBugs [37]).

Third, while kTails invariants proved able to capture im-

portant behavioral differences, many other temporal invariants

could perform just as well or even better. Systematically explor-

ing the space of temporal patterns, perhaps starting with the

most common ones used in defining system requirements [18],

may reveal invariants better suited for (1) representing execution

behavior, (2) efficient in-field computation, and (3) providing

developers with useful information for writing new tests.

Finally, developing mechanisms for efficiently monitoring

field executions, building behavioral models, and comparing

live executions to models of tested behavior may make such

data easier to collect and more helpful to developers for various

tasks. Such mechanisms could for example generate better crash

reports and feedback for developers. They could also be used

to guide self-adaptation and automated program repair, steering

live executions that violate behavioral models toward desired,

better-tested behavior.

ACKNOWLEDGMENTS

We thank the students of the online course who kindly

agreed to let us collect field data about their use of JetUML for

our study. This work was partially supported by the National

Science Foundation under grants CCF-1453474, CCF-1564162,

CCF-1320783, and CCF-1161821, and by funding from Google,

IBM Research, and Microsoft Research.

REFERENCES

[1] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, New York, NY, USA, 1 edition, 2008.

[2] C. M. Antunes and A. L. Oliveira. Temporal data mining: An overview.
In Workshop on Temporal Data Mining, San Francisco, CA, USA, 2001.

[3] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an open bug repository.
In Workshop on Eclipse Technology eXchange, pages 35–39, San Diego,
California, 2005.

[4] A. Arcuri, G. Fraser, and J. P. Galeotti. Generating TCP/UDP network
data for automated unit test generation. In 10th Joint Meeting of
the European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), pages 155–165,
Bergamo, Italy, 2015.

[5] I. Beschastnikh, J. Abrahamson, Y. Brun, and M. D. Ernst. Synoptic:
Studying logged behavior with inferred models. In 8th Joint Meeting
of the European Software Engineering Conference and Symposium on
the Foundations of Software Engineering Tool Demonstration Track
(ESEC/FSE), pages 448–451, Szeged, Hungary, September 2011.

[6] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and A. Kr-
ishnamurthy. Unifying FSM-inference algorithms through declarative
specification. In International Conference on Software Engineering
(ICSE), pages 252–261, San Francisco, CA, USA, May 2013.

[7] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and A. Krishna-
murthy. Using declarative specification to improve the understanding,
extensibility, and comparison of model-inference algorithms. IEEE
Transactions on Software Engineering (TSE), 41(4):408–428, April 2015.

[8] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy. Inferring
models of concurrent systems from logs of their behavior with csight.
In International Conference on Software Engineering (ICSE), pages
468–479, Hyderabad, India, June 2014.

[9] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst.
Leveraging existing instrumentation to automatically infer invariant-
constrained models. In 8th Joint Meeting of the European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), pages 267–277, Szeged, Hungary, September
2011.

[10] A. W. Biermann and J. A. Feldman. On the synthesis of finite-
state machines from samples of their behavior. IEEE Transactions
on Computers (TC), 21(6):592–597, 1972.

[11] B. Bollig, J.-P. Katoen, C. Kern, and M. Leucker. Learning communicat-
ing automata from MSCs. IEEE Transactions on Software Engineering
(TSE), 36(3):390–408, 2010.

[12] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
USENIX Conference on Operating Systems Design and Implementation
(OSDI), pages 209–224, San Diego, CA, USA, 2008.

[13] R. C. Carrasco and J. Oncina. Learning stochastic regular grammars
by means of a state merging method. In International Colloquium
on Grammatical Inference and Applications (ICGI), pages 139–152,
Alicante, Spain, 1994.

[14] J. Clause and A. Orso. Camouflage: Automated anonymization of field
data. In International Conference on Software Engineering (ICSE), pages
21–30, Honolulu, HI, USA, 2011.

[15] J. E. Cook and A. L. Wolf. Discovering models of software processes
from event-based data. ACM TOSEM, 7(3), 1998.

[16] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel. Rebucket: A method
for clustering duplicate crash reports based on call stack similarity. In
International Conference on Software Engineering (ICSE), pages 1084–
1093, Zurich, Switzerland, 2012.

[17] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data
selection: Help for the practicing programmer. Computer, 11(4):34–41,
Apr. 1978.

[18] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In International Conference on
Software Engineering (ICSE), 1999.

[19] S. Elbaum and M. Diep. Profiling deployed software: Assessing strategies
and testing opportunities. IEEE Transactions on Software Engineering,
31(4):312–327, 2005.

331

[20] S. Elbaum and M. Hardojo. An empirical study of profiling strategies for
released software and their impact on testing activities. In International
Symposium on Software Testing and Analysis (ISSTA), pages 65–75,
Boston, MA, USA, 2004.

[21] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution. IEEE
Transactions on Software Engineering (TSE), 27(2):99–123, 2001.

[22] P. G. Frankl and O. Iakounenko. Further empirical studies of test
effectiveness. In International Symposium on Foundations of Software
Engineering (FSE), pages 153–162, Lake Buena Vista, FL, USA, 1998.

[23] G. Fraser and A. Arcuri. EvoSuite: Automatic test suite generation for
object-oriented software. In 8th Joint Meeting of the European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering Tool Demonstration Track (ESEC/FSE), pages 448–451,
Szeged, Hungary, September 2011.

[24] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and
oracles. In International Symposium on Software Testing and Analysis
(ISSTA), pages 147–158, Trento, Italy, 2010.

[25] M. Gabel and Z. Su. Javert: Fully automatic mining of general
temporal properties from dynamic traces. In International Symposium on
Foundations of Software Engineering (FSE), Atlanta, GA, USA, 2008.

[26] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour, and
D. Marinov. Comparing non-adequate test suites using coverage criteria.
In International Symposium on Software Testing and Analysis (ISSTA),
pages 302–313, Lugano, Switzerland, 2013.

[27] A. Groce. Coverage rewarded: Test input generation via adaptation-
based programming. In International Conference on Automated Software
Engineering (ASE), pages 380–383, 2011.

[28] A. Gupta and P. Jalote. An approach for experimentally evaluating
effectiveness and efficiency of coverage criteria for software testing.
International Journal on Software Tools for Technology Transfer (STTT),
10(2):145–160, Feb. 2008.

[29] D. M. Hilbert and D. F. Redmiles. Large-scale collection of usage data
to inform design. In IFIP TC.13 International conference on human-
computer interaction, pages 569–576. IOS Press, 2001.

[30] L. Inozemtseva and R. Holmes. Coverage is not strongly correlated
with test suite effectiveness. In International Conference on Software
Engineering (ICSE), pages 435–445, Hyderabad, India, 2014.

[31] W. Jin and A. Orso. Bugredux: Reproducing field failures for in-house
debugging. In International Conference on Software Engineering (ICSE),
pages 474–484, Zurich, Switzerland, 2012.

[32] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of existing faults
to enable controlled testing studies for Java programs. In International
Symposium on Software Testing and Analysis (ISSTA), pages 437–440,
San Jose, CA, USA, July 2014.

[33] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser.
Are mutants a valid substitute for real faults in software testing? In
International Symposium on Foundations of Software Engineering (FSE),
Hong Kong, China, 2014.

[34] R. Just, F. Schweiggert, and G. M. Kapfhammer. MAJOR: An efficient
and extensible tool for mutation analysis in a java compiler. In
International Conference on Automated Software Engineering (ASE),
pages 612–615, Lawrence, KS, USA, 2011.

[35] I. Krka, Y. Brun, and N. Medvidovic. Automatic mining of specifications
from invocation traces and method invariants. In International Symposium
on the Foundations of Software Engineering (FSE), pages 178–189, Hong
Kong, China, November 2014.

[36] S. Kumar, S.-C. Khoo, A. Roychoudhury, and D. Lo. Mining message
sequence graphs. In International Conference on Software Engineering
(ICSE), pages 91–100, Honolulu, HI, USA, 2011.

[37] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu, S. Forrest,
and W. Weimer. The ManyBugs and IntroClass benchmarks for automated
repair of c programs. IEEE Transactions on Software Engineering (TSE),
41(12):1236–1256, December 2015.

[38] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via
remote program sampling. In SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 141–154, San Diego,
CA, USA, 2003.

[39] D. Lo and S.-C. Khoo. QUARK: Empirical assessment of automaton-
based specification miners. In Working Conference on Reverse Engineer-
ing (WCRE), 2006.

[40] D. Lo and S.-C. Khoo. SMArTIC: Towards building an accurate,
robust and scalable specification miner. In International Symposium
on Foundations of Software Engineering (FSE), pages 265–275, Portland,
OR, USA, 2006.

[41] D. Lo and S. Maoz. Scenario-based and value-based specification mining:
Better together. In International Conference on Automated Software
Engineering (ASE), pages 387–396, Antwerp, Belgium, 2010.

[42] D. Lo, L. Mariani, and M. Pezzè. Automatic steering of behavioral
model inference. In European Software Engineering Conference and
International Symposium on Foundations of Software Engineering
(ESEC/FSE), pages 345–354, Amsterdam, The Netherlands, 2009.

[43] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of software
behavioral models. In International Conference on Software Engineering
(ICSE), pages 501–510, Leipzig, Germany, 2008.

[44] C. Marceau. Characterizing the behavior of a program using multiple-
length n-grams. In Workshop on New Security Paradigms (NSPW), pages
101–110, Ballycotton, County Cork, Ireland, 2000.

[45] V. Massol, T. O’Brien, and M. K. Loukides. Maven: A developer’s
notebook. O’Reilly, 1st ed edition, 2005.

[46] T. Ohmann, M. Herzberg, S. Fiss, A. Halbert, M. Palyart, I. Beschastnikh,
and Y. Brun. Behavioral resource-aware model inference. In International
Conference on Automated Software Engineering (ASE), pages 19–30,
Västerås, Sweden, September 2014.

[47] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging field data
for impact analysis and regression testing. In The 9th European Software
Engineering Conference and 11th Symposium on the Foundations of
Software Engineering (ESEC/FSE), pages 128–137, Helsinki, Finland,
September 2003.

[48] A. Orso, D. Liang, M. J. Harrold, and R. Lipton. Gamma system:
Continuous evolution of software after deployment. In International
Symposium on Software Testing and Analysis (ISSTA), pages 65–69,
Rome, Italy, 2002.

[49] C. Pavlopoulou and M. Young. Residual test coverage monitoring. In
International Conference on Software Engineering (ICSE), pages 277–
284, 1999.

[50] S. Rao and A. Kak. Retrieval from software libraries for bug localization:
A comparative study of generic and composite text models. In Mining
Software Repositories (MSR), pages 43–52, Honolulu, HI, USA, 2011.

[51] S. P. Reiss and M. Renieris. Encoding program executions. In
International Conference on Software Engineering (ICSE), pages 221–
230, Toronto, ON, Canada, 2001.

[52] J. M. Rojas, G. Fraser, and A. Arcuri. Automated unit test generation
during software development: A controlled experiment and think-aloud
observations. In International Symposium on Software Testing and
Analysis (ISSTA), pages 338–349, Baltimore, MD, USA, 2015.

[53] A. A. Sawant and A. Bacchelli. A dataset for api usage. In Working
Conference on Mining Software Repositories (MSR), pages 506–509,
Florence, Italy, 2015.

[54] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri.
Do automatically generated unit tests find real faults? an empirical
study of effectiveness and challenges. In International Conference on
Automated Software Engineering (ASE), pages 201–211, Lincoln, NE,
USA, November 2015.

[55] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri.
Do automatically generated unit tests find real faults? An empirical
study of effectiveness and challenges. In International Conference on
Automated Software Engineering (ASE), pages 201–211, Lincoln, NE,
USA, November 2015.

[56] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. SIGOPS Operating Systems
Review, 36(5):45–57, Oct. 2002.

[57] N. Walkinshaw and K. Bogdanov. Inferring finite-state models with
temporal constraints. In International Conference on Automated Software
Engineering (ASE), pages 248–257, L’Aquila, Italy, September 2008.

[58] Q. Wang, C. Parnin, and A. Orso. Evaluating the usefulness of ir-based
fault localization techniques. In International Symposium on Software
Testing and Analysis (ISSTA), pages 1–11, Baltimore, MD, USA, 2015.

[59] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will
it take to fix this bug? In International Workshop on Mining Software
Repositories (MSR), Minneapolis, MN, USA, 2007.

[60] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim. Crashlocator: Locating
crashing faults based on crash stacks. In International Symposium on
Software Testing and Analysis (ISSTA), pages 204–214, San Jose, CA,
USA, 2014.

[61] T. Ziadi, M. A. A. da Silva, L. M. Hillah, and M. Ziane. A fully dynamic
approach to the reverse engineering of UML sequence diagrams. In
International Conference on Engineering of Complex Computer Systems
(ICECCS), pages 107–116, Las Vegas, NV, USA, 2011.

332

