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Abstract—This paper proposes using resource-aware, discrete-
event simulation to measure the effects of resource scheduling in
hospital emergency departments. Determining staffing and re-
source allocation is a complex constraint-optimization problem
that has significant impact on hospital costs and patient care qual-
ity. We developed detailed models of the emergency department
process of caring for patients, the resources available to support
that process, and the scheduling constraints on the deployment
of those resources. We then ran a battery of discrete-event sim-
ulations of this process, varying details of process, resource mixes,
and scheduling constraints, to analyze the effects of resource avail-
ability (e.g., staffing patterns) on patient length of stay. Our simu-
lation approach proved to be particularly adept at supporting the
systematic investigation of two issues of particular interest to do-
main experts: (1) an excessive focus on minimizing the average
length of stay (the objective most typically used for optimizing
emergency department staffing) can have undesirable, previously
unappreciated effects, (2) too strong a focus on one particular kind
of resource as the preferred vehicle for decreasing patient length of
stay can tend to obscure the value of considering other kinds of re-
sources. The unexpected nature of some of our results raises open
questions about how to validate the results of complex simulations.

I. INTRODUCTION

The set of available resources and the scheduling of those re-
sources can play an important role in determining the efficiency
and cost of many systems. However, determining an optimal set
of resources and scheduling those resources are NP-hard [19].
This creates questions about how to improve the state-of-the-
practice of resource allocation and scheduling.

Hospital emergency departments are examples of systems
whose performance is heavily dependent on resource availability.
Hospital administrators typically determine and schedule re-
sources using informal heuristics, lower-bound calculations [11],
[12], existing national averages, and extensive historical data
at similar size and type institutions. Even just estimating the
effects of a particular resource allocation and schedule — the
number of doctors, nurses, beds, x-ray rooms, etc., and when
those nurses and doctors are made available for work — is costly
and imprecise in practice. Recent advances in discrete-event
simulation have reduced the cost of such estimation [1], [7], [8],
[21], but the estimates are still imprecise because they are based
on models that do not account for variability in patient arrival

rates and severity types, certain details of patient care, variability
in the characteristics of the involved resources (especially the
human resources), and the complex interplays between all of
these different dimensions of variability.

We address the resource allocation and scheduling problems
by creating discrete-event simulations based on detailed models
of system processes, and detailed models of resource characteris-
tics and constraints. This requires access to domain knowledge,
extending existing discrete-event simulation capabilities, and
careful validation. In this paper, we present the results of devel-
oping these detailed models and running simulations to study
the effects of various approaches to resource allocation on such
measures of emergency department quality as the average patient
length of stay (LoS). Our simulations have provided insights and
perspectives that domain experts have found to be provocative.
Consequently, we have also explored the issue of simulation
validation.

Two provocative observations we have based upon our simu-
lations are:

1) While hospital administrators, and previous related simula-
tion research, focus on minimizing the average patient LoS,
we find that this optimization goal results in staffing pat-
terns having undesirable consequences, such as overstaffing
during low-demand patient periods (which, at a low cost in
resources, lowers the average LoS), and understaffing dur-
ing high-demand, and peak patient periods (when adding
extra resources has less of an effect on the high LoS). Thus,
optimizing for the average LoS creates staffing patterns that
result in undesirably high variability in individual patient
LoS.

2) While the approach of adding extra beds is often used in
attempting to achieve significant reductions in LoS, we find
that scarcity of other resources, such as x-ray rooms, may
at other times be the key bottleneck, and a more effective
way to reduce LoS.

The rest of this paper is structured as follows: Section II sum-
marizes the relevant background and related research in resource
allocation and discrete-event simulation. Section III describes
our approach of resource-aware simulation. Section IV details
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our experiments and findings. Section V discusses open ques-
tions in simulation validation. And finally, Section VI concludes
with a summary of our contributions.

II. BACKGROUND AND RELATED WORK

Resource allocation and scheduling are NP-complete prob-
lems [19], [22]. The number of ways in which resources can
be allocated and scheduled to optimize some objective function
is exponential in the number of the resources, and no efficient
ways exist to efficiently search through this space to find optimal
solutions. The objective functions, and constraints that may
restrict the search space are often domain-specific.

Other theoretical work has focused on efficiently approximat-
ing optimal solutions [14]. These approaches are relevant in
practice, but are general and do not benefit from domain-specific
constraints. Additionally, in practice, and in some domains, it
may be worth expending additional computation to find a so-
lution closer to the optimum, as the costs of using suboptimal
solutions may far exceed the cost of extra planning (as is often
the case in healthcare).

In hospital emergency departments, resource allocation and
scheduling are especially critical because suboptimal staffing can
result in poor patient care, loss of life, and less importantly, cost
inefficiency. In this domain, there are many types of resources
(e.g., doctors, nurses, beds, x-ray rooms, etc.), and also many
factors that affect the quality of care, including variable patient
arrival rates and variable severity of patient injuries and needs.

While much previous work in the space of resource allocation
and scheduling has focused on the computational and theoreti-
cal aspects of these problems [9], [14], [15], we are interested
in addressing practical instances of the problems having the
added complexity of domain-specific constraints, complex re-
source specifications, intricate allocation policies, and objective
functions that compose potentially inconsistent goals.

In the domain of hospital emergency departments, discrete-
event simulation has proven fruitful in exploring effects of
crowding, varying patient arrival rates, resource allocation, and
scheduling [1], [7], [8], [10], [13], [21]. Our approach focuses
on detailed models of the involved resources, especially human
resources, to further improve the models and produce results
that are closer to the real world in terms of uses and scheduling
of those resources.

In the closest work to our own, Beck uses the Arena sim-
ulation software [18] to provide a simulation-based, iterative
method for resource allocation while allowing for heterogeneous
resource types [1]. This method assumes that patient arrival rates
are fixed. In contrast, our approach allows for patient arrival
rates that vary in the course of a typical 24-hour day, and for
more-detailed specifications of both the patient-handling process
and the involved resources. In theory, Beck’s approach can be
extended to handle the details of the patient-handling process,
and some, but not all, of the resource details. Our view, how-
ever, is that our simulation architecture and process and resource
specification approaches make it easier to specify these details
and vary them as driven the the needs of our research.

Fig. 1. The architecture of our resource-aware simulator separates the simulation
engine (JSim [17]), process definition interpreter (Little-JIL interpreter), and
resource manager (ROMEO).

III. RESOURCE-AWARE SIMULATION

We have built a resource-aware simulator to address the re-
source allocation problem. Figure 1 shows our resource-aware
simulator architecture. Our approach uses a discrete event simu-
lator, JSim [17], to simulate the 24-hour operation of an emer-
gency department. JSim’s extension for application-specific
simulation result analyzers greatly facilitated the construction of
our specific emergency department simulator. The simulation
uses the Little-JIL process definition language [23] to specify an
emergency department process. The rich semantics of Little-JIL
make it easy to capture the complex nature of an emergency
department process, and is especially effective in supporting
the clear specification of what kinds of resources are needed by
each activity in a process. Management of the resources avail-
able for allocation to the activities in the process specification
is separated into the ROMEO [16] component, which facili-
tates specifying the characteristics of different resources, and
constraints on those resources’ allocation and availability. This
separation makes it easy to keep track of resource allocations,
utilizations, waiting times, and other properties. In addition,
resource constraints can be changed in a flexible manner. This
separation also facilitates clear visibility into resource utiliza-
tion levels, leading to new insights into emergency department
resource management.

A. Emergency Department Characteristics

We developed detailed models of the emergency department
based on advice from one of our coauthors, a domain expert
with extensive experience as a doctor and a Director of the Emer-
gency Department at the Baystate Medical Center, in Springfield,
MA, USA. Due to space constraints, we focus only on a few of
the interesting characteristics of the process that, while osten-
sibly intricate to specify, nevertheless, proved to be relatively
straightforward for us to implement by virtue of the resource
specification architecture and specification language we used.

• Six acuity levels: The patients are classified into six acuity
levels, based on the severity of their ailments. After a
patient is placed in a bed, the process the patient goes
through varies based on the acuity level. A level-six patient
is the sickest patient, and an MD (medical doctor), an RN
(registered nurse), a bed, and an x-ray room, and CT room
resources are allocated to such a patient with the highest
priority. In contrast, simulation of a level-one patient entails
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Fig. 2. The Little-JIL [23] definition of the patient testing process, which is part of the care an acuity-level-four patient undergoes in an emergency department.

fewer procedures, such as x-rays, each of which will have
a lower priority for the acquisition of resources.

• Staffing: MD and RN resources work on a shift system; the
numbers of available MD and RN resources vary over 24
hours. Typically, an MD or an RN will work one of three
different 8-hour shifts, although our simulations have sug-
gested that greater flexibility in the start times and durations
of shifts could lead to improved LoS results.

• Same MD-RN constraints: A patient assigned to a spe-
cific bed is cared for by the same MD and RN throughout
the patient’s stay, with changes only due to shift changes.

• Fast & Main tracks: The emergency department operates
two separate tracks. The fast track cares for low-acuity
patients (levels 1 to 3), and the main track treats high-acuity
patients (levels 4 to 6). The two tracks have their own bed,
MD, and RN resources. At night, however, the fast track
closes and fast-track patients are transferred to the main
track. During this transfer, fast-track resources are deallo-
cated and appropriate main-track resources are allocated
for the patients. One interesting emergent property of the
simulation is that it is possible that no main-track resources
are available when the fast track closes. In such a case, the
treatment of the patient must continue with a fast-track bed,
but main-track MD and RN resources.

B. Emergency Department Model

Both to improve the state of the art in resource scheduling
in the ED domain, and also to provide a stringent test of the
specification power of our approach, we sought to developed
very precise and very detailed models of both ED processes and
ED resources. This required understanding low level details
of both, and required access to an expert in ED operations and
resources. Our domain expert from the Baystate Medical Center
provided those details, which did prove to be quite intricate and
challenging to model. Indeed, some of the details (e.g. how
the two tracks of an ED relate to each other) would have been
difficult for a non-expert to invent or infer, and provided good
examples of the challenges that consideration of the real world
presents. Figure 2 illustrates one small piece of this very detailed
process definition: the patient testing process of an acuity-level-
four patient.

A Little-JIL specification is a graphical, hierarchical decom-
position of activities (called steps), with each step represented
graphically by a black bar. Steps are connected by edges to
parents (above) and children (below), with edges also specifying
the flow of arguments between parents and children. Parent
steps both define scopes, and also specify the flow of control
between children. The legend in Figure 2 indicates three dif-
ferent control flow possibilities: sequential (children performed
in left-to-right order), parallel (children performed in any order,
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possibly concurrently), and choice (only one of the children
selected for performance). Each step also incorporates a spec-
ification (not shown) of needed resources (e.g. doctor, nurse,
x-ray machine) to be allocated at run time. It is useful to note
that these specifications can set up contentions that can further
constrain execution order, for example by making concurrent
performance either possible or impossible. Thus, Figure 2 spec-
ifies that AL4Test is a parallel step, which means that a lab
test process, AL4LabProc, can be performed in parallel with the
other tests, although contention for needed resources (in this
case the patient) may make concurrency impossible. As noted in
the legend of Figure 2, steps may have prerequisites that may be
used by our simulations to specify the relative frequency with
which exceptions should be thrown, or alternatives in a choice
steps should be selected. Thus, the pre-requisite on AL4LabProc
means that 70% of acuity-level-four patients require the lab test.
For the other tests, a nurse checks a patient’s ECG first, RNECG,
and then a doctor checks the ECG result, MDCkECG, because
AL4ECGProc controls its child steps sequentially. After the ECG
test, a nurse gives a medication to the patient, RNMedHi, and then
the patient will be transferred to the CT or x-ray room. This
behavior is represented by the AL4XrayOrCTOrNothing choice
step which means only one of its child steps will be executed.

While Figure 2 describes only 19 steps, a small part of the
overall process, in total, our detailed process definition contains
164 steps, each with detailed resource requirements, resource
assignment policies, execution probabilities, and completion
times drawn from a distribution, all developed with the help of
our Baystate Medical Center domain expert.

Our process definition allows for patients to arrive in the
emergency department in two ways: (a) critical patients are
assumed to always arrive by ambulance, while (b) other patients
are assumed to always arrive by their own transportation. Critical
patients are the sickest (acuity level six), while the others are
categorized into the remaining five acuity levels. Patient arrival
rates over a 24 hour period are specified by a Poisson distribution.
A critical patient is placed in bed immediately; however, other
patients are first triaged by a TrRN (triage nurse) and then cared
for according to their acuity levels. The times for performing
each of the activities in the process for each acuity level are
specified by triangular distributions. These estimates dictate that
the amount of utilization of each of the resources is determined
by the amount of time required by each of the activities.

Figure 3 specifies the emergency department resource alloca-
tion policy and availability for the resources that are available
to support the execution of the emergency department process.
Bed, MD and RN resources are managed separately by each
of the two different tracks, while, TrRN, Clerk, x-ray, and CT
resources are shared by the two tracks.

IV. EVALUATION

An emergency department has potentially conflicting goals of
decreasing patients’ LoS and increasing the net revenue derived
from its operations. An emergency department can decrease
patients’ LoS by hiring more staff and making more facilities
available; however, these actions increase the cost of operating

Resource Track Allocation policy Available

bed main sickest first 24 hours
bed fast sickest first 9AM–1AM
MD main sickest first shift hours
MD fast sickest first shift hours
RN main sickest first shift hours
RN fast sickest first shift hours
TrRN shared first-come-first-serve 24 hours
Clerk shared first-come-first-serve 24 hours
x-ray shared sickest first 24 hours
CT shared sickest first 24 hours

Fig. 3. Emergency department resource allocation policy and availability speci-
fication.

the emergency department and reduce the net revenue. The
work described in this paper demonstrates how our resource-
aware simulation can be used to support decisions and to suggest
staffing patterns and numbers of facilities that result in obtaining
a desirable balance between reducing LoS and sustaining desired
levels of net revenue. Further, it can be used to explore the
effects of changing the resources on LoS, revenue, and other
factors. In the simulations described in this paper, we experiment
with adjusting levels of staff resources and numbers of x-ray
rooms and beds, but assume fixed distributions of patient arrivals,
patient acuity levels, and other statistical parameters.

A. Average LoS

In this section, we describe how we used our simulator to ana-
lyze the effects of RN staffing on patient LoS and RN utilization.

We first determined that the theoretical minimum LoS
(achieved when there are no resource limits placed on the simu-
lation) was 118 minutes, for the given patient arrival and acuity
rate functions. In finding reasonable RN staffing patterns, based
on our domain expert’s advice, we established a realistic tar-
get of an average LoS between 136 and 153 minutes (between
115% and 130% of the minimal LoS). As an initial suggestion,
we hypothesized nurse staffing levels based on patient arrival
rates since staffing needs appear highly dependent on incoming
volumes of patients over time. This initial pattern supported an
average patient LoS of 143 minutes, which satisfied our domain
expert’s specified, although estimated constraint.

Helped in part by our architectural separation of resource
management concerns into a distinct architectural component,
we were then able to study the variation over time of such factors
as RN utilization levels and patient LoS. The solid lines in
Figure 4 show this initial (original) hourly RN staffing pattern
(Figure 4(a)), the RN utilization (Figure 4(b)), and the patient
average LoS (Figure 4(c)), over the course of 24 hours. Note that
RN utilization is a high 91% at 2AM and that the LoS during
the night can be as long as 198 minutes. On the other hand, in
late afternoon, the RN utilization and LoS are both considerably
lower, when the staffing levels are dramatically higher.

The size of the variation in utilization and LoS levels over
the 24-hour period were surprising to the domain expert. More
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Fig. 4. The 24-hour, by-the-hour number of RNs, RN utilization, and patient
average LoS for two RN staffing patterns. Both staffing patters aim to achieve
an LoS between 136 and 153 minutes (between 115% and 130% of the minimal
possible LoS), but while the original staffing imposes no other constraints, the
revised staffing also attempts to decrease the variance in the RN utilization.

consistent utilization and LoS levels were considered to be more
desirable, suggesting the need to identify staffing patterns that
reduce these variations.

Accordingly, we designed a new staffing pattern by consider-
ing the need to keep the average LoS constrained between 136
and 153 minutes, but also the need to decrease the variance in

nurse utilization over the 24-hour period. The dashed lines in
Figure 4 show this revised staffing, along with the resulting uti-
lization and LoS measurements. In comparing the original and
the revised staffing, we note that the revised staffing has more
nurses at night and fewer nurses in the daytime. The average
LoS for the revised staffing is 137 minutes, which is within the
required range, and indeed is an improvement over the LoS for
the original staffing. Moreover, the standard deviation of nurse
utilization levels over 24 hours for the revised staffing is 12,
which is less than the standard deviation of 15 in the original
staffing. We observed a similar reduction in the variation of LoS,
with a standard deviation of 16 in the revised staffing and 21 in
the original staffing.

Even though the revised staffing pattern in Figure 4 is not the
optimal solution in terms of minimizing the variance of nurse
utilization, it provides a good example of how consideration of
more constraints can provide better solutions. In particular, it
indicates the clear danger of using only one objective (e.g., LoS)
as the basis for the evaluation of resource allocations and staffing
patterns. As a consequence, together with the domain expert, we
are now investigating the objective functions that should be used
to identify superior staffing patterns, considering more factors
than only the average LoS.

B. Resource Bottlenecks

In addition to adjusting human-resource scheduling, an emer-
gency department can also balance its conflicting goals of de-
creasing LoS and increasing net revenue by modifying the num-
bers of non-human resources, such as x-ray rooms, beds and
other facilities. Our observation is that the bed resource is most
commonly increased in order to effect desired reductions in LoS,
because LoS appears to be most negatively correlated with full,
or nearly full beds. However, our work hypothesizes that other
resources can also be serious bottlenecks.

To study this hypothesis, we ran a battery of simulations that
assumed access to infinite quantities of MDs, RNs, and other
key resources, but controlled the number of x-ray rooms and
beds. In this way, we were able to focus on these two resources
that were the only possible sources of delay and increase in LoS
for these simulations. Figure 5(a) shows how LoS decreases
with the growth in the number of x-ray rooms from 2 to 5.
Meanwhile Figure 5(b) shows how LoS decreases with growth
in the number of beds from 18 to 25. Adding a third x-ray room
can substantially decrease LoS, whereas adding subsequent x-ray
rooms has little effect. Similarly adding a modest number of beds
can have a similarly beneficial effect, but adding a large number
of new beds may be less effective. Our approach allows finding
the point at which adding additional resources of a particular
type is of limited benefit, and help balance how much of each
resource to invest in.

This work has reinforced our view that a powerful discrete-
event simulation capability can be helpful in suggesting what
mixes of non-human resources are most likely most cost ef-
fective. The complex interplay among the various kinds of
resources during different phases of the healthcare processes for
different patients requires using a precise and detailed model of
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(a) LoS(minutes), as a function of the number of x-ray rooms

(b) LoS(minutes), as a function of the number of beds

Fig. 5. Independently varying the number of x-ray rooms and beds affects the
patient average LoS.

processes and resources as the basis for such simulations. The
use of a clearly separated component for the management of
resources facilitates the wide-ranging simulation studies that
have suggested the value of investigating considering various
combinations of new resources in deciding which are likely to
comprise the most effective investments.

V. SIMULATION VALIDATION

In the previous section, we presented experiments that show
the effectiveness of our approach in providing support for ex-
ploring the effects of resources on properties of the emergency
department. These experiments led to preliminary conclusions
that were surprising to a domain expert who is well familiar with
previous discrete-even simulation work on emergency depart-
ments. This suggests one area of this field that needs further
exploration is the validation of these simulations, in both prior
work and our own work. We now outline a few open research
questions that our work has suggested in the space of simulation
validation:

Q1: How do we know a simulation is accurate and
that the results have real-world implications?

In general, we use the simulation to predict results of alternative
design decision choices. In this scenario, there is no oracle that

can identify if the simulation results are correct. Simulating
cases with design decisions present in the real world and for
which real-world measurements have been made, and verifying
those results against the real-world measurements can begin to
address this issue; however, deeper validation techniques that do
not require an oracle are also necessary.

Q2: What properties and behavior, and types of prop-
erties and behavior, need to be validated, and how can
they be validated?

There are many kinds of properties that should be validated be-
tween the simulation and the real world. Some properties are
domain specific to the application domain, whereas others are
general. Dynamic testing and assertion approaches can handle
some of these properties, whereas others are better suited for
static reasoning (e.g., finite state verification, model checking,
and fault-tree analysis [5], [6], [20]). Identifying both the proper-
ties and the validation techniques that are suitable for supporting
the study of these properties remains open research. We have
begun using a dynamic model-inference approach [2], [3], [4]
to explore which simulation properties can be verified automati-
cally during, as well as after, the simulation execution. We are
interested in the degree to which this approach can be comple-
mented by static verification of these properties. Our view is that
the growing arsenal of increasingly powerful software testing
and analysis tools and technologies should be evaluated against
the increasingly challenging needs of our increasingly complex
discrete-event simulation systems. This is a key future direction
of our research.

Q3: How well has the architectural separation of the
resource management concern actually worked out?

Our work appears to have produced evidence that the clear
separation of resource management concerns greatly facilitates
the identification of effective staffing patterns, as it creates a
clear method for modifying resource specifications, resource at-
tributes, resource availability specifications, and other resource
constraints. At present, the user interface through which these
modifications are made is quite primitive and idiosyncratic, sug-
gesting the need for more focus on that part of our approach. The
work has also suggested the need for stronger tools to support
reasoning about the consistency of different resource specifi-
cations, and indeed reasoning about the consistency between
resource specifications and other process specifications, which
are concentrated in other architectural components.

VI. CONTRIBUTIONS

Staffing is an important problem for the emergency depart-
ment. The staffing impacts the quality of patient care, efficiency
of resource use, ability to treat large volumes of patients, and
hospital revenue. Discrete-event simulation can help determine
the necessary resources, and schedule those resources to achieve
certain objectives. We have demonstrated that separating the
concern of resource modeling into a distinct component in the
simulation allows modeling domain-specific constraints, com-
plex resource specifications, and intricate allocation policies.
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Further, such models allow simulations to consider objective
functions that compose potentially inconsistent goals.

In a case study, with the help of a domain expert, we devel-
oped a detailed model of the process an emergency department
undergoes in caring for a patient. Using this model, we eval-
uated various staffing and resource allocation patterns, which
lead us to two observations: (1) Aiming only to minimize the
patients’ average LoS may result in high variability in the staff
(e.g., nurse) utilization and in the LoS itself across patients. As
such variation is undesirable, the average LoS is an insufficient
objective function on its own. (2) While increasing resources
(e.g., beds and x-ray rooms) reduces LoS, different staffing pat-
terns result in different resource bottlenecks. Discrete-event
simulation can help identify when adding a bed is the most ef-
fective way to reduce LoS, and when adding other resources is
more effective.

Our preliminary experiments show promise that discrete-event
simulation that focuses on detailed, precise models of the in-
volved resources can help hospital administrators in evaluating
staffing and resource allocation patterns, potentially improving
efficiency and quality of patient care.
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