
Passport: Improving Automated Formal Verification Using Identifiers

ALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA

EMILY FIRST*, University of Massachusetts Amherst, USA

TIMOTHY ZHOU, University of Illinois Urbana-Champaign, USA

ZHANNA KAUFMAN, University of Massachusetts Amherst, USA

YURIY BRUN, University of Massachusetts Amherst, USA

TALIA RINGER, University of Illinois Urbana-Champaign, USA

Formally verifying system properties is one of the most efective ways of improving system quality, but its high manual efort

requirements often render it prohibitively expensive. Tools that automate formal veriication by learning from proof corpora

to synthesize proofs have just begun to show their promise. These tools are efective because of the richness of the data the

proof corpora contain. This richness comes from the stylistic conventions followed by communities of proof developers,

together with the powerful logical systems beneath proof assistants. However, this richness remains underexploited, with

most work thus far focusing on architecture rather than on how to make the most of the proof data. This paper systematically

explores how to most efectively exploit one aspect of that proof data: identiiers.

We develop the Passport approach, a method for enriching the predictive Coq model used by an existing proof-synthesis

tool with three new encoding mechanisms for identiiers: category vocabulary indexing, subword sequence modeling, and

path elaboration. We evaluate our approach’s enrichment efect on three existing base tools: ASTactic, Tac, and Tok. In

head-to-head comparisons, Passport automatically proves 29% more theorems than the best-performing of these base tools.

Combining the three tools enhanced by the Passport approach automatically proves 38% more theorems than combining the

three base tools. Finally, together, these base tools and their enhanced versions prove 45% more theorems than the combined

base tools. Overall, our indings suggest that modeling identiiers can play a signiicant role in improving proof synthesis,

leading to higher-quality software.

Additional Key Words and Phrases: proof assistants, proof engineering, proof synthesis, machine learning

1 INTRODUCTION

Verifying software with proof assistants gives engineers the potential to prove the absence of costly and possibly
dangerous bugs, leading toward more reliable software systems. Teams of specialized experts have already realized
this potential for large and critical systems, such as operating system microkernels [Klein et al. 2009], distributed
systems [Wilcox et al. 2015], and compilers [Leroy 2009], among hundreds of other formally veriied software
systems [Ringer et al. 2019]. These advances have already had signiicant impact on industry. For example, Airbus
France uses the CompCert [Leroy 2009] C compiler to ensure safety and improve performance [Souyris 2014];
Chrome and Android both use cryptographic code formally veriied in Coq to secure communication [Erbsen

* Co-irst authors.
Authors’ addresses: Alex Sanchez-Stern*, University of Massachusetts Amherst, USA, sanchezstern@cs.umass.edu; Emily First*, University of

Massachusetts Amherst, USA, eirst@cs.umass.edu; Timothy Zhou, University of Illinois Urbana-Champaign, USA, ttz2@illinois.edu; Zhanna

Kaufman, University of Massachusetts Amherst, USA, zhannakaufma@cs.umass.edu; Yuriy Brun, University of Massachusetts Amherst, USA,

brun@cs.umass.edu; Talia Ringer, University of Illinois Urbana-Champaign, USA, tringer@illinois.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0164-0925/2023/4-ART $15.00

https://doi.org/10.1145/3593374

ACM Trans. Program. Lang. Syst.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593374&domain=pdf&date_stamp=2023-04-24

• Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

et al. 2019]. But the full potential of these proof assistants still remains far from realized, as the costs of veriied
software development and maintenance remain high, even for experts [Ringer et al. 2020].

To prove theorems in these proof assistants, proof engineers typically write high-level sequences of strategies
called proof scripts, which guide the proof assistant toward low-level, machine-checkable representations called
proof objects [Ringer et al. 2019]. In recent years, techniques that use machine learning to synthesize these proof
scripts have shown promise in alleviating some of the efort of veriication [First and Brun 2022; First et al.
2020; Paliwal et al. 2020; Sanchez-Stern et al. 2020; Yang and Deng 2019]. These proof-synthesis tools learn from
corpora of existing proof scripts and theorems to automate the construction of proof scripts for new theorems. In
particular, these tools build predictive models of proof scripts, and then use search to explore the proof-script
space. This process uses the proof assistant to guide the search and evaluate ultimate success.
In this paper, we explore ways of improving these predictive models by better exploiting the richness of

the proof data that they learn from. We focus in particular on modeling identiiers: the names that uniquely
identify theorems, datatypes, functions, type constructors, and local variables. Previous machine-learning-guided
proof-synthesis tools have either ignored the names of individual identiiers completely and only encoded
basic categorical information about them, or given common identiiers unique indices and marked all others as
unknown, without category information. In this paper, we develop the Passport approach, which enhances the
models used by existing proof-synthesis tools with three new encoding mechanisms for identiiers: category
vocabulary indexing, subword sequence modeling, and path elaboration. We implement our approach for tools
that synthesize proofs for the Coq proof assistant [Coq Development Team 2021] and show that all three of these
encodings improve performance of the end-to-end tool.
The term łPassport approachž refers to our approach of enhancing the model of an existing proof-synthesis

tool with identiier information. Most of our evaluation focuses on the application of Passport to a single existing
tool, Tok [First et al. 2020]; where unambiguous, we refer to the resulting tool as Passport. Where necessary for
clarity, we make explicit the distinction between the approach and the tool resulting from enhancing existing the
model of Tok with our approach.

Identiiers in Passport. The Passport approach encodes identiiers with three diferent encoding mechanisms
(described in detail in Sections 3 and 4):

(1) Category Vocabulary Indexing: we encode each identiier with the category it comes from (global
deinition, local variable, or type constructor); and for the most common identiiers in each category,
we encode indices corresponding to their names. That is, each common identiier is given a unique tag,
associating it with all other uses of that exact identiier.

(2) Subword Sequence Modeling: For all identiiers, we use a subword sequence model to draw bridges
between related names. That is, identiiers are broken down into common word-pieces, and processed with
a sequence model.

(3) Path Elaboration: For type constructors and global deinitions, we encode their fully-qualiied paths Ð
the names of directories, iles, and modules within which they are contained.

While we focus on Coq in this paper, similar techniques should apply for other proof assistants, includ-
ing Lean [Lean Development Team 2021], Isabelle/HOL [Isabelle Development Team 2021], and Agda [Agda
Development Team 2021].

Results. We evaluate the Passport approach using the CoqGym benchmark [Yang and Deng 2019] of 124
open-source Coq projects. We compare to three existing search-based proof-synthesis tools, ASTactic [Yang
and Deng 2019], Tac, and Tok [First et al. 2020]. We ind that all three of our encoding mechanisms improve
tool performance, in terms of being able to prove more theorems fully automatically. For example, adding path

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers •

Proof Step
Training Data

Prediction
Model

candidate
next tactics

Search

intros induction n

eauto simpl apply H simpl

proof states &
tactic history

tactics

proof states

Proof
Assistant

Proof

Theorem
Statement

Fig. 1. The system architecture of a machine-learning-prediction-guided proof-synthesis tool.

elaboration leads to proving 12.6% more theorems. We also measure the impact of adding identiier information
to each of the categories of identiiers individually, and ind that the Passport approach is useful for each.

Together with the three prior tools, tools enhanced with the Passport approach are able to fully automatically
prove 1,820 of the 10,782 theorems in our benchmark test set, whereas without the enhancements, these prior
tools combined can prove 1,259 theorems. That is an increase of 45% theorems proven over this prior work.

Contributions. The main contributions of our work are:

(1) The Passport approach (Section 4) consisting of a set of techniques for encoding identiiers in a proof
assistant context.

(2) The Passport implementation of that approach as a standalone tool within an existing proof-synthesis
framework. Passport is open-source: https://github.com/LASER-UMASS/Passport

(3) An evaluation (Section 5) showing that (1) the Passport approach improves proof synthesis when applied
to three prior tools, (2) each mechanism for encoding identiiers helps model proof scripts more precisely
and improves performance of proof synthesis, and (3) encoding each identiier category alone is still an
improvement over not encoding any.

(4) A forward-looking discussion (Section 6) of the challenges that we faced when building Passport (relative
to building symbolic proof automation), along with potential solutions to those challenges. Our evaluation
includes an experiment measuring the impact of nondeterministic training variance (Section 5.6).

2 BACKGROUND ON PROOFS AND PROOF SYNTHESIS

To write proofs in Coq, the proof engineer starts by stating a theorem to prove. They then write a proof that this
theorem holds. Every theorem in Coq is a type deinition, described in a rich type system; writing a proof in Coq
amounts to inding a term with the stated theorem type.1

But doing this directly can be challenging, so instead, proof engineers write these proofs interactively with
Coq’s help. At each step, proof engineers pass Coq high-level strategies called tactics, and Coq responds with the
current proof obligations after executing each tactic. Each tactic guides Coq in a search for a term with the stated
type, reining the state until no new obligations hold. At that point, the proof engineer has written a sequence of
tactics called a proof script (like the one in Figure 3a) Ð and Coq, for its part, has constructed a proof term or proof

1This refers to the Curry-Howard correspondence, which shows type systems and proof systems to be equivalent.

ACM Trans. Program. Lang. Syst.

• Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

object with the stated type. The language of proof scripts in Coq is called Ltac, and the language of proof terms
in Coq, as well as programs and deinitions, is called Gallina.
In recent years, machine-learning-guided proof-synthesis tools have been developed which aim to make the

burden of proving easier by automatically generating the proof script, instead of asking the user to write it. While
the approaches of these tools can difer, most share similar components and structure.

Figure 1 shows the common architecture of most machine-learning-guided proof-synthesis tools. At the heart
of these tools is the prediction model, which guides the proof search by producing tactic predictions, or candidate
next tactics, at every step. Every prediction model takes as input some set of information about the proof state or
proof script, and produces a set of candidate tactics. The tool uses the prediction model to predict one or more
likely irst tactics and then uses the proof assistant to get feedback on those tactics (e.g., rejecting ones that result
in an error or fail to modify the proof state). Then, the tool explores the space of possible proofs by iterating
using the prediction model to predict the next tactic and the proof assistant to get feedback and prune the search.
As a result, the prediction model’s accuracy is critical to the potential success of the search procedure, and for the
model to have a chance of being accurate, it must efectively capture the current proof state, and use it to make
predictions. The Passport approach works by enhancing the quality of the prediction model, in turn, leading to a
better exporation of the proof space.

ASTactic and TacTok. Passport’s tactic model architecture inherits the design choices of ASTactic’s model [Yang
and Deng 2019] for encoding the proof obligations and TacTok’s model [First et al. 2020] for encoding the proof
script.

Proof obligations consist of the goals to be proven, local context, and the environment. Each term of the proof
state has an underlying abstract syntax tree (AST) representation. ASTactic serializes these ASTs and uses a
TreeLSTM [Tai et al. 2015] to encode them [Yang and Deng 2019]. TacTok’s model adopts this encoding for the
proof state.
The proof script consists of a sequence of tokens in Ltac. Before encoding these tokens, each proof script

is preprocessed to remove high-frequency low-signal tokens, such as punctuation. TacTok’s model uses a
Bidirectional LSTM [Peters et al. 2018] to encode this sequence of tokens [First et al. 2020].
ASTactic’s and TacTok’s models are trained using supervised learning with a set of human-written proofs to

predict the next proof step (tactic and arguments) of an incomplete proof. A limited generative tree-grammar
tactic model, adopted from ASTactic [Yang and Deng 2019], makes these downstream predictions. While there
may be many valid proofs for a single theorem statement, there is no clear way of determining how appropriate
an alternative tactic or proof is, so the model is taught to imitate human-written proofs.

3 OVERVIEW OF THE PASSPORT APPROACH

The proof state is made up of many Gallina terms; modeling these terms well is key to producing accurate models.
However, previous models have left out much of the essential information about identiiers in terms, when they
have encoded identiiers at all. Encoding identiiers well is essential because proof corpora in Coq are rich with
identiier information. One reason that identiiers are particularly important in Coq is that Coq has no primitive
datatypes; every referenced type is an identiier. These names can carry a lot of meaning Ð and that meaning can
be relected in the names of theorems that refer to them. This paper describes and evaluates improvements to
identiier encodings in the tactic prediction model.

2https://github.com/adampetcher/fcf
3https://vst.cs.princeton.edu/

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers •

Definition posnat1 := {n2 : nat | n > 0}.

Inductive posnatEq1 : posnat -> posnat -> Prop :=

| posnatEq_intro3 : ...

Definition posnatMult1(p12 p22 : posnat) : posnat := ...

Fig. 2. Definitions related to the posnat type, a type of pairs of natural numbers and proofs that they are greater than
zero. These definitions are found in the Foundational Cryptography Framework, 2 retrieved as part of the Verified Sotware
Toolchain. 3

Lemma posnatMult_comm1 : forall p12 p22,

(posnatEq (posnatMult p1 p2)

(posnatMult p2 p1)).

Proof.

intuition.

unfold posnatMult.

destruct p1; destruct p2.

(a) A partial proof of posnatMult_comm.

x : nat

g : x > 0

x0 : nat

g0 : x0 > 0

============================

posnatEq1 (exist3 (fun n2 : nat => n > 0)

(Nat.mul1 x2 x02)

(mult_gt_01 g2 g02))

(exist (fun n : nat => n > 0)

(Nat.mul x0 x)

(mult_gt_0 g0 g))

(b) The proof state at this point in the proof.

Fig. 3. A proof using the definitions in Figure 2, from the same file.

Categories of Identiiers. To begin to harness the latent information in identiiers, the Passport approach adds
three categories of identiiers to the term model. To understand these identiier categories, consider the deinitions
in Figure 2, from a veriied cryptography library.

(1) The identiier posnat is a global deinition (highlighted in red1), it can be used by datatypes, functions,
theorems, or proof scripts, to reference the globally deined posnat datatype.

(2) The identiier n is a local variable (highlighted in orange2), as it can be referenced within the local context
of this term, but not outside of it.

(3) The identiier posnatEq_intro is a type constructor (highlighted in yellow3) as it can be referenced in
datatypes, functions, theorems, and proof scripts to construct a new posnatEq object.

Appendix A further details these categories of identiiers (global deinitions, local variables, and constructor
names) and provides intuition through examples for why each category may be useful to encode in a tactic
prediction model. Appendix A.4 details the implementation efort required for enriching a model with these three
categories of identiiers.

Encodings. Figure 3 shows a proof over these deinitions, posnatMult_comm. This proof says that multiplication
of posnats is commutative, meaning you can switch the order of the arguments and the result will always be the
same. Making progress in this proof state requires understanding several things about the identiiers involved.

(1) The exist type constructor is a common constructor for sigma (existential) types, and there are specialized
tactics (like exists and eexists) for reasoning with those objects.

(2) The goal type, posnatEq is related to posnats and equality.

ACM Trans. Program. Lang. Syst.

• Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

(3) The Nat.mul function is deined in the Coq’s standard library, whereas mult_gt_0 is a theorem about it
deined in the current project.

Understanding these things requires three diferent approaches: attaching special signiiers to common
identiiers, processing the individual pieces of identiiers to understand where they connect to diferent concepts,
and remembering where the deinitions being referenced are deined.

Fig. 4. The architecture of Passport’s identifier processing.

The crux of this paper is the enrichment of a proof-synthesis model for Coq with rich information about
identiiers. Figure 4 shows an overview of how the Passport approach encodes identiiers. To fully take advantage
of the richness of these identiiers, our design employs three key encoding mechanisms:

(1) Category Vocabulary Indexing (Section 4.1), which separately considers diferent kinds of common identiiers
in a proof development,

(2) Subword Sequence modeling (Section 4.2), which draws bridges between all identiiers, and
(3) Path Elaboration (Section 4.3), which encodes the location where the object referred to by each identiier is

deined.

Category vocabulary indexing allows us to assign unique labels to common identiiers in the code. In this case,
that means giving a unique label to the exist type constructor, so that we can use knowledge from previous
proofs which used that precise constructor. Subword sequence modeling allows us to break identiiers up into
common pieces, and process those pieces with a sequence model. In this case, that means breaking the posnatEq

identiier into the chunks posnat and Eq, so that we can use knowledge from previous proofs that had identiiers
with similar pieces. Finally, path elaboration allows us to consider the directories, iles, and modules in which the
object referenced by the identiier is deined. Here, that means understanding that the multiply identiier refers
to a function deined within Coq.Init.Nat, but the mult_gt_0 refers to a lemma deined in the current ile.
Armed with the knowledge from these three encoding mechanisms, our model has everything it needs to

suggest tactics that the tool can use to complete the proof of posnatMult_comm.

4 PASSPORT ENCODINGS

Identiiers are proxies for semantic information not by accident, but by design. By taking advantage of the
information in identiiers, term models can learn from the design principles the proof engineer has already
followed to make proof developments easier to read, understand, and build on. To extract this information from
identiiers, the Passport approach uses three encoding mechanisms: category vocabulary indexing (Section 4.1),
subword sequence modeling (Section 4.2), and path elaboration (Section 4.3).

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers •

In the implementation, Passport uses Coq query commmands to access the full Coq environment when
extracting identiier information, so it is not limited to any particular subset of the environment.

4.1 Category Vocabulary Indexing

In each identiier category (global deinitions, local variables, and type constructors), there are many common
identiiers used across proof developments. These identiiers are so common that we can learn a signiicant
amount about how to understand them from their previous uses. For instance, in the example from Figure 3, the
exist type constructor is part of the standard library, and many proofs in our training data reason with it. Even
when an identiier is not very common, we can still understand a lot about it by knowing what category it is in.

To take advantage of these properties of identiiers, we developed category vocabulary indexing. This
encoding mechanism tags every identiier with the category it comes from and, if the identiier is commonly used
enough, a unique tag for that particular identiier. By giving common identiiers a unique tag, we can generalize
across their many appearances, and predict tactics that worked well with them in the past. And by marking
identiiers with their category, either global deinition, local variable, or type constructor, we can disambiguate
identiiers with the same name from diferent categories, and learn useful information about even uncommon
identiiers.

Themodels in some previous tools formachine-learning-guided proof-synthesis, such as Proverbot9001 [Sanchez-
Stern et al. 2020] and Tactician [Blaauwbroek et al. 2020], use vocabulary indexing for common identiiers, but
make no category distinctions. This is a reasonable approach, because in Coq, the names of global deinitions,
local variables, and type constructors share a common namespace. However, in the Passport approach, we decided
to distinguish between identiiers of diferent categories, in part because manual analysis of the training data
revealed diferent naming conventions for diferent categories. For example, single-letter identiiers seemed to
almost exclusively represent local variables, with uppercase for types (like A in Figure 10), and lowercase for
terms (like x in Figure 3); longer uppercase identiiers generally refer either to sort names (like Set or Prop) or
type constructors (like Some or None). This means that when human provers see an identiier, even if they have
not seen it before, they often have a sense of what category it belongs to.

The models in other previous tools for machine-learning-guided proof-synthesis, such as ASTactic and TacTok,
make category distinctions, but do not index vocabulary. We learned early on that the possibility of performance
regression due to uninformative local variables like x had concerned the ASTactic authors, and contributed to
their decision not to encode identiiers.4 However, upon closer inspection of the data, we determined that even
when a particular name does not always refer to the same deinition, common names can carry information of
their own. For instance, variables named hd and tl consistently refer to the head and tail of a list. These names,
too, can beneit from a unique tag which generalizes across their usages. Our manual inspection determined that
this can often hold even for single-character variable names.

Implementation. To decide which identiiers are common enough to be indexed, we use our training data
set to create a ixed identiier vocabulary. That is, we count the occurrences of each identiier, and include
in our vocabulary those whose count is above an experimentally chosen, ixed threshold (see Section 5.7 for
an evaluation of diferent thresholds). Using separate vocabularies for each category of identiier allows us to
use diferent thresholds across diferent categories; since type constructors are less common overall than local
variables, they might require having a lower threshold for being included in the vocabulary.

4https://github.com/princeton-vl/CoqGym/discussions/60

ACM Trans. Program. Lang. Syst.

• Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

4.2 Subword Sequence Modeling

Identiier information can be useful not just for learning about individual datatypes, theorems, and functions, but
also for drawing bridges between them. Developers often organize development using parts of names to group
theorems and functions which refer to common deinitions. It turns out these naming conventions can be useful
to a model, too.
Many variable names are not simply single unique words, but are made up of multiple parts. These parts

could be multiple english words in camel case, such as the case in something like firstItemInList broken into
łirstž, łitemž, łinž, and łlistž. Or they could be components of a single word that carry individual meaning, like
prelocalizations broken into łprež łlocalž łizationž łsž. By breaking these identiiers into pieces, a model built
using the Passport approach can learn the meaning of shared pieces and generalize across identiiers.
In the example from Section 3, Passport breaks posnatMult into [pos, nat, Mult]; with a diferent subword

vocabulary, from a diferent set of variable occurrences in the training data, it might produce [posnat, Mult].
These tokens are processed with a sequence model, so that the identiier’s ultimate feature vector relects the fact
that the identiier relates to the łposnatž type, and that it primarily relates to the multiplication operation.
To get a sense for this, let us consider another example. The Coq standard library includes operations about

the real numbers R, like addition:

Rplus1 : R → R → R.

The library contains proofs of theorems about Rplus, like this proof (highlighting just one Rplus for presentation):

Lemma Rplus_eq_compat_l : ∀ (r r1 r2 : R),

r1 = r2 → Rplus1 r r1 = Rplus r r2.

Proof.

intros r r1 r2.

apply f_equal.

Qed.

which proves the theorem that right addition preserves equality.
Suppose we wish to prove the analogous theorem about the natural numbers nat, using the addition function

plus deined over nat. We can do this the same way:

Lemma plus_eq_compat_l : ∀ (n n1 n2 : nat),

n1 = n2 → plus1 n n1 = plus n n2.

Proof.

intros n n1 n2.

apply f_equal.

Qed.

simply renaming the local variables for style (though the original proof with r, r1, and r2 also works with no
changes).
The fact that Rplus and plus are related is explicit in the identiier names: Rplus behaves like plus over R. A

model that can draw connections between plus and Rplus can in some cases reuse proofs about one to derive
analogous proofs about the other.

The key here is subword sequence modeling which excels at drawing connections between related words [Gage
1994; Sennrich et al. 2016]. Subword sequence modeling allows us to break the identiier Rplus into the chunks R
and plus, and index them separately, connecting them to the identiier plus. By drawing these connections, we
expect that a model can suggest intros and f_equal in the body of plus_eq_compat_l, by connecting the hypothesis
plus n n1 = plus n n2 to the hypothesis Rplus n n1 = Rplus n n2. With subword sequencemodeling, the model

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers •

can learn all of this with no need for semantic information about what each of the reals and naturals represent,
or how their addition functions are related.

In the Passport approach, identiiers are broken into subwords using a byte-pair encoding algorithm (BPE) [Gage
1994; Sennrich et al. 2016], an algorithm that has seen success in code completion models for program synthe-
sis [Karampatsis et al. 2020; Svyatkovskiy et al. 2020]. The algorithm uses the training corpus to make a list of
common subwords by starting with a vocabulary of single characters, and iteratively merging common pairs.
Then, each identiier is tokenized by greedily consuming the longest matching vocabulary element.

The Passport approach incorporates these tokens as embeddings in a syntax model. Program syntax can
generally be modeled in two ways. The simplest way is to model it as an unstructured sequence of words
(or more generally, tokens). The alternative is to parse the syntax into a tree, and use a tree based model to
process it. One of the advantages of the former is that you can tokenize strings in a number of diferent ways,
including with multiple tokens per identiier (sub-word tokenization). However, our implementation of Passport
builds on a parsed-tree-based model, so there is no existing string tokenizer that could be used for subword
tokenization. Instead, we embed a sequence model within the leaves of the tree-based syntax model. This means
that our subword sequence model only learns how to combine parts of an identiier into a ixed embedding for
the identiier, and does not need to learn about other parts of program syntax.
With our category vocabulary indexing, we used separate vocabularies for identiiers of diferent categories.

However, proof developments sometimes demonstrate connections between identiiers from diferent categories.
These connections are lost in using separate vocabularies, so subword encoding is used to maintain these
connections. The Passport approach uses a single subword vocabulary, derived from the global variable corpus,
to encode identiiers from all categories.

Implementation. There are several subtleties to the implementation of our subword tokenization algorithm, and
the byte-pair encoding which generates its vocabulary. Sometimes there were several possible ways to implement
the approach; in general, we made our choices based on the performance of the resulting tool on our benchmarks.
As indicated by the name, byte-pair tokenization often starts with a vocabulary of bytes, not characters,

to allow a reasonable base vocabulary size when working with unicode. However this has the downside of
sometimes indicating that two identiiers are similar because they share bytes within a unicode character, even if
no characters are in common. In our implementation, we use characters as our base vocabulary. To keep our base
vocabulary of a reasonable size, we only include those characters which are present in the training corpus. Since
Coq programmers generally only use a small subset of possible unicode characters, this works well. However,
there are in rare cases unicode characters present in the test data which are not present in the training data. To
address this, our subword tokenizer drops characters which are not present at all in the vocabulary; this behavior
can be changed with a lag to instead produce a special <unknown> element.
Many diferent neural architectures have been used to process sequences of tokens. For language modeling,

the most efective models are often those with attention and forgetfulness mechanisms, to capture the long-
range dependencies present in text. However, the identiiers we work with are generally short, often only a
few subwords long, so we instead use the simplest sequence model, a Recurrent Neural Network, without any
attention mechanism.

As with any sequence-based model, there is a question of how to cap the size of sequences so that their lengths
can be normalized. With Passport, we found empirically that capping at four tokens per identiier during training,
but eight tokens per identiier when synthesizing proofs, is most efective on our evaluation suite. Four subwords
is enough to encode the entire name of 98.74% of identiiers in our training data, and eight subwords is enough to
encode the entire name 99.97% of the time.

We trained the subword encoder end-to-end alongside the rest of the term encoder and tactic decoder, so that
the encoder is trained to retain information about subwords particularly relevant to the task of tactic prediction.

ACM Trans. Program. Lang. Syst.

• Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

4.3 Path Elaboration

The inal encoding mechanism in the Passport approach is path elaboration: the encoding of fully-qualiied
paths of diferent identiiers. By paying attention to the fully-qualiied paths of diferent identiiers, the tools
using the Passport approach can take advantage of any grouping of identiiers into common modules and iles
already used by Coq developers to organize development. Tools using Passport approach can also capitalize on
proof development styles that dispatch proofs for entire classes of related theorems using powerful tactics Ð a
proof development style recommended by, for example, the popular Coq textbook Certiied Programming with
Dependent Types [Chlipala 2013].

To gain some intuition for what this means in action, consider this proof of a theorem from the Coq standard
library:

Theorem not_in_cons A (x a : A) (l : list A):

~ In x (a::l) ↔ x<>a ∧ ~ In x l.

Proof.

simpl. intuition.

Qed.

The proof of not_in_cons goes through by just two tactics: simpl and intuition. The simpl tactic simpliies
the initial goal (no assumptions, with the theorem type as the sole proof obligation) to make it easier to reason
about, producing this proof state:

A : Type

x, a : A

l : list A

______________________________________(1/1)

~ (a = x ∨ In x l) ↔ x <> a ∧ ~ In x l

In this case, the simpl tactic has unfolded the In x (a::l) on the left side of the identiier into (a = x ∨ In x l).
But the resulting goal is still a bit complex because it chains together a number of logical connectives: if and

only if (↔), negation (~), inequality (<>), conjunction (∧), and disjunction (∨). So the intuition tactic breaks
down logical connectives into simpler subgoals, and dispatches each subgoal automatically.
Taking a step back, it is natural to wonder how the proof engineer could have known to use the intuition

tactic to dispatch the remaining goals. Intuitively, it made sense to use intuition here because the goal consisted
of simple statements linked by logical connectives, which intuition excels at. It turns out that the fact that these
operators are logical connectives is explicit in the paths of the identiiers in the goal Ð they all reside in the
Coq.Init.Logic module Ð so we can pass it on to our models by encoding paths.
We can see this by expanding the paths of the identiiers in the theorem statement of not_in_cons (Figure 5).

All of the operators in not_in_cons are syntactic sugar for identiiers, which themselves refer to types deined
inductively in Coq. For example, conjunction (∧) refers to the inductive type and in the path Coq.Init.Logic.
Internally, Coq stores the elaborated theorem with all of these identiiers (like and) and their fully-qualiied paths
(like Coq.Init.Logic) explicit. Inspecting the elaborated version of not_in_cons shows that the fact that these are
logical connectives requires no semantic understanding to deduce Ð it is explicit in the grouping of identiiers in
the Logic module.
We determined that a simple way to pass this intuition on to our models was to encode each of the ile and

module names inside of fully-qualiied paths, taking advantage of the organization of large proof developments
to infer tactics used to dispatch related goals.

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers •

not_in_cons1

: ∀ (A2 : Type) (x a2 : A) (l2 : list A),

Coq.Init.Logic.iff1

(Coq.Init.Logic.not1

(In1 A x (cons3 A a l)))

(Coq.Init.Logic.and1

(Coq.Init.Logic.not

(Coq.Init.Logic.eq1 A x a))

(Coq.Init.Logic.not (In A x l))).

Fig. 5. The theorem statement not_in_cons, elaborated with paths. Highlighted using the same conventions as in Figure 2,
with other paths omited for brevity.

Implementation. To implement this, we created a dedicated vocabulary and corresponding <unknown> token for
ile and module names inside of fully-qualiied paths, much like we did for each category of identiier. We then
used this vocabulary for encoding paths.

As with identiiers, Coq includes fully-qualiied paths inside of the ASTs by default, but TacTok and ASTactic
had erased those paths from the AST. For example, in Figure 12, the fully-qualiied path Coq.Init.Datatypes of
the option inductive type shows up in the AST as a directory_path node, with data [Datatypes; Init; Coq].
Elaborating paths was thus similar to adding each of the categories of identiiers: First, we modiied the

post-processing code to avoid erasing paths. Then, we built a separate vocabulary for common iles or modules
that paths consisted of, like Datatypes, Init, and Coq in Figure 12. We then encoded each ile or module along
the path separately, mapping to a dedicated <unknown> token for iles or modules in paths that occurred less
frequently than the chosen threshold.

5 PASSPORT EVALUATION

We evaluated Passport’s ability to successfully prove theorems using the CoqGym benchmark [Yang and Deng
2019], following the evaluation methodology used by several recent papers [First and Brun 2022; First et al. 2020;
Yang and Deng 2019].

In summary, our results show:

• The Passport approach improves proving power. By comparing to previous tools Ð ASTactic and the
two base tools, Tac and Tok, that make up TacTok Ð we measured additional proving power provided by
the Passport approach’s encoding of identiiers. The combined proving power of the tools enhanced by
the Passport approach exceeds that of the original tools by 38%, and combining both the enhanced and
un-enhanced tools outperforms the combined un-enhanced tools by 45% (Section 5.2).

• Identiiers improve performance. All three categories of identiiers improve performance, in aggregate
proving 64% more theorems than the individual un-enhanced tool (Section 5.3).

• All three encoding mechanisms improve performance. All three categories of identiiers in the
Passport approach improve performance in Passport with each of the three encoding mechanisms (Sec-
tions 5.4 and 5.5).

• Our results are meaningful beyond variance introduced by nondeterminism. Proof synthesis
success rate varies by 0.4% for individual tools, and combining many varying runs can improve results by
22% (Section 5.6).

• Hyperparameter choices impact performance. We choose our hyperparameters experimentally based
on these results (Section 5.7).

ACM Trans. Program. Lang. Syst.

• Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

All our experiments are afected by nondeterminism, and while the bulk of our experiments only use a single
trial, Section 5.6 explores the efect on nondeterminism on the variance of our results and argues that that efect
is small.

5.1 Experimental Setup

Benchmark. The CoqGym benchmark includes 124 open-source Coq projects, split into three sets. For our
evaluation, we trained on 97 projects (containing a total of 57,719 theorems) and synthesized proofs for 26
projects (containing a total of 10,782 theorems). We exclude one project, coq-library-undecidability, from our
evaluation because TacTok’s evaluation [First et al. 2020] was unable to reproduce prior results for ASTactic’s
performance [Yang and Deng 2019] on that project due to internal Coq errors when processing the proof scripts.
Projects in the CoqGym benchmark are a mixture of mathematical formalizations, proven correct programs,

and Coq automation libraries. They include several compilers of varying sizes (such as CompCert [Leroy 2009]),
distributed systems (such as Verdi [Wilcox et al. 2015]), formalizations of set theory, and more. Some of the
projects in CoqGym (such as the automation libraries) do not contain any proofs, but we included them for
completeness.

Machines. We ran this paper’s experiments using two clusters: a GPU cluster for training and a CPU cluster
for synthesizing proofs.
Each node in the GPU cluster has between two and eight NVIDIA GPU cards. There are four nodes with

two NVIDIA Tesla V100 GPUs, and thirty-three nodes with eight NVIDIA RTX 2080ti GPUs. The nodes in
the GPU cluster all run on a shared ZFS ile system, run CentOS Linux, and use Slurm for job scheduling and
resource management. We found that training time varied between 12 and 14 hours per epoch, and did not difer
signiicantly between the Passport implementation and the baseline model.
Each node in the CPU cluster has between 24 and 36 cores, with 4 hyperthreads per core. There are:

• 1 head node with 24 cores of Xeon E5-2680 v4 @ 2.40GHz, 128GB RAM and 200GB local SSD disk.
• 50 compute nodes with 28 cores of Xeon E5-2680 v4 @ 2.40GHz, 128GB RAM and 200GB local SSD disk.
• 50 compute nodes with 28 cores of Xeon Gold 6240 CPU @ 2.60GHz, 192GB RAM and 240GB local SSD
disk.

• 5 compute nodes with 56 cores of Xeon E5-2680 v4 @ 2.40GHz, 264GB RAM and 30TB local disk.

The nodes in the CPU cluster also all run on a shared ZFS ile system, run CentOS Linux, and use Slurm for job
scheduling and resource management. The average inference time for a random sample of generated proofs was
0.4 seconds per tactic for the Passport implementation, compared to 0.3 seconds for the baseline model.

Experimental Parameters. Passport attempts to synthesize each proof for a preset amount of time, timing out if
it fails to to reach Qed in that time. Our evaluation used 10 minutes for this timeout, following the choice made by
ASTactic [Yang and Deng 2019] and TacTok [First et al. 2020]. Following a design decision made by ASTactic, we
limited our search to a total of 300 attempted tactics, and restrict solutions to be no longer than 50 tactics long.
Our experiments use 200 as the default category vocabulary threshold (recall Section 4.1) and 4,096 as the default
byte-pair merge threshold (recall Section 4.2). We use 128 as the default vector dimension for term, grammar,
and terminal/non-terminal symbol embeddings, as well as the dimension of the LSTM controller. For all other
parameters, we follow those used by ASTactic [Yang and Deng 2019] and TacTok [First et al. 2020].

Implementation. Overall, the Passport approach implementation is 1.5K lines of code and took four developers
about a year to build. While the conceptual and design aspects of the Passport approach can extend to all
prediction-model-driven, search-based, proof-synthesis tools, the current implementation is straightforwardly
applicable to all such tools built within the CoqGym environment [Yang and Deng 2019].

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers •

This implementation adds three embeddings for category indexes and one for paths, with 428, 136, 27, and 262
items for global deinitions, locals, constructors, and paths, respectively. This results in a corresponding increase
to the irst layer of Tok’s term encoder. The new subword embedding contains 4,164 items and is encoded with an
RNN using a hidden size of 32. When implementing these new model components, we optimized for simplicity
over model size, so we believe that the model size could be decreased further without signiicantly impacting
accuracy.

The original ASTactic, Tok, and Tac models used a 256-loat symbol embedding size. However, we observed no
signiicant diference between those models using a 256-loat symbol embedding, and using a 128-loat symbol
embedding. As a result, our model uses 128-loat symbol embeddings, and, where appropriate, we compared
to versions of other models with a 128-loat symbol embedding. Overall, these changes to model size had no
signiicant impact on training time, as described above.

5.2 The Passport Approach’s Efect on Proof-Synthesis Tools

In this section, we show that the addition of our identiier information improves the end-to-end performance of
proof search tools. Since Passport is implemented in the ASTactic/TacTok framework, we were able to evaluate
our changes against three base tools: An ASTactic-like5 tool, Tac, and Tok. ASTactic was developed as part of
the CoqGym project [Yang and Deng 2019], and uses only proof contexts as input to their prediction model. By
contrast, the models in Tac and Tok (developed as part of the TacTok project [First et al. 2020]) additionally model
the proof script up to the current point, with Tac’s model encoding the tactics in the proof script, and the Tok’s
model encoding all the tokens except punctuation in the proof script.

Figure 6 shows the results of adding identiier information to all three of these tools. Adding identiiers to each
of the three tools signiicantly improves their ability to prove theorems. Adding identiier information improves
our ASTactic-like tool by 29% (304 additional theorems proved), Tac by 14% (136 additional theorems proved),
and Tok by 33% (318 additional theorems proved).
Following TacTok’s [First et al. 2020] and Diva’s [First and Brun 2022] evaluations, we also explore how the

diferences in theorems proven by multiple tools lead to more theorems proven overall, and how adding identiier
information increases that improvement. When we compute the union of the theorems proven by all our tools
enhanced by the Passport approach, and compare that set to the union of the theorems proven by the base
tools, we ind an improvement of 38%. Comparing the union of theorems proven by all the tools to the union of
theorems proven by the three base tools, we ind an improvement of 45%.
Next, we examine the complexity of the proofs that Passport generated. Using human-written proof-script

length as a rough proxy for complexity, we note that Passport successfully synthesized proof scripts for 351
theorems for which the human-written proof scripts were at least 5 tactics long. For 54 of those theorems, the
human-written proof scripts were at least 10 tactics long. This observation suggests that Passport is able to
synthesize a signiicant number of nontrivial proofs. For 280 theorems, Passport was able to synthesize proof
scripts that were shorter than the human-written ones. In one particular case, the human-written script was 139
tactics long, while Passport’s script was only 2 tactics long. The baseline tool produced 239 proofs for which
the human-written proof scripts were at least 5 tactics long, so Passport proved 46.9% more theorems with
human-written proofs of that length. For theorems with human-written proofs of length 10 or more, the baseline
tool produced 37 proofs, so Passport proved 45.9% more such theorems. Finally, the baseline model produced
proofs shorter than the human-written proofs for 171 theorems, so Passport did so for 63.7% more theorems.

Examining the time it takes Passport to synthesize a proof script, the successfully generated proof scripts took
between 0.08 and 86.6 seconds to generate, with the mean of 2.9 seconds.

5We were not able to replicate the original results of ASTactic [Yang and Deng 2019], so for our evaluations we trained a model with the same

embedding vector dimensions as our own models. For this reason we are using the term ASTactic-like when we describe our results.

ACM Trans. Program. Lang. Syst.

• Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

 0

 500

 1000

 1500

 2000

A
S
Tactic

A
S
Tactic+P

Tac
Tac+P

Tok
Tok+P

C
om

bined

*+P C
om

bined

A
ll C

om
bined

#
 t

h
e

o
re

m
s
 p

ro
v
e

n 1370

1116

1279

1740
1820

1066
980 958

1259

Fig. 6. The efect of adding all of the three encodings for three identifier types to several proof-synthesis tools. The purple
crosshatch bars represent baseline tools based on ASTactic, Tok, and Tac. The orange bars represent our new contributions.
The rightmost crosshatch bar, labeled łCombinedž, is the number of theorems successfully proven by at least one of the
baseline tools. The orange bar next to that, labeled ł*+P Combinedž, is the number of theorems successfully proven by at

least one of the tools enhanced by the Passport approach. Finally, the orange and crosshatched bar on the far right is the
number of theorems proven by at least one of all the presented tools.

5.3 Identifier Categories

In the Passport approach, we model three categories of identiiers. While the experiment in Section 5.2 showed
that modeling identiiers from these categories are efective together, we also want to show the utility of the
identiier categories individually.

Figure 7a shows the individual results of just adding local variables, type constructors, and global deinitions.
For consistency, this experiment compares to a Tok-like tool with a model with smaller embedding sizes, as
Passport uses that model to add identiier information to.

Each of the identiier types added individually increases the number of theorems proven, though the increase
from local variables alone is marginal. Adding type constructors alone proves 8% more theorems than the baseline,
adding global deinitions alone proves 16% more theorems, and adding local variables alone proves 0.5% more
theorems.

However, no identiier category added individually is close to the impact of adding all three. Adding all three
identiier types, without subword information, proves 33% more theorems.

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers •

 0

 500

 1000

 1500

 2000

Tok-small

+Locals

+Constru
ctors

+Globals

+P (A
ll)

Combined

#
 t
h
e

o
re

m
s
 p

ro
v
e
n

972 1046 1117
1282

1590

967

(a) The impact of category vocabulary indexing on three
identifier categories (without subwords or paths): local
variables, type constructors, and global definitions.

 0

 500

 1000

 1500

 2000

+Locals

+Constru
ctors

+Globals

+P (A
ll)

Combined

#
 t
h
e

o
re

m
s
 p

ro
v
e
n

+71 -42 -118

+87

+179

(b) The impact of subword encoding on each of the cate-
gories of identifiers (with category vocabulary indexing
but without paths).

 0

 500

 1000

 1500

 2000

+L
oc
als

+C
on
str
uc
tor
s

+G
lob
als

+P
 (A
ll)

Co
mb
ine
d C
on
s+
Gl
ob
+L
oc

Co
mb
ine
d

#
 t
h
e
o
re
m
s
 p
ro
v
e
n

+0
+105 +102 +161

+99
+179

(c) The impact of fully-qualified path encoding of type
constructors and global definitions (with category vo-
cabulary indexing but without subwords).

Fig. 7

Finally, though none of the tools with individual identiier types prove as many theorems as the one with
all of them together, some of these individual identiier-enriched tools prove theorems that the all-identiiers-
enriched tool does not. The union of the theorems proven by the individual identiier-enriched tools and the
all-identiiers-enriched tool contains 64% more theorems than the baseline tool.

These experiments show that each identiier category is useful for producing a more efective proof-synthesis
tool, and that the identiier categories help with a diverse set of theorems, so combining the results of adding
diferent subsets of identiiers helps further.

5.4 Subwords

Figure 7b shows the impact of adding subword encodings to our identiier-enriched tools (Section 4.2). Adding
the subword encoding does not beneit all types of identiiers individually. In fact, it makes two (type constructors
and global deinitions) out of the three identiier categories perform worse than when those identiiers are used
individually, possibly due to overitting.

However, when subwords are added to the full tool with all the identiier categories, they improve results by 7%.
This improvement is greater than what the cumulative impact of adding subwords to individual identiier-enriched

ACM Trans. Program. Lang. Syst.

• Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

tools, suggesting that subwords particularly help with making connections between multiple identiier types. In
fact, even though subword sequence modeling does not help global deinitions alone, when global deinitions are
combined with the other identiier types, removing subword encoding signiicantly hurts results.

The most likely explanation for these results is that for subwords to be efective, a suiciently large number of
identiiers is necessary to encounter a non-trivial number of repeated subwords, allowed for learning semantics
of those subwords. Adding subwords to only a single type of identiier likely does not meet that threshold, but
using all identiiers leads to a signiicant improvement in the tool’s proving power.

5.5 Paths

Figure 7c shows the impact of removing path elaboration (Section 4.3) from various identiier types in the Passport
model. Since local variables do not have paths, there is no impact of removing path elaboration. Subwords were
not included in this experiment, as we wanted to isolate the impact of paths.
Path elaboration beneits both type constructors and global deinitions: increasing theorems proven for type

constructors alone by 10% and increasing theorems proven for global deinitions alone by 9%. The union of the
theorems proven using these categories alone and the theorems proven with local variables alone (for which the
paths improvement is 0%), is 7% larger than without path elaboration. However, when we add path elaboration to
Passport’s model with all three identiier categories, it increases the number of theorems proven by 12.6%.
These results indicate that the impact of adding path elaboration to a model that implements local variables,

type constructors, and global deinitions is greater than the combined efect on individual models. Similarly to
the subword experiment above, these results suggest that encoding fully-qualiied paths helps connect identiiers
across categories; learning about how type constructors from a particular module behave helps in dealing with
global deinitions from that module, and visa versa. However, unlike the subword experiment, paths seem to
beneit all identiiers for which they are implemented individually as well as in combination.

5.6 Nondeterministic Model Variance

During the course of our evaluation, we found that models trained in the ASTactic framework had signiicant
variance in their downstream proof-synthesis success rate, even when the model code and training data were
identical. While part of this variance could be attributed to diferent hardware and other hard-to-control factors
(see Section 6), even when controlling for all those factors, there was still variance. After months of investigation,
we found that the cause was nondeterminism at the hardware and framework level, some of it undocumented [Gao
2022; Reichel 2022].

Nondeterminism in model training is not speciic to proof search, and has in fact been documented in the ML
community at large [Pham et al. 2020a; Qian et al. 2021; Shamir and Lin 2022]. However, it is not immediately
obvious how these efects would impact proof search, since they are usually measured as inaccuracy in the top
prediction of a model, while proof-search tools generally use multiple model predictions, smoothing out some
inaccuracy.
To measure the impact of nondeterministic training variance on proof search, we trained our model with

identiiers added to Tok’s model 20 times. On average, the tool using one of these models proved 11.9% (1,279
theorems), with the maximum proving 12.0% (1,294 theorems) and the minimum proving 11.6% (1,256 theorems).
The 0.4% spread (38 theorems) shows that training the same model can lead to small diferences in overall success
rates. Our result for adding local variables alone (with no other identiiers) and without subword encoding is
within this variance range. However, the impact of local variables is better captured with the addition of subwords
and together with other identiiers, which yields results signiicantly outside of this range.

Interestingly, the union of the theorems proven by the tool using these 20 models is 14.5% (1,564 theorems), an
improvement of 22% over the average. This demonstrates that the scale of the diferences in which theorems

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers •

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 150 200 250 300 350 400

#
 t
h
e
o
re

m
s
 p

ro
v
e
n

(a) Global definitions

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 150 200 250 300 350 400

#
 t
h
e
o
re

m
s
 p

ro
v
e
n

(b) Local variables

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 150 200 250 300 350 400

#
 t
h
e
o
re

m
s
 p

ro
v
e
n

(c) Type constructors

 1200

 1250

 1300

 1350

 1400

 256 512 1024 2048 4096 8192

#
 t
h

e
o

re
m

s
 p

ro
v
e

n

(d) BPE merges

Fig. 8. The impact of diferent vocabulary thresholds for the various categories of identifiers. A smaller threshold means the
vocabulary is larger.

model-based tools can prove as a result of nondeterministic training variance is much larger than the scale of the
diferences in how many they prove. Thus, the variance from training nondeterminism serves as a dimension for
model diversity, which can be used to improve proof synthesis, similarly to the approach taken by Diva [First
and Brun 2022].

5.7 Hyperparameters

As discussed in Section 4.1, each of the identiier types we add has a vocabulary of the most common identiiers
of that type, giving a ixed encoding of those identiiers in addition to the subword encoding. We count the
occurrences of the identiiers in the training set to determine which identiiers occur more than a speciied
threshold, and then only include those identiiers in our vocabulary. For example, if we have a threshold of
100, then all the identiiers that occur at least 100 times in the training set will be included in the vocabulary.
That threshold is a hyperparameter that we can vary for each type of identiier, and it determines the size of the
vocabulary.

Figure 8 shows the performance impact of diferent values of that hyperparameter for diferent identiiers.
As you can see the performance of various vocabulary sizes for global deinitions, local variables, and type
constructors are all fairly jagged, though they all peak at around 200 occurrences, which we set as the default in
the rest of our experiments.

ACM Trans. Program. Lang. Syst.

• Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

It is interesting to note that, while the thresholds which produce the best results are the same for the diferent
identiier categories, this results in drastically diferent vocabulary sizes: 427 global deinitions meet the threshold,
but only 135 local variables and 26 type constructors do. This justiies our decision to use a ixed occurrence
threshold to pick vocabulary rather than using the � most common identiiers from each category.

However, there are signs that our method of picking vocabulary to index could be improved. Sometimes, adding
identiiers with fewer occurrences, such as the global deinitions with between 180 and 200 occurrences, helps;
while adding those with more occurrences, such as the global deinitions with between 200 and 220 occurrences,
hurts. This suggests that the number of occurrences does not monotonically predict the usefulness of indexing
a particular identiier, even though it is the most common approach. Future systems should investigate new
metrics to pick vocabulary for indexing. Finally, these experiments indicate that the model Ð and therefore
the proof-search tool Ð is sensitive to small changes in hyperparameters, similar to how model-based tool
performance varies greatly from nondeterminism at the hardware level in model training.
The subword encoding we use also has several hyperparameters which can be varied; principle among these

is the number of byte-pair merges, which determines the size of the subword vocabulary. Figure 8d shows the
efect of diferent subword vocabulary sizes on success rate. The default byte-pair merge threshold of 4,096 is
represented as the the highest point on the graph.

6 DISCUSSION

We believe that it is prudent to broaden the discourse around machine learning for proofs to consider not just
the tool produced, but also the development processes in building these tools. It is for this reason that we step
back and discuss our experiences, centering challenges that we encountered in three areas: the feedback cycle,
reproducibility, debugging.

Feedback Cycle. The feedback cycle for developing Passport was slow. Every time we changed an encoding, we
had to retrain the model, a process that took around two days. Mistakes in the code or in the training parameters
would often not manifest until evaluation, at which point we would need to retrain once more. This slow feedback
cycle quickly added up, so that even a small change could take weeks.

In traditional supervised learning, training dominates development time, as evaluating a model means running
it just once on the test set. However, in the context of proof search, evaluation on a large benchmark set often
takes as many or more computational resources as training, though it is usually more parallelizable across
machines.
In the machine-learning literature, techniques have been proposed to make training faster [Lepikhin et al.

2020; Li et al. 2022b; Popel and Bojar 2018; Rajbhandari et al. 2020], which could be directly applied in proof
search. And more tooling like data trackers [Biewald 2020], data validation, and static types can help catch bugs
sooner, resulting in fewer training runs needed during development. Finally, some work in combining multiple
models [First and Brun 2022] has shown an ability to speed up proof search, and other search optimizations could
also shorten that part of the feedback cycle.

Reproducibility. As discussed and measured in our evaluation (Section 5.6), many current learning frame-
works and APIs behave nondeterministically, resulting in nondeterministic variance in our end-to-end proof
results. Much of the nondeterminism we encountered is diicult but possible to control, when it stems from
hardware diferences, random seeds, or OS-level ile ordering. However, even when controlling for those factors
and all documented nondeterminism, we found our model training was still nondeterministic. During the
course of our development, we discovered some PyTorch APIs that were documented as deterministic behaved
nondeterministically; we reported that bug, and the developers marked it as high-priority. 6

6https://github.com/pytorch/pytorch/issues/75240

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers •

A recent paper found this variance in performance across identical training runs to be pervasive in an evaluation
of six popular neural networks on three datasets [Pham et al. 2020b]. This paper found that very few of the
researchers or practitioners surveyed in were aware of possible nondeterminism in these systems. We recommend
that future researchers using machine-learning for proof search document the hardware and software used to
train, and report some measure of the variance in their models results.

Debugging. The debugging of systems that mix machine learning and symbolic manipulation, such as Passport,
inherits the challenges of both. Instead of failing to compile or throwing a runtime error, bugs in Passport often
manifested solely as drops in evaluation numbers. It was challenging to identify whether these drops were caused
by bugs to begin with, let alone in which part of the system the bug occurred when there was one.

We are unable to ind any work on debugging machine learning systems outside of (potentially very useful) folk
knowledge encoded in blog posts7 and other informal sources. Perhaps a more formal exploration of debugging
machine learning systems is warranted. Both better practices [Popel and Bojar 2018] and techniques for improved
stability [Liu et al. 2020] may improve the debugging experience. We suspect that improvements to the challenges
surrounding the feedback cycle and reproducibility will be not just helpful for but in fact essential to improving
debugging, as many debugging diiculties are consequences of these challenges.

Other Diiculties. These were only a few of the diiculties we faced as researchers applying machine learning
to proof search. These systems are also known to have poor modularity [Sculley et al. 2014] (modifying one
component can signiicantly afect the performance of others); poor explainability [Barredo Arrieta et al. 2020;
Gilpin et al. 2018; Guidotti et al. 2018; Lebese et al. 2021] (trained models do not lend themselves to high-level
interpretation); and large hardware costs [Heim 2022] (expensive hardware is required to train these models,
limiting who can develop them, and often requiring the use of shared clusters which can slow development).

None of these weaknesses are shared by purely symbolic approaches to proof tasks such as proof repair [Ringer
et al. 2021], or irst-order theorem proving [Czajka and Kaliszyk 2018]. However, current work indicates that
tools using these machine learning models can sometimes overcome limitations that current existing purely
symbolic tools cannot [First et al. 2020], especially when the solution space is large.

7 RELATED WORK

We discuss related work in neural proof synthesis, proof corpora, and neural program synthesis.

Neural Proof Synthesis

There have been several other neural proof-synthesis tools for the Coq proof assistant. Figure 9 compares
Passport’s features to those of prior work. Our work directly enriches the TacTok [First et al. 2020] proof-
synthesis tool for Coq (which is in turn an enrichment of ASTactic [Yang and Deng 2019]), and evaluates the
enriched tool on the CoqGym benchmark suite. TacTok models both proof scripts and proof states to predict
tactics. In doing so, however, it erases all tokens from the AST Ð efectively erasing all syntactic identiier
information, including path and ile names, local variables, theorem names, type names, and type constructor
names. We add these tokens back and explore diferent design decisions in encoding them, revealing meaningful
information about their contributions, and improving over TacTok on the CoqGym benchmark suite. Our insights
about syntactic information may provide ideas for dealing with variables used as arguments to tactics in future
iterations of TacTok.

Other machine learning tools for Coq include Tactician [Blaauwbroek et al. 2020], Gamepad [Huang et al. 2019],
ML4PG [Komendantskaya et al. 2012], and Proverbot9001 [Sanchez-Stern et al. 2020] (which has a web-based
frontend, Proofster [Agrawal et al. 2023]). To the best of our knowledge, none of the models in these tools

7http://karpathy.github.io/2019/04/25/recipe/

ACM Trans. Program. Lang. Syst.

• Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

Proverbot- ASTactic TacTok Passport
9001

Proof search ✓ ✓ ✓ ✓

Proof state ✓ ✓ ✓ ✓

Tactic history Ð Ð ✓ ✓

Tree-based Ð ✓ ✓ ✓

term encoder

Type Constructors ✓ Ð Ð ✓

Global Deinitions ✓ Ð Ð ✓

Local Variables ✓ Ð Ð ✓

Paths Ð Ð Ð ✓

Subwords Ð Ð Ð ✓

Fig. 9. A comparison of the features of several proof-synthesis tools.

explicitly encode the category a particular identiier belongs to (one of local variable, global deinition, or type
constructor), none of them encode the path that an identiier comes from, and none of them apply sub-word
tokenization. Our insights may help further improve performance of these tools.
We enrich an existing model to explore the impacts of diferent design decisions for including syntactic

information. While the particular architecture of the model we enriched is not the focus of our work, these design
decisions may have diferent impacts depending on the architecture. The model we enriched uses a Tree-LSTM
architecture; other models in this space use sequences [Bansal et al. 2019; Blaauwbroek et al. 2020; Sanchez-Stern
et al. 2020], other tree architectures [Huang et al. 2019], and graph architectures [Paliwal et al. 2020], with the
latter showing signiicant improvement over previous tree architectures.
Proof-synthesis tools using transformer-based large language models have also begun to emerge [Polu and

Sutskever 2020], recently showing promising capabilities for benchmarks in Isabelle/HOL [Jiang et al. 2021; Wu
et al. 2022] and Lean [Polu et al. 2022]. These techniques can be used both in a search-based tool [Jiang et al.
2022] (like Passport), and for whole-proof generation [First et al. 2023]. Transformer models that only use the
local proof context, such as GPT-f [Polu and Sutskever 2020], cannot derive the identiier information Passport
encodes. Capturing that information requires either considering much larger samples of text to process the
deinitions of each variable (as well as understanding directory structure to derive paths), or running queries
against the Coq proof engine, as Passport does. However, future work could enhance transformer models with
identiier information, similarly to our approach. Exploring the trade-ofs of diferent encodings of syntactic
information in all of these models may provide interesting insights.
Recent work shows that the decision of whether or not to encode variable names has a signiicant impact on

the performance of a graph neural network for proof synthesis in HOL on the HOList benchmark suite [Paliwal
et al. 2020]. Our work explores this trade-of at a higher level of granularity, looking at the impacts of including
diferent kinds of variables and other syntactic information like paths, and exploring diferent tokenization
decisions and vocabulary sizes. Running a similar experiment on that tool may also prove enlightening.

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers •

Proof Corpora

A recent study of proof corpora [Hellendoorn et al. 2018] applying language models found high degrees of
naturalness in proofs, and discussed implications for proof engineering tools that could capitalize on that
naturalness. The study also found higher degrees of locality than in other programming languages, suggesting
that cache-based approaches already helpful in neural program synthesis [Tu et al. 2014] (especially when used in
combination with BPE [Karampatsis et al. 2020]) may prove particularly useful for synthesizing proofs. Building
a cache on top of BPE is a promising path toward further improving our model performance.

The importance of identiiers is also consistent with recent indings from the REPLica user study of Coq proof
engineers [Ringer et al. 2020], which showed a pattern of proof engineers refactoring the names of deinitions in
predictable and repetitive ways. Furthermore, several of the REPLica benchmarks include syntactic changes
in proofs that correspond to semantic changes made alongside them, which points toward syntactic changes
possibly revealing useful semantic information that a machine learning tool may be able to pick up on. The
REPLica benchmarks may also motivate BPE: one benchmark, for example, shows a change in a type constructor
name, along with a change of a substring of the name of a broken lemma that referred to that type constructor
name in a way that corresponded to the change. Exploring the performance of Passport on those benchmarks
may prove interesting.

Nie et al. [Nie et al. 2020b] developed a model for auto-formatting Coq code by encoding spacing information
in proof scripts and incorporating techniques from Natural Language Processing. Their work on Roosterize, a
toolchain for generation of lemma names [Nie et al. 2020a, 2021] leverages both syntactic and semantic information
by combining data from multiple phases of the Coq compiler Ð tokens, parse trees, and fully elaborated terms.
Similar multi-representation approaches may prove an efective means of encoding syntactic information for
proof-synthesis models as well.

Speciication-mutation analysis can help demonstrate weak speciications, when mutating the deinitions does
not break the proofs [Celik et al. 2019; Jain et al. 2020]. iCoq [Celik et al. 2017, 2018], and its parallelized version
PiCoq [Palmskog et al. 2018], ind failing proof scripts in evolving projects by prioritizing proof scripts afected
by a revision. These tools track ine-grained dependencies between Coq deinitions, propositions, and proof
scripts, to narrow down the potentially afected proof scripts.

Neural Program Synthesis

Neural proof synthesis is similar to neural program synthesis, but adapted to the world of proofs. Neural program
synthesis has seen a renaissance of sorts in recent years. The model beneath Github’s Copilot code auto-complete
tool Ð Codex Ð is trained on a large corpus of Github projects, and treats all programs and proofs as text,
regardless of the language [Chen et al. 2021]. Another work by DeepMind, AlphaCode, solves a similar task [Li
et al. 2022a], as does PaLM-Coder from Google [Chowdhery et al. 2022]. Work at Google [Austin et al. 2021]
showed that large language models of this lavor are promising, but struggle to understand the semantics of
programs.
A recent YouTube video [Ringer and Cutler 2021] explores the applications of Copilot to proofs, suggesting

that even a model trained on raw syntax may suggest helpful hints for small proofs in repetitive iles in the
CompCert [Leroy 2009] veriied C compiler. However, it appears to have limited value for larger, more original
proofs with the current data available.
There is a lot we can learn about variable representations and tokenization decisions in neural program

synthesis, some of which may be applicable for proofs. Recent work [Tu et al. 2014] shows the beneits of a cache-
based model for code completion that exploits locality properties of programs. More recent work [Karampatsis
et al. 2020] demonstrates the beneits of BPE tokenization for code completion, especially in combination with
cache-based models. Another recent paper [Svyatkovskiy et al. 2020] introduces a framework for evaluating

ACM Trans. Program. Lang. Syst.

• Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

diferent design decisions for integrating the structure within identiiers within a code completion model, and
shows similar beneits for BPE, plus additional beneits from integrating a static analysis to limit the search space.
We ind similar beneits to BPE in the context of a neural proof-synthesis model, and furthermore show the
beneits of tagging diferent kinds of identiiers and paths diferently depending on what kind of information
they encode.

Several diferent models have also been proposed for modeling code, such as AST-like trees [Mou et al. 2014],
long-term language models [Dam et al. 2016], and probabilistic grammars [Bielik et al. 2016]. Program synthesis
is also widely studied using non-learning based methods, both from types alone [Gvero et al. 2013] and examples
and types [Frankle et al. 2016; Osera and Zdancewic 2015].

Identifiers in Code Models

Previous work has been done on providing semantic information for identiiers in code, outside of the context of
proof-synthesis. The VarCLR paper explored using contrastive learning to learn which identiiers have similar
meanings, in contrast to simply being related [Chen et al. 2022]. It does this by mining variable renamings
from GitHub edits, and enables efective use of general purpose language models. Another paper [Karampatsis
et al. 2020] explored extensively the tradeofs of various techniques for dealing with the large vocabulary issues
that come from modeling identiiers in code. Several of our design decisions, such as case-sensitivity, and not
attempting to split words based on common conventions, are inspired by the results of this paper. This paper
also explores the use of subword tokenizing to handle identiiers in code, and inds it efective. However, their
subword architecture is signiicantly diferent than ours, since it uses a lat sequence model to model unstructured
subword units, while we instead embed a subword model for identiiers inside of a parsed-tree model of the code
structure.

8 CONTRIBUTIONS

Our Passport approach enriches a model used for proof synthesis with three diferent identiier encoding
mechanisms: category vocabulary indexing, subword sequence modeling, and path elaboration. We empirically
demonstrate that each encoding mechanism improves proof-synthesis performance on the CoqGym benchmark
suite. Furthermore, we measured the impact of adding information for each individual category of identiier:
global deinitions, local variables, and type constructors. Again, empirically, each category improved performance.
These results are consistent with our intuition that identiiers matter for proofs, that the category of an

identiier is useful information, and that drawing connections between identiiers is useful for proof synthesis.
Passport automatically proves 12.7% of the theorems in CoqGym, an improvement of 38% over Tok (an example
proof-synthesis tool), without changing the core architecture beyond the encoding of identiiers. Combining
the new tools developed using the Passport approach with three baseline tools automatically proves 17.2% of
the theorems in CoqGym, an improvement of 45% over the baseline tools combined. This intuition and these
results will help developers of other tools for program and proof synthesis in other languages beyond Coq, and is
a fruitful step toward better tools for engineering robust and reliable formally veriied software systems.

ACKNOWLEDGMENTS

This work is supported by the Defense Advanced Research Projects Agency under grant no. HR0011-22-9-006,
and by the National Science Foundation under grant no. CCF-2210243.

REFERENCES
Agda Development Team. 2007-2021. The Agda Wiki. http://wiki.portal.chalmers.se/agda/pmwiki.php

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers •

Arpan Agrawal, Emily First, Zhanna Kaufman, Tom Reichel, Shizhuo Zhang, Timothy Zhou, Alex Sanchez-Stern, Talia Ringer, and Yuriy

Brun. 2023. Proofster: Automated Formal Veriication. In Proceedings of the Demonstrations Track at the 45th International Conference on

Software Engineering (ICSE) (14ś20). Melbourne, Australia.

Andrew W. Appel. 2011. Veriied Software Toolchain. In Programming Languages and Systems, Gilles Barthe (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 1ś17.

Emilio Jesús Gallego Arias. 2016. SerAPI: Machine-Friendly, Data-Centric Serialization for COQ.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry,

Quoc V. Le, and Charles Sutton. 2021. Program Synthesis with Large Language Models. CoRR abs/2108.07732 (2021). arXiv:2108.07732

https://arxiv.org/abs/2108.07732

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. 2019. HOList: An Environment for Machine Learning

of Higher-Order Theorem Proving (extended version). CoRR abs/1904.03241 (2019). arXiv:1904.03241 http://arxiv.org/abs/1904.03241

Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio

Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. 2020. Explainable Artiicial Intelligence (XAI): Concepts,

taxonomies, opportunities and challenges toward responsible AI. Information Fusion 58 (2020), 82ś115. https://doi.org/10.1016/j.infus.

2019.12.012

Pavol Bielik, Veselin Raychev, and Martin Vechev. 2016. PHOG: Probabilistic Model for Code. In Proceedings of The 33rd International

Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 48), Maria Florina Balcan and Kilian Q. Weinberger (Eds.).

PMLR, New York, New York, USA, 2933ś2942. http://proceedings.mlr.press/v48/bielik16.html

Lukas Biewald. 2020. Experiment Tracking with Weights and Biases. https://www.wandb.com/ Software available from wandb.com.

Lasse Blaauwbroek, Josef Urban, and Herman Geuvers. 2020. Tactic Learning and Proving for the Coq Proof Assistant. In International

Conference on Logic for Programming, Artiicial Intelligence and Reasoning (LPAR) (EPiC Series in Computing, Vol. 73), Elvira Albert and

Laura Kovacs (Eds.). 138ś150. https://doi.org/10.29007/wg1q

Ahmet Celik, Karl Palmskog, and Milos Gligoric. 2017. ICoq: Regression proof selection for large-scale veriication projects. In IEEE/ACM

International Conference on Automated Software Engineering (ASE). Urbana-Champaign, IL, USA, 171ś182. https://doi.org/10.1109/ASE.

2017.8115630

Ahmet Celik, Karl Palmskog, and Milos Gligoric. 2018. A Regression Proof Selection Tool for Coq. In International Conference on Software

Engineering Demonstrations Track (ICSE DEMO). Gothenburg, Sweden, 117ś120. https://doi.org/10.1145/3183440.3183493

Ahmet Celik, Karl Palmskog, Marinela Parovic, Emilio Jesús Gallego Arias, and Milos Gligoric. 2019. Mutation Analysis for Coq. In IEEE/ACM

International Conference on Automated Software Engineering (ASE). San Diego, California, 539ś551. https://doi.org/10.1109/ASE.2019.00057

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas

Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke

Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,

Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,

Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse,

Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati,

Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating

Large Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

Representation Pre-Training via Contrastive Learning. In Proceedings of the 44th International Conference on Software Engineering (Pittsburgh,

Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA, 2327ś2339. https://doi.org/10.1145/3510003.3510162

Adam Chlipala. 2013. Certiied Programming with Dependent Types: A Pragmatic Introduction to the Coq Proof Assistant. The MIT Press.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,

Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,

Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,

Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier

Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander

Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie

Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta,

Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jef Dean, Slav Petrov, and Noah Fiedel. 2022.

PaLM: Scaling Language Modeling with Pathways. https://doi.org/10.48550/ARXIV.2204.02311

Coq Development Team. 1989-2021. The Coq Proof Assistant. http://coq.inria.fr

Thierry Coquand and Gérard Huet. 1986. The calculus of constructions. Technical Report RR-0530. INRIA. https://hal.inria.fr/inria-00076024

Thierry Coquand and Christine Paulin. 1990. Inductively deined types. In COLOG-88, Per Martin-Löf and Grigori Mints (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 50ś66.

ACM Trans. Program. Lang. Syst.

Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Graham Neubig, Bogdan Vasilescu, and Claire Le Goues. 2022. VarCLR: Variable Semantic

• Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

Łukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automation for Dependent Type Theory. Journal of Automated Reasoning 61, 1

(01 Jun 2018), 423ś453. https://doi.org/10.1007/s10817-018-9458-4

Hoa Khanh Dam, Truyen Tran, and Trang Pham. 2016. A deep language model for software code. CoRR abs/1608.02715 (2016). arXiv:1608.02715

http://arxiv.org/abs/1608.02715

Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. 2019. Simple High-Level Code for Cryptographic Arithmetic Ð

With Proofs, Without Compromises. In IEEE Symposium on Security and Privacy (S&P). 1202ś1219. https://doi.org/10.1109/SP.2019.00005

Emily First and Yuriy Brun. 2022. Diversity-Driven Automated Formal Veriication. In Proceedings of the 44th International Conference on

Software Engineering (ICSE) (22ś27). Pittsburgh, PA, USA. https://doi.org/10.1145/3510003.3510138

Emily First, Yuriy Brun, and Arjun Guha. 2020. TacTok: Semantics-Aware Proof Synthesis. Proceedings of the ACM on Programming

Languages (PACMPL) Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA) issue 4 (November 2020), 231:1ś231:31.

https://doi.org/10.1145/3428299 DOI: 10.1145/3428299.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. 2023. Baldur: Whole-Proof Generation and Repair with Large Language Models.

CoRR abs/2303.04910 (2023). https://arxiv.org/abs/2303.04910.

Jonathan Frankle, Peter-Michael Osera, David Walker, and S Zdancewic. 2016. Example-directed synthesis: a type-theoretic interpretation.

ACM SIGPLAN Notices 51 (01 2016), 802ś815. https://doi.org/10.1145/2914770.2837629

Philip Gage. 1994. A New Algorithm for Data Compression. C Users J. 12, 2 (feb 1994), 23ś38.

Xiang Gao. 2022. cub device scan is not deterministic as described in the documentation #454. https://github.com/NVIDIA/cub/issues/454.

Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael A. Specter, and Lalana Kagal. 2018. Explaining Explanations: An Approach

to Evaluating Interpretability of Machine Learning. CoRR abs/1806.00069 (2018). arXiv:1806.00069 http://arxiv.org/abs/1806.00069

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino Pedreschi. 2018. A Survey of Methods for

Explaining Black Box Models. ACM Comput. Surv. 51, 5, Article 93 (aug 2018), 42 pages. https://doi.org/10.1145/3236009

Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. 2013. Complete Completion using Types and Weights. PLDI 2013 (2013), 12.

27ś38. http://infoscience.epl.ch/record/188990

Lennart Heim. 2022. Estimating PaLM’s training cost. https://blog.heim.xyz/author/lennart/.

Vincent J. Hellendoorn, Premkumar T. Devanbu, and Mohammad Amin Alipour. 2018. On the naturalness of proofs. In ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE) New Ideas and Emerging

Results track. Orlando, FL, USA, 724ś728.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. 2019. GamePad: A Learning Environment for Theorem Proving. In

International Conference on Learning Representations. https://openreview.net/forum?id=r1xwKoR9Y7

Isabelle Development Team. 1994-2021. Isabelle. http://isabelle.in.tum.de

Kush Jain, Karl Palmskog, Ahmet Celik, Emilio Jesús Gallego Arias, and Milos Gligoric. 2020. MCoq: Mutation Analysis for Coq Veriication

Projects. In International Conference on Software Engineering Demonstrations Track (ICSE DEMO). Seoul, South Korea, 89ś92. https:

//doi.org/10.1145/3377812.3382156

Albert Jiang, Konrad Czechowski, Mateja Jamnik, Piotr Milos, Szymon Tworkowski, Wenda Li, and Yuhuai Tony Wu. 2022. Thor: Wielding

Hammers to Integrate Language Models and Automated Theorem Provers. In Neural Information Processing Systems (NeurIPS). New

Orleans, LA, USA.

Albert Qiaochu Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu. 2021. LISA: Language models of ISAbelle proofs. In Conference on

Artiicial Intelligence and Theorem Proving (AITP). Aussois, France, 17.1ś17.3.

Rafael Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and Andrea Janes. 2020. Big Code != Big Vocabulary: Open-Vocabulary

Models for Source code. In Proceedings of the 42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). ACM.

https://doi.org/10.1145/3377811.3380342

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal

Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: Formal Veriication of an OS Kernel. In

Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles (Big Sky, Montana, USA) (SOSP ’09). ACM, New York, NY,

USA, 207ś220. https://doi.org/10.1145/1629575.1629596

Ekaterina Komendantskaya, Jónathan Heras, and Gudmund Grov. 2012. Machine Learning in Proof General: Interfacing Interfaces. In

Proceedings 10th International Workshop On User Interfaces for Theorem Provers, UITP 2012, Bremen, Germany, July 11th, 2012 (EPTCS,

Vol. 118), Cezary Kaliszyk and Christoph Lüth (Eds.). 15ś41. https://doi.org/10.4204/EPTCS.118.2

Lean Development Team. 2014-2021. Theorem Proving in Lean. http://leanprover.github.io/tutorial/

Thabang Lebese, Ndivhuwo Makondo, Cristina Cornelio, and Naweed Khan. 2021. Proof Extraction for Logical Neural Networks. In Advances

in Programming Languages and Neurosymbolic Systems Workshop. https://openreview.net/forum?id=Xw3kb6UyA31

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng

Chen. 2020. GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding. In International Conference on Learning

Representations.

Xavier Leroy. 2009. Formal veriication of a realistic compiler. Commun. ACM 52, 7 (2009), 107ś115. https://doi.org/10.1145/1538788.1538814

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers •

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno,

Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes

Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas,

Koray Kavukcuoglu, and Oriol Vinyals. 2022a. Competition-Level Code Generation with AlphaCode. https://doi.org/10.48550/ARXIV.

2203.07814

Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu, and Junjie Yan. 2022b. Supervision Exists

Everywhere: A Data Eicient Contrastive Language-Image Pre-training Paradigm. In International Conference on Learning Representations.

https://openreview.net/forum?id=zq1iJkNk3uN

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. 2020. Understanding the Diiculty of Training Transformers.

Lili Mou, Ge Li, Zhi Jin, Lu Zhang, and Tao Wang. 2014. TBCNN: A Tree-Based Convolutional Neural Network for Programming Language

Processing. CoRR abs/1409.5718 (2014). arXiv:1409.5718 http://arxiv.org/abs/1409.5718

Pengyu Nie, Karl Palmskog, Junyi Jessy Li, and Milos Gligoric. 2020a. Deep Generation of Coq Lemma Names Using Elaborated Terms. In

International Joint Conference on Automated Reasoning (IJCAR). Paris, France, 97ś118.

Pengyu Nie, Karl Palmskog, Junyi Jessy Li, and Milos Gligoric. 2020b. Learning to Format Coq Code Using Language Models. In The Coq

Workshop. Aubervilliers, France.

Pengyu Nie, Karl Palmskog, Junyi Jessy Li, and Milos Gligoric. 2021. Roosterize: Suggesting Lemma Names for Coq Veriication Projects

Using Deep Learning. In International Conference on Software Engineering Demonstrations Track (ICSE DEMO). Madrid, Spain, 21ś24.

https://doi.org/10.1109/ICSE-Companion52605.2021.00026

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed Program Synthesis. SIGPLAN Not. 50, 6 (June 2015), 619ś630.

https://doi.org/10.1145/2813885.2738007

Aditya Paliwal, Sarah Loos, Markus Rabe, Kshitij Bansal, and Christian Szegedy. 2020. Graph representations for higher-order logic and

theorem proving. In Proceedings of the AAAI Conference on Artiicial Intelligence, Vol. 34. 2967ś2974.

Karl Palmskog, Ahmet Celik, and Milos Gligoric. 2018. PiCoq: Parallel Regression Proving for Large-Scale Veriication Projects. In ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). Amsterdam, Netherlands, 344ś355. https://doi.org/10.1145/

3213846.3213877

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep

Contextualized Word Representations. In Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies (NAACL-HLT), Vol. 1. Association for Computational Linguistics, New Orleans, LA, USA, 2227ś2237.

https://doi.org/10.18653/v1/N18-1202

Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan.

2020a. Problems and Opportunities in Training Deep Learning Software Systems: An Analysis of Variance. In Proceedings of the 35th

IEEE/ACM International Conference on Automated Software Engineering (Virtual Event, Australia) (ASE ’20). Association for Computing

Machinery, New York, NY, USA, 771ś783. https://doi.org/10.1145/3324884.3416545

Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan.

2020b. Problems and Opportunities in Training Deep Learning Software Systems: An Analysis of Variance. In Proceedings of the 35th

IEEE/ACM International Conference on Automated Software Engineering (Virtual Event, Australia) (ASE ’20). Association for Computing

Machinery, New York, NY, USA, 771ś783. https://doi.org/10.1145/3324884.3416545

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, and

Brent Yorgey. 2021. Software Foundations. Vol. 1: Logical Foundations. https://softwarefoundations.cis.upenn.edu/lf-current/index.html

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya Sutskever. 2022. Formal Mathematics Statement

Curriculum Learning. CoRR abs/2202.01344 (2022). https://arxiv.org/abs/2202.01344

Stanislas Polu and Ilya Sutskever. 2020. Generative Language Modeling for Automated Theorem Proving. CoRR abs/2009.03393 (2020).

arXiv:2009.03393 https://arxiv.org/abs/2009.03393

Martin Popel and Ondřej Bojar. 2018. Training Tips for the Transformer Model. The Prague Bulletin of Mathematical Linguistics 110, 1 (2018),

43ś70.

Shangshu Qian, Viet Hung Pham, Thibaud Lutellier, Zeou Hu, Jungwon Kim, Lin Tan, Yaoliang Yu, Jiahao Chen, and Sameena Shah. 2021.

Are My Deep Learning Systems Fair? An Empirical Study of Fixed-Seed Training. In Advances in Neural Information Processing Systems,

M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates, Inc., 30211ś30227.

https://proceedings.neurips.cc/paper/2021/ile/fdda6e957f1e5ee2f3b311fe4f145ae1-Paper.pdf

Samyam Rajbhandari, Jef Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO: Memory Optimizations toward Training Trillion Parameter

Models. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (Atlanta, Georgia)

(SC ’20). IEEE Press, Article 20, 16 pages.

Tom P Reichel. 2022. Large cumulative sums appear to be nondeterministic. #75240. https://github.com/pytorch/pytorch/issues/75240.

ACM Trans. Program. Lang. Syst.

In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational

Linguistics, Online, 5747ś5763. https://doi.org/10.18653/v1/2020.emnlp-main.463

• Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

Talia Ringer and Joe Cutler. 2021. Talia and Joe chat about proof engineering with copilot. https://youtu.be/jFL-ftywPiM

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary Tatlock. 2019. QED at Large: A Survey of Engineering of Formally

Veriied Software. Foundations and Trends®in Programming Languages 5, 2-3 (2019), 102ś281. https://doi.org/10.1561/2500000045

Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and Dan Grossman. 2021. Proof repair across type equivalences. In Proceedings of

the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. ACM. https://doi.org/10.1145/

3453483.3454033

Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner. 2020. REPLica: REPL Instrumentation for Coq Analysis. In Proceedings

of the 9th ACM SIGPLAN International Conference on Certiied Programs and Proofs (New Orleans, LA, USA) (CPP 2020). Association for

Computing Machinery, New York, NY, USA, 99ś113. https://doi.org/10.1145/3372885.3373823

Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner. 2020. Generating Correctness Proofs with Neural Networks. InMachine

Learning in Programming Languages. ACM SIGPLAN.

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, and Michael Young. 2014. Machine

Learning: The High Interest Credit Card of Technical Debt. In SE4ML: Software Engineering for Machine Learning (NIPS 2014 Workshop).

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of

the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,

Berlin, Germany, 1715ś1725. https://doi.org/10.18653/v1/P16-1162

Gil Shamir and Dong Lin. 2022. Reproducibility in Deep Learning and Smooth Activations. https://ai.googleblog.com/2022/04/reproducibility-

in-deep-learning-and.html?m=1.

Jean Souyris. 2014. Industrial Use of CompCert on a Safety-Critical Software Product. http://projects.laas.fr/IFSE/FMF/J3/slides/P05_Jean_

Souyiris.pdf.

Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitoi, Maik Riechert, Juliana Franco, and Miltiadis Allamanis. 2020. Fast and Memory-Eicient

Neural Code Completion. CoRR abs/2004.13651 (2020). https://arxiv.org/abs/2004.13651

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved Semantic Representations From Tree-Structured Long Short-

Term Memory Networks. In Annual Meeting of the Association for Computational Linguistics (ACL), Vol. 1. Beijing, China, 1556ś1566.

https://doi.org/10.3115/v1/P15-1150

Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. 2014. On the Localness of Software. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering (Hong Kong, China) (FSE 2014). Association for Computing Machinery,

New York, NY, USA, 269ś280. https://doi.org/10.1145/2635868.2635875

James R. Wilcox, DougWoos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas Anderson. 2015. Verdi: A Framework

for Implementing and Formally Verifying Distributed Systems. In Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation (Portland, OR, USA) (PLDI ’15). ACM, New York, NY, USA, 357ś368. https://doi.org/10.1145/2737924.

2737958

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, and Christian Szegedy. 2022. Memorizing Transformers. In International Conference

on Learning Representations. https://openreview.net/forum?id=TrjbxzRcnf-

Kaiyu Yang and Jia Deng. 2019. Learning to prove theorems via interacting with proof assistants. In International Conference on Machine

Learning (ICML). Long Beach, CA, USA. http://proceedings.mlr.press/v97/yang19a/yang19a.pdf

A CATEGORIES OF IDENTIFIERS

Before we implemented Passport, we manually inspected the proof corpora in our training dataset, walking
through proofs and analyzing the kinds of information needed to make decisions about which tactic to apply next
in a proof. The choice to include identiiers was a product of realizing how much proof engineers rely on naming
information to reason about these decisions. But the choice of which identiiers to include was less clear. Consider,
for example, local variables: many common local variable names are used in a variety of contexts which may
have little relation with one another. A variable named x can carry a totally diferent meaning than the x from
Figure 3 in Section 3. Without empirical evidence, it was unclear whether an enriched model could potentially
sufer performance degradation from drawing fallacious connections like this. As a result, experimental data was
an important factor in our selection of which identiiers to include.

Our experiments in Section 5 show that all three categories of identiiers help. In particular, search using the
Tok model Passport-enriched with any one of the three categories of identiiers alone outperforms search using
that model with no identiier information. Furthermore, a search using the Tok model Passport-enriched with all

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers •

three categories of identiiers at once outperforms a search using a Passport-enriched Tok model with just one
category of identiiers, for all categories.
The remainder of this Appendix details each of these three categories Ð global deinitions (Appendix A.1),

local variables (Appendix A.2), and type constructors (Appendix A.3) Ð and gives intuition for why each of them
may be useful for a tactic prediction model. Finally, Appendix A.4 discusses Passport implementation details.

A.1 Global Definitions

The most straightforward of our categories to include was identiiers referencing global deinitions. These
identiiers refer to objects deined globally directly by the user, using the keywords Definition, Theorem, Inductive,
or one of their variants. Global deinitions are generally either an inductive type name, or a name given to some
Gallina term (function, constant value, etc). Crucially, since proof objects themselves are terms, theorems are
global deinitions with their names bound to their proof objects.
In Coq, most code amounts to creating new global deinitions, through a variety of means. The simplest is

by writing the term which corresponds to the name explicitly, and using a vernacular command to bind it to
the name, as in Definition n := 5.. This is commonly how the Definition keyword is used, both in deining
constant values and in deining functions. When a deinition needs to refer to its own name within its body, that
is done either using a fix in the term, or using the special vernacular keyword Fixpoint, which is essentially
syntactic sugar for the former.

Global deinitions can also be deined interactively, using Coq’s tactic system. For example, the proof script in
Figure 3 speciies a sequence of tactics which produce a Gallina term referred to by its identiier posnatMult_comm.
In Gallina, this is indistinguishable from a plain deinition Ð in fact, any term in Coq can be deined using tactics,
though this is most common for proofs of lemmas and theorems.

Finally, inductive types can be created using Coq’s Inductive command. This command creates a new inductive
type or type family, given a set of łtype constructors,ž or ways to build objects of the type. When complete, this
command deines several objects, including the type itself, its type constructors, and recursion and induction
principles for the type. Type constructors are explored in more detail in Appendix A.3.

Encoding the usage of global deinitions in terms is extremely useful for predicting tactics. Often, a particular
common identiier will signify that certain lemmas will be useful. For instance, in the proof context:

n : nat

============================

le (div2 n) n

the presence of the div2 and le identiiers indicates that lemmas involving those operators will be useful; in
fact, the correct next step is to apply a lemma named div2_decr, which applies to goals of the form le (div2 _)_.
Both div2 and le identiiers correspond to global deinitions.

A.2 Local Variables

Besides global deinitions, local variables are the most common type of identiier in Coq terms. Local variables
can be bound to an explicit term, as in a let deinition, but in many cases (function parameters, forall bindings,
and existential pairs) are given only a type binding. This is in contrast to global deinitions, which are always
bound directly to terms.

Encoding local variables is often critical to determining the correct next step in a proof, or even understanding
its basic structure. Even when the local variable’s name is not particularly informative, knowing when local
variables repeat is often critical. For example, consider the following proof context (from VST [Appel 2011]):

ACM Trans. Program. Lang. Syst.

• Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

n : nat

============================

n >= div2 n + div2 n

If the n variable were not the same in all three occurrences, this goal would be impossible to prove without more
information. However, because the n variable is repeated, this goal holds by the deinition of div2, which is
round-down division by two.
While local variable names often provide useful information, as mentioned above, common names are often

overloaded in their usage. We learned early on that the possibility of performance regression due to uninformative
local variables like x had concerned the ASTactic authors, and contributed to their decision not to encode
identiiers.8 However, upon closer inspection of the data we determined that even single-letter identiier names
often carry consistent semantic meaning across proofs. The identiier names hd and tl, for instance, seemed to
uniformly refer to the head and tail of a list; because they carried consistent semantic meaning, these identiiers
were treated similarly within proofs.

Because of these consistencies in naming, we decided to include local variables.

A.3 Type Constructors

Unlike global deinitions and local variables, type constructors are not bound on their own, but are instead deined
as part of inductive type deinitions. As an example of how type constructors are deined, Figure 10 shows the
deinition of the option type.

(* Library Coq, directory Init, file Datatypes.v *)

Inductive option1 (A2 : Type) : Type :=

| Some3 : A → option A

| None3 : option A

Fig. 10. The polymorphic option datatype in Coq, found in the fully-qualified path Coq.Init.Datatypes. Given a type
parameter A, an option A in Coq is one of two things: either it is Some a given an element a of type A, or it is None. For
consistency, identifiers are highlighted using the same conventions from Figure 2.

The type deinition for option has two type constructors: Some, which creates an option A for any object of
type A, and None, which is a constant value of type option A for any A. There are many examples of such type
constructors in common inductive types: S and O for natural numbers, cons and nil for lists, and others. Logically,
just as type deinitions correspond to theorems, type constructors are analogous to introduction rules for types.
In the option type in Figure 10, Some and None encode all possible ways of introducing terms of type option.
Because of this, type constructors play a special role in deconstructing types Ð in particular, they appear inside
match statements, which act on the structure of a type by having one branch per type constructor. Similarly,
proofs by induction in Coq prove propositions about inductive types by having one case per type constructor.
Knowledge of type constructors can be incredibly useful in determining the next proof step in a proof. In

the example from Figure 11, the goal states that S (S (n + m)) is even, where m and n are natural numbers. The
context shows (n + m) is even, but does not include information about S. The knowledge that S is a successor type
constructor of nat, and that there exists an ev type constructor ev_SS of type ev n -> ev (S (S n)), is necessary
to solve the goal. Here, running the constructor tactic results in the goal ev (n + m), which matches one of the
hypotheses (IH1).

8https://github.com/princeton-vl/CoqGym/discussions/60

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers •

1 subgoal

m, n : nat

E1 : ev n

E2 : ev m

IH1 : ev (n + m)

============================

ev (S (S (n + m)))

Fig. 11. A mid-proof context from the first volume of the logical foundations series [Pierce et al. 2021]

(constructor

(inductive

(file_path

(directory_path [Datatypes; Init; Coq])

(label option1)))

(int 13))

Fig. 12. An unprocessed AST representing a use of the Some type constructor for the option inductive type from Figure 10,
simplified for the sake of presentation. For consistency, identifiers are highlighted using the same conventions from Figure 2,
and the index 1 of the Some type constructor is highlighted in yellow3. Note that the identifier of the Some type constructor
itself is not present.

A.4 Passport Enrichment Implementation

Enriching the data with these three categories of identiiers amounted to modifying inherited data processing code
from TacTok and ASTactic that had erased all information about those identiiers from the data. The inherited
code had used the SerAPI [Arias 2016] library to serialize Coq proof objects (terms) as well as proof states
and theorems (types), then processed the serialized ASTs returned by SerAPI to erase all identiier information.
Enriching the data with two of the three categories of identiiers Ð deinition and local variable names Ð was a
straightforward modiication of the post-processing code.

By contrast, adding type constructor names was a more involved process, as Gallina ASTs do not directly store
type constructor names. Instead, like its parent type theory, the calculus of inductive constructions [Coquand
and Huet 1986; Coquand and Paulin 1990], Coq represents each type constructor in the AST as a tuple consisting
of the name of its inductive type together with the index of the particular type constructor.

Figure 12 shows the AST for Some, which is the irst (type constructors are 1-indexed) type constructor of the
option datatype. Notably, the AST by default stores the fully-qualiied path and name of the inductive type that
the type constructor constructs. Thus, the only remaining step is to look up the type constructor from the global
environment by passing the fully-qualiied name of the inductive type and the index of the type constructor Ð
here, Coq.Init.Datatypes.option and 1 Ð then place it back into the AST where the index is.
To do this, between parsing and encoding, the Passport implementation unparses subterms that correspond

to type constructor nodes into string representations of the ASTs of the subterms. It then feeds those string
representations back through SerAPI, which performs an environment lookup to recover the type constructor
name. As with the other identiiers, Passport then inserts a child node containing the identiier into the AST
before encoding.

Overall, the Passport approach implementation is 1.5K lines of code and took four developers about a year to
build. While the conceptual and design aspects of the Passport approach can extend to all prediction-model-driven,

ACM Trans. Program. Lang. Syst.

• Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

search-based, proof-synthesis tools, the current implementation is straightforwardly applicable to all such tools
built within the CoqGym environment [Yang and Deng 2019].

ACM Trans. Program. Lang. Syst.

