2018 ACM/IEEE 40th International Conference on Software Engineering: Companion Proceedings

Poster: Making Well-Informed Software Design Decisions

Arman Shahbazian%, Youn Kyu Lee%, Yuriy Brun, Nenad Medvidovic®

e University of Southern California
Los Angeles, CA, USA
{armansha, younkyul, neno}@usc.edu

ABSTRACT

Design decisions software architects make directly impact system
quality. Real-world systems involve a large number of such de-
cisions, and each decision is typically influenced by others and
involves trade-offs in system properties. This paper poses the prob-
lem of making complex, interacting design decision relatively early
in the project’s lifecycle and outlines a search-based and simulation-
based approach for helping architects make these decisions and
understand their effects.

CCS CONCEPTS

« Software and its engineering — Designing software;

KEYWORDS
Model-driven engineering; software architecture

ACM Reference Format:

Arman Shahbazian, Youn Kyu Lee, Yuriy Brun, and Nenad Medvidovic.
2018. Poster: Making Well-Informed Software Design Decisions. In ICSE ’18
Companion: 40th International Conference on Software Engineering Compan-
ion, May 27-FJune 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3183440.3194961

1 MAKING ARCHITECTURAL DESIGN
DECISIONS

Fairly early in a software system’s life cycle, software architects
make a set of critical design decisions that form the system’s archi-
tecture. Some of these decisions are made fresh, while others are
borrowed from previous versions of the system or other existing
similar systems. Some decisions are influenced by established ar-
chitectural styles and patterns, some by selected implementation
frameworks and libraries, and some by the architects’ expertise
and prior experiences. To name just a few aspects of systems af-
fected, architectural design decisions address system structure, sys-
tem behavior, component interaction, system deployment, system
evolution, and non-functional properties [28]. It has been long ac-
cepted that the number grows quickly with the complexity of the
system [5]. As an example, designing Apache Hadoop required well
over one hundred design decisions [25, 26]. And the large number

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5663-3/18/05.

https://doi.org/10.1145/3183440.3194961

=%

262

University of Massachusetts Amherst
Ambherst, MA, USA
brun@cs.umass.edu

of decisions is only part of quantifying the difficulty of system
design, as many decisions involve intertwined factors and force
trade-offs in system properties that must be considered [4, 23].

A software architecture includes many variation points that can
take on one of a set of possible alternatives, e.g., employing either an
encrypted or plain-text data storage, or using either a relational data-
base, a document database, or a key-value store. A design decision
is the selection of one of these alternatives. Ideally, when making
a decision, architects carefully assess each alternative and how it
satisfies or affects each of the system’s requirements; however, this
is frequently not done in practice [6]. The Healthcare.gov portal is
a recent example of ineffective design-decision impact assessment,
leading to serious technical problems at launch [17] and a develop-
ment cost of US$1.5B, despite original estimates of ~US$100M [16].
For example, the portal’s downtimes of up to 60% were caused by
flawed architectural and deployment design decisions. The system
was deployed using a single-node NoSQL database that also stored
federal government employee information, rather than using a dis-
tributed database configuration. This decision alone caused half of
the system outages [30].

As long as the design decisions are even partially independent,
the space of possible systems resulting from all the selections of
concrete alternatives grows exponentially in the number of deci-
sions. Manually comparing these potential systems is infeasible
for most systems, and the community has recognized the need for
tools to support architects in evaluating these decisions [12].

2 STATE-OF-THE-ART DECISION SUPPORT

To make effective design decisions, architects need to understand
the effects of the decisions on the final system. Thus, it is helpful
to be able to objectively assess these potential final systems before
building the systems and even before making all the decisions [23].
The existing approaches to assess such systems rely on static or dy-
namic analysis of system models. Static analysis techniques tend to
require architects to develop complex mathematical models, which
imposes steep learning curves and significant modeling effort and
limits on the resulting system’s scalability [3, 11, 20]. Depending
on the mathematical models they rely on, these techniques are
confined to specific kinds of software system models, or are heav-
ily dependent on error-prone and sometimes inaccessible expert
inputs [10].
Dynamic analysis techniques — architectural model simulations [2,

9, 15, 18] — come with shortcomings of their own (e.g., false nega-
tives, longer execution times), but are more capable of capturing
the randomness reflective of reality [14] and are more amenable to
constructing models that are tailored to the task at hand. Despite

ICSE 18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Arman Shahbazian, Youn Kyu Lee, Yuriy Brun, and Nenad Medvidovic

notable efforts [7, 29, 31], simulations of software architectural
models have not been as widely employed as traditional static anal-
yses [1] because creating simulatable system designs is difficult [9],
running simulations on complex models is time consuming and
requires explicitly addressing scalability issues [22], trade-offs in
system properties caused by design decisions complicate quantita-
tive assessment [21], and analysis of system behavior may rely on
massive datasets [8, 24].

3 SIMULATION-BASED SEARCH

One possible way to address the shortcomings of prior approaches
is to use a search-based strategy together with architectural-model-
driven discrete-event simulation to evaluate the potential systems
corresponding to the model’s design decisions. Such an approach
can help architects make design decisions by providing concrete
simulation-based evidence on the effects each decision (and their
combination) can have on the final system and its specific properties
and requirements.

The challenges of such an approach include (1) enabling archi-
tects to effectively specify simulatable system-design models that
precisely capture the design decisions, their alternatives, and their
interactions, as well as system properties of interest, and (2) scal-
ably executing the potentially many concrete instantiations of the
models with each design decision confined to a specific alternative
to evaluate the decisions’ impact on system properties.

While simulating all of the potential systems that result from
concrete instantiations of the decisions is feasible for real-world sys-
tems, heuristic-based search has been highly successful in relatively
efficiently approximating optimal solutions [13]. Even exploring a
subset of the overall search space is likely to be helpful and enable
architects to make better informed decisions. Existing optimiza-
tion techniques have been successfully applied to similar problems,
e.g., computing the effects of possible deployment architecture on
system quality of service [19]. Further, modern cloud computing
enables executing thousands of system simulations in parallel, and
recent advances data processing and analysis [27] can help create
specialized techniques to increase the efficiency of the required
analyses.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation under
grants no. CCF-1564162 and CCF-1618231, and by Huawei Tech-
nologies Co., Ltd.

REFERENCES

[1] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya. Software archi-
tecture optimization methods: A systematic literature review. IEEE Transactions
on Software Engineering (TSE), 39(5):658-683, 2013.

S. Becker, H. Koziolek, and R. Reussner. The palladio component model for model-
driven performance prediction. Journal of Systems and Software, 82(1):3-22, 2009.
B. Boone, S. Van Hoecke, G. Van Seghbroeck, N. Joncheere, V. Jonckers,
F. De Turck, C. Develder, and B. Dhoedt. Salsa: Qos-aware load balancing for
autonomous service brokering. Journal of Systems and Software, 83(3):446-456,
2010.

J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, and S. Christina.
Goal-centric traceability for managing non-functional requirements. In Interna-
tional Conference on Software Engineering (ICSE), pages 362-371. ACM, 2005.

P. C. Clements. Software architecture in practice. PhD thesis, Software Engineering
Institute, 2002.

(2]
(3]

(4]

(5]

263

[6] M. D’Ambros, A. Bacchelli, and M. Lanza. On the impact of design flaws on
software defects. In QSIC 2010 (10th International Conference on Quality Software),
pages 23-31. IEEE, 2010.

P. de Oliveira Castro, S. Louise, and D. Barthou. Reducing memory requirements
of stream programs by graph transformations. In High Performance Computing
and Simulation (HPCS), 2010 International Conference on, pages 171-180. IEEE,
2010.

G. Edwards. Automated synthesis of domain-specific model interpreters. PhD
thesis, University of Southern California, 2010.

G. Edwards, Y. Brun, and N. Medvidovic. Automated analysis and code generation
for domain-specific models. In Software Architecture (WICSA) and European Con-
ference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference
on, pages 161-170. IEEE, 2012.

N. Esfahani, S. Malek, and K. Razavi. GuideArch: Guiding the exploration of
architectural solution space under uncertainty. In International Conference on
Software Engineering (ICSE), pages 43-52, 2013.

S. S. Gokhale. Software application design based on architecture, reliability and
cost. In Computers and Communications, 2004. Proceedings. ISCC 2004. Ninth
International Symposium on, volume 2, pages 1098-1103. IEEE, 2004.

L. Grunske, P. Lindsay, E. Bondarev, Y. Papadopoulos, and D. Parker. An outline of
an architecture-based method for optimizing dependability attributes of software-
intensive systems. In Architecting dependable systems IV, pages 188-209. Springer,
2007.

M. Harman. The current state and future of search based software engineering. In
ACM/IEEE International Conference on Software Engineering (ICSE), pages 342357,
2007.

W. D. Kelton and A. M. Law. Simulation modeling and analysis. McGraw Hill
Boston, 2000.

M. Langhammer, A. Shahbazian, N. Medvidovic, and R. H. Reussner. Automated
extraction of rich software models from limited system information. In IEEE/IFIP
Working Conference on Software Architecture (WICSA), pages 99-108, April 2016.
D. R. Levinson. An overview of 60 contracts that contributed to the development
and operation of the federal marketplace, oei-03-14-00231. http://oig.hhs.gov/
oei/reports/oei-03-14-00231.pdf, August 2014.

F. Luke Chung. Healthcare.gov is a technological disaster. http://goo.gl/8B1fcN,
2013.

[18] J.Ma, F. Le, A. Russo, and J. Lobo. Declarative framework for specification, simu-
lation and analysis of distributed applications. IEEE Transactions on Knowledge
and Data Engineering, 28(6):1489-1502, 2016.

S. Malek, N. Medvidovic, and M. Mikic-Rakic. An extensible framework for
improving a distributed software system’s deployment architecture. IEEE Trans-
actions on Software Engineering (TSE), 38(1):73-100, 2012.

[20] J. D. McGregor, F. Bachmann, L. Bass, P. Bianco, and M. Klein. Using arche in the
classroom: One experience. Technical report, DTIC Document, 2007.

G. Me, C. Calero, and P. Lago. Architectural patterns and quality attributes inter-
action. In IEEE Workshop on Qualitative Reasoning about Software Architectures
(ORASA). IEEE, 2016.

C. Poloni and V. Pediroda. Ga coupled with computationally expensive simula-
tions: tools to improve efficiency. Genetic Algorithms and Evolution Strategies in
Engineering and Computer Science, pages 267-288, 1997.

P. Potena. Composition and tradeoff of non-functional attributes in software
systems: research directions. In Joint Meeting of the European Software Engi-
neering Conference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), pages 583-586. ACM, 2007.

A. Shahbazian, G. Edwards, and N. Medvidovic. An end-to-end domain specific
modeling and analysis platform. In Proceedings of the 8th International Workshop
on Modeling in Software Engineering, MiSE 16, pages 8-12. ACM, 2016.

A. Shahbazian, Y. K. Lee, D. Le, Y. Brun, and N. Medvidovic. Recovering architec-
tural design decisions. In IEEE International Conference on Software Architecture
(ICSA). IEEE, 2018.

A. Shahbazian, D. Nam, and N. Medvidovic. Toward predicting architectural
significance of implementation issues. In IEEE/ACM 15th International Conference
on Mining Software Repositories (MSR), May 2018.

M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, and E. Keogh. Generalizing DTW
to the multi-dimensional case requires an adaptive approach. Data Mining and
Knowledge Discovery, 31(1):1-31, January 2017.

R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software architecture: Foundations,
Theory, and Practice. Wiley Publishing, 2009.

N. Tr¢ka, M. Hendriks, T. Basten, M. Geilen, and L. Somers. Integrated model-
driven design-space exploration for embedded systems. In Embedded Computer
Systems (SAMOS), 2011 International Conference on, pages 339-346. IEEE, 2011.
US Department of Health and Human Services. Healthcare.gov progress and
performance report. http://goo.gl/XJRC7Q, 2013.

A. Vescan. A metrics-based evolutionary approach for the component selection
problem. In Computer Modelling and Simulation, 2009. UKSIM’09. 11th Interna-
tional Conference on, pages 83-88. IEEE, 2009.

[7]

[o

=

(10]

[11]

[12]

[13]

(14]

[15]

(16]

(17]

[19]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

