
1578 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 48, NO. 9, SEPTEMBER 2018

Discrete-Event Simulation and Integer Linear
Programming for Constraint-Aware

Resource Scheduling
Seung Yeob Shin, Yuriy Brun, Member, IEEE, Hari Balasubramanian, Philip L. Henneman,

and Leon J. Osterweil, Member, IEEE

Abstract—This paper presents a method for scheduling
resources in complex systems that integrate humans with diverse
hardware and software components, and for studying the impact
of resource schedules on system characteristics. The method uses
discrete-event simulation and integer linear programming, and
relies on detailed models of the system’s processes, specifications
of the capabilities of the system’s resources, and constraints on
the operations of the system and its resources. As a case study, we
examine processes involved in the operation of a hospital emer-
gency department, studying the impact staffing policies have on
such key quality measures as patient length of stay (LoS), number
of handoffs, staff utilization levels, and cost. Our results suggest
that physician and nurse utilization levels for clinical tasks of
70% result in a good balance between LoS and cost. Allowing
shift lengths to vary and shifts to overlap increases scheduling
flexibility. Clinical experts provided face validation of our results.
Our approach improves on the state of the art by enabling using
detailed resource and constraint specifications effectively to sup-
port analysis and decision making about complex processes in
domains that currently rely largely on trial and error and other
ad hoc methods.

Index Terms—Discrete-event simulation (DES), human-
intensive systems, linear programming, resource planning,
resource policy.

I. INTRODUCTION

OUR society has become increasingly dependent on
complex human-intensive systems that integrate human

resources with diverse hardware and software components.
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As a result, correctness of system performance, safety, and
efficiency have become correspondingly important. For exam-
ple, such systems are responsible for keeping airplanes safely
separated from each other, oversee the delivery of healthcare to
patients in clinical settings, and support electric power grids.
The incorrect or unsatisfactory performance of these systems
can lead to waste, damage to critical infrastructure, and even
loss of life. Providing desired assurances about the speed,
correctness, reliability, and efficiency of these systems has
become a critical societal need. But the size and complex-
ity of these systems greatly complicate our ability to provide
these kinds of assurances.

The behavior of these systems is further complicated con-
siderably by reliance on many different kinds of human
and other resources, diverse goals and optimization objec-
tives, and a combinatorial explosion of contingencies and
exceptional conditions that may arise during execution.
Because these systems integrate the contributions of humans,
they are sensitive to differences in the characteristics (e.g.,
skill levels [4]) of these human resources, complex poli-
cies for the use of the resources, and various idiosyn-
crasies of those resources, including the possibility that
different humans may perform differently under identical
conditions. Our previous work [14], [28], [30], [31] presents
the complex nature of resources and its impact on system
analyses.

The performance characteristics of these systems are likely
to vary considerably depending on the conditions. One such
key measure that we study in this paper is utilization, which
measures how busy resources in the system are. Broadly inter-
preted, utilization determines the balance between resource use
and service quality for customers (waiting time and access).
A system that is heavily utilized may result in poor service
measures compared to the same system operating under lower
utilization.

In simple queuing systems, where a single customer type
goes through a stochastic service step requiring one resource
type, these relationships are well understood and analytical
closed form expressions are available [8], [13], [21]. However,
utilization becomes analytically intractable to estimate and
control for in complex multiresource settings where: 1) the
rate at which customers arrive varies over time; 2) there are
many customer types with different priorities, and each cus-
tomer type goes through multiple stochastic service steps;
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and 3) each step may require a different type of resource.
In such settings, different resource types “interfere” with
each other as they perform a set of sequential tasks with
stochastic durations on the same customer. As a result, the
threshold utilization levels (tipping points) at which cus-
tomers start experiencing significant delays can be different
for different resources. Further, these threshold levels inter-
act with other system attributes such as shift scheduling
constraints, resource costs, the hourly stochastic variation in
customer arrivals, and the stochastic durations of the service
tasks.

Discrete-event simulation (DES) has been widely
used to estimate utilization of resources in complex
systems [2], [10], [23]. However, DES cannot by itself
inform us how the utilization of multiple resource types will
interact to impact customer service measures. Fundamentally
descriptive in its function, DES cannot prescribe how uti-
lization of resources should be controlled or optimized by
better staffing. What is required, therefore, is an algorithmic
approach that allows control and optimization within the
execution framework of DES.

The major contribution of this paper are as follows.
1) A resource-aware DES framework for human-intensive

system simulations that adhere to detailed, complex
models of the system, system resources, and constraints
on resource use.

2) A method for computing resource schedules in human-
intensive systems that accurately controls utilization
rates of multiple resources simultaneously. The method
uses DES to simulate system execution, derives an
integer linear program (ILP) that accurately constrains
resource use, scheduling policies, and resource interac-
tions, converts the ILP solution to a resource schedule,
and verifies the desired resource utilization levels using
DES.

3) A case study evaluating our method in the health-
care domain, scheduling doctors, nurses, and nonhuman
resources in a real-world emergency department (ED),
verifying that our method handles dynamic, complex
system process and resource characteristics and produces
resource schedules that accurately constrain the resource
utilization rates.

We note that simulation-optimization as a method has been
widely used [3], [35], [38]. Studies have also used ILP for
staffing and scheduling and combined them with simula-
tion [15], [32], [37]. However, to the best of our knowledge,
the dynamic control of utilization for multiple interacting
resources in complex service systems of the type character-
ized above has not been dealt with before. Our approach
combines the rigor of mathematical programming with the
complex detail and realism of a DES.

Unlike prior approaches, our method provides the following.
1) Simultaneously schedules multiple resources while

adhering to the scheduling constraints on all of
the involved resources and taking into account their
interactions.

2) Handles extremely detailed models of the system pro-
cess, resources, and resource scheduling policies.

3) Controls resource utilization by computing resource
requirements under such dynamically changing condi-
tions as varying task arrival rates and varying task
difficulty.

Our approach consists of three steps. First, our approach
uses an algorithmic control method embedded within our
resource-aware DES framework to compute resource require-
ments, such as how many of each resource must be present
at each time epoch to meet user-specified resource utilization
requirements. The first step simulates a system to calculate
resource demands while considering complex resource uti-
lization, processes, and external events. The second step uses
deterministic ILP to produce a resource schedule that satisfies
those resource requirements and user-specified constraints on
resource utilization. The third step again uses the resource-
aware DES to compute how the resource schedule affects
statistical estimates of the system’s runtime properties. In
summary, this paper provides the following.

1) An iterative three-phase scheduling approach that sched-
ules multiple types of resources simultaneously, taking
into account complex resource utilization and time-
varying events that trigger resource requirements.

2) A modeling notation whose rich semantics support accu-
rately modeling a multiplicity of resources, complex
characteristics of resources, constraints on resources,
resource capabilities, and details of resource use by
complex processes.

3) Allows specification of target resource utilization
ranges and constraints on resource scheduling, such as
“resources of a given type may only be utilized between
60% and 75% of the time, for no more than 8 h per day.”

4) Allows flexibility in specifying which system proper-
ties are optimized, even if these measures may not be
orthogonal.

While our technique is designed to be general and to apply
broadly to all resource-dependent systems, for exposition and
evaluation we apply it to a healthcare system example in this
paper and, in particular, to an example from the domain of
hospital EDs in the USA, where our domain expert has con-
siderable expertise. A 2016 report concluded that EDs have
the most complex sets of staffing rules and physician sched-
ules of all specialties [25]. EDs, like many resource-dependent
systems, have significant constraints on their resource use, and
variability in system requirements. For example, EDs com-
monly have fivefold variation in patient arrival rates throughout
a 24-h period [17], and staffing and resource scheduling
decisions need to be responsive to such variation while simul-
taneously considering the impact on conflicting objectives,
such as patient waiting time, utilization of the medical doc-
tors (MDs) and registered nurses (RNs), delays in care, and
staffing costs.

Thus, we have evaluated our scheduling approach by apply-
ing it to the very challenging example of a detailed model of
an ED. We schedule MD and RN resources simultaneously
while considering the complex characteristics of the ED such
as time-varying patient arrivals, constraints/policies of medical
providers, other hospital resource (e.g., beds) utilization, and
complex patient care processes. The evaluation demonstrates
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that our scheduling approach creates better staffing than
existing real-world staffing in terms of balancing resource uti-
lization over a 24-h period. In addition, we compared the
impacts of various combinations of shift lengths, start times,
and overlapping shift options. The comparison results of many
staffing options have been verified by our domain expert, who
assures us that we have used an appropriate ED model.

Our approach enables not only computing resource sched-
ules, but also exploring how constraints, requirements on the
resources, and allocation policies impact critical system prop-
erties. In the ED domain, the approach enables exploring, in
a principled manner, the effects of MD and RN assignment
policies, patient admittance policies, shift scheduling policies,
requirements that a single MD and RN handle all of a patient’s
procedures, on the length of stay (LoS) of the patient, patient
handoffs, ED financial efficiency, etc.

The rest of this paper is organized as follows. Section II
provides a detailed review of the relevant research. Section III
presents our simulation optimization approach, first overview-
ing the resource-aware DES, then describing the ILP formu-
lation and the scheduling algorithm, and finally, using the
simulation optimization framework. Section IV evaluates our
approach by applying it to the ED scenario and computing:
1) the hourly staff utilization and 2) the interplay between uti-
lization, staffing costs, LoS, and handoffs. Section V outlines
the threats to the validity of our evaluation. Finally, Section VI
summarizes our contributions and future research directions.

II. RELATED WORK

The problem of scheduling resources in complex environ-
ments has been extensively studied, with a considerable focus
on hospital ED operations, but in our view, none of this
prior work has attempted to model all relevant aspects of the
scheduling problem simultaneously, and in sufficient detail.

Van den Bergh et al. [9] found that, of 291 papers addressing
the personnel scheduling problem, 93 were related to health-
care. Among the deficiencies shared by these papers were the
following.

1) Failure to address dynamics such as demand forecasting,
hiring and firing, and machine scheduling.

2) Failure to account for differences in staff skills, contracts
flexibility, and breaks.

3) Lack of consideration for the staff and equipment con-
straints.

4) Failure to incorporate nondeterminism in decision mak-
ing, scheduling, and demand.

5) Insufficient testing of solution robustness to noise, uncer-
tainty, etc.

6) Insufficient study of the effects of proposed changes.
7) Lack of scientific comparison of approaches.
Analytical approaches are widely used in studying ED

staffing. Green et al. [13] used queuing models to create
staffing for various ED patient arrival rates, focusing on the lag
between patient arrival and start of treatment. But this paper
simplifies the ED care process considerably, and only calcu-
lates physician schedules. This paper recognizes that patients
with different acuities have different needs, addressed by

different step sequences, and using many kinds of resources,
all of whose schedules affect lag times. Short-term planning
and scheduling using Petri nets and DES [1] similarly lacks the
intricate details of the healthcare process our models capture,
such as work shifts, patient handoffs. Similarly, while UML
modeling with discrete-timed Petri nets can guide optimization
to determine the minimum required resources, and simula-
tion can then evaluate EDs [11], unlike our approach, this
method does not consider the complex constraints and policies
of resource utilization. In addition, our approach allows deci-
sion makers to balance costs and staff workload by controlling
levels of resource utilization.

Cochran and Roche [8] used multiclass queuing network
analysis for the capacity planning of both beds and staff. They
hypothesized five types of patients characterized by different
resource utilization and priority, nonexponential service time
distributions, and nine patient care areas. They determined
staffing levels needed for each area to satisfy various qual-
ity measurements. Li and Howard [20] proposed an analytical
framework that models an ED using flow controls, such as
split, re-entrant, closed, and parallel queueing, and suggests
redistributing resources to mitigate bottlenecks. Unlike this
paper, however, they overlook key ED complexities and con-
straints such as the need for patients to be cared for by the
same MD and RN for the duration of each shift.

Many approaches have addressed the need to model
multiple, complex constraints, modeling variations in working
hours per week, days-off regulations, and staff salaries.
Carter and Lapierre [6], for example, analyzed the schedul-
ing process in six different hospitals in the greater Montreal
area. Based on their findings, they present scheduling meth-
ods that conform to such real-world constraints as vacation
schedules and assurance of adequate spacing between pairs
of consecutive shifts. However, unlike this paper, they do not
simultaneously schedule other resources, such as RNs and cler-
ical assistants, nor do they address more complicated sets of
constraints.

As with our approach, Brunner et al. [5] created physician
schedules that allow full flexibility of shift starting times and
lengths, recognize the need for breaks and planned overtime,
and conform to labor agreement constraints. Ferrand et al. [12]
built cyclic physician schedules that can be repeated through-
out the year and incorporate holidays, work assignments, and
vacations. Stolletz and Brunner [33] scheduled physicians with
flexible shifts and balance the work times and on-call service
assignments over all physicians. Kazemian et al. [18] intro-
duced a deterministic integer-programming-based healthcare
provider shift design to minimize patient handoffs. Unlike this
paper, these other projects all make coarse approximations of
ED processes.

These difficulties in creating suitably complete and detailed
analytic models of ED resource scheduling has suggested com-
plementing this approach with DES [2], [10], [23], [24], [28].
Thus, Wang et al. [35] used DES to evaluate ways to reduce
patient LoS as reassigning RN jobs, combining registration
with triage, adding float RNs, and expediting first physician
visit. Zeng et al. [38] used DES to evaluate team nursing
approaches, and additional RNs and CT scanners to improve
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ED efficiency at a community hospital. Brenner et al. [3] used
simulation to identify bottlenecks and investigate the opti-
mal numbers of human and equipment resources. These prior
simulation studies, however, do not use simulation as a tool
to address resource scheduling problems, as this paper does
through a combination of ILP and resource-aware simulation.

Sinreich et al. [32] also proposed to combine DES and
ILP to study staff scheduling. They used simulation to first
identify required quantities of bottleneck resources, and then
reschedule bottleneck resource shift start times, iterating these
steps to approximate optimal resource staffing. This paper also
presents an approach to transferring shifts between similar
bottleneck resources, such as fast-track and surgical physi-
cians. However, in scheduling one resource at a time, this
approach does not take into consideration complex interac-
tions between resources. In contrast, our approach schedules
multiple resources simultaneously, accounting for interactions
between resources, and procedures that require multiple, con-
strained resources. Additionally, unlike Sinreich et al.’s [32]
approach, this paper allows more flexibility in shifts than fixed,
8-h shifts.

Izady and Worthington [15] used heuristic iterative simula-
tion to determine the minimal hour-by-hour ED staff levels
needed to meet the U.K. government target that 98% of
patients be discharged, transferred, or admitted within 4 h
of arrival. They first calculated required staffing levels using
an offered load analysis [22] and the square root staffing
law [16], with nonstationary infinite server networks. They
then used DES to determine whether the derived staffing sat-
isfies the government target, iterating by adjusting the target
delay probability of a resource until the target is met. While
this approach incorporates multiple types of resources, interac-
tions between resources, and different patient routing based on
patient type, it takes into consideration only a limited number
of the many constraints that typically characterize ED opera-
tions. For example, their model does not enforce the constraint
that a patient must be cared for by the same MD and RN
assigned when the patient was first placed in a bed, nor does
it consider time varying arrival rates. Our approach handles
both detailed constraints and varying arrival rates.

Zeltyn et al. [37] used modified offered-load approximation
to propose staffing levels over multiple time horizons ranging
from several hours to several months. They first hypothesized
the availability of infinite resources to estimate the work-
loads of busy resources, then used these estimates to calculate
staffing demands through offered-load analysis, and finally
evaluate the estimates through simulation. The simulation-
based offered-load analyses show significant improvement in
waiting time to be seen by a physician over a commonly used,
rough cut capacity-planning technique [34]. However, in con-
trast to our approach, this paper only studies staffing demand
levels, and neither studies the influence of variability in shift
starting times and lengths nor provides insight into resource
utilization levels.

In summary, previous work has made various simplifying
and restrictive assumptions in studying how resource utiliza-
tion approaches affect such key quality measures as patient
waiting time and resource utilization levels. Some of these

techniques have not considered variable arrival rates. Some
support minimal (or no) resource utilization constraints. Some
have failed to consider the effects of one resource type on
another. Some rely on coarse process models that drastically
oversimplify the patient care process, or use resource mod-
els that inadequately describe the complexity of the involved
resources. This paper builds on these earlier efforts by address-
ing these shortcomings. In this paper, we combine unusually
detailed models of processes and resources, a highly flexible
approach to specifying constraints, variable arrival rates, and
flexibility in human resource shift policies.

III. APPROACH

This section describes our approach to using resource-
aware simulation and ILP to schedule resources. We use
a hospital ED patient care process as an example because
of its particularly complex resource scheduling requirements.
Sections III-A and III-B describe how our approach models
the process of system operations and resource specification,
respectively. Section III-C details the simulation capabilities
our approach uses, and Section III-D combines the simulation
capabilities with ILP to schedule the resources.

A. Process Modeling

Our approach relies on the existence of a precise, well-
defined system model. For the ED domain, this means a
detailed model of the process by which patients are treated
in an ED. We used the Little-JIL language [36] to specify this
model. Little-JIL process definitions are based on the notion of
functional decomposition of a high-level process into a hier-
archy of steps. Little-JIL has well-defined semantics based on
finite state machine definitions, and is supported by a tool
suite that includes a graphical editor that renders process def-
initions as visualizations (Fig. 1 shows an example of such a
visualization).

The central semantic element of a Little-JIL definition is
the step. Steps are connected by edges to parents (above) and
children (below), with edges also specifying the flow of argu-
ments between parents and children. Parent steps both define
scopes, and also specify the flow of control between chil-
dren. The legend in Fig. 1 indicates three different control
flow possibilities: 1) sequential (children performed in left-
to-right order); 2) parallel (children performed in any order,
possibly concurrently); and 3) choice (only one of the chil-
dren selected for performance). Each step also incorporates a
specification of needed resources (e.g., MD, RN, and X-ray
machine) to be allocated at run time (see Fig. 3). Note that
these specifications can set up contentions that can further con-
strain execution order, for example, by enabling or disabling
concurrent execution.

Our ED process model was developed based on the advice
of a domain expert with extensive experience as an emergency
physician and ED manager at the Baystate Medical Center
in Springfield, MA, USA. The full ED process model defini-
tion contains 164 steps, and is publicly available at https://
github.com/LASER-UMASS/EDResourceScheduling/. Fig. 1
illustrates one small part of this process definition, namely the

https://github.com/LASER-UMASS/EDResourceScheduling/
https://github.com/LASER-UMASS/EDResourceScheduling/
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Fig. 1. Little-JIL definition of the patient testing process, which is part of the
care an acuity-level-four patient undergoes in an ED. The full, detailed model
can be found at https://github.com/LASER-UMASS/EDResourceScheduling/.

patient testing process for an acuity-level-four patient. Fig. 1
specifies that AL4Test is a parallel step, which means a
laboratory test process, AL4LabProc, can be performed in
parallel with the other tests, although contention for needed
resources (in this case the MD) may make concurrency impos-
sible. As Fig. 1 legend notes, steps may have prerequisites
that may be used by our simulations to specify the relative
frequency with which exceptions should be thrown, or which
of the alternatives specified as the children of a choice step is
the one that should be selected. For example, the prerequisite
on AL4LabProc means that 92% of acuity-level-four patients
require the laboratory test. For the other tests, an RN checks a
patient’s EKG first, RNECG, and then an MD checks the EKG
result, MDCkECG, because AL4ECGProc controls its child
steps sequentially. After the EKG, an RN gives medication to
the patient, RNMedHi, and the patient is then transferred to
either the CT or the X-ray room. This behavior is represented
by the AL4XrayOrCTOrNothing choice step, only one of
whose child steps will be executed, with the choice made by
the agent who performs the parent step.

We used Little-JIL to define our ED process because Little-
JIL makes it easy to define and represent visually some
challenging, yet critical, features of the process.

1) Allowing for Process Variation: The Little-JIL choice
step makes it easy to show that patients can arrive either by
ambulance, when they are immediately placed in a bed, or
using their own transportation, with bed-placement based on
classification into one of six acuity levels. The choice step
also facilitates showing the different treatment processes for
the different levels.

2) Supporting Human Decision Making: The choice step
also facilitates showing where humans are free to choose
among alternatives. Thus, for example, the choice step in Fig. 1
modeled the MD’s ability to choose either a CT or an X-ray
for the patient. The choice step also concisely and precisely
defined the way patients are given a bed-placement triage level
between 1 and 5, and how this triage level is then used to
determine if a patient’s treatment is immediate or deferred.

3) Concurrency: Some steps in some of the treatment
processes can be performed in parallel, and, indeed, further
concurrency arises because the entire treatment process is
performed once for each patient in the ED. This can cre-
ate contention for resources such as MDs, RNs, and X-ray
machines, and makes the clear and precise specification of the
exact nature of the concurrency particularly important. The
Little-JIL parallel step facilitates specifying this concurrency,
and supports a clear visual depiction of that seems readily
accessible to ED domain experts.

4) Exception Management: It is common for non-
normative situations to arise in EDs. For example, the lack
of needed resources (e.g., beds and RNs) may necessitate
changes in treatment sequences or substitution of resources,
and treatment procedures that prove ineffective may necessi-
tate new diagnostic procedures and diagnoses. The Little-JIL
exception management facilities, featuring scoped handling of
typed exceptions has proven particularly effective in defining
clearly and precisely even difficult exception management sce-
narios [19]. Examples of using the exception management to
improve hospital resource utilization can be found in [26].

B. Resource Modeling

In our resource-aware DES framework, resource specifica-
tion is orthogonal to, and separate from activity and dataflow
specification. The two specifications are precisely linked to
each other, with each Little-JIL step incorporating the speci-
fication of the resources and the agent needed to perform the
step, and each resource specification incorporating an enumer-
ation of the steps whose execution it is able to support. To
simulate the performance of a Little-JIL step, a specification
of the resources and agent needed is passed to a resource man-
ager, which then allocates appropriate resources to the step, if
such resources are available. We next describe the specification
of the resources (Section III-B1) and then the specification of
the resource requests (Section III-B2).

1) Resource Specification: A resource is modeled as the
composition of a set of attributes and a set of capabilities. A
resource’s attributes describe its inherent nature, and its capa-
bility set is the set of the steps for which the resource can
participate in performing. Attributes such as the resource’s
age, experience, job title, and skill are used in deciding which
resource instance is assigned to a requesting step. One par-
ticularly important attribute is the work shift, specified by a
(shiftStart, shiftEnd) pair, specifying the only times
when a resource can be allocated to a step. Two other par-
ticularly important attributes are reservation_capacity
and assignment_capacity, used to determine the
resource’s ability to take on new assignments. The

https://github.com/LASER-UMASS/EDResourceScheduling/
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assignment_capacity quantifies the maximum amount
of effort that a resource can provide at any given time. The
resource manager will not assign an additional step to a
resource if it determines that the effort required by the new
step will exceed the resource’s assignment_capacity.
Note, however, that we follow the common practice of allow-
ing some resources (e.g., MDs and RNs) to take responsibility
for more patients than can be treated at the same time. For
example, an MD might have an assignment_capacity
of 1 (i.e., the MD can only be delivering service to one
patient at a time), but may still be allowed to be responsi-
ble for the treatment of more than one patient. We use the
reservation_capacity to limit the number of patients
the MD can be responsible for.

A resource specification also includes a list of capabilities,
the steps that the resource is able to participate in perform-
ing, and the circumstances under which this is possible. For
example, an MD’s capability list includes prescribing medica-
tions and ordering tests, while a Triage Nurse’s list includes
assigning bed-placement priorities. On the other hand, recog-
nizing that exceptional situations may necessitate exceptional
behaviors, each capability also includes a guard, a Boolean
expression defined over the dynamically changing values gen-
erated by the simulation, that specifies circumstances under
which the resource can be assigned to the step. For example,
a guard may specify (although not shown in this example)
that an MD may give injections, but only if no RN is avail-
able, or that an RN may give certain medications without
an MD’s order if the patient’s condition and situation meet
specific clinical guidelines allowing the exceptional practice.

Resource allocation must also take into account various
kinds of specified constraints. We allow specification of con-
straints used to resolve resource contention (when the same
resource instance can satisfy multiple requests) and activ-
ity contention (when multiple resource instances can satisfy
a single request). We provide built-in policies for resolv-
ing resource contention (e.g., first-in first-out), and facilities
for defining custom policies [e.g., least utilized resource first
(LeastUtilizedFirst, as shown in Fig. 2)]. We pro-
vide built-in policies specifying that assignments be based
on such criteria as the priority of a request (Priority),
which resource was least-recently used, and which resource
was most-recently used, as well as facilities for defining cus-
tom policies based on various functions over the dynamic
variables of the process. Thus, for example, Fig. 2 spec-
ifies two custom allocation policies, SickestFirst and
LeastUtilizedFirst.

Fig. 2 is an example of how an MD resource is spec-
ified. The shiftStart and shiftEnd attributes are
used in guard (time >= shiftStart && time <
shiftEnd) to specify when the MD can be reserved or
assigned to perform any of the listed capabilities (MDTreat,
MDCkECG, MDCkCT, MDCkXray, MDCkLab). Allowing
the reservation and assignment guards to be specified differ-
ently enables us to specify that MDs will treat their patients
up to the end of their shifts, but will stop accepting new
patients 1 h before their shifts end (the New patient
constraint). This requires only a modest change to the

Fig. 2. MD resource model, specifying attributes, capabilities, and allocation
policies.

MD reservation guard (time >= shiftStart && time
< shiftEnd-3600).

The reservation_capacity and assignment_
capacity are both set to 1 in Fig. 2, but the
effort_needed for reservation is 0, so MDs can see
multiple patients but can only do one patient care activ-
ity at a time (because effort_needed for assignment
is 1). If an ED constrains MDs see at most 4 patients,
reservation_capacity would be changed to 4 and
effort_needed for reservation to 1.

2) Resource Request Specification: To be executed, each
step generates a request for each resource it needs. Fig. 3
shows several examples of resource requests. Formally, the
requests are specified via a reservation request and an
assignment request ([] denotes an optional identifier; and
replaceable, blocking, and nonblocking are fixed
keywords).

Reservation Request:
reserved-resource: capability, count, [replaceable,]

blocking | nonblocking
Assignment Request:

resource: capability, blocking | nonblocking
[, reserved-resource]
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Fig. 3. Resource request specifications. Each step in Fig. 1 has a resource
request specification associated with it. The Treat step (which occurs outside
of the model snippet shown in Fig. 1), reserves an MD and RN resources when
a patient arrives in an ED.

Both requests ask for an available resource that performs a
particular capability. Which resource is returned depends on
the dynamic state of the process. For example, an MD may be
assigned to draw a patient’s blood, but only when all RNs are
fully assigned, and only when this activity is one of the MD’s
capabilities. Still when high skill and effort levels are required
for an activity, it might be unwise to allocate a resource hav-
ing lower levels, and our request model supports the use of
blocking the request (see the blocking and nonblocking
keywords in the request definitions) to ensure that only fully
qualified resources are allocated to the step.

Finally, the replaceable keyword in a reservation
request means a resource may be replaced by another, under
certain situations (see reserved_rn and reserved_md in
Fig. 3). For example, an MD may need to be replaced when
leaving for dinner, while other resource reservation requests
may accept no substitutions. This enables us to model very
complicated resource management policies and constraints,
such as quarantining an entire ED by preventing new patients
and human resources from entering it.

C. Specification of Simulation

To show the value of our facilities for creating an accurate
model of intricately defined resources and allocation strate-
gies, we simulated a realistic ED process and a wide variety
of distributions of resources with different resource charac-
teristics, subject to widely varying policies and constraints. A
simulation run consisted of specifications of process steps, arti-
fact flows (recall Section III-A), resources, resource requests,
and resource allocation policies (recall Section III-B), as well
as specifications of actual patient-care scenarios whose key
variable components are as follows.

1) Rates of arrivals of patients of different acuity levels
over a 24-h period.

2) Resources available for assignment over that period.
3) Step performance characteristics (such as the amount of

time taken, the probability of exceptions, etc.) for each
resource instance that might carry out each step.

Fig. 4. Specification to instantiate three MD resources. Three 8-h shifts
are specified for the MD resource instances. Time unit of the specification is
second.

Fig. 5. These time distributions of steps are modeled from data of Baystate
Medical Center. Second time unit is used in triangular distribution.

We used a Little-JIL/JSim discrete-event simulator [31], that
extended the capability described in Section III-B. The speci-
fications used in our simulations were based on observations
taken at the Baystate Medical Center. Each patient arrival
was modeled as a Poisson distribution with the observed
mean interarrival times. Resource quantities, characteristics,
and constraints were modeled after those considered typical
at the Baystate Medical Center.

Fig. 2 shows an example of the specification of a typical MD
type of resource. Given the type specification, Fig. 4 specifies
three examples of MD instances. The numbers of available MD
and RN resources were varied over 24 h, and these numbers
were achieved by having the MD and RN resources work in
shifts. Typically, an MD or an RN worked one of three dif-
ferent 8-h shifts each starting at a fixed time, although our
simulations suggested that greater flexibility in start times and
shift durations could lead to improved staff utilization. As
noted above, our resource specification notation makes this
straightforward. The full model (omitted for exposition), also
defines the RN, TrRN, clerk, bed, X-ray room, and CT
room resources.

Estimates of the time required to perform each step for
each acuity level are specified as triangular distributions
based on data from Baystate Medical Center. Our medical
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domain expert advised the use of triangular distribution due
to the small number of observed time data. Fig. 5 shows an
example specifying the time distributions of three leaf steps,
RNECG, MDCkECG, and RNMedHi, of the process shown
in Fig. 1. Thus, for example, from the start of the RNECG
step the number of seconds until completion of the step
is calculated by using triangular distribution, (min = 233,
mode = 313, max = 472). Our simulation specifications also
support other distributions such as normal, linear range, and
fixed time distributions.

D. Simulation-Based Staffing Optimization

Because a key goal of this paper was to determine how
various characteristics of ED operation vary depending on dif-
ferent levels of staff utilization, it was necessary to determine
how staffing distributions affected staff utilization levels. This
was somewhat complicated by the variation in demand for the
services of an ED over a 24-h period of operation. Accordingly
we devised a three-stage approach to creating and running our
simulations.

In the first stage, we used JSim to generate an ED sim-
ulation, initially assuming an infinite supply of all necessary
resources. As this ED simulation executed, however, we added
and removed resources as required to sustain our utilization
targets for each hour in the simulated 24-h day, while also
considering such other specifications as time varying patient
arrivals, different processes for each acuity level, resource
interactions, and other patient flow constraints. We call this
the staffing demands algorithm. The number of replications
of this simulation was determined by our desire to achieve a
target confidence interval (e.g., 95%). After performing these
simulation replications, we had obtained the average number
of resources dk

b required in time interval b to maintain the uti-
lization target. For our case-study, b is the index for hour of
the day, and k refers type of staff—in our case, either MDs or
RNs. The exact details of how dk

b is computed is provided in
Section III-D1.

In the second stage, we used dk
b, b =

(0, 1), (1, 2), . . . , (23, 0), as input to a deterministic ILP
whose purpose was to obtain the minimum cost staffing
schedule. The decision variables of the ILP determine the
number of type k resources to be scheduled in hour b to
assure that the number is greater than or equal to dk

b. We
also modeled some typical restrictions on shift lengths and
starting times, but also did studies where we modeled possible
overlaps in shifts and differences in shift lengths. The output
of this second stage was xk

b, the number of resources of type
k that need to be scheduled in hour b to minimize the total
cost of salaries while meeting the required constraints. The
details of the ILP are provided in Section III-D2.

In the third stage, the staff schedule computed from the
second stage ILP was used to specify the exact numbers of
MD and RN resources available for each hour in the simu-
lated 24-h day. We then ran simulations using these staffing
levels, and the other modeling information as described in the
previous section to determine operational characteristics such
as patients’ LoS, waiting times, contribution margin, and the
actual utilization levels of the resources (which, depending on

the staffing constraints, could differ from original targets), the
number of patient handoffs, etc.

For our studies we ran batteries of simulations based on
many different hypotheses about staff utilization, shift length
variation, shift overlapping, etc. Each different hypothesis
required carrying out all three of the stages just described.
Each produced operational characteristics that we used to com-
pare and evaluate the effects of these different choices of staff
utilization levels and scheduling approaches. The results are
presented in Section IV.

We now provide details of how we carried out each of these
three stages in our simulation approach.

1) Simulation-Based Resource Requirement Determination:
As the number of patient arrivals varies by the hour, the num-
ber of resources required will also need to be varied so that the
utilization of the resource remains within the prespecified uti-
lization limits. The goal of the staffing demands algorithm is to
dynamically compute this distribution of required numbers of
resources for each time block in the middle of a simulation run.
This approach allows the algorithm to calculate the resource
demands based on the consideration of dynamic ED contexts
such as patients’ arrivals/waits, utilization of other resources
(e.g., beds), interactions between resources, and other ED cir-
cumstances. In addition, our algorithm can be executed on
multiple resource types such as MD and RN at the same time
block during a simulation run.

Before we describe the algorithm, we distinguish between
resource sets as follows. We assume that there are some
resources that are available for use during the entire duration
of the bth hour. In addition, there may also be other resources
that may be used for some portion of the hour, because they
continue to be used to finish a step that was begun during
the previous hour. For instance, if an MD’s shift ends before
completing an X-ray check for a patient, the MD will com-
plete the X-ray check step thereby providing some amount of
MD resource during an hour that is beyond the MD’s original
shift. Thus these additional incremental amounts of resource
availability must be added to the resource levels provided
by scheduled resources to accurately determine the levels of
resources required for each hour in the 24-h day. When the
MD completes the X-ray check step, the remaining steps to
care for the MD’s patients in beds are handed over to avail-
able MDs. This kind of overtime work of a medical provider
is frequently observed in real-world EDs. However, we are not
supporting preemption. This means that a handoff in the mid-
dle of a step execution is not supported. Due to this limitation,
our patient care steps in the ED model are decomposed suffi-
ciently to model atomic activities in patient care which require
only small amounts of time thereby avoiding extensive over-
time. The notations in the algorithm for staffing demands are
as follows.

i Time interval between resource adjustment.
l Lower utilization limit to trigger decrementation of the

number of resources required for this time interval,
0 < l ≤ u.

u Upper utilization limit to trigger incrementation of the
number of resources required for this time interval,
0 < u ≤ 1.
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Fig. 6. Given the upper and lower utilization limits, the algorithm calculates
how many resources of type k are required during time block b = (t − i, t)
and adjusts the number of available resources of type k to be assigned for
next time block nb = (t, t + i).

b Time block tuple (f , t) from time f to t where
|t − f | = i.

k Resource type.
rb Sum of busy periods for resource r during time

block b.
dk

b Staffing demand, the number of required staff, for
resource r of type k during time block b.

Fig. 7. Instance of the algorithm execution for staffing demands: Rk
b =

{r1, r2, r3}, Ak
b = {r2, r3}, dk

b = 3, Rk
nb = {r2, r3, r4, r5}, and Ak

nb =
{r3, r4, r5}, where b = (t − i, t), nb = (t, t + i)

Rk A set of resources of type k for which we want to
determine required staffing levels.

Rk
b A set of resources of type k that are used during time

block b, Rk
b ⊆ Rk.

Ak
b A set of resources of type k that are available to be

assigned during time block b, Ak
b ⊆ Rk

b, Ak
(0,i) = Rk

where (0, i) is the first time block.
Fig. 6 describes the staffing demands algorithm. Rk

b is the
set of used resources of type k during time block b. Ak

b is the
set of available resources of type k during time block b which
means that only resource r ∈ Ak

b is available to be assigned
during time block b. Further, Ak

b ⊆ Rk
b.

For example, Fig. 7 shows the execution of the algorithm
for a single instance. As per lines 16–24 of the algorithm, the
resource utilization during time block b = (t − i, t) is calcu-
lated. Here, Rk

b = {r1, r2, r3} since resources r1, r2, and r3

are used from time t − i to t. However, Ak
b = r2, r3 because

resource r1 left at time c (some amount of resource utilization
in this time period was attributable to the overflow into this
time period of some work begun during the previous period).
Therefore, r1 b = c − (t − i). After the algorithm calculates
utilization at line 24, it determines how many resources are
required to satisfy the desired range of utilization levels l
and u (lines 26–34). If the calculated utilization is between
l and u, it means that resources in Ak

b are utilized as expected.
However, if utilization is outside the limits l and u, the algo-
rithm calculates staffing demands dk

b based on the mid-point
of the utilization range middle = (l+u)/2 and actual assigned
subperiods numerator during time t − i to t.

In addition to calculating staffing demands dk
b, the algorithm

adjusts the numbers of resources Ak
nb for next time block, i.e.,

from t to t+i (lines 36–42). The adjustment assumes that there
are no dramatic changes in patient arrivals in this next period.
Therefore, we use dk

b to decide the size of Ak
nb.

2) Staffing via Integer Linear Programming: In this section,
we present our ILP-based staffing approach, which minimizes
total staff salaries, while meeting: 1) hourly constraints on
staff numbers calculated by the previously described staffing
demands algorithm and 2) constraints on allowed shift lengths
and shift start times. The ILP-based staffing approach divides
a day into several discrete time blocks (each an hour in length
in our case-study). The ILP parameters are listed below.

B A set of time blocks in a day.
Lk A set of shift lengths for resource type k.
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Fig. 8. Parameter values for MD staffing. B: 24 time blocks. LMD: 8-h shift
length. SMD

b,l : time blocks in l length shift b. dMD
b : staffing demands per each

time blocks driven by 70%–80% utilization target. pMD
b,l : nonoverlapped three,

8-h shifts. cMD: salary per hour.

Sk
b,l A set of time blocks in a shift for resource type k

where shift starting time block b ∈ B, shift length
l ∈ Lk.

dk
b Staffing demands, the number of required resource, for

resource type k during each time block b ∈ B.
pk

b,l A staffing pattern for resource type k of a hospital 1 if
a shift begins a time block b ∈ B and its shift length
is l ∈ L; 0 otherwise.

ck staffing cost per hour for resource type k.
For instance, Fig. 8 shows the ILP parameter values needed

to determine MD staffing levels. Parameter B divides a day into
24 time blocks. Parameter pMD

b,l establishes three 8-h, nonover-
lapping shifts a day for MDs. The staffing pattern parameter
pMD

b,l can encode any staffing pattern of various shift lengths
and start times; however, this section demonstrates only these
three shifts of MDs for exposition. MD staffing demand dMD

b is
assumed to have been derived using our previously described
simulation-based algorithm.

Alternatively, if an ED administration desires more flexibil-
ity to meet hourly variation in demands, they may allow MDs
and RNs to work a 6-, 8-, or 12-h shift; further, they may also
allow shifts to start at any time. To accommodate this addi-
tional flexibility, the ILP parameters for RNs can be set as in
Fig. 9.

The decision variable in the ILP is xk
b,l,i, which determines

the number of a particular staff type (e.g., MD or RN) needed
in each hour of a shift. The number of xk

b,l,i is equal to
|B|×|Lk|×|B| for all b, l, i combinations. We use the simplex
method to solve the ILP, NP-hard problem.

xk
b,l,i The number of staff k in time block i in a shift the

shift starts at a time block b and its length is l ∈ Lk.
The ILP-based staffing fulfills staffing demands dk

b, the min-
imum number of required staff during each time block b.
Equation (1) is the objective function of the ILP-based staffing
problem. The ILP objective function aims to minimize total

Fig. 9. Parameter values for RN staffing. B: 24 time blocks. LRN: 6-, 8-, 12-h
shift lengths. SRN

b,l : time blocks in l length shift b. dRN
b : staffing demands per

each time blocks driven by 60%–70% utilization target. pRN
b,l : three different

shift lengths, and the staffing pattern allows a shift to start at any time. cRN:
salary per hour.

Fig. 10. MD staffing solution of Fig. 8. Three separate shifts 7–14, 15–22,
and 23–6. Each shift has 9, 8, or 8 MDs.

staffing costs per day

min
∑

b∈B

∑

l∈Lk

∑

i∈B

ck · xk
b,l,i. (1)

The objective equation (1) is subject to the constraint equa-
tions (2)–(4). First, constraint equation (2) enforces that the
number of scheduled staff k is always greater than or equal to
the number of required staff k for all time blocks while satis-
fying a given staffing pattern. Second, constraint equation (3)
states that the same number of staff k members are working
in a shift. Last, constraint equation (4) assures that a staff k
member is working on only the staff’s shift

∑

b∈B

∑

l∈Lk

pk
b,l · xk

b,l,i ≥ dk
i , ∀i ∈ B (2)

xk
b,l,i = xk

b,l,j, ∀i ∈ Sk
b,l,∀j ∈ Sk

b,l (3)

xk
b,l,i = 0, ∀i ∈ B \ Sk

b,l. (4)

To illustrate the ILP, Fig. 10 shows an MD staffing solution
for Fig. 8. There are three separate shifts: 7–14, 15–22, and
23–6. Each shift has 9, 8, or 8 MDs, respectively.

However, the RN staffing solution in Fig. 11 looks very dif-
ferent from the MD staffing in Fig. 10. This is because the ILP
parameters for RN staffing in Fig. 9 allow three different shift
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Fig. 11. RN staffing solution of Fig. 9. Sixteen overlapped shifts. Shifts have
different lengths and start times. Total number of RNs 46 and RNs working
hours 392.

lengths, and a shift can start at any time (i.e., overlap in shifts
are allowed). Therefore, RN staffing in Fig. 11 very closely
approximates actual RN staffing demands dRN

b in Fig. 9. We
return to this key point while discussing the results of actual
simulations carried out as the third stage of our simulation
study.

IV. EVALUATION

This section describes how we used our scheduling approach
to study the effects of different staffing levels and policies
on the operational characteristics of our example ED. Other
experiments that describe the application of our modeling
capabilities can be found in [14], [28], [30], and [31]. These
papers demonstrate how to use our approach to model various
hospital resource utilization flexibly. For this paper, we used
the process model presented in Section III-A, and the resource
type specifications presented in Section III-B, instantiating
from these types 2 triage nurses, 5 clerks, 48 beds, 2 X-ray
rooms, and 4 CT rooms. This ED resource distribution was
based on Baystate Medical Center data. We executed enough
simulation replications to obtain 95% confidence intervals and
a half-width within 2% of the mean of staff utilizations. For
each replication, we simulated 72 h of ED operations, using
only the output of the middle 24 h in our analysis to ensure that
each replication had adequate amounts of warm-up and wind-
down times, but that these times did not influence our mean
estimates. We used Amazon EC2 to create a virtual server
(c4.8xlarge type) to run our simulations. The server instance
took about 41 min for 100 simulation replications.

In these simulations we measured actual utilization levels
for MDs and RNs, the average patient LoS, the ED contribu-
tion margin, and the impact of staff shift scheduling on the
number of patient handoffs. We defined LoS as the time from
a patient’s arrival to departure, and ED contribution margin
as the total revenue (using Medicare reimbursement levels)

(a) (b)

Fig. 12. MD and RN staffing demands curves using the staffing demands
algorithm in Fig. 6. (a) MD and RN staffing demands curves when MD’s and
RN’s lower and upper utilization limits are set as 50% and 60%, respectively.
(b) MD 70%–80% and RN 70%–80%. We omitted other combinations of
resource utilization ranges to enhance the clarity of the figure.

Fig. 13. Simulation results of patient’s LoS, contribution margin according to
each utilization boundary. LoS Requirements is the LoS objective, so that
four staffing, MD(50–60) RN(70–80), MD(60–70) RN(70–80), MD(70–80)
RN(50–60), and MD(70–80) RN(60–70) satisfy it.

derived from treating all patients in the simulated 24-h period
minus costs for staffing, supplies, and medications.

We begin by presenting results of the staffing demands algo-
rithm, which yields the number of MDs and RNs needed
in each hour of the day to ensure that utilization falls in a
prespecified range. We tested this algorithm for various com-
binations of MD and RN utilization levels suggested by our
domain expert. Fig. 12 shows some example results where we
have assumed that staffing levels can change every hour as
needed, allowing shifts to be as short as 1 h, but assuring that
the number of MDs and RNs is equal exactly to the results
produced by the staffing demands algorithm.

Fig. 13 compares LoS for a number of different com-
binations of staff utilization levels. The figure uses a gray
band to indicate average LoS that lies between 130% and
140% of the minimum possible value (116 min). The
average LoS range was provided by our domain expert
and is used as an objective for staff scheduling. We define
the minimum average LoS by assuming an infinite supply
of all resources, causing all wait times to be zero. The
calculation of the minimum average LoS is then straightfor-
ward, using only the static ED process structure to identify
the steps whose execution times are to be summed to
obtain the minimum. The figure shows that four staffing
solutions, MD(50%–60%) RN(70%–80%), MD(60%–70%)
RN(70%–80%), MD(70%–80%) RN(50%–60%), and
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(a) (b)

(c) (d)

Fig. 14. ILP solutions of various RN staffing patterns. (a) and (c) 12-h shifts
disallowing and allowing shift overlap, respectively. (b) 8-h shift disallow-
ing shift overlap. (d) Allowing for combinations of overlapping 6-, 8-, and
12-h shifts. Staff salaries (USD/day): (a) 27 720, (b) 24 640, (c) 27 060, and
(d) 21 560. We omitted other combinations such as 6-h shifts and allowing
and disallowing shift overlap to improve the clarity of the figure.

MD(70%–80%) RN(60%–70%), satisfy that LoS objec-
tive. Among them, MD(70%–80%) RN(60%–70%) staffing
maximizes the contribution margin at 55 113 USD/day.

A. Impact of Shift Length and Overlap

To consider the impact of shift length and overlap, we ran
simulations that allowed RN shift lengths to be 6, 8, or 12 h,
and compared the effect of prohibiting shifts to overlap (i.e.,
start and stop at the same time) to the case where overlap
is allowed. Fig. 14 shows RN staffing solutions output from
the ILP-based staffing algorithm in Section III-D2, compared
to results generated by the staffing demands algorithm. Note
that the results produced by the ILP for a given shift length
and overlap constraint are always equal to or higher than the
staffing demands curve.

Fig. 14(a) and (c) shows that 12-h shift lengths cannot cover
staffing demands as closely as 8-h shift lengths, and com-
paring Fig. 14(c) to Fig. 14(a), shows that overlapping shifts
cover the staffing demands curves more closely than nonover-
lapping shifts. Fig. 14(d) shows that staffing with overlapped
shifts of 6-, 8-, or 12-h lengths (flexible staffing) is almost
indistinguishable from the staffing demands curve itself.

Fig. 15 shows that average LoS for the different shift
length and overlap combinations does not differ significantly,
although Fig. 15 shows staffing based on 12-h shift lengths,
with or without overlapped shifts, creates shorter LoS than
6- and 8-h staffing. This makes intuitive sense because 12-h
shifts allow more RNs to be scheduled in more hours [see
Fig. 14(a) and (c)], reducing RN contention and thus reduc-
ing patient waiting time. In general, staffing without overlap
creates lower LoS than staffing with overlap. Fig. 15 also
shows that flexible staffing results in longer LoS than 1-h
staffing. This is because contention created by the same MD

Fig. 15. LoS comparison among various staffing.

(a)

(b)

Fig. 16. Number of handoffs comparison among various staffing. Number
of (a) MD handoffs and (b) RN handoffs.

and RN constraint causes the patient to have to wait more
frequently.

Fig. 16 compares the number of handoffs resulting from
various staffing options. Shorter shifts (especially 1-h shifts)
necessitate more handoffs, which should be minimized, as our
domain expert believes they lead to increased errors. Indeed,
Fig. 16 shows that longer shifts result in fewer handoffs and
that 1-h staffing produces a larger number of RN handoffs than
all other staffing options.

Finally, Fig. 17 shows mean utilization levels for all the
staffing options. It shows that, because overlapped staffing
is closer to the staffing demands curve than staffing without
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(a)

(b)

Fig. 17. Utilization comparison among various staffing. (a) MD utilization.
(b) RN utilization.

Fig. 18. Patient’s LoS and contribution margin comparison: RN(BMC)
RN staffing of Baystate Medical Center, RN(50–60) RN staffing derived by
utilization limits 50%–60%, RN(60–70) RN staffing derived by utilization
limits 60%–70%, and RN(70–80) RN staffing derived by utilization limits
70%–80%.

overlap, overlapping leads to higher utilization. In addition,
6- and 8-h staffing show subtle differences in utilization, but
12-h staffing shows lower utilization both for overlapping and
nonoverlapped staffing.

B. Comparison With Baystate Staffing Schedule

Fig. 18 depicts RN staffing data for Baystate Medical
Center [RN(BMC)], while RN(50-60), RN(60-70), and

Fig. 19. Utilization comparison: RN(BMC) RN staffing of Baystate
Medical Center, RN(50–60) RN staffing derived by utilization limits
50%–60%, RN(60–70) RN staffing derived by utilization limits 60%–70%,
and RN(70–80) RN staffing derived by utilization limits 70%–80%.

Fig. 20. Utilization comparison over 24 h a day: RN utilization (BMC) RN
utilization of Baystate Medical Center, RN utilization (70–80) RN utilization
derived by utilization limits 70%–80%.

RN(70-80) represent the RN staffing results obtained from
our scheduling studies. Fig. 18 compares LoS and contribu-
tion margin. As can be seen, when we set the utilization range
to 70%–80% RN(70-80), the simulation results obtained
are similar to RN(BMC) staffing. Note also that the simula-
tions designed to assure lower staff utilization levels provide
interesting contrasts. For example, LoS is 20 min lower in
RN(50-60) but so is the contribution margin.

Fig. 19, comparing average RN utilizations for a 24-h day,
and their standard deviations, shows that the variation in RN
utilization levels is much lower in staffing results generated
by our approach, and also for the RN(70-80) case, which
has approximately the same average as RN(BMC).

Fig. 20 provides insight into why RN(BMC) has higher
utilization variation compared to RN(70-80), showing that
RNs are underutilized in the less busy hours of the night, but
are overutilized in the busy hours of the afternoon. Higher
utilization in these busy hours implies increased LoS, while
low utilization during less busy hours implies that personnel
costs are being wasted. However, as can be seen in Fig. 20,
our scheduling approach suggests RN staffing that better bal-
ances the level of resource utilization over a 24-h period, an
important goal in hospital resource management.

To keep this paper concise, we have not presented many
other details of our results. For example, we have presented
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LoS measures that are averaged over patients of all acuity lev-
els, but our simulations have determined acuity-level-specific
LoS and waiting times. These are not reported here to save
space. Further results showing the implications of a variety of
other ED operations policies can be found in [29].

V. THREATS TO VALIDITY

While our approach is designed to apply broadly to
resource-dependent systems, our findings and suggestions in
Section IV may have been affected by the following threats
to the validity.

A. Construct Validity Threats

Our staff scheduling approach uses levels of resource uti-
lization as an input to an algorithm for calculating a staffing
demand curve. As can be seen in Fig. 6, the utilization level
is calculated for each time block by counting the busy periods
for each resource. For this project we used as input resource
utilization level based on our domain expert’s observations and
analysis of real-world resource utilization. However, the degree
to which this input utilization level matches real staff utiliza-
tion is unclear because measuring staff utilization in the real
world is expensive, time consuming, and requires observers
familiar with the exact nature of staff activities.

In addition, staff activities vary considerably, ranging from
actual patient care, to hand-washing, meal breaks, walking,
and answering telephone calls. Additional variability derives
from long-term management policies such as vacation time
allowances, and short-term issues such as sickness. The accu-
racy with which each of these different kinds of activities and
policies of resource utilization must be modeled will have to
vary depending on the accuracy required of the model and the
simulation results it is expected to produce.

B. Internal Validity Threats

Our activity coordination model includes only clinical
patient care activities such as patient assessment and treatment,
drawing blood and so on. We chose this level of abstraction
because it made it easier for our domain expert to spec-
ify process details, sequencing, timing, and so forth. Adding
nonclinical activities such as meal breaks seemed to signif-
icantly increase the domain expert’s difficulty in specifying
these details. However, these activities definitely influence the
performance of patient care in an ED. The extent to which
these nonclinical tasks must be specified in an ED process
model requires further investigation.

Patient care in an ED incorporates a variety of constraints on
resource management (e.g., a patient should be always seen by
the same MD until the end of the MD’s shift). We performed
extensive testing to verify that our ED models correctly incor-
porate and adhere to those constraints, but testing is inherently
incomplete and our implementation may contain bugs that may
affect the results. Our ongoing work addresses this potential
limitation by studying the application of static analysis tech-
niques to verify the correct application of constraints during
simulation.

C. External Validity Threats

Due to lack of data on how patient arrivals vary over the
days of the week and the seasons of a year, this paper focuses
on staffing for a hypothetical day whose characteristics are
derived from mean behaviors measured over the days of a
year. Reflecting in our simulations the variation that occurs
over the different days of a year requires consideration of such
additional constraints as days-off, holidays, labor regulations
and so on. To incorporate these additional constraints, the con-
straints in the ILP in Section III-D2 would have to be carefully
modified. Our simulation capabilities, however, should be able
to model this variation if given specifications of how patient
arrivals vary over any given specified time interval.

We have designed our approach to apply broadly to systems
with complex resources, but we have thus far applied it only
to the ED healthcare domain. By studying other human-
intensive systems, (e.g., blood transfusion [7], elections [27],
and software development [39]), we found that characteris-
tics of patient care in an ED are representative of those in
other domains, which suggests that our approach may also
be applicable to such other domains. However, to strengthen
the generality of the approach, additional application domains
should be studied.

VI. CONTRIBUTIONS AND FUTURE WORK

We have combined DES and ILP in a three-stage approach
to studying resource scheduling for complex systems, using
ED staff scheduling as a case study. In the first stage DES
is used, assuming the availability of unlimited quantities of
resources, to derive a staffing demand curve that specifies the
number of staff required hour-by-hour to achieve a prespecified
resource utilization level. In the second stage the staffing
demand curve is used, along with other parameters such as
shift lengths and staffing constraints, as input to an ILP-based
staffing algorithm. In the third stage, the staffing solution pro-
vided by the ILP is evaluated by rerunning our DES to quantify
key ED operational characteristics such as patient LoS, actual
staff utilization, cost and quantities of patient handoffs. Among
the many results of our simulation studies, we found the
following.

1) Staffing policies that allow shifts of different lengths and
overlapped shifts can reduce costs while still achieving
staff utilization levels, because these policies enabled
fewer staff to match the staffing demand curve more
closely.

2) Staffing policies that allow for longer shift lengths result
in fewer handoffs.

3) Staffing without overlap creates lower LoS than staffing
with overlap.

4) Overlapped staffing shows higher utilization than
nonoverlapped staffing.

These studies suggest that our DES approach can be useful to
hospital administrators in evaluating scheduling policies and
in understanding the tradeoffs entailed by new policies.

Unlike previous ED simulation work, our approach consid-
ers time-varying arrival rates, multiple resources, patients with
different acuities, different sequences of care steps for each
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patient acuity, stochastic time distributions for the performance
of each step, flexible shift starting times and shift lengths,
and constraints on resource utilization and assignment (e.g., a
given patient is always seen by the same MD until the end
of the MD’s shift). Further, this paper considers the interac-
tions and interferences between MDs and RNs in patient care.
Our staffing demands algorithm is unique in creating MD and
RN requirements for each hour based on prespecified target
utilization ranges.

Viewed more broadly, this approach is applicable to the
analysis of processes and systems in other domains where
complexity is due to intricate interactions among various
kinds of humans, hardware, and software. Activity speci-
fication approaches, such as hierarchical decomposition in
Little-JIL, facilitates the specification of important process
details, such as exception management. And resource spec-
ification approaches, such as those described here, likewise
facilitate the specification of important details about the per-
formers, both human and nonhuman, of the activities of the
process. Once these specifications have been modeled, the
approach described in this paper supports deriving broad
classes of process and system characteristics.

We continue to study ED staffing approaches by exploring:
1) the impact of ED crowding caused by increased patient
arrivals and lack of other resources such as beds; 2) the
complexities and opportunities created by considering weekly
and monthly staff scheduling; and 3) further validating our
approach via more detailed comparisons between our results
and empirical measurements of actual EDs.

In the longer term, we will apply this approach to processes
and systems in other domains such as elections, where our
simulations could to facilitate and expedite such processes as
tabulation and recounts, and software development, where var-
ious staffing profiles and resource assignment constraints could
affect quality and productivity in agile methods such as Scrum.
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