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ABSTRACT

Design decisions software architects make directly impact system
quality. Real-world systems involve a large number of such de-
cisions, and each decision is typically influenced by others and
involves trade-offs in system properties. This paper poses the prob-
lem of making complex, interacting design decision relatively early
in the project’s lifecycle and outlines a search-based and simulation-
based approach for helping architects make these decisions and
understand their effects.
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1 MAKING ARCHITECTURAL DESIGN
DECISIONS

Fairly early in a software system’s life cycle, software architects
make a set of critical design decisions that form the system’s archi-
tecture. Some of these decisions are made fresh, while others are
borrowed from previous versions of the system or other existing
similar systems. Some decisions are influenced by established ar-
chitectural styles and patterns, some by selected implementation
frameworks and libraries, and some by the architects’ expertise
and prior experiences. To name just a few aspects of systems af-
fected, architectural design decisions address system structure, sys-
tem behavior, component interaction, system deployment, system
evolution, and non-functional properties [28]. It has been long ac-
cepted that the number grows quickly with the complexity of the
system [5]. As an example, designing Apache Hadoop required well
over one hundred design decisions [25, 26]. And the large number
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of decisions is only part of quantifying the difficulty of system
design, as many decisions involve intertwined factors and force
trade-offs in system properties that must be considered [4, 23].

A software architecture includes many variation points that can
take on one of a set of possible alternatives, e.g., employing either an
encrypted or plain-text data storage, or using either a relational data-
base, a document database, or a key-value store. A design decision
is the selection of one of these alternatives. Ideally, when making
a decision, architects carefully assess each alternative and how it
satisfies or affects each of the system’s requirements; however, this
is frequently not done in practice [6]. The Healthcare.gov portal is
a recent example of ineffective design-decision impact assessment,
leading to serious technical problems at launch [17] and a develop-
ment cost of US$1.5B, despite original estimates of ~US$100M [16].
For example, the portal’s downtimes of up to 60% were caused by
flawed architectural and deployment design decisions. The system
was deployed using a single-node NoSQL database that also stored
federal government employee information, rather than using a dis-
tributed database configuration. This decision alone caused half of
the system outages [30].

As long as the design decisions are even partially independent,
the space of possible systems resulting from all the selections of
concrete alternatives grows exponentially in the number of deci-
sions. Manually comparing these potential systems is infeasible
for most systems, and the community has recognized the need for
tools to support architects in evaluating these decisions [12].

2 STATE-OF-THE-ART DECISION SUPPORT

To make effective design decisions, architects need to understand
the effects of the decisions on the final system. Thus, it is helpful
to be able to objectively assess these potential final systems before
building the systems and even before making all the decisions [23].
The existing approaches to assess such systems rely on static or dy-
namic analysis of system models. Static analysis techniques tend to
require architects to develop complex mathematical models, which
imposes steep learning curves and significant modeling effort and
limits on the resulting system’s scalability [3, 11, 20]. Depending
on the mathematical models they rely on, these techniques are
confined to specific kinds of software system models, or are heav-
ily dependent on error-prone and sometimes inaccessible expert
inputs [10].
Dynamic analysis techniques — architectural model simulations [2,

9, 15, 18] — come with shortcomings of their own (e.g., false nega-
tives, longer execution times), but are more capable of capturing
the randomness reflective of reality [14] and are more amenable to
constructing models that are tailored to the task at hand. Despite
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notable efforts [7, 29, 31], simulations of software architectural
models have not been as widely employed as traditional static anal-
yses [1] because creating simulatable system designs is difficult [9],
running simulations on complex models is time consuming and
requires explicitly addressing scalability issues [22], trade-offs in
system properties caused by design decisions complicate quantita-
tive assessment [21], and analysis of system behavior may rely on
massive datasets [8, 24].

3 SIMULATION-BASED SEARCH

One possible way to address the shortcomings of prior approaches
is to use a search-based strategy together with architectural-model-
driven discrete-event simulation to evaluate the potential systems
corresponding to the model’s design decisions. Such an approach
can help architects make design decisions by providing concrete
simulation-based evidence on the effects each decision (and their
combination) can have on the final system and its specific properties
and requirements.

The challenges of such an approach include (1) enabling archi-
tects to effectively specify simulatable system-design models that
precisely capture the design decisions, their alternatives, and their
interactions, as well as system properties of interest, and (2) scal-
ably executing the potentially many concrete instantiations of the
models with each design decision confined to a specific alternative
to evaluate the decisions’ impact on system properties.

While simulating all of the potential systems that result from
concrete instantiations of the decisions is feasible for real-world sys-
tems, heuristic-based search has been highly successful in relatively
efficiently approximating optimal solutions [13]. Even exploring a
subset of the overall search space is likely to be helpful and enable
architects to make better informed decisions. Existing optimiza-
tion techniques have been successfully applied to similar problems,
e.g., computing the effects of possible deployment architecture on
system quality of service [19]. Further, modern cloud computing
enables executing thousands of system simulations in parallel, and
recent advances data processing and analysis [27] can help create
specialized techniques to increase the efficiency of the required
analyses.
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