
Synoptic: Summarizing System Logs with Refinement

Sigurd Schneider∗ Ivan Beschastnikh† Slava Chernyak‡ Michael D. Ernst† Yuriy Brun†

∗Computer Science
Saarland University

†Computer Science & Engineering
University of Washington

‡Google, Inc.

sigurd@ps.uni-saarland.de, {ivan, chernyak, mernst, brun}@cs.washington.edu

Abstract
Distributed systems are often difficult to debug and un-

derstand. A typical way of gaining insight into system
behavior is by inspecting execution logs. However, man-
ual inspection of logs is an arduous process. To support
this task we developed Synoptic. Synoptic outputs a con-
cise graph representation of logged events that captures
temporal invariants mined from the log.

We applied Synoptic to synthetic and real distributed
system logs and found that it augmented a distributed
system designer’s understanding of system behavior with
reasonable overhead for an offline analysis tool. In con-
trast to prior approaches, Synoptic uses a combination of
refinement and coarsening to explore the space of rep-
resentations. Additionally, it infers temporal event in-
variants to capture distributed system semantics. These
invariants drive the exploration process and are satisfied
by the final representation.

1 Introduction
Debugging distributed systems remains a significant
challenge for developers who typically try to make sense
of their systems by analyzing execution logs. How-
ever, even a small system with a few nodes running a
distributed protocol, such as two-phase commit [15] or
Paxos [22], can generate thousands of messages in just
a few minutes of execution. Manual inspection of logs
scales poorly, and a developer may easily miss an impor-
tant system behavior. This paper presents Synoptic —
a tool that summarizes system execution logs to support
developer understanding of system behavior.

We approach the problem of understanding a system
from its logs as a summarization and data-reduction chal-
lenge. Synoptic treats an input log as a set of event in-
stances that can be grouped into event classes. Events
may be related by a user-defined relation, such as time.
Synoptic’s goal is to produce a minimal relation graph
with nodes representing sets of events and edges con-
necting nodes for which the user-defined relation holds.
Figure 1 shows two Synoptic representations for a log
containing two-phase commit protocol messages. This
figure also illustrates two strategies for finding an ap-
propriate summary log representation — refinement and
coarsening. Synoptic mines a set of invariants in the form

Propose

Commit

TX 
Commit

TX 
Abort

Abort

Commit Abort

Propose

Commit

TX 
Commit

TX 
Abort

Abort

Commit Abort

Propose

Commit

Commit

TX 
Abort

TX 
Commit

RefinementCoarsening

...

Figure 1: Two example representations of a two-node two-
phase commit log. Arrows represent temporal ordering. Rhom-
bus nodes are start states — that is, initial events. Coarsening
can convert the left graph into the right one, which is smaller
but admits more behaviors. Refinement is the dual of coarsen-
ing. Coarsening is the traditional approach to log summariza-
tion; this paper shows the benefits of refinement.

of LTL expressions from the log (e.g., Abort AlwaysFol-
lowedBy TX Abort, in Figure 1), and uses model check-
ing to enforce these invariants while exploring the repre-
sentation space. This results in representations that retain
the rich distributed system semantics present in the log.

Some prior work uses an FSM model to represent
events as transitions and a coarsening procedure to de-
rive a compact model. Synoptic differs in three ways,
the latter two of which are novel to our work. (1) Synop-
tic uses a relational model to represent events as nodes in
a graph. This better fits the log analysis domain. (2) Syn-
optic mines temporal invariants from the log to formulate
intuitive event (dis-)similarity metrics and stopping con-
ditions. This produces a smaller model that captures be-
havior better. (3) Synoptic utilizes both refinement and
coarsening on the model. This improves efficiency by
avoiding repeated operations on large data structures.

We applied Synoptic to real and synthetic logs of dis-
tributed systems. Compared to kTail [2], a popular coars-
ening algorithm, Synoptic produced smaller summariza-
tions while preserving more key properties of the event
log. Compared to a kTail version modified to preserve
invariants, Synoptic has substantially better runtime per-
formance. In a user study, Synoptic’s output matched the
mental model of a distributed systems developer and re-
minded him of specific corner-case design choices.

1

mailto:sigurd@ps.uni-saarland.de,ivan@cs.washington.edu,chernyak@cs.washington.edu,mernst@cs.washington.edu,brun@cs.washington.edu


2 Approaching the Representations Space
Synoptic addresses the problem of finding a compact rep-
resentation that summarizes a sequence of events logged
by a distributed system. The notion of “event” depends
on the system — events may be sent and received mes-
sages, local procedure invocations, debug output, or a
combination of all of these. To run Synoptic, a user must
(1) specify one or more partial orderings on the events
(e.g., time) and (2) provide a way for Synoptic to iden-
tify events of the same class (e.g., message name).

Conceptually, the summarization problem can be bro-
ken down into two sub-problems — what type of repre-
sentation model to use (Section 2.1) and how to explore
the space of potential representations (Section 2.2).

2.1 Choice of Model
Synoptic uses a relational model. This section briefly
overviews the advantages and disadvantages of state-
based models, Petri nets, and the relational model. Space
prevents us from discussing other potential models, such
as HMMs [4].

State-based model. Distributed systems developers
often structure node logic as a finite state machine (FSM)
in which nodes represent system states [31, 5]. Although
the FSM model is widely used, it is overly complex in
our context because it forces an exploration algorithm to
reason about system state. Events that appear in the log
may indicate that the system is in a particular state, but
we cannot assume that the log contains explicit state in-
formation. Reasoning about states detracts from the ulti-
mate purpose of finding a representation that compactly
summarizes the log.

Petri nets. Petri nets [28] provide a formal means to
model and reason about concurrent systems. Their main
advantage over FSMs is their explicit representation of
concurrency and associated concepts like mutual exclu-
sion. However, Petri nets are more difficult to understand
and generate than FSMs and, in our experiments, the
ability to express explicit concurrency did not improve
the summarizations.

Relational model. The relational model captures pos-
sibly multiple relations between log events. For example,
events may be related temporally, with the happened-
before relation [21], or physically, by co-occurring at the
same node. This model can be visualized as a graph in
which each vertex represents a set of log events. A di-
rected edge between two vertices indicates that the con-
tained log events are related. Based on user feedback in
a study we carried out (see Section 5.3) we have found
this model to be the most appropriate for capturing log
summaries. In addition, this model resembles a modal
transition system, which is a natural fit for reasoning
about temporal invariants between events. Finally, this

model can represent multiple relations simultaneously
(e.g., graphically by using edges of different colors/la-
bels) and, unlike the state-based model, it makes minimal
assumptions about the underlying process that produced
the log events. In the rest of the paper, unless otherwise
specified, we will assume a relational model.

The choice of model constrains how the exploration
algorithm proceeds. It does not, however, severely limit
the final representation shown to the user. For instance,
we successfully experimented with mappings between
the relational and state-based models, that make it pos-
sible to automatically convert representations between
subsets of the two model types.

2.2 Exploring the Space
Now that we have decided to use the relational model, we
must decide how to explore the large space of potential
representations. We represent the relational model as a
graph (V,E), such that V contains partitions, i.e., sets
of events, and E ⊆ V ×V ×R is a set of directed edges
with labels from R, the set of available event relations. In
the following, we use the term graph to mean this graph
representation of the model.

Prior work in automata inference has used graph
coarsening, which iteratively compresses a represen-
tation of the concrete trace by merging states in the
FSM [2]. An alternate strategy is to perform graph re-
finement from an initial representation that consists of a
single state. We now explain these two exploration di-
rections in more detail.

2.2.1 Direction of Exploration
The space of potential representations can be explored
using two dual operations: refinement and coarsening.
These are illustrated in Figure 1.

Graph Coarsening. A step of graph coarsening pro-
duces a graph with fewer partitions than the previous
graph. This new graph is produced by identifying at least
two partitions containing similar information, and merg-
ing them. There exist a variety of partition similarity no-
tions, such as behavioral and structural similarity.

Graph Refinement. A step of graph refinement pro-
duces a graph with at least one more partition than the
prior graph. This new graph is produced by identifying a
partition with events that are dis-similar enough to war-
rant separation of the events into different partitions.

Direction monotonicity. We call an algorithm that
explore the space of representation in a single direction
monotonic. The kTail algorithm [2] is a popular example
of a monotonic coarsening algorithm. It typically starts
from a graph in which each event (not event class) is
mapped to its own partition, which embodies the starting
assumption that all log events are different. In the sim-
plest case, a monotonic refinement algorithm could start

2



from a single-node graph, which embodies the starting
assumption that all events are the same.

The rest of this paper focuses on two summarization
algorithms. The first is Bisim, a monotonic refinement al-
gorithm. The second is BisimH, a hybrid, non-monotonic
algorithm that combines Bisim with kTail.

2.2.2 Guiding the Exploration with Policies

Two policies, termination and operation selection, induce
a wide variety of exploration algorithms.

Termination Policy. An exploration algorithm must
specify when a representation is considered final and no
more coarsening/refinement exploration is performed.

Operation Selection Policy. Operation selection has
two dimensions: (1) identifying candidate operations and
(2) selecting a candidate as the next step. An operation
either merges partitions or splits an existing partition.

To identify candidate operations, a summarization al-
gorithm must determine whether two events are similar
enough to warrant their representation as a single node
and, when necessary, issue split/merge operations. This
process crucially depends on the notion of similarity. If
similarity is too fine-grained, the resulting representa-
tion will not be concise. If it is too coarse, the resulting
graph might admit many spurious traces. If it is not an
equivalence relation, the merge operation becomes non-
associative, and the result not only depends on the opera-
tions made, but also on their order. For example, GK-Tail
as specified in [24] is nondeterministic, because the out-
put depends on the (unspecified) order of the operations.

Among all candidate operations, exactly one must be
chosen for immediate processing. For example, consider
the graph at E4 in Figure 8 (on the last page). Three splits
are possible: two (edge 1,4 and edge 3,5) split partition A
and one (edge 2) splits partition C. Thus, a graph explo-
ration algorithm must define a policy that dictates which
operation should be performed next.

We can express kTail [2] in our relational model in
terms of the above two policies. kTail is a coarsening
algorithm that starts with the most fine-grained represen-
tation. The termination policy is to stop once there is no
pair of k-equivalent partitions, i.e., no two partitions that
are roots of sub-graphs identical up to depth k. The op-
eration selection policy merges any pair of k-equivalent
partitions, chosen nondeterministically.

3 Bisim and BisimH Algorithms
Synoptic can use two algorithms to summarize a log. We
first introduce the Bisim algorithm, a monotonic refine-
ment algorithm. Then we present a key deficiency in
Bisim to motivate BisimH, which is a hybrid algorithm
combining Bisim and kTail to explore the space of rep-
resentations non-monotonically.

1 Input: event log L
2 let initialGraph = extract(L)
3 let I = mineInvariants(initialGraph)
4 let (V,E) = partition(initialGraph)
5 while (V,E) does not satisfy invariants I
6 // p: event→ boolean, π: partition that will be split
7 let (p, π) = selectSplit((V,E), I)
8 let π1 = {event ∈ π | p(event)}
9 let π2 = {event ∈ π | ¬p(event)}

10 V := (V −{π})∪{π1,π2}
11 E := {(π3,π4,r) ∈V ×V ×R | ∃ event1 ∈ π3,∃ event2 ∈ π4
12 : event1 r event2 ∈ initialGraph}
13 end while
14 if (hybrid)
15 (V,E) := kTail((V,E), 0, I)
16 Output: (V,E)

Figure 2: The Bisim/BisimH algorithm, depending on the
value of hybrid. The procedures extract, mineInvariants,
and partition are described in Section 3.1.

3.1 The Bisim Algorithm

We developed Bisim, a bisimulation-inspired algorithm
that combines partition refinement [9, 26] with model
checking. Bisim is novel in finding a compact represen-
tation that satisfies a set of temporal relations from the
event log. Figure 2 shows the Bisim pseudo-code, which
involves four steps.

1. extract(), on line 2, creates an initial graph (step
(b) in Figure 8) from the execution log. This graph con-
tains a singleton partition for each event instance, and a
directed edge between partitions that satisfy the partial
ordering relation provided by the user.

2. mineInvariants(), on line 3, mines event rela-
tions listed in Figure 3 from the initial graph. We term
these relations “invariants” because they succinctly cap-
ture temporal event relationships. Synoptic’s mining ap-
proach is similar to that of Daikon [10]: it first enumer-
ates all possible invariants, and then discards those in-
variants that are not satisfied by the initial graph. Due to
space constraints, this paper omits optimization details
that make this procedure efficient in practice.

3. partition(), on line 4, generates a partition
graph (shown at E4 in Figure 8) from the initial graph
by grouping events of the same class into a single par-
tition and adding edges through existential abstraction.
An edge between two partitions in this graph indicates
that there are two events, one in each partition, that were
connected in the initial graph. The partition graph may
admit new traces that were not observed; however, each
trace in the initial graph appears in the partition graph.

4. Bisim iteratively refines the partition graph —
lines 5–13. This is necessary because newly-introduced
traces may violate invariants. Bisim terminates when the
graph satisfies all the mined invariants.

3



Invariant LTL formula Type
x AlwaysFollowedBy y �(x → ♦y) liveness
y AlwaysPrecededBy x ♦y→¬y U x safety
x NeverFollowedBy y �(x → �¬y) safety

Figure 3: Event relations that Synoptic mines from the input
log, with corresponding LTL formula and classification. LTL
properties must hold over the entire input log and are specified
using the operators: always (�), eventually (♦), and until (U).
For example, the formula ♦y→¬y U x requires x to occur be-
fore y. Without the premise ♦y, x would be required to appear
at least once, even if the trace does not contain y.

3.2 Bisim Policies
The Bisim algorithm is parametrized (Section 2.2.2) with
respect to termination and split policies. Line 5 of Fig-
ure 2 fixes the termination criterion and line 7 uses
selectSplit for split selection. This section motivates
our choices of these policies and their effects.

3.2.1 Termination
Bisim uses a set of mined invariants for its termination
criterion. Bisim’s output is highly sensitive to this set.
On the one hand, suppose the set of invariants is empty.
Then the output is the quotient under label-equivalence,
i.e., the initial partitioning. This graph is often too com-
pact to capture key properties of the log. For example,
when compacting correct two-phase commit event logs,
the resulting graph incorrectly permits TX Commit to
follow an Abort message. On the other hand, suppose
that the invariant set includes all possible temporal log
invariants expressible in LTL. Then the algorithm will
terminate when, for all partitions A, if an event in A has
a successor event in a partition B in the log, then every
event in A has a successor event in B in the graph. In this
case, the final representation is the quotient under bisim-
ulation, i.e., a graph that satisfies the same set of LTL
formulas as the log. Our experiments indicated that the
bisimulation quotient is usually too similar to the initial
graph, and thus too fine-grained to be a useful summary.

Bisim chooses a compromise between these extremes.
It terminates when the graph satisfies the three types of
mined invariants listed in Figure 3. These invariant types
are partially based on the specification patterns formu-
lated by Dwyer et al. [8] and are key to capturing rich
semantics of distributed systems. For instance, key prop-
erties of two-phase commit and the Peterson algorithm
(Section 5.1) are captured by these invariant types.

3.2.2 Operation Selection
Our overall goal for Bisim is to pick a sequence of splits
such that the resulting graph is the coarsest graph that
satisfies a set of invariants. This problem is NP-hard [6],
so an efficient algorithm might not yield the optimal re-
sult. We describe Bisim’s split selection policy in terms

of the dimensions of exploration (Section 2.2.2) and ex-
plain how it may make suboptimal decisions.

Candidate Operations. Bisim converts the mined
invariants expressed in LTL into Büchi automata using
LTL2Büchi [13]. It then uses a model checker to ob-
tain a set of counterexample traces for the current graph,
each of which fails to satisfy at least one of the mined in-
variants. Next, Bisim follows the CEGAR approach [6]
to determine a set of candidate partitions, for each of
which there exists a split that removes at least one of
the counterexamples. Bisim identifies these partitions
heuristically by tracing each counterexample, stepwise,
in parallel, in the initial graph and in the current graph.
In the initial graph, only a prefix of the counterexample
will be present (otherwise the counterexample would not
violate an invariant). Bisim finds the longest such prefix,
and the last partition of this prefix in the current graph
is the candidate partition – it allows a spurious transition
that makes the trace a counterexample.

To remove the counterexample, the events in a candi-
date partition are divided into two sets: a set that contains
events that can perform the spurious transition in the ini-
tial graph and a set that cannot. In line 7 of Figure 2,
selectSplit obtains a predicate p that distinguishes
these two event sets, and lines 8 and 9 introduce two new
partitions, π1 and π2, corresponding to these two sets.

In Synoptic’s current implementation, getSplit only
returns predicates that indicate the presence of an outgo-
ing transition to a certain partition. Often, this constraint
prevents Bisim from achieving an optimal splitting. To
see this, consider Figure 8, in which Bisim yields a graph
with six nodes at B6, while an invariant-satisfying graph
with five nodes exists at C6. From the partition graph
at E4, Bisim can obtain at most three different refine-
ments, depending on which outgoing edge is used by the
split. However, none of these refinements separates the
event {a3} from events {a1,a2,a4}, which is necessary
to yield the optimal graph.

In the future, we plan to consider different choices of
predicate p, such as ones that indicate the presence of
incoming edges.

Ranking among Candidate Partitions. Typically,
the refined graph violates several invariants and candi-
date partitions must be ranked to decide which one to
split first. Currently, Synoptic employs a two-class rank-
ing: it examines all counterexamples in arbitrary order
and performs the first split that validates an invariant
(i.e., eliminates the last counterexample for that invari-
ant). If no such split is available (because there are sev-
eral violating traces for each invariant), Bisim picks a
split nondeterministically. This two-class ranking intro-
duces nondeterminism and Bisim might perform unnec-
essary splits.

4



 20

 40

 60

 80

 100

 120

 0  500  1000  1500  2000  2500  3000  3500

Ti
m

e 
(s

)

Input Events

total
mine invariants

refinement
coarsening

extraction

Figure 4: BisimH execution time on Peterson algorithm logs
(Section 5.1) with varying number of events. The total exe-
cution time is broken up according to the steps described in
Section 3.1.

3.3 The BisimH Algorithm
We have explained that the Bisim algorithm often refines
more than it needs to. In particular, the result might con-
tain partitions that can be merged without violating in-
variants. This seems to be inherent to the approach due
to the NP-hardness of finding the optimal refinement [6].

Motivated by the counterexample in Figure 8, we de-
veloped BisimH. BisimH extends Bisim with one addi-
tional step that mitigates the unnecessary splits by merg-
ing all partitions that can be merged without violating
invariants. BisimH runs kTail (described at the end of
Section 2.2.2), with k = 0, on the refined graph while
enforcing that all merges respect the invariants. The re-
sulting merged graph is locally minimal: merging any
two partitions will violate some invariant.

In the future, we plan to explore more complex hy-
brid strategies, such as interleaving coarsening and re-
finement phases or considering both coarsening and re-
finement operations at every step.

4 Performance Evaluation
Figure 4 shows the execution time of BisimH bench-
marked on an AMD64 Intel i7 (1.6 GHz) Kubuntu ma-
chine with 8GB RAM. Each data point is the average of
ten executions.

Performance vs. kTail with Invariants. kTail with-
out invariants is usually much faster than BisimH but
fails to produce compact graphs that satisfy key event
invariants (see Figure 7). It is straightforward to mod-
ify kTail to check for invariant violations and terminate
once further merges violate invariants. However, BisimH
scales better than kTail with Invariants due to its use of
refinement. For example, when run on a Peterson log
with 716 events, kTail with Invariants takes 86 seconds
while BisimH completes in less than 1 second. For kTail,
model checking dominates the performance cost, while
BisimH operates on much smaller graphs. In the Pe-
terson example, BisimH begins with a graph of size 5,

send

active recv

active

relay

recv

send

relay

leader leader

recv

send

Figure 5: BisimH output for a Peterson log with 3308 events,
generated by simulating 5 nodes. The manually-added, labeled,
dotted regions group nodes into the states a node may take on
in the algorithm.

and issues only 35–54 splits during operation. Thus,
the graphs BisimH must model check contain at most 60
nodes. This provides tremendous speed-up compared to
kTail, which initially operates on graphs with 716 nodes.

5 Case Studies
To empirically evaluate Synoptic’s ability to produce
concise and useful representations, we applied it to three
systems. The first system simulates the Peterson leader
election algorithm [27] and produces a log of all mes-
sages exchanged between simulated nodes in the system.
The second system is a Twitter client [34] that logs all
messages to and from Twitter. The third system deter-
mines the likely reverse traceroute from an arbitrary des-
tination on the Internet to a source host [20]. Its logs are
debugging events generated by the coordinating server.

5.1 Peterson Leader Election
The Peterson leader election algorithm [27] allows an
asynchronous unidirectional ring network of nodes to
elect a leader. All nodes start as active and with a random
unique node ID. In each round, at least half of the active
nodes become relays through exchange and comparison
of node IDs. A relay node forwards all messages it re-
ceives. When an active node receives its own messages
via a ring of relay nodes, it becomes the leader.

We implemented a simulator of the Peterson algorithm
that logs all messages sent and received by a node, as
well as node state transition debug messages. This log
includes a variety of message interleavings as the sim-
ulator allows concurrent node execution. Messages are
timestamped and partially ordered using a Lamport vec-
tor clock [21]. Figure 5 shows BisimH output for an exe-
cution with 5 nodes that generated 3308 log events. This
graph is useful in understanding node behavior as nodes
take on different states. For example, Bisim correctly
captures the fact that a relay node cannot send before
receiving while an active node may first send and then
receive, depending on the timing of incoming messages.

5



Trend Search Result
Get
Trends

Figure 6: BisimH output for Twitter client-server interactions,
when requesting trends (left) and performing a search (right).

5.2 Twitter API
We applied Synoptic to an open-source Twitter
client [35]. We added 3 lines of code to this client to
log all messages exchanged between the client and the
Twitter server. We verified Synoptic’s output by consult-
ing the official Twitter API documentation [34]. Figure 6
shows two of the graphs from the final representation that
demonstrate that Synoptic may help developers gain an
intuitive understanding of the overall structure of an API.

5.3 Reverse Traceroute
We carried out a user study with a developer who built a
system to determine the likely reverse traceroute from an
arbitrary destination on the Internet to a source host [20].
Reverse traceroute relies on a distributed set of Internet
vantage points and uses a variety of methods to find each
segment of the reverse route, such as IP record route and
timestamp options [17, 18], and relying on IP spoofing
from PlanetLab hosts.

We developed a small parser that uses regular expres-
sions to extract information from logs generated by Re-
verse Traceroute. We then partitioned the output of this
parser into traces, such that each dealt with determining
one segment of the reverse path. Synoptic executed on
these partitioned logs. We then discussed the Synoptic-
generated representation (which we omit due to lack of
space) with the developer.

The Synoptic representation prompted us to ask rele-
vant questions about the system’s design and helped the
developer to remember implementation details. The de-
veloper pointed out distinct regions of the graph where
the system employed a particular method to determine a
segment on the reverse path. The user stated that Synop-
tic makes it easy to discover unexpected paths in the sys-
tem and that he found it useful to see how often certain
paths were taken by the system (edges between events in
the graph were annotated to indicate co-event frequency).

5.4 Graph Quality: BisimH vs. kTail
Figure 7 compares the graphs generated by BisimH,
kTail, and kTail with Invariants (from Section 4).

Unlike kTail, BisimH was always able to establish the
key invariants — those that imply system correctness.
We do not know the key invariants for reverse traceroute,
which, unlike the others, lacks a proof of correctness and
documentation. Further, with kTail, the user must guess
the value of the k parameter, which trades off the size
and accuracy of the graph. BisimH makes explicit which

invariants it preserves. Figure 7 also demonstrates that
invariant types mined by BisimH (Figure 3) are suffi-
cient to capture key invariants of a range of distributed
systems.

Augmenting kTail to respect key invariants (kTail with
Invariants in Figure 7) produces graphs that are as con-
cise and as accurate as BisimH. However, BisimH is dra-
matically faster.

6 Discussion and Future Work

BisimH uses three types of invariants that we believe are
useful for capturing temporal system properties. Two of
these appear in the survey of specification patters [8].
Synoptic can accommodate other types of invariants that
relate events. We plan to expand Synoptic to use the re-
maining six specification patterns from this survey. We
also plan to expand Synoptic to mine structural proper-
ties of logged events, e.g., the value of the source and
destination IP addresses and message data payload. Our
initial experiments indicate that this direction is promis-
ing, though it may require users to specify format and
data types of event fields.

BisimH is motivated by the Bisim counterexample
in Figure 8. We are actively exploring the limits of
BisimH and, thus far, have been unable to find a similar
counterexample. However, one likely exists since find-
ing an efficient, exact algorithm is equivalent to proving
P = NP [6]. Currently BisimH leverages kTail only once
Bisim terminates, but another approach could interleave
kTail and Bisim.

Synoptic’s output depends on the ordering of events in
the log. If events are missing, are out of order, or the
log contains spurious events, Synoptic may mine false
invariants or may omit true invariants, compromising the
quality of the resulting graph. In small graphs, discrep-
ancies could be easy to detect for users familiar with the
system. In large graphs, manual detection is difficult.
One way to handle log defects is to leverage anomaly
detection to alert the user when an event occurrence or
omission in the log may be due to a defect.

For Synoptic to converge on an accurate representa-
tion, it is sufficient for the log to contain an example trace
corresponding to every path in the system model. For
protocols and system that are well specified (e.g., two-
phase commit) this is straightforward. For more com-
plex systems, such as reverse traceroute, it is non-trivial
to determine how much input is necessary. The intended
use of Synoptic-generated models plays a role in deter-
mining the appropriate input log size. A more rigorous
understanding of the system will require a larger log.

6



Two-Phase Commit Peterson Twitter Reverse Traceroute
24 events 716 events 87 events 2044 events

nodes invs time (ms) nodes invs time (ms) nodes invs time (ms) nodes invs time (s)
kTail, k = 1 2 no 6 5 no 261 19 yes 8 21 no∗ 1.962
kTail, k = 2 7 yes 10 14 no 940 22 yes 18 37 no∗ 4.288
kTail with Inv. 7 yes 155 12 yes 3743s 19 yes 48269 - - >20000
BisimH 7 yes 110 9 yes 9310 19 yes 2414 114 yes∗ 13558

Figure 7: Graph quality metrics — number of input log events, output nodes, and whether the output satisfied the algorithm’s
key invariants (invs) — and execution times on logs of four systems. A ∗ indicates that the key invariants were unknown, but, for
reverse traceroute, kTail failed to preserve 68 invariants that BisimH mined and enforced.

7 Related Work
Work related to Synoptic falls into three main categories;
(1) tools to debug and visualize distributed systems; (2)
algorithms to create concise FSM representations of sys-
tem executions; and (3) the study of bisimulations, which
motivated our development of Bisim..

Debugging and Visualizing Distributed Systems.
Distributed systems are notoriously difficult to get right.
This is exemplified by recent efforts that target bug find-
ing in distributed systems [38, 37]. Magpie [7] and X-
Trace [12] are examples of debugging tools that provide
a fine granularity of process tracing in distributed sys-
tems. Such tools, however, require system modification
and do not focus on the problem of log summarization.

Prior work on distributed system log mining focused
on detecting dependencies [25], anomalies [36, 19, 41],
and performance debugging [32, 33]. Much of this work
does not target the problem of finding a concise summary
representation for an arbitrary distributed system. For in-
stance, SALSA [32] and Mochi [33] extract and visualize
node behavior of Hadoop [16] node logs to support per-
formance debugging. This line of work is MapReduce-
specific. Perracotta [40] mines and visualizes temporal
properties of event traces, and it has been used to study
program evolution [39]. Unlike Synoptic, Perracotta
considers a totally ordered trace of events and does not
consider properties that might be of interest in distributed
systems, such as the invariants mined by Synoptic.

kTail and GK-Tail Algorithms. The problem of au-
tomata inference from positive examples of executions is
computable [3], but is NP-complete [14, 1], and the FSA
cannot be approximated by any polynomial-time algo-
rithm [29]. Therefore, polynomial-time algorithms that
explore the FSM space are approximation algorithms.

An important algorithm that has been used extensively
in related work is the kTail algorithm [2]. kTail takes an
automaton and produces a more compact one by recur-
sively merging automaton states whose root subgraphs
are identical up to a depth of k. Lorenzoli et al. [24] de-
veloped a variant of kTail, called GK-Tail, and applied
it to logged sequences of method call invocations. Un-
like Bisim and BisimH, the GK-Tail algorithm does not
preserve trace invariants. Another use of kTail is in work

by Lo et al. [23], in which temporal properties are mined
from execution traces and are used to steer the kTail al-
gorithm to ensure that a kTail merge will not produce a
graph violating a temporal constraint. This is similar to
the kTail with Invariants algorithm of Section 4.

This paper considers refinement exploration algo-
rithms in contrast to the coarsening strategy in kTail.

Bisimulation. A bisimulation is a simulation relation
that provides a strong notion of similarity for relational
structures [30]. Its key property is preserving certain
properties of the relational structure, for example, two
strongly bisimilar transition systems are guaranteed to
satisfy the same set of LTL formulas. An important ap-
plication in model checking is model minimization [11].
Our Bisim algorithm is a modification of a partition re-
finement algorithm [26], which uses invariants to deter-
mine which state to split next and when to stop splitting,
resulting in a coarser representation that is not bisimilar
to the input structure. Our Bisim algorithm is also related
to the partition refinement algorithms in [9], but Bisim
uses invariants to guide exploration and termination.

8 Conclusion
Synoptic summarizes distributed system execution logs
with a compact graph by employing two key innovations.
First, Synoptic mines temporal properties from logged
events and maintains these invariants during summariza-
tion. Compared to other approaches, such as kTail, Syn-
optic generalizes the logs more accurately and captures
more key properties. Second, Synoptic uses coarsening
to explore the representations space starting with smaller
representations, making it scale better than the popu-
lar kTail algorithm augmented with invariant checking.
A user study showed that Synoptic representations can
augment the intuition of distributed systems developers.
Synoptic is an open-source tool: http://code.google.com/

p/synoptic/

Acknowledgments Josh Goodwin contributed to an
early version of Synoptic. Financial support was pro-
vided by a Fulbright fellowship, NSF Grant #0937060 to
the Computing Research Association for the CIFellows
Project, and an IBM John Backus Award.

7

http://code.google.com/p/synoptic/
http://code.google.com/p/synoptic/


References
[1] ANGLUIN, D. Finding patterns common to a set of

strings. Journal of Computer and System Sciences
21, 1 (1980), 46 – 62.

[2] BIERMANN, A. W., AND FELDMAN, J. A. On
the Synthesis of Finite-State Machines from Sam-
ples of Their Behavior. IEEE Trans. Comput. 21, 6
(1972), 592–597.

[3] BLUM, L., AND BLUM, M. Toward a mathemati-
cal theory of inductive inference. Information and
Control 28, 2 (1975), 125 – 155.

[4] CAPPÉ, O., MOULINES, E., AND RYDEN, T. In-
ference in Hidden Markov Models (Springer Series
in Statistics). Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 2005.

[5] CASTRO, M., AND LISKOV, B. Practical Byzan-
tine Fault Tolerance. In OSDI ’99: Proceedings of
the third symposium on Operating systems design
and implementation (Berkeley, CA, USA, 1999),
USENIX Association, pp. 173–186.

[6] CLARKE, E., GRUMBERG, O., JHA, S., LU, Y.,
AND VEITH, H. Counterexample-guided abstrac-
tion refinement. In Computer Aided Verification
(2000), Springer, pp. 154–169.

[7] DOMINGUE, J., AND DZBOR, M. Magpie: sup-
porting browsing and navigation on the semantic
web. In IUI ’04: Proceedings of the 9th inter-
national conference on Intelligent user interfaces
(New York, NY, USA, 2004), ACM, pp. 191–197.

[8] DWYER, M. B., AVRUNIN, G. S., AND COR-
BETT, J. C. Patterns in property specifications for
finite-state verification. In ICSE ’99: Proceedings
of the 21st international conference on Software
engineering (New York, NY, USA, 1999), ACM,
pp. 411–420.

[9] ELOMAA, T. Partition-Refining Algorithms for
Learning Finite State Automata. In ISMIS ’02: Pro-
ceedings of the 13th International Symposium on
Foundations of Intelligent Systems (London, UK,
2002), Springer-Verlag, pp. 232–243.

[10] ERNST, M. D., COCKRELL, J., GRISWOLD,
W. G., AND NOTKIN, D. Dynamically discover-
ing likely program invariants to support program
evolution. In ICSE ’99: Proceedings of the 21st
international conference on Software engineering
(New York, NY, USA, 1999), ACM, pp. 213–224.

[11] FISLER, K., AND VARDI, M. Y. Bisimulation
Minimization and Symbolic Model Checking. For-
mal Methods in System Design 21, 1 (2002), 39–78.

[12] FONSECA, R., PORTER, G., KATZ, R. H.,
SHENKER, S., AND STOICA, I. X-Trace: A Perva-
sive Network Tracing Framework. In NSDI (2007).

[13] GIANNAKOPOULOU, D., AND LERDA, F. From
States to Transitions: Improving Translation of
LTL Formulae to Büchi Automata. In FORTE
’02: Proceedings of the 22nd IFIP WG 6.1 Interna-
tional Conference Houston on Formal Techniques
for Networked and Distributed Systems (London,
UK, 2002), Springer-Verlag, pp. 308–326.

[14] GOLD, E. M. Language identification in the limit.
Information and Control 10, 5 (1967), 447–474.

[15] GRAY, J. Notes on Data Base Operating Systems.
In Operating Systems, An Advanced Course (Lon-
don, UK, 1978), Springer-Verlag, pp. 393–481.

[16] Welcome to Apache Hadoop!, http://hadoop.
apache.org/. Accessed January 13, 2010.

[17] IPv4 Specification, Record Route option. http://
www.ietf.org/rfc/rfc791.txt. Pg. 20, 21. Ac-
cessed March 9, 2010.

[18] IPv4 Specification, Timestamp option. http://
www.ietf.org/rfc/rfc791.txt. Pg. 22, 23. Ac-
cessed March 9, 2010.

[19] JIANG, G., CHEN, H., UNGUREANU, C., AND
YOSHIHIRA, K. Multi-resolution Abnormal Trace
Detection Using Varied-length N-grams and Au-
tomata. Autonomic Computing, International Con-
ference on 0 (2005), 111–122.

[20] KATZ-BASSETT, E., MADHYASTHA, H. V., AD-
HIKARI, V. K., SCOTT, C., SHERRY, J., VAN WE-
SEP, P., ANDERSON, T., AND KRISHNAMURTHY,
A. Reverse Traceroute. In NSDI’10: : Proceed-
ings of the 7th USENIX symposium on Networked
systems design and implementation (Berkeley, CA,
USA, 2010), USENIX Association.

[21] LAMPORT, L. Time, clocks, and the ordering of
events in a distributed system. Commun. ACM 21,
7 (1978), 558–565.

[22] LAMPORT, L. The part-time parliament. ACM
Trans. Comput. Syst. 16, 2 (1998), 133–169.

[23] LO, D., MARIANI, L. E., AND PEZZÈ, M. Auto-
matic steering of behavioral model inference. In
ESEC/FSE ’09: Proceedings of the the 7th joint

8

http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc791.txt


meeting of the European software engineering con-
ference and the ACM SIGSOFT symposium on The
foundations of software engineering (New York,
NY, USA, 2009), ACM, pp. 345–354.

[24] LORENZOLI, D., MARIANI, L., AND PEZZÈ, M.
Automatic generation of software behavioral mod-
els. In ICSE ’08: Proceedings of the 30th inter-
national conference on Software engineering (New
York, NY, USA, 2008), ACM, pp. 501–510.

[25] LOU, J.-G., FU, Q., WANG, Y., , AND LI, J. Min-
ing Dependency in Distributed Systems through
unstructured log analysis. In WASL’09: Proceed-
ings of USENIX Workshop on Analysis of System
Logs (2009).

[26] PAIGE, R., AND TARJAN, R. E. Three partition
refinement algorithms. SIAM J. Comput. 16, 6
(1987), 973–989.

[27] PETERSON, G. An O (n log n) unidirectional al-
gorithm for the circular extrema problem. ACM
Transactions on Programming Languages and Sys-
tems (TOPLAS) 4, 4 (1982), 762.

[28] PETERSON, J. L. Petri Net Theory and the Mod-
eling of Systems. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1981.

[29] PITT, L., AND WARMUTH, M. K. The minimum
consistent DFA problem cannot be approximated
within any polynomial. J. ACM 40, 1 (1993), 95–
142.

[30] SANGIORGI, D. On the origins of bisimulation and
coinduction. ACM Trans. Program. Lang. Syst. 31,
4 (2009), 1–41.

[31] SCHNEIDER, F. B. Implementing fault-tolerant
services using the state machine approach: a tuto-
rial. ACM Comput. Surv. 22, 4 (1990), 299–319.

[32] TAN, J., PAN, X., KAVULYA, S., G, R., AND
NARASIMHAN, P. SALSA: Analyzing Logs as
StAte Machines. In WASL’08: Proceedings of
USENIX Workshop on Analysis of System Logs
(2008).

[33] TAN, J., PAN, X., KAVULYA, S., G, R., AND
NARASIMHAN, P. Mochi: Visual Log-Analysis
Based Tools for Debugging Hadoop. In Hot-
Cloud’09: Proceedings of USENIX Workshop on
Hot Topics in Cloud Computing (2009).

[34] Twitter API Documentation, http://apiwiki.
twitter.com/Twitter-API-Documentation.
Accessed June 10, 2010.

[35] A Java wrapper around the Twitter API, http://
code.google.com/p/java-twitter/. Accessed
March 8, 2010.

[36] XU, W., HUANG, L., FOX, A., PATTERSON, D.,
AND JORDAN, M. I. Detecting large-scale system
problems by mining console logs. In SOSP ’09:
Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles (New York, NY,
USA, 2009), ACM, pp. 117–132.

[37] YABANDEH, M., KNEZEVIC, N., KOSTIC, D.,
AND KUNCAK, V. CrystalBall: predicting and
preventing inconsistencies in deployed distributed
systems. In NSDI’09: Proceedings of the 6th
USENIX symposium on Networked systems design
and implementation (Berkeley, CA, USA, 2009),
USENIX Association, pp. 229–244.

[38] YANG, J., CHEN, T., WU, M., XU, Z., LIU,
X., LIN, H., YANG, M., LONG, F., ZHANG,
L., AND ZHOU, L. MODIST: Transparent Model
Checking of Unmodified Distributed Systems. In
NSDI’09: Proceedings of the 6th USENIX sympo-
sium on Networked systems design and implemen-
tation (Berkeley, CA, USA, 2009), USENIX Asso-
ciation, pp. 213–228.

[39] YANG, J., AND EVANS, D. Automatically In-
ferring Temporal Properties for Program Evolu-
tion. In ISSRE ’04: Proceedings of the 15th In-
ternational Symposium on Software Reliability En-
gineering (Washington, DC, USA, 2004), IEEE
Computer Society, pp. 340–351.

[40] YANG, J., AND EVANS, D. Dynamically inferring
temporal properties. In PASTE ’04: Proceedings
of the 5th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineer-
ing (New York, NY, USA, 2004), ACM, pp. 23–28.

[41] YUAN, D., MAI, H., XIONG, W., TAN, L.,
ZHOU, Y., AND PASUPATHY, S. SherLog: er-
ror diagnosis by connecting clues from run-time
logs. SIGARCH Comput. Archit. News 38, 1 (2010),
143–154.

9

http://apiwiki.twitter.com/Twitter-API-Documentation
http://apiwiki.twitter.com/Twitter-API-Documentation
http://code.google.com/p/java-twitter/
http://code.google.com/p/java-twitter/


(d.1) Refinement
(Bisim)

1,4
C NFby B

5
C NFby C

2
A NFby A

3,5
C NFby C

 Event Log
vector clock : event

0.0.0.1 : a
0.0.0.2 : b
0.0.1.0 : c
0.0.2.0 : a
0.1.0.0 : a
0.2.1.0 : c
0.3.0.0 : b
1.0.0.0 : a
2.0.0.0 : c

C NFby C
C NFby B
B NFby B
B NFby A
B NFby C
A NFby A
A  AP   B

1,4
C NFby B

c1
c3B

a1
a2

c2

2
31,4

a3
a4

53

c1
c3B

a2

c2

34

a3
a4

5 2

a1

1

5
C NFby C

c1
c3B

a2 c2

34

a3

5

a1

1

a4

2

c1
c3B

a1
a2 c2

31,4

a4

5

2; 5; 1,4

a3

2

3

4

a1
a3

a2B

C

1

2

3

4

a4
5

a1
a3 a2

B c1
c3

12
34

2; 3; 4; 5

a4

5

2

c2

1
C NFby B

4

c1
c3

a1
a3

a2
a4

Bc2

2
1 4 3,5

c1
c3B

a2
a4 c2

3,54

a1

1

a3

24; 3,5

2
A NFby A

2

3

a1

B

31

C

a3
a4

5

2

a2

4

3,5

c1
c3

B

A c22

3,51,4

a1
a3

a2
a4B

C

1

2

3,5

4

a1 
a2 
a4

B

C

a3

3,5 21,4

a1

a2

B1

2
3 4

a4

5

C

a3

1

4; 3,5

a2
a4

B C

a1 a3

23,541

a1
a2
a4

B c1 
c3 a3

c2

21,4 3,51,4

3,5

3

a1
a2

B C

a4 a3

1,4 3 5 2

a1 
a2

B C

a3
a4

3
5

21,4

1, 3, 4, 5

5
C NFby C

5
C NFby C

2
A NFby A

2
A NFby A

1
C NFby B

2
A NFby A

2
A NFby A

1
C NFby B

2

1,4

3,5

1,4

2

2; 1,4

2; 3,5

1

5; 1,4

3; 4; 5

1; 3; 4

1; 2; 3; 4

(b) Create
Initial Graph

(c) Mine
Invariants

(a) Log
EventsSystem

A

7

6

5

4

3

2

1

(d) Run BisimH

{a1, a2} + {a4}

(d.2) Coarsening
(kTail, k=1)

a1
a2
a4

B c1 
c3 a3

c2

21,4 3,5

B C D E

(e) Output
Final Representation

C NFby CC NFby C

C NFby B
A NFby A

C NFby B

C NFby B

C NFby C
A NFby A

C NFby C
C NFby B

C NFby B
A NFby A

A NFby A

A NFby A

A NFby A

A NFby A C NFby C
A NFby A

B
C

A

1,4 2

3,5

Initial Partitioning

C NFby C
C NFby B
A NFby A

b1

c1

a1

a3

a4

b2

c2

c3

a2

1

2

3
4

5

3,5
C NFby C

{a1} + {a2, a4}1; 2

Legend

x Partition that includes 
a start state

y Partition that includes 
no start states

Representation not 
satisfying an invariant 
C NFby C

Representation
satisfying all
invariants

yx

Top edge shows a split of partition 
at the tail of edge 5, converting the 
representation on the right into one 
that satisfies the Invariant X (left). 
Bottom edge indicates a merge of 
partitions {x'} and {x''}.

Example path taken 
by Synoptic

yx

C NFby C

5
Invariant X

5

y

x

y

x' x''

{x'} + {x''}

5

Figure 8: Step-by-step depiction of Synoptic’s process: (a) log events; (b) derive the initial graph; (c) mine temporal relations
(NFby: NeverFollowedBy, AFby: AlwaysFollowedBy, AP: AlwaysPrecedes); (d) explore the representation space with BisimH.
BisimH has two phases: (d.1) refine (right to left) from the initial partitioning at E4 until a representation satisfying all the mined
invariants at B6; (d.2) coarsen (left to right) towards the final, more compact, representation at C6, which retains the satisfied
invariants. Finally, (e) the derived representation is presented to the user. Bisim is sub-optimal on this example, motivating BisimH.
The most compact valid representation at C6 cannot be reached by refinement alone when starting at E4.

10


	1 Introduction
	2 Approaching the Representations Space
	2.1 Choice of Model
	2.2 Exploring the Space
	2.2.1 Direction of Exploration
	2.2.2 Guiding the Exploration with Policies


	3 Bisim and BisimH Algorithms
	3.1 The Bisim Algorithm
	3.2 Bisim Policies
	3.2.1 Termination
	3.2.2 Operation Selection

	3.3 The BisimH Algorithm

	4 Performance Evaluation
	5 Case Studies
	5.1 Peterson Leader Election
	5.2 Twitter API
	5.3 Reverse Traceroute
	5.4 Graph Quality: BisimH vs. kTail

	6 Discussion and Future Work
	7 Related Work
	8 Conclusion

