Journal of Student Research -Volume Two, No. 1

Mutual Exclusion
Algorithms in Distributed
Networks

Dan Vekhter

Niles North High School
8641 National Avenue
Niles, IL. 60714

Alex Rasin

Deering High School
33 Oakland Street
Portland, ME 04103

Yuriy Brun

Holliston High School
142 Clinton Street
Hopkinton, MA 01748

ABSTRACT:

The problem of mutual exclusion is ever-present in
distributed networks. Various algorithms have been
suggested as a means to solve the problem. This paper
discusses the efficiency of three such algorithms --
Test-and-Set bit, Dijkstra’s, and Peterson’s. The
performance of each of the algorithms is dependent on
the number of competing processes and the length of
the remainder section. Our experimental results show
which of the three algorithms are the most efficient to
use depending on the size of the network and the
number of remainder steps.

INTRODUCTION:

A distributed network is a system where one
processor operates on several competing processes, or
tasks, which require the use of the main processor’s
software and hardware resources. The tasks may be
sent to the main processor from several different users
of the same processor or from different computers.

When a task 1s waiting to use the shared resources, it
is said to be in its “trying section.” When the processor
starts executing a task using the shared resources of the
system, the process is said to enter its "critical section".
It is in this section that competing processes can
interfere with each other. When a job has finished its
critical section, it enters its "remainder section,” during
which it does not use any of the shared resources. If the
process is not finished yet and needs to use the main
processor’s shared resources again, it then goes back to
the trying section and waits for another tumn.

Winter 1997

Prince George’s Community College

To obtain optimal performance, the shared resources
must be used fairly. One of the faimess conditions says
that all tasks get into their critical section after some
time. “Starvation™ occurs when one process never gets
a turn in the critical section, often because it is much
slower than the other tasks. The more destructive
problem, however, is one of the violation of mutual
exclusion which occurs when more than one task is in
the critical section. The processor can't handle more
than one job at a time and 1t usually crashes if this
oceurs.

To solve the mutual exclusion problem, many
algorithms have been created to handle the tasks,
preventing violation of mutual exclusion. The three
mutual exclusion algorithms which we studied in the
Brandeis Summer Odyssey Directed Research Project
in Computer Science were Test-and-Set Bit algorithm
(TSB) (1964), Dijkstra's algorithm (1965), and
Peterson's algorithm (1981).

Test-and-Set Bit is the only algorithm which requires
a special piege of hardware equipment (a section of the
main processor) to operate properly. The hardware
piece enables the processor to execute the TSB
algorithm in one step, like an add or subtract
instruction. When a process enters the trying section,
the main processor accesses a variable which shows if
any other process is in the critical section. If the critical
section is empty, the hardware piece sets the variable to
indicate a busy critical section, and the process enters
the critical section. When the process exits critical
section, the variable is changed again.

Dijkstra's algorithm resists starvation better than the
Test-and-Set Bit algorithm, but sacrifices efficiency
and time to become more fair. The algorithm ensures
that the process trying to get into the critical section
won’t get into the critical section as soon as it is empty,
but would have to wait until its turn has come. This
makes the algorithm more fair, since every process
which enters the trying section will definitely get into
the critical section at least once. The same can’t be said
for the Test-and-Set bit algorithm, because a process
may have to wait forever in the trying section while
other, faster processes take turns in the critical section.
Dijkstra’s algorithm does not protect against starvation
completely, however.

Peterson’s algorithm simulates a sort of a line, or a
queue, that keeps track of all the processes trying to
enter the critical section. If process A enters trying
section before process B, process A will be the first to
enter critical section, even though process B may be
faster. This guarantees that no starvation will occur.

METHOLOGY:

During our research, we have implemented a
simulation of a distributed network using the Java
Programming Language to test the performance and

Page 65



Journal of Student Research -Volume Two, No. 1

efficiency of the three mutual exclusion algorithms
under different conditions. We coded each of the
algorithms, transforming them from a high-level
language to a very low-level string of steps that each
process would take.

Splitting the algorithms into several steps was
necessary to facilitate the switching of execution
between processes. The procedure containing the
algorithm is therefore called several times by different
processes, which need to execute a different steps. A
process enters the procedure, executes a step, and then
exits it. The main processor must “remember” which
process has executed which step. Since each loop in the
algorithms is actually several recurring statements, it
was necessary to break each loop up into a series of
steps, controlled by switch statements.

The simulation read a schedule of steps for each
process from a file, and then executed the schedule on
each of the algorithms. The program kept track of the
average number of steps for each process, the average
number of times each process entered critical sections,
and the average number of steps in the trying section.

To test the algorithms under different conditions, we
used different, randomly-created, schedules. We tested
the algorithms on remainder sections with different
lengths -- 1, 10, and 30 steps and with 3, 10, and 15
processes competing for shared resources. We also
tested several unbalanced schedules, where one of the
processes was either twice as fast or twice as slow as
the other processes. All of the schedules had the same
number of steps -- 25,000. That allowed us to
determine how each of the three variables -- the
number of processes, the number of remainder steps,
and the speed of the processes -- affect the performance
of each of the three algorithms. We measured efficiency
by comparing the average number of steps spent by
each process in the trying section -- the lower the
number of steps, the more efficient the algorithm.

RESULTS:

As the graphs show, the efficiency of each of the
algorithms increases with the length of the remainder
section (graphs 1, 2, and 3). The longer the remainder
section is, the less time the processes spend in the
trying section. That can best be explained by the fact
that if the processes spent a lot of time in the remainder
section, fewer “collisions” occur, maximizing
efficiency. “Collisions™ occur when a process is denied
entry into the critical section because another processor
is in the critical section. With a long remainder section,
at any time, most of the processes will be in the
remainder section, so a process trying to enter the
critical section can do so without any difficulties. With
a very short remainder section, at any time, most of the
processes are in the trying section. That makes it more
difficult for any particular process to enter the critical

Page 66

Prince George’s Community College

section because there is a much larger chance that it
will be occupied.

The number of competing processes also adversely
affects the efficiency of all of the algorithms. Since the
number of collisions increases with more processes, the
efficiency decreases (see graph 4).

Graphs 1, 2, and 3, show the average time each
process spent in the trying section with differing
numbers of competing processes and differing lengths
of remainder sections under each of the three
algorithms. Graph 4 shows the total number of steps
the processes spent in the trying section with differing
number of processes under the Test-and-Set bit
algorithm and Dijkstra’s algorithm.

From the graphs, it is obvious that Peterson’s and
Test-and-Set algorithms usually get better results than
Dijkstra’s algorithm. With a large number of processes,
both Peterson’s and Dijkstra’s take a lot of steps to get
into the critical section even if all but one of the
processes 1s in the remainder section.

CONCLUSION:

Our research helped us find the optimal operating
conditions for each of the algorithms. When deciding
on which of the mutual algorithms to use in a network,
one needs to consider the size of the network, the type
of main processor and shared resources, the length of
the remainder section, and other factors as well.

We have found that the Test-and-Set Bit algorithm
works best with a small number of processes and a
large remainder section. Its performance under these
conditions exceeds that of both Peterson’s and
Dijkstra’s algorithms, but its expensive hardware
requirements decrease its overall usefulness. The fact
that it does not resist any faimess violations make it
less efficient than the other two algorithms in some
cases. During our research, we have found a schedule
which caused a starvation of one of three processes
under Test-and-Set Bit algorithm. The process,
although having many steps, never entered the critical
section.

Peterson’s algorithm is able to handle a lot of
processes much better than the other two algorithms. It
works much better than the other algorithms with a
very small remainder section, and is only slightly
exceeded in performance by Test-and-Set Bit with
large remainder sections.

Dijkstra’s algorithm’s efficiency never exceeds that
of Test-and-Set Bit algorithm and is almost always less
efficient than Peterson’s algorithm. It performs best,
compared to other algorithms, when there are few
processes and a large remainder section.

Overall, there is no clear “winner” algorithm. To use
the algorithms efficiently, the network must be analyzed
and, based on the analysis, the proper algorithm must
be chosen.

Winter 1997



B nmtar of Trpleg blepa

Hererpm Bt ol Trpony Bomped

- = - ! -

Journal of Student Research -Volume Two, No. 1

ACKNOWLEDGMENTS:

The authors would like to thank David Wittenberg,
the teacher of the Directed Research Project, and Max
Saltykov, the teaching assistant, for their help with our
research at Brandeis University. The authors would
also like to acknowledge the financial support of the
National Science Foundation and the Brandeis Summer

Odyssey Program for making the research possible.

Figures 1, 2, and 3. Shows the average time each
process spent in the trying section
with differing numbers of
competing processes and lengths
of remainder sections under the
three algorithms.

REFERENCES:

Algorithms for Mutual Exclusion, by M. Raynal; The
MIT Press, 1986.

Distributed Algorithms, by Nancy Lynch; Morgan
Kaufmann Publishers, 1996. "Simulating Distributed
Computation for High School Students", by David
Wittenberg, 1996.

The Java Programming Language, by Ken Amold and
James Gosling; Addison-Wesley Publishing

Company, Inc., 1996.

Figure 4. Shows the total number of steps the
processes spent in the trying section with
differing number of processes under the
Test-and-Set bit algorithm and Dijkstra’s

algorithm.
:] /—‘——

p=! —

-

Winter 1997 Prince George’s Community College Page 67



