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Abstract—Creating UI tests for mobile applications is a difficult
and time-consuming task. As such, there has been a considerable
amount of work carried out to automate the generation of
mobile tests—largely focused upon the goals of maximizing
code coverage or finding crashes. However, comparatively fewer
automated techniques have been proposed to generate a highly
sought after type of test: usage-based tests. These tests exercise
targeted app functionalities for activities such as regression
testing. In this paper, we present the AVGUST tool for automating
the construction of usage-based tests for mobile apps. AVGUST
learns usage patterns from videos of app executions collected
by beta testers or crowd-workers, translates these into an app-
agnostic state-machine encoding, and then uses this encoding to
generate new test cases for an unseen target app. We evaluated
AVGUST on 374 videos of use cases from 18 popular apps
and found that it can successfully exercise the desired usage
in 69% of the tests. AVGUST is an open-source tool available
at https://github.com/felicitia/UsageTesting-Repo/tree/demo. A
video illustrating the capabilities of AVGUST can be found at:
https://youtu.be/LPICxVd0YAg.

Index Terms—Mobile Application, UI Understanding, Mobile
Testing, Test Generation, AI/ML

I. INTRODUCTION

UI testing, which tests the quality of an app by triggering a

sequence of GUI interactions, is a critical tool for successfully

developing high quality software. There exists a large body of

research on automatically generating UI tests that mostly focus

on quantitative metrics such as code coverage [1]–[3]. However,

studies show that usage-based UI tests are highly preferred

by developers in practice [4]. A usage-based test is defined

as a UI test that exercises a specific functionality of an app,

such as “sign in” or “add item to the shopping cart” [5], [6].

These tests mimic realistic end-user behaviors in relation to the

specific usages, but developers have to write them manually [4],

[7]. Unfortunately, manually creating usage-based tests is time-

consuming and error-prone, and hiring real users to interact

with the app can be expensive. Therefore, automating the

process of generating usage-based tests is highly sought after.

Recently, the emerging topic of UI test reuse has offered

a promising solution to generating usage-based tests by

transferring tests from one app (the source app) to another

app (the target app) [5], [8]–[15]. However, this method poses

1First & second authors contributed equally to the paper.

three limitations: (1) UI test reuse requires pre-existing tests
for the source app that can be hard to obtain in practice; (2) UI

test reuse relies on the similarities between the source app and

the target app, and requires them to be in the same domain

(e.g., transferring between two shopping apps). (3) Lastly, UI

test reuse often depends on program analyses that require the

source code of the app, which may not always be accessible.

To overcome these limitations, we designed and implemented

AVGUST, a tool for app-video-based generation of usage tests.

The software engineering challenge addressed by AVGUST is

the automated generation of usage-based tests for mobile apps,

and hence the envisioned users are mobile app developers

and testers. AVGUST’s usage methodology is described in

Section II-D. AVGUST is able to semi-automatically synthesize

tests by first learning an app-agnostic state machine represen-

tation of feature-based usages from app videos, and then uses

this representation to synthesize tests for a new, unseen target

application using various deep learning and computer vision

techniques. As such, AVGUST does not require pre-existing

tests, is app-agnostic, and has the ability to learn from diverse

apps across different domains. Furthermore, AVGUST does

not require access to an app’s source code (which might not

always be available), instrumentation, or program analysis.

Instead, AVGUST only relies on visual information extracted

from app videos, which are common artifacts, and can be easily

obtained by crowd workers with no testing expertise. Moreover,

AVGUST’s design is not tied to a specific mobile platform such

as Android (upon which it is evaluated), but is applicable to

any device or platform in principle.

To demonstrate AVGUST, we collected 374 video recordings

of common app usages from 18 apps in order to learn 125

intermediate-representation Models (IR Models). These IR

Models can be used directly by developers to generate tests

for the usages targeted in this paper, or can be extended

to new usages through video collection and processing. We

empirically evaluated AVGUST from two perspectives: the

quality of the generated tests, and the accuracy of its underlying

screen and widget classification techniques in generating the IR

Models. Using 374 video recordings, AVGUST was tasked with

generating 51 tests across 18 types of app usages for 18 target

apps. We found that 69% of the tests created by AVGUST suc-

cessfully exercised the desired usage. Furthermore, AVGUST’s
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Fig. 1. An illustration and overview of AVGUST’s three-phase workflow.

underlying screen and widget classification techniques achieved

high accuracy across the board and consistently outperformed

the state-of-the-art. All of AVGUST’s artifacts including its

source code and experimental data is publicly available [16].

II. THE AVGUST TEST GENERATION TOOL

AVGUST is a developer-in-the-loop tool that uses AI tech-

niques to generate usage-based tests by learning from app

videos. As shown in Figure 1, AVGUST consists of three

main phases: (1) Video Collection & Analysis, (2) IR Model
Generation, and (3) Guided Test Scenario Generation. More

comprehensive technical details related to each of the phases

are described in our research paper [6].

First, in the Video Collection & Analysis phase AVGUST

processes videos using computer vision techniques to identify

non-redundant video frames where touch actions occur. Next, in

the IR Model Generation phase, screens with touch actions are

classified into categories (e.g., “search screen”) and exercised

widgets are classified into canonical types (e.g., “menu button”).

Then an app agnostic state machine for the input video usage

is encoded using the categories. Finally, in the Guided Test
Scenario Generation phase the encoded state-machine is used

to guide a developer through the test generation process by

suggesting actions and paths through the app that accomplish

the target usage. We next describe each of the phases in detail.

A. Video Collection & Analysis

Given the collected videos of app usages, AVGUST automat-

ically identifies key frames with user interactions and filters

out the frames that contain sensitive information, such as

user passwords. To identify the key frames with user actions,

AVGUST extends V2S [17], a technique that leverages neural

object detection and image classification to identify the user

actions in a video, and translates these actions into a replayable

scenario. Our extended V2S module stores the necessary

information of the key steps in each video, including a sequence

of event frames (key frames containing unique user actions),

the respective action type (i.e., click, long tap, and swipe), and

the action location on the screen (e.g., the touch coordinates).

To remove the sensitive frames, AVGUST identifies the frames

that are associated with the typing action, since they may

expose user’s private information such as a password. To filter

these frames, we trained a binary image classifier using a

simple convolutional neural net (ConvNet) architecture that

classifies whether a video frame contains the keyboard. In the

end, AVGUST automatically eliminates the frame if it contains

Fig. 2. An example of converting a 6pm’s Event Frame into an IR Model.

the keyboard and the location of the user action is within the

area of the keyboard.

By filtering out unnecessary and sensitive frames, AVGUST

effectively translates videos into a compact dataset that retains

sufficient information to learn each usage scenario, allowing

the generation of various IR Models, as described next.

B. IR Model Generation

Using the cleaned event frames from the first phase, AVGUST

generates IR Models (e.g., an example of IR Model can be

seen from Figure 3) iteratively, by converting each event frame
into a GUI event, and finally into one step in the IR Model as

shown in Figure 2. As an illustration, we now describe how

AVGUST translates one event frame into its respective step in

the IR Model. The entire IR Model is constructed by repeating

the same process.

First, an event frame is converted into a GUI event triple,

which consists of the app screen that shows a snapshot of the

app’s execution state, the GUI widget that the user interacts

with, and the action performed by the user (e.g., click, swipe).

The screen and action are easily extracted by reusing the

outputs from the first phase, while extracting the widget poses

technical challenges as explained below.

To extract the widget from the event frame, AVGUST needs

to first detect the bounding boxes of the GUI widgets in the

screen, and then pinpoints which widget the user interacts

with. To do so, we extended UIED [18], a state-of-the-art tool

capable of detecting the bounding boxes of the widgets by using

textual and visual information from the screen. However, UIED

detects textual widgets and visual widgets separately, which

can cause the widgets to lose important contextual information.

For instance, the visual widget checkbox will be detected

without its textual label, making it difficult to understand the
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home menu sign_in endmenu#click account#click sign_in#click

self[email#click & password#click & up & keep_signin#click]

Fig. 3. An example IR Model containing the sign-in usage of the app 6pm.

semantics of such widgets. We thus extended UIED to group

the visual widget and its corresponding textual information

(if any) together based on their spatial information. With the

detected bounding boxes, AVGUST identifies the widget that

the user interacts with by calculating the proximity between

each widget and the coordinates of the user’s touch (obtained

in the first phase as described earlier). The closest widget is

chosen and automatically cropped out from the screen.

Next, each GUI event triple (screen, widget, action) is

translated into its corresponding step in the IR Model, which is

an app-agnostic representation of a particular usage in the form

of a finite state machine (FSM). Figure 3 shows an example IR

Model containing a sign-in usage converted from the app 6pm.

Each state in the IR Model represents a particular app screen

and is captured as an app-independent canonical screen, while

each transition represents a user interaction with a canonical

widget and its corresponding action. A self-transition (e.g.,

shown in the “sign in” state in Figure 3) means that the app

stays on the same screen during certain user interactions.

Specifically, the action in the GUI event triple stays the same

in the IR Model, while the screen and widget are classified

into their canonical categories using a Screen Classifier and a

Widget Classifier that we developed. The canonical categories

are pre-defined by refining prior work [5], resulting in 37

canonical screens and 74 canonical widgets that can be found

in our repository [16]. Note that AVGUST’s classifiers solely rely

on pixel-based visual information extracted from app videos

without the app’s source code or UI hierarchy information. This

poses a unique technical challenge that has not been addressed

before. We now explain how AVGUST addresses this challenge

using its novel Screen and Widget Classifiers, and a more

in-depth discussion can be found in our full paper [6].

AVGUST’s Screen Classifier leverages both visual infor-

mation, encoded using a pre-trained autoencoder model we

developed, and textual information retrieved from the screen

using the Tesseract OCR engine and encoded using the BERT

language model [19]. Specifically, our autoencoder is trained on

33,000 abstracted UI screenshots from the RICO dataset [20]. In

this scenario we define an abstracted image to be a screenshot

wherein textual components are drawn as yellow boxes and

non-textual components are drawn as blue boxes on a black

canvas that matches the size of the UI screenshot. To classify

an incoming screen, we run it through this abstraction process,

and then through the encoder of our autoencoder network to

extract a feature vector.

The Screen Classifier employs linear layers to combine the

autoencoder and BERT embeddings and classify the screens.

The architecture consists of three blocks, each containing a

linear layer, BatchNorm, a ReLU activation function, and a

dropout layer. These blocks are followed by a fully connected

output layer that applies softmax function to predict the

probability distribution of different screen classes. To train

AVGUST’s Screen Classifier, we used the partitions of data

collected for our evaluation (see Section III), where individual

classifiers for each app were trained on data sourced from other

apps, demonstrating AVGUST’s capability to classify screens

for unseen apps.

AVGUST’s Widget Classifier uses five types of information

extracted from the widget images as the features: (1) The

visual information of the widget is encoded using a pre-trained

ResNet model [21]; (2) The textual information is detected

using Tesseract and encoded using the BERT model; (3) The

canonical screen that the widget belongs to is mapped to an

id and transformed into a continuous vector via an embedding

layer; (4) The type of the widget (e.g., EditText) is classified

using ReDraw [22], and is translated into an embedding; (5) The

widget’s location on the screen is obtained by dividing the

screen into 9 zones and then transformed to an embedding.

Similarly, AVGUST’s Widget Classifier adapts the same

architecture as the Screen Classifier, and is trained on our

dataset (see Section III). In the end, pre-trained Screen

Classifiers and Widget Classifiers are produced for each app

under test (AUT) using the remaining data from other apps.

Finally, AVGUST uses its screen and widget classifiers to

recommend top-k canonical categories for developers to refine.

This process converts each GUI event triple discussed earlier

into its corresponding step in the IR Model. As a result, the

entire IR Model is generated after iterating through each GUI

event triple. Note that the IR labels refined by developers and

the generated IR Models can be reused by future work.

C. Guided Test Scenario Generation

In order to generate a test scenario for a particular usage,

AVGUST uses the IR Models generated in the previous phase,

and follows a developer-in-the-loop process that reuses the

Screen Classifier and Widget Classifier discussed earlier.

Internally, IR Models of the same usage are represented as

a single merged model where multiple scenarios for a given

usage populate the same state machine. In this way, AVGUST

is able to learn “all possible transitions” for a usage from a

variety of executions, and generate multiple tests for that usage.

Specifically, this test scenario generation phase is iterative:

each step of the test is generated based on the AUT’s current

state, until the end condition is met. The process begins by

launching the AUT and running AVGUST’s Screen Classifier

to retrieve the most likely canonical categories of the AUT’s

starting screen. AVGUST then presents the developer with these

top-k classification results obtained by its Screen Classifier,

and the canonical category selected by the developer is used to

match the AUT’s current screen to the canonical screen states

in the IR Model. Next, AVGUST recommends the top-k app

widgets for developers to interact with by using its Widget

Classifier to map the canonical widgets in the IR Model to

the widgets on the AUT’s current screen. After a widget is

chosen by the developer, AVGUST checks whether the test

should terminate based on whether the chosen widget will lead
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to the end state in the IR Model. If not, the chosen widget is

triggered, the AUT’s next state becomes its current state, and

this process repeats until the end state in the unified IR Model

for a given usage is reached.

D. AVGUST’s Implementation & Usage Methodology

AVGUST is implemented in Python with 10,700 SLOC,

of which the Screen and Widget Classifiers are stand-alone

modules totaling 2,800 SLOC, and include the autoencoder

model we developed. AVGUST employs the pytransitions

library [23] to manipulate its state-machine IR Models, and

uses the Appium testing framework [24] for its test generation.

AVGUST consists of two command line utilities, one for

processing videos into the IR models, and another for generat-

ing a usage-based test of a target app. For the first utility, a

developer simply provides a video labeled with a given usage

name, and AVGUST processes the video into the appropriate

IR Model, asking for developer feedback when necessary. For

the second utility, which is illustrated in our demo video, the

developer launches an emulator, and then executes AVGUST

from the command line, and follows the prompts to generate

the desired test for a specified usage.

III. EVALUATION

We evaluated AVGUST according to two criteria: (i) the

effectiveness of its generated tests, and (ii) the accuracy of its

Screen and Widget Classifiers. To do so, 374 video recordings

of 18 common usages across 18 subject apps were collected

by 31 computer science students in a Master’s level course at

George Mason University (GMU). This data collection study

was reviewed by the GMU Institutional Review Board (IRB

#1666261-1). A complete list of the apps and usage scenarios

can be found in our full paper [6].

To evaluate AVGUST’s effectiveness, we randomly selected

3 apps under each of the 18 usage scenarios as the AUTs to

generate the tests for. We used the remaining apps’ videos

as the training data to generate the IR Models to guide the

test generation. Four of the authors served as the developers

interacting with the tool during this process. In the end, 51 tests

are generated by AVGUST across 18 app usages. As a result,

35 of the 51 tests (68.6%) carried out the usage, meaning

that AVGUST successfully generated a correct test to exercise

the desired usage. We also inspected the 16 remaining tests,

and measured how similar those tests are compared to the

corresponding user interactions indicated in the collected app

videos (exercised by humans to serve as the ground truth). On

average, 79% of the states and 47% of the transitions in the

generated tests are the same as the steps captured in the app

videos. This indicates that AVGUST is successful in generating

correct tests a large portion of the time, and can generate tests

similar to the steps exercised by humans in the remaining cases,

directly saving developers time and effort.

The accuracy of AVGUST’s Screen and Widget Classifiers are

evaluated in two contexts: (1) when used as stand-alone image

classifiers, and (2) when used in AVGUST’s test generation

phase. In the first context, we annotated 2,478 screens and

2,434 widgets across 18 apps in our dataset to serve as the

ground-truth labels. We tasked AVGUST’s screen and widget

classifiers and the state-of-the-art tool Screen2Vec (S2V) [25]

in classifying screens and widgets. The results show that our

classifiers constantly outperforms S2V, with an average Top-5

accuracy of 81% in the Screen Classification, and 76% in

the Widget Classification. In the second context, we recorded

Avgust’s Top-1 and Top-5 recommendations at each step during

the Test Generation phase, and evaluated the accuracy of

those recommendations. We also compared the original vision-

only classifiers of AVGUST with an extended version that

uses runtime information, such as the dynamic UI hierarchy

information of the app screen for this context. Interestingly, our

results show that adding runtime features decreases accuracy,

perhaps because these features are too different from the ones

used to train AVGUST’s vision-only models. Detailed evaluation

results and discussion can be found in our paper [6].

IV. MOST CLOSELY RELATED EXISTING TOOLS

Liu et.al. introduced the NaviDroid tool [26], which provides

testers with hint moves for the purpose of reaching unexplored

regions of a given application. Hu et.al. introduced the AppFlow

technique [27], which uses machine learning to help developers

write tests that can be transferred between apps. Finally,

researchers have developed a number of techniques for test

case transfer [5], [8]–[15], which utilize a variety of AI and

program analysis techniques.
AVGUST has three major advances over the prior work

described above that highlight its novelty: (i) AVGUST operates

purely on videos as input, which allows for easy crowd-

sourcing of usage-based tests, unlike AppFlow which requires

developers to manually create tests; (ii) AVGUST is geared

toward aiding developers in generating usage-based tests, which

studies have illustrated developers prefer over optimizing for

code coverage [4], which is NaviDroid’s goal; (iii) AVGUST

does not require there to be similarities between apps for test

generation, as much of the past work on test transfer requires.

V. CONTRIBUTIONS AND FUTURE WORK

We have presented AVGUST, a developer-in-the-loop tool

that generates usage-based tests by learning from videos of

app executions. AVGUST leverages novel computer vision

techniques (e.g., image classification, object detection) to

extract app-agnostic IR Models from videos, and uses them to

recommend actions for developers during the test generation.

AVGUST also provides ready-to-use models trained on our

dataset for developers to use directly [16]. In the future, we

aim to improve the accuracy of the image classification to

further automate AVGUST’s recommendation system, and build

an infrastructure to facilitate community efforts in this area.
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