
This paper is included in the Proceedings of the 
Fourteenth Symposium on Usable Privacy and Security.

August 12–14, 2018 • Baltimore, MD, USA

ISBN 978-1-931971-45-4

Open access to the Proceedings of the  
Fourteenth Symposium  

on Usable Privacy and Security  
is sponsored by USENIX.

API Blindspots: Why Experienced Developers  
Write Vulnerable Code

Daniela Seabra Oliveira, Tian Lin, and Muhammad Sajidur Rahman, University of Florida; 
Rad Akefirad, Auto1 Inc.; Donovan Ellis, Eliany Perez, and Rahul Bobhate,  

University of Florida; Lois A. DeLong and Justin Cappos, New York University;  
Yuriy Brun, University of Massachusetts Amherst; Natalie C. Ebner, University of Florida

https://www.usenix.org/conference/soups2018/presentation/oliveira



API Blindspots:
Why Experienced Developers Write Vulnerable Code

Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad Akefiradα,
Donovan Ellis, Eliany Perez, Rahul Bobhate, Lois A. DeLongν ,

Justin Capposν , Yuriy Brunµ, Natalie C. Ebner
University of Florida αAuto1.inc νNew York University µUniversity of Massachusetts Amherst

daniela@ece.ufl.edu, {lintian0527, rahmanm, donovanmellis, elianyperez, rabo, natalie.ebner}@ufl.edu,

rad@akefirad.com, lad278@nyu.edu, jcappos@nyu.edu, brun@cs.umass.edu

ABSTRACT
Despite the best efforts of the security community, security vul-
nerabilities in software are still prevalent, with new vulnerabili-
ties reported daily and older ones stubbornly repeating themselves.
One potential source of these vulnerabilities is shortcomings in the
used language and library APIs. Developers tend to trust APIs, but
can misunderstand or misuse them, introducing vulnerabilities. We
call the causes of such misuse blindspots. In this paper, we study
API blindspots from the developers’ perspective to: (1) determine
the extent to which developers can detect API blindspots in code
and (2) examine the extent to which developer characteristics (i.e.,
perception of code correctness, familiarity with code, confidence,
professional experience, cognitive function, and personality) affect
this capability. We conducted a study with 109 developers from
four countries solving programming puzzles that involve Java APIs
known to contain blindspots. We find that (1) The presence of
blindspots correlated negatively with the developers’ accuracy in
answering implicit security questions and the developers’ ability to
identify potential security concerns in the code. This effect was
more pronounced for I/O-related APIs and for puzzles with higher
cyclomatic complexity. (2) Higher cognitive functioning and more
programming experience did not predict better ability to detect API
blindspots. (3) Developers exhibiting greater openness as a person-
ality trait were more likely to detect API blindspots. This study has
the potential to advance API security in (1) design, implementa-
tion, and testing of new APIs; (2) addressing blindspots in legacy
APIs; (3) development of novel methods for developer recruitment
and training based on cognitive and personality assessments; and
(4) improvement of software development processes (e.g., estab-
lishment of security and functionality teams).

1. INTRODUCTION
Despite efforts by the security community, software vulnerabilities
are still prevalent in all types of computer devices [56]. Syman-
tec Internet Security reported that 76% of all websites scanned in
2016 contained software vulnerabilities and 9% of those vulner-
abilities were deemed critical [56]. According to a 2016 Vera-
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code report [53] on software security risk, 61% of all web appli-
cations contained vulnerabilities that fell into the Open Web Appli-
cation Security Project (OWASP) Top 10 2013 vulnerability cate-
gories [39] (e.g., information leakage: 72%, flawed cryptographic
implementations: 65%, carriage-return-line-feed (CRLF) injection:
53%). Further, 66% of the vulnerabilities represented program-
ming practices that failed to avoid the “top 25 most dangerous pro-
gramming errors” identified by CWE/SANS [12]. In addition, new
instances of existing, well-known vulnerabilities, such as SQL in-
jections and buffer overflows, are still frequently reported in vulner-
ability databases [50, 26]. These data affirm that current software
security awareness efforts have not eradicated these problems in
practice.

A contributing factor in the introduction of software vulnerabilities
may be the way developers view the programming language re-
sources they routinely use. APIs provide developers with high-level
abstractions of complex functionalities and are crucial in scaling
software development. Yet, studies on API usability [46, 47] and
code comprehension [25] show that developers experience a num-
ber of challenges while using APIs, such as mapping developer-
specific requirements to proper usage protocols, making sense of
internal implementation and related side effects, and deciding be-
tween expert opinions. Further, misunderstandings in developers’
use of APIs are frequently the cause of security vulnerabilities [9,
14, 45]. Developers often blindly trust APIs and their misunder-
standing of the way API functions are called may lead to blindspots,
or oversights regarding a particular function usage (e.g., assump-
tions, results, limitations, exceptions). More significantly, when
developers use an API function, they may behave as if they are
outsourcing any security implications of its use [37]. That is, they
do not see themselves as responsible for the correct usage of the
function and any possible resulting security consequences.

An API security blindspot is a misconception, misunderstanding,
or oversight [9] on the part of the developer when using an API
function, which leads to a violation of the recommended API us-
age protocol with possible introduction of security vulnerabilities.
Blindspots can be caused by API functions whose invocations have
security implications that are not readily apparent to the developer.
It is analogous to the concept of a car blindspot, an area on the side
of a car that is not visible to the driver that can lead to accidents.
For an example of an API blindspot, consider the strcpy() func-
tion from the C standard library. For almost three decades [41], this
function has been known to lead to a buffer overflow vulnerability
if developers do not check and match sizes of the destination and
source arrays. Yet, developers tend to have a blindspot with respect
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to this function. In a recent study [37], a developer who could not
detect a buffer overflow in a programming scenario mentioned that
“It’s not straightforward that misusing strcpy() can lead to very
serious problems. Since it’s part of the standard library, develop-
ers will assume it’s OK to use. It’s not called unsafe_strcpy() or
anything, so it’s not immediately clear that that problem is there.”

In this paper, we present an empirical study of API blindspots from
the developers’ perspective, and consider personal characteristics
that may contribute to the development of these blindspots. Our
study goals were to: (1) determine developers’ ability to detect API
blindspots in code and (2) examine the extent to which developer
characteristics (i.e., perception of code correctness, familiarity with
code, confidence in correctly solving the code, professional expe-
rience, cognitive function, personality) affected this capability. We
also explored the extent to which API function or programming
scenario characteristics (i.e., category of API function and cyclo-
matic complexity of the scenario) contributed to developers’ ability
to detect blindspots.

We recruited 109 developers, including professional developers and
senior undergraduate and graduate students (professionals = 70,
students = 39, mean age = 26.4, 80.7% male). Developers worked
online on six programming scenarios (called puzzles) in Java. Each
puzzle contained a short code snippet simulating a real-world pro-
gramming scenario. Four of the six puzzles contained one API
function known to cause developers to experience blindspots. The
other two puzzles involved an innocuous API function. Puzzles
were developed by our team and were based on API functions com-
monly reported in vulnerability databases [36, 49] or frequently
discussed in developer forums [51]. The API functions considered
addressed file and stream handling, cryptography, logging, SQL
operations, directory access, regular expressions (regex), and pro-
cess manipulation. Following completion of each puzzle, develop-
ers responded to one open-ended question about the functionality
of the code and one multiple-choice question that captured devel-
opers’ understanding of (or lack thereof) the security implication of
using the specific API function. After completing all puzzles, each
developer provided demographic information and reported their ex-
perience and skills levels in programming languages and technical
concepts. Developers then indicated endorsement of personality
statements based on the Five Factor Personality Traits model [13]
and completed a set of cognitive tasks from the NIH Cognition
Toolbox [21] and the Brief Test of Adult Cognition by Telephone
(BTACT; modified auditory version for remote use) [58].

Using quantitative statistics, we generated the following novel find-
ings:

1. Presence of API blindspots in puzzles reduced developers’
accuracy in answering the puzzles’ implicit security question
and reduced developers’ ability to identify potential security
concerns in the code.

2. API functions involving I/O were particularly likely to cause
security blindspots in developers.

3. Developers were more susceptible to API blindspots for more
complex puzzles, as measured by cyclomatic complexity.

4. Developers’ cognitive function and their expertise and ex-
perience with programming did not predict their ability to
detect API blindspots.

5. Developers exhibiting greater openness as a personality trait
were more likely to detect API blindspots.

These results have the potential to inform the design of APIs that
are inherently more secure. For example, testing and validation of
API functions should take into account potential security blindspots
developers may have, particularly for certain types of API func-
tions (e.g., I/O). Furthermore, since our data suggest that experi-
ence and cognition may not predict developers’ ability to detect
API blindspots, it corroborates the validity of the emerging prac-
tice of establishing separate functionality and security development
teams. Separate teams for these domains may be a better strategy
to assure secure software development than sole reliance on one
group of experts to simultaneously address both aspects.

The remainder of this paper is organized as follows. Section 2 re-
ports on the study methodology and the development of the puz-
zles. Section 3 assesses the results, while Section 4 discusses some
of the implications of these findings. Section 5 places this study in
the context of related work, and Section 6 summarizes its primary
contributions.

2. METHODOLOGY
This section presents the study methodology, describing recruit-
ment, participant management, and procedures. Data collection
took place between December 2016 and November 2017.

2.1 Participants
This study, approved by the University of Florida IRB, targeted de-
velopers who actively worked with Java. These individuals were
recruited from the United States, Brazil, India, Bangladesh, and
Malaysia via a number of recruitment mechanisms, including fly-
ers and handouts disseminated throughout the university campus,
particularly in locations frequented by students and professionals
with programming experience (e.g., Computer Science and Engi-
neering departments), social media advertisements (i.e., Facebook,
Twitter, and LinkedIn), ads on online computer programming fo-
rums, Computer Science/Engineering department groups, and con-
tacts via the authors’ personal networks of computer programmers
at universities and software development companies in the United
States, Brazil, India, Bangladesh, and Malaysia. We also used a
word-of-mouth recruiting technique, which gave participants the
option to refer friends or colleagues. Participants were informed
that the purpose of the study was to investigate how developers in-
terpret and reason about code. As we aimed to have developers
work on the programming tasks as naturally as possible, without
any priming or nudging towards software security aspects, we did
not explicitly mention that code security was the metric of interest.
Figure 1 summarizes the demographic information of participating
developers.

As shown in Figure 1, developers in the final sample size (N =
109) ranged between the ages of 21 and 52 years (M = 26.67,
SD = 5.28) and were largely male (n = 88, 80.7%). The sam-
ple was composed of 70 (64.2%) professional developers and 39
(35.8%) senior undergraduate or graduate students in Computer
Science and Computer Engineering though in this paper, we collec-
tively refer to all participants as “developers”. The large majority of
developers (n = 83, 82.5%) had been programming in Java for two
or more years, and almost all developers reported at least a work-
ing knowledge of Java (n = 101, 97.1%). Student participants
self-reported a relatively high programming experience (M = 5.8
years, SD = 5.8), probably because they had been programming
before entering university or had been students for more than six
years (e.g., PhD students).

We received a total of 168 emails from interested developers, 33
(19.6%) of which were not included in the study because they never
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Professionals Students
(n = 70) (n = 39)

Mean (SD)/ % Mean (SD)/ %
Gender
Male (88) 81.4 79.5
Female (21) 18.6 20.5
Age
Male (88) 28.0 (6.0) 24.4 (2.1)
Female (21) 27.8 (6.2) 24.4 (2.2)
Years of Programming

6.3 (3.5) 5.8 (5.8)
Highest Degree Earned
High School 1.4 0.0
Some College 0.0 2.6
Associates 1.4 2.6
Bachelor’s 40.0 56.4
Some Graduate School 11.4 5.1
Graduate-Level Degree 45.7 33.3
Annual Income

0–$39,999 45.7 69.2
$40,000–$70,000 22.9 15.4
$70,001–$100,000 20.0 12.8
$100,001–$200,000 11.4 2.6

>$200,000 0.0 0.0
Race/Ethnicity
American Indian/Alaskan 1.4 2.6
Asian 81.4 92.3
African American 2.9 0.0
Hawaiian/Pacific Islander 0.0 0.0
White 10.0 2.6
Other/Multi-racial 4.3 2.6
Country of Residence
United States 72.3 94.9
Bangladesh 15.7 2.6
Brazil 8.6 2.6
Malaysia 1.4 0.0

Figure 1: Demographic and professional expertise/experience
information about participating developers by professional
group.

signed the informed consent form or signed the form but did not
continue with the assessment. The remaining 135 developers re-
ceived a personalized link to the study assessment, which was hosted
online on the Qualtrics platform. We had to discard data from
26 (19.3%) developers because of incomplete entries or techni-
cal/browser incompatibility issues related to the audio recording
(see details below). Unless otherwise stated, we report our results
based on a sample of 109 developers, who proceeded through all
study procedures as instructed and completed the tasks with valid
responses.

2.2 Procedure
After initial contact with interested developers, an online screening
questionnaire determined study eligibility (e.g., sufficient knowl-
edge with Java, fluency in the English language, age over 18 years).
Eligible developers received a digital informed consent form, which
disclosed study procedures, the minimal risk from participating,
and potential data privacy and anonymity issues. After providing
their digital signature, developers received a personalized link to
the online instrument. Each developer was assigned a unique iden-
tifier to assure confidentiality. Developers were strongly encour-
aged to complete the study in two separate sittings to counteract
possible fatigue effects (one sitting to work on the puzzles and
complete the demographic questionnaire, and the other sitting to
complete the psychological/cognitive assessment). Student devel-

opers were compensated with a US$20 Amazon gift card, while
professionals received a US$50 Amazon gift card, as professional
developers had a larger financial incentive in consideration of their
relatively high-paying jobs and their more limited availability, as
approved by our IRB. The study procedure comprised five parts.
The first part (Puzzles) involved responding to the programming
puzzles and related questions (see Section 2.3). The second part
(Demographics) asked basic demographic questions about the sub-
ject, including age, gender, race/ethnicity, education, field of study,
employment status, and primary language.

The third part (Professional Experience and Expertise) included
questions about the developers’ technical proficiency and years of
programming experience in six commonly used programming lan-
guages (i.e., Java, Python, C/C++, PHP, Visual Basic.Net, and Java-
Script). A free-text response field was provided for developers to
record their preferred programming language, if it was not listed.
Developers also indicated their level of knowledge in and expe-
rience with 17 programming concepts and technologies identified
from the literature and via job postings for software developers [6,
30] (e.g., SQL/MySQL, Cryptography, File compression, Network-
ing, HTTP/HTTPS, I/O operations).

The fourth part (Personality Assessment) used the Big Five Inven-
tory (BFI) questionnaire to measure aspects of personality [29].
This questionnaire contains 44 items to assess five personality di-
mensions: Openness, Conscientiousness, Extraversion, Agreeable-
ness, and Neuroticism. Developers rated the extent to which they
endorsed each personality statement on a Likert scale (1 = disagree
strongly; 5 = agree strongly). We computed the sum score across
all items for each of the five personality dimensions.

The fifth part (Cognitive Assessment) comprised two instruments:
the Oral Symbol Digit Test from the NIH Toolbox [21] and the
Brief Test of Adult Cognition by Telephone (BTACT) [58]. Fig-
ure 2 illustrates the Oral Symbol Digit Test. This test is a brief
measure of processing speed and working memory. In this task,
developers were presented with a coding key containing nine ab-
stract symbols, each paired with a number between 1 and 9. They
were then given 120 seconds to call out as many numbers that went
with the corresponding symbols, in the order presented and without
skipping any. The BTACT is a battery of cognitive processing tasks
for adults of different ages and takes approximately 20 minutes to
complete. The BTACT sub-tests refer to episodic verbal memory,
working memory, verbal fluency, inductive reasoning, and process-
ing speed. Figure 3 presents instructions for the BTACT Word List
Recall task, which measures immediate and delayed episodic mem-
ory for verbal material. This particular task asked developers to re-
call a number of spoken words. The Oral Symbol Digit Test and
the BTACT were chosen based on the cognitive processes (e.g., rea-
soning, working memory, processing speed) developers likely use
when working on code. Traditionally, the Oral Symbol Digit Test
and the BTACT are administered in-person and over the phone, re-
spectively. Given the online format of our study, we implemented
browser-based audio recordings of the two measures. In particu-
lar, audio narrations for all the tasks instructions were created, with
calculated timings, vocal inflections, and pauses. Formal time lim-
its were maintained. To capture oral responses, we built an audio
recording plugin leveraging the Qualtrics JavaScript API. All task
modifications underwent pilot testing to ensure that content and
response sensitivity was maintained. As part of the study infras-
tructure, recorded audio files were sent to a secure and encrypted
study server and were stored in an anonymized fashion. Trained
coders coded these files for performance in the various tasks. For

USENIX Association Fourteenth Symposium on Usable Privacy and Security    317



Figure 2: Oral Symbol Digit task.

the Oral Symbol Digit task we computed a sum score of correct re-
sponses. For the BTACT, we aggregated the total number of correct
responses in each of the cognitive subset tasks.

2.3 Programming puzzles
This section describes the development of the programming puz-
zles and their characteristics. We defined a puzzle as a snippet of
code simulating a real-world programming scenario. Our goal was
to create concise, clear, and unambiguous puzzles that related to
real-life programming tasks, while removed of code or functional-
ity not needed for understanding the primary functionality of the
code snippet. We developed two types of puzzles: those with and
those without a blindspot. A blindspot puzzle targeted one partic-
ular Java API function, known to cause developers to misunder-
stand the security implications of its usage [40, 32]. The non-
blindspot puzzles involved innocuous API functions in code con-
text that strictly followed standard API usage protocol and code
security guidelines. Puzzle development involved a two-phase, it-
erative process, which lasted from April 2016 to December 2016.

We chose Java as the programming language because of its rich
and well-developed set of libraries and API functionalities, which
can perform a diverse set of operations (including security tasks),
such as I/O, multithreading, networking, random number genera-
tion, cryptography, and hashing. Java has a long-standing popular-
ity within developer communities who use it to work on software
products for different platforms, including web, mobile, and en-
terprise [15]. Besides being popular among professional develop-
ers, Java’s wide availability of toolkits, tutorials, and online/offline
resources has made it a popular choice for those learning object-
oriented programming. It is the second most used programming
language in GitHub repositories after Javascript [22] and was voted
the third most popular technology by developers who frequently
visit Stack Overflow with programming related Q&As [52]. These
features made Java a good choice of programming language for our
study, as we aimed to recruit from a diverse pool of developers.
Puzzle creation. This process began with a literature review to
determine secure Java coding practices and the potential risks of
misusing Java APIs. For puzzle selection and design principles,

Figure 3: BTACT Word List Recall task.

we were guided by the Open Web Application Security Project
(OWASP) [40], CERT’s secure coding guidelines [32], vulnera-
bility databases [36, 49], HPE’s Software Security Taxonomy [19,
57], and the Java API official documentation [28]. We also lever-
aged programming Q&A forums, such as Stack Overflow [51] to
select commonly discussed API functions. We did not to look for
candidate blindspot functions in bug repositories because we did
not want developers in our study to fix bugs in code. Instead, our
aim was to analyze whether developers would detect improper API
usage to infer the insecure behaviors to which it may lead. Thus,
all the code snippets were free from bugs and compilation errors,
and were compatible with Java standard edition version 7 or higher.
Our API function selection process included functions from differ-
ent categories, including I/O, cryptography, SQL, and string.

We initially identified 61 API function candidates and created 61
corresponding puzzles, each targeting one particular function. This
pool encompassed a variety of Java API misuse scenarios, includ-
ing file I/O operations, garbage collection, de/serialization, cryp-
tography, secure connection establishment, command line argu-
ments/user inputs processing for database query, logging, user au-
thentication, and multithreading.

Each puzzle contained four parts: (1) the puzzle scenario itself;
(2) an accompanying code snippet; (3) a question about the puz-
zle’s functionality, and (4) a multiple-choice question, which, for
blindspot puzzles was implicitly related to code security and for
non-blindspot puzzles related to code functionality. Developers’
accuracy on the multiple-choice question served as the central out-
come measure. It captured the developers’ understanding of the
blindspot in the code.

Puzzle review and final selection. Three co-authors, who had not
created the puzzles, independently reviewed the initial set of 61
blindspot puzzles, together with eight non-blindspot puzzles, to en-
sure puzzle accuracy, legibility, coherence, and relevance to real-
life programming situations. The specific criteria used for puzzle
approval were:

1. Is the scenario clear and realistic?

2. Is the code snippet clear and concise (maximum one screen)?

3. Does the code snippet compile and run if provided with the
necessary Java packages?

4. Does the choice of API function contribute to diversity in
the puzzle set (API function category, blindspot vs. non-
blindspot function, blindspot by function omission vs. pres-
ence, and number of parameters)?

5. Does the multiple-choice question have only one answer with-
out ambiguity?
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6. For blindspot puzzles, does the multiple-choice question ad-
dress the security implications subtly without priming devel-
opers about security concerns?

7. For blindspot puzzles, is there a way to rewrite the puzzle to
address the security vulnerability, thus avoiding the blindspot?

To be contained in the final pool, puzzles had to be independently
approved by all three reviewers.

The final set comprised 16 blindspot puzzles and eight non-blind-
spot puzzles, which varied in the following categories: (1) blindspot
vs. non-blindspot; (2) API usage category; and (3) cyclomatic com-
plexity.

Blindspot vs. non-blindspot. We included non-blindspot puzzles
as a control and to cover the security focus of the study. Blindspot
puzzles were bug-free and functionally correct, but could cause a
blindspot in developers when they used them, thus having the po-
tential to cause developers to introduce one of the following vulner-
abilities in code: (1) arbitrary code/command injection; (2) DoS
(exhaustion of local resources); (3) time-of-check-to-time-of-use
(TOCTTOU); (4) sensitive data disclosure; (5) broken or flawed
cryptographic implementation, and (6) insecure file and I/O opera-
tions.

API usage category. The puzzles referred to three different API
usage contexts: (1) I/O, involving operations, such as reading and
writing from/to streams and files, internal memory buffers, and net-
working activity; (2) Crypto, involving functions handling crypto-
graphic operations, such as encryption, decryption, and key agree-
ment, and (3) String, involving functions that perform string pro-
cessing or manipulation, or queries and user input.

Cyclomatic complexity [31]. Puzzles varied in their cyclomatic
complexity, defined as a quantitative measure of the number of lin-
early independent paths in the source code. We classified the cyclo-
matic complexity of each puzzle into one of three levels: an integer
value of low (cyclomatic complexity of 1–2), medium (cyclomatic
complexity of 3–4), or high (cyclomatic complexity> 4) complex-
ity.

We divided the final set of 24 puzzles into four subsets, each set
containing six puzzles, four with a blindspot and two without a
blindspot. This counterbalancing scheme ensured that each puz-
zle set was comparable regarding representation of API category
and cyclomatic complexity. Statistical analysis found no effects for
puzzle sets as covariate, confirming successful counterbalancing.
We assigned each developer randomly to one of the four puzzle
sets.

Figure 4 illustrates a blindspot puzzle, involving a Java Runtime
API usage. The puzzle scenario was presented to developers as
follows:

“You are asked to review a utility method written for a web appli-
cation. The method, setDate, changes the date of the server. It
takes a String as the new date (“dd-mm-yyyy” format), attempts
to change the date of the server, and returns true if it succeeded,
and false otherwise. Consider the snippet of code below (assum-
ing the code runs on a Windows operating system) and answer the
following questions, assuming that the code has all required per-
missions to execute.”

After presenting the code snippet, developers were asked which
of the following statements would be correct if the setDate()

1 // OMITTED : Import whatever is needed
2 public final class SystemUtils {
3 public static boolean setDate ( String date)
4 throws Exception {
5 return run("DATE " + date);
6 }
7

8 private static boolean run ( String cmd)
9 throws Exception {

10 Process process = Runtime . getRuntime ().
exec("CMD /C " + cmd);

11 int exit = process . waitFor ();
12

13 if (exit == 0)
14 return true ;
15 else
16 return false ;
17 }
18 }

Figure 4: Sample blindspot puzzle targeting a Java Runtime
API usage.

method was invoked with an arbitrary String value as the new
date:

a. If the given String value does not conform to the “dd-mm-
yyyy” format, an exception is thrown.

b. The setDate() method cannot change the date.

c. The setDate() method might do more than change the date.

d. The return value of the waitFor() method is not interpreted
correctly (lines 14–17).

e. The web application will crash.

The correct answer is option ‘c’. A close inspection of the code
shows that the Runtime.getRuntime.exec() method executes,
in a separate process, the specified string command (line 10) which
is provided by the setDate() method. The setDate() method
takes a String type argument and does not implement any in-
put sanitization and validation, which makes it vulnerable to for-
mat string injection attacks. For example, calling the setDate()
method with “10-12-2015 && shutdown /s” as the argument
changes the date and turns off the server. Either the argument for
setDate() method has to be sanitized or its type should be an in-
stance of the Java Date class, which can be formatted as a String
type before passing to the Runtime.getRuntime.exec() method.
As the outcome of the program (executing in a benign or malicious
fashion) depends solely on the (un)sanitized input of the Runtime.
exec() method, the blindspot API function for this puzzle is Run-
time.exec().

Table 1 details the complete list of puzzles used in the study with
information about the puzzle’s vulnerability, the API usage con-
text, and the Java API function targeted for both blindspot and non-
blindspot puzzles.

After completion of a puzzle and related security questions, devel-
opers responded to the following four questions about their puz-
zle perceptions using a Likert scale (1 = not at all to 10 = very) :
(1) Difficulty (How difficult was this scenario?); (2) Clarity (How
clear was this scenario?); (3) Familiarity with the API functions
presented in the code snippet (How familiar were you with the func-
tions in this scenario?), and (4) Confidence (How confident were
you that you solved the scenario correctly?).
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Table 1: Overview of the final puzzle set with information about puzzle vulnerability, API usage context, and Java API function
targeted in each puzzle.

Has
Blindspot

Vulnerability
(if any)

Description API Usage
Context

Targeted
(non) Blindspot

API function

YES TOCTTOU
race condition

A program that performs two or more file operations on a single file
name or path name creates a race window between the two file oper-
ations. Thus, File.createNewFile() may overwrite an existing file even
after the overwrite flag is set to false.

I/O java.io.File.createNewFile()

YES TOCTTOU
race condition

File.renameTo() relies solely on file names for identification, which does
not guarantee that the file renamed is the same file that was opened,
processed, and closed, thus being vulnerable to the TOCTTOU vulnerability.

I/O java.io.File.renameto()

YES Resurrectable
object

JVM does not guarantee the timing for garbage collection of an object.
Malicious subclasses that override the Object.finalize() method can res-
urrect objects meant for garbage collection.

I/O java.lang.Object.finalize()
in the context of java.io.File.
delete()

YES Ambiguous
return value

The getSize() method of the ZipEntry class is not reliable because
it returns -1 when the size of the entry (file) is unknown. It allows an attacker
to forge the field in the zip entry, which can lead to a DoS or data corruption attack.

I/O java.util.zip.Zipentry.
getSize()

YES
Flawed
cryptographic
implementation

Forgetting to call Cipher.doFinal() causes a Cipher object not to flush
the bytes it is holding on to as the object tries to assemble a block for
encrypted text. This will lead to truncated data in the final output.

Crypto javax.crypto.Cipher.doFinal()

YES
Flawed
cryptographic
implementation

After calling Cipher.update(), an inappropriate selection of Cipher.doFinal()
overloaded method (in this case, Cipher.doFinal (byte[] input) instead of
Cipher.doFinal(byte[] output, int outputOffset)) creates
an invalid ciphertext.

Crypto javax.crypto.Cipher.update()

YES
Flawed
cryptographic
implementation

Failing to call Cipher.getOutputSize() does not guarantee the allocation of
sufficient space for an output buffer, thus creating an invalid ciphertext.

Crypto javax.crypto.Cipher.
getOutputSize()

YES
Flawed
cryptographic
implementation

Failing to call CipherOutputStream.close() produces an invalid cipher-
text, which cannot be decrypted into the original text.

Crypto javax.crypto.
CipherOutputStream.close()

YES
Improper
input
validation

Without proper input/argument sanitization, Runtime.exec() is
vulnerable to command injection attacks.

String java.lang.Runtime.exec()

YES
Improper
input
validation

Susceptible to inline command injection attacks without proper
input sanitization.

String new java.lang.ProcessBuilder()

YES
Improper
input
validation

Only using the PreparedStatement class cannot stop SQL injection attacks
if string concatenation is used to build an SQL query.

String java.sql.PreparedStatement.
setString()

YES
Improper
input
validation

Inadequate input sanitization and validation allow malicious users to
glean restricted information using the directory service.

String javax.naming.directory.
DirContext.search()

YES
Improper
input
validation

By using an evil regex, an attacker can make a program enter a
prolonged unresponsive condition, thus enabling DoS attacks.

String java.util.regex.Matcher.
matches()

YES
Improper
input
validation

Without verifying sources, an attacker can make a program write
false/unverified information into log files.

String java.util.logging.Logger.
info()

YES
Disclosure of
sensitive
information

Temporary file deletion by invoking File.deleteOnExit() occurs only in
the case of a normal JVM shutdown, but not when the JVM crashes
or is killed.

I/O java.io.File.deleteOnExit()

YES
Disclosure of
sensitive
information

An implementation with StandardOpenOption.DELETE_ON_CLOSE
may be unable to guarantee that it deletes the expected file when
replaced by an attacker while the file is open. Consequently, sensitive
data may be leaked.

I/O java.nio.file.Files.write()

NO N/A N/A I/O java.io.File.createNewFile()
NO N/A N/A I/O java.io.File.renameto()
NO N/A N/A I/O java.io.InputStream.read()
NO N/A N/A I/O java.util.zip.Zipentry.

getSize()
NO N/A N/A I/O java.io.File.listFiles()
NO N/A N/A Crypto javax.crypto.Cipher.

getOutputsize()
NO N/A N/A Crypto javax.crypto.

CipherOutputStream.close()
NO N/A N/A String java.sql.PreparedStatement.

setString()
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Figure 5: Developers were more likely to solve non-blindspot
than blindspot puzzles. Error bars represent 95% confidence
intervals.

In sum, we collected the following measures from the developers:
(1) responses to puzzles; (2) developer-reported perceptions of puz-
zle difficulty, clarity, familiarity with puzzle functions, and confi-
dence in solving the puzzle; (3) demographic information; (4) pro-
gramming experience and skills, (5) personality traits, and (6) cog-
nitive functioning scores.

Debriefing. All developers were debriefed at the end of the study
about its true purpose and presented with the correct solutions for
each puzzle they had worked on, including the rationale for the
correct answer. The study ended by soliciting feedback about the
study and processing compensation.

3. DATA ANALYSIS AND RESULTS
This section presents the results of the study and the findings that
emerged from the data. We used the statistical software pack-
age STATA 14.0 for data analysis. As described in Section 1, the
study goals were to (1) determine developers’ ability to detect API
blindspots in code and (2) examine the extent to which developer
characteristics affected this capability. In particular, we tested the
following hypotheses:

H1: Developers are less likely to correctly solve puzzles with API
functions containing blindspots than puzzles with innocuous
functions (non-blindspot puzzles).

H2: a: Developers perceive puzzles with API functions con-
taining blindspots as more difficult than non-blindspot
puzzles.

b: Developers perceive puzzles with API functions con-
taining blindspots as less clear than non-blindspot puz-
zles.

c: Developers perceive puzzles with API functions con-
taining blindspots as less familiar than non-blindspot
puzzles.

d: Developers are less confident about their puzzle solu-
tion when working on puzzles with API functions con-
taining blindspots than non-blindspot puzzles.

H3: Higher cognitive functioning (reasoning, working memory,
processing speed) in developers is associated with greater
accuracy in solving puzzles with API functions containing
blindspots.

H4: Higher levels of professional experience and expertise in de-
velopers are associated with greater accuracy in solving puz-
zles with API functions containing blindspots.

H5: Higher levels of conscientiousness and openness, and lower
levels of neuroticism and agreeableness in developers are as-
sociated with greater accuracy in solving puzzles with API
functions containing blindspots.

We used multilevel modeling to test H1 and H2a–d and ordinal
logistic regression to test H3, H4, and H5 (see details below).

The main purpose of our analyses for all hypotheses was to deter-
mine the significance of specific effects (e.g., effect of a given per-
sonality trait on accuracy for blindspot puzzles), rather than iden-
tifying the best model to represent our data. Therefore, we did not
apply a model comparison approach in our central analyses. In the
exploratory analyses in Section 3.1, however, we were interested in
determining the extent to which adding moderators (i.e., API usage
type, cyclomatic complexity) enhanced the fit of our model, com-
pared to the model originally tested under H1. In these instances,
we report relevant goodness of fit indices (Akaike Information Cri-
terion [AIC] and Bayesian Information Criteria [BIC] [8]).

Unless mentioned otherwise, we considered effects with p-values
smaller than 0.05 as significant.

3.1 H1: Puzzle accuracy for blindspot vs. non-
blindspot puzzles
We used multilevel logistic regression to test H1, accommodat-
ing for (1) the hierarchical data structure in which each set of six
puzzles (level-1) was nested within each developer (level-2) and
(2) the dichotomous outcome variable puzzle accuracy (1 = cor-
rect answer, 0 = incorrect answer). The independent variable was
the presence of a blindspot (0 = no blindspot; 1 = blindspot). In
this model, we also considered the random effect of the intercept
to accommodate for inter-individual differences in overall puzzle
accuracy. Presence of a blindspot had a significant effect on puzzle
accuracy (Wald χ2(2) = 20.60, p < .001, Table 2), supporting
H1 that developers were less likely to correctly solve puzzles with
API functions containing blindspots than in those puzzles without
blindspots.

In an exploratory fashion, we examined the extent to which (1) API
usage type (i.e., I/O, Crypto, and String, see Section 2.3) and (2) puz-
zle cyclomatic complexity qualified the observed effect of the pres-
ence of blindspot on puzzle accuracy. The small number of puzzles
in each set limited our capability to examine those two predictors
in a single model. Therefore, we ran these exploratory analyses
in two separate models, one for API usage type and the other for
puzzle cyclomatic complexity. We used Wald tests to determine
the significance of the main effects and interactions. To control for
family-wise type-I error inflation due to multiple dependent mod-
els (i.e., models that share the same dependent variable), we applied
Bonferroni correction for the threshold of the p-value to determine
statistical significance in these exploratory analyses (p < 0.025).

API usage type. We added the categorical variable API usage
type (1 = I/O, 2 = Crypto, 3 = String) and its interaction with
the presence of blindspot as predictors in the model. Both the
AIC and BIC were smaller for this model with the added moder-
ator than for the H1 model (Table 2), suggesting a better good-
ness of fit when adding API usage as a moderator into the model.
The main effect of presence of blindspot was not significant (Wald
χ2(1) = 0.91, p = 0.34), but the main effect of API usage type
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Figure 6: Interaction effect of API usage type and presence
of blindspot on puzzle accuracy. The x-axis shows the three
types of API usage: I/O, Crypto, and String. The y-axis shows
predicted accuracy (predicted probability of correctly solving a
puzzle). Error bars represent 95% confidence intervals after
Bonferroni correction of the p-value.

(Wald χ2(2) = 10.64, p = 0.005) and its interaction with the pres-
ence of blindspot (Wald χ2(2) = 24.81, p < 0.001) was signifi-
cant. As shown in Figure 6, accuracy was higher for non-blindspot
puzzles than for blindspot ones with an API function that involved
I/O. Accuracy was comparable in both non-blindspot and blindspot
puzzles with API functions that involved the other two usage types
(i.e., Crypto, String).

Cyclomatic complexity. We added the categorical variable cyclo-
matic complexity (1 = low, 2 = medium, 3 = high) and its interac-
tion with the presence of blindspot as predictors in the model. Both
the AIC and BIC were smaller for this model with the added moder-
ator than for the H1 model (Table 2), suggesting a better goodness
of fit when adding puzzle cyclomatic complexity as an additional
predictor. The main effect of cyclomatic complexity was not sig-
nificant (Wald χ2(1) = 0.74, p < 0.69), but the main effect of the
presence of blindspot (Wald χ2(1) = 23.95, p < 0.001) and its
interaction with cyclomatic complexity (Wald χ2(2) = 30.1, p <
0.001) was significant. As shown in Figure 7, accuracy was higher
for non-blindspot than for blindspot puzzles at medium cyclomatic
complexity, and, even more pronounced at high cyclomatic com-
plexity. That is, the higher the cyclomatic complexity of the code
in a puzzle containing blindspots, the less likely developers were to
correctly solve the puzzle.

3.2 H2: Developers’ perceptions for blindspot
vs. non-blindspot puzzles
For H2a–d, we again used multilevel modeling to accommodate for
the hierarchical data structure. The dependent variables for H2a–d
were the four continuous rating dimensions (i.e., difficulty, clarity,
familiarity, confidence), respectively, which we submitted to four
separate multilevel regression models to examine the effect of the
presence of blindspot on each of the four rating dimensions. In
each model, we also considered the random effect of the intercept
to accommodate for the inter-individual differences in the overall
ratings for the respective dimension. As shown in Table 3, devel-
opers’ perceptions did not differ as a function of the presence of
blindspot in puzzles. Thus, the data did not support H2a–d.

3.3 H3–5: Cognitive function, technical exper-
tise/experience, and personality traits
For H3, H4, and H5, the number of correctly solved blindspot puz-
zles across the four blindspot puzzles constituted the ordinal out-
come variable blindspot puzzle accuracy, with a range from 0 to 4.
Given this ordinal outcome variable, we conducted ordinal logistic
regressions to test these hypotheses.

For various reasons (e.g., audio recording failure, incompatibility
between the developers’ browser version and our audio record-
ing plugin and survey software), four cognitive measures from the
BTACT (i.e., immediate recall, delay recall, verbal fluency, back-
ward counting) had more than 25% data points missing. These four
measures were therefore not analyzed. In addition, only 80 out of
109 developers had complete data on the Series and Digit-Back
task from the BTACT, and the Oral Symbol Digit Task from the
NIH toolbox. Given this missing data on the cognitive measures,
which would have largely reduced the sample size, and thus power
to detect significant effects, if collapsed across predictor variables
(i.e., the three cognitive measures for H3 as well as the experi-
ence/expertise measures for H4 and the personality traits for H5),
we conducted three separate models for H3, but tested H4 and H5
in one single model. For testing H4 and H5, three measures of pro-
fessional expertise (Years of programming, Technical score, Java
skills) and five personality traits (Agreeableness, Conscientious-
ness, Extraversion, Neuroticism, Openness) served as independent
variables. As all four models (three for the cognitive measures and
one for experience/expertise and personality) referred to the same
dependent variable (i.e., blindspot puzzle accuracy), we applied
Bonferroni correction on the threshold of the p-values (p < 0.008
for H3 and p < 0.025 for H4 and H5).

Cognitive Function. Our analyses pertaining to H3 resulted in
no significant effects for any of the three cognitive measures on
blindspot puzzle accuracy (all ps > 0.10, Table 4). Thus, the data
did not support H3.

Technical Experience/Expertise. As shown in Table 5, none of
the three predictors of experience/expertise predicted blindspot puz-
zle accuracy (all ps > 0.10). Thus, the data did not support H4.

Personality Traits. As shown in Table 5, the effect of openness
on blindspot puzzle accuracy was significant (p < 0.001). That is,
greater openness as a personality trait in developers was associated
with greater accuracy in solving blindspot puzzles. None of the
other personality dimensions showed significant effects (all p >
0.09).

4. DISCUSSION
This section summarizes the study findings, discusses study strengths
and limitations, and offers actionable recommendations.

4.1 Summary of findings
The goal of this study was to examine API blindspots from the de-
velopers’ perspective to: (1) determine the extent to which devel-
opers can detect API blindspots in code with the goal to improve
understanding of the implication blindspots have on software secu-
rity, and (2) determine the extent to which developer characteristics
(i.e., difficulties with code, perceptions of code clarity, familiar-
ity with code, confidence in solving puzzles, developers’ level of
cognitive functioning, their professional experience and expertise,
and their personality traits) influenced developers’ ability to detect
blindspots. We also explored the extent to which API usage cate-
gory and cyclomatic complexity of the puzzles impacted develop-
ers’ ability to detect blindspots.
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Table 2: Effect of presence of blindspot on puzzle accuracy (H1) and results of exploratory analyses on the moderation of API usage
type and cyclomatic complexity on puzzle accuracy.

Hypothesis 1 Expl. Anal. – API Usage Type Expl. Anal. – Cyclomatic Complexity
Fixed Effect O.R. (SE) 95% CI O.R. (SE) 95% CI O.R. (SE) 95% CI
Presence of blindspot

Blindspot 0.44 (0.08) [0.31, 0.63] 0.16 (0.05) [0.09, 0.31] 1.72 (0.55) [0.92, 3.21]
API usage type

Crypto 0.33 (0.13) [0.15, 0.71]
String 0.11 (0.07) [0.04, 0.37]

Presence of blindspot × API usage type
Blindspot × Crypto 9.10 (4.50) [3.45, 23.98]
Blindspot × String 11.35 (7.85) [2.92, 44.04]

Cyclomatic complexity
Medium 1.52 (0.68) [0.64, 3.63]

High 6.88 (2.62) [3.26, 14.53]
Presence of blindspot × Cyclomatic complexity

Blindspot × Medium 0.29 (0.15) [0.10, 0.82]
Blindspot × High 0.02 (0.01) [0.005, 0.08]

Random Effect σ2 (SE) 95% CI σ2 (SE) 95% CI σ2 (SE) 95% CI
Intercept 0.43 (0.20) [0.17, 1.09] 0.72 (0.28) [0.34, 1.52] 0.54 (0.25) [0.22, 1.33]

Goodness of Fit
AIC 824.13 794.63 773.26
BIC 837.58 826.01 804.64

Note. O. R. = odds ratio; SE = standard error; CI = confidence interval. We used robust standard errors to accommodate for the hierarchical data structure.
The reference category is non-blindspot for “presence of blindspot”, I/O for “API usage type”, and low for “cyclomatic complexity”. Bonferroni correction
was applied to p-values in the simple effect analyses for the main effect of API usage type and cyclomatic complexity and the follow-up analyses to counter
inflation of type-I errors due to multiple comparison. Bold indicates significant effects at p < .05.

Table 3: Effect of presence of blindspot on developers’ perception of puzzles.
H2a: Difficulty H2b: Clarity H2c: Familiarity H2d: Confidence

Fixed Effect B (SE) 95% CI B (SE) 95% CI B (SE) 95% CI B (SE) 95% CI

Presence of Blindspot
Blindspot 0.16 (0.14) [-0.12, 0.43] -0.01 (0.12) [-0.25, 0.23] -0.10 (0.15) [-0.40, 0.19] -0.11 (0.13) [-0.36, 0.15]

Random Effect
Intercept 2.27 (0.33) [1.31, 3.01] 2.22 (0.37) [1.61, 3.07] 1.67 (0.32) [1.15, 2.43] 1.72 (0.37) [1.13, 2.60]

Note. B = unstandardized regression coefficient; SE = standard error; CI = confidence interval. The reference category is non-blindspot for “presence of
blindspot”. Bold indicates significant effects at p < .05.

Table 4: Effect of developers’ level of cognitive function on puz-
zle accuracy.
Cognitive Blindspot Puzzles Non-Blindspot Puzzles
Function O.R. (SE) 95% CI O.R. (SE) 95% CI

Reasoning 1.16 (0.17) [0.87, 1.54] 1.31 (0.21) [0.96, 1.80]
Working Memory 1.12 (0.08) [0.97, 1.28] 1.09 (0.11) [0.90, 1.33]
Processing Speed 1.00 (0.01) [0.99, 1.02] 1.01 (0.01) [0.99, 1.03]

Note. O.R.= odds ratio; SE = standard error; CI = confidence interval.
91 developers were included in the analysis for reasoning, 90 for working
memory, and 89 developers for processing speed.

Our results confirmed H1 that developers are less likely to cor-
rectly solve puzzles with blindspots compared to puzzles without
blindspots. This finding suggests that developers experience se-
curity blindspots while using certain API functions. Oliveira et
al. [37] interviewed professional developers and found that they
generally trust APIs. Given this general trust, even security-minded
developers may not explicitly look for vulnerabilities in API func-
tions, with the result that blindspots cause security vulnerabilities.

Our exploratory analyses suggested that the presence of blindspot
particularly impacts accuracy in solving puzzles with I/O-related
API functions, and with more complex programming scenarios (i.e.,
high cyclomatic complexity).

Our data did not support H2a-H2d, that posited developers’ per-
ceptions of puzzle difficulty, clarity, familiarity, and confidence are
associated with their ability to detect blindspots. Our results also
did not support H3 that developers’ level of cognitive functioning
could predict their ability to detect blindspots.

We also found no support for H4 that professional and techni-
cal experience were associated with developers’ ability to detect
blindspots. This finding is in line with research on code review
that showed a developer’s amount of experience does not correlate
with greater accuracy or effectiveness in detecting security issues
in code [16].

Our results partially support H5 as more openness as a personal-
ity trait in developers does appear to be associated with a higher
likelihood to detect blindspots. Openness relates to intellectual cu-
riosity and the ability to use one’s imagination [29]. It is plausible
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Table 5: Effect of developers’ professional expertise and per-
sonality traits on puzzle accuracy.

Factor Blindspot Puzzles Non-Blindspot Puzzles
O.R. (SE) 95% CI O.R. (SE) 95% CI

Professional Expertise
Years of
programming 0.81 (0.70) [0.15, 4.45] 3.47 (2.82) [0.71, 17.06]

Technical expertise 0.93 (0.12) [0.72, 1.19] 1.08 (0.12) [0.87, 1.34]
Java skills 1.11 (0.15) [0.85, 1.45] 0.96 (0.13) [0.74, 1.24]
Personality Traits
Agreeableness 0.95 (0.05) [0.85, 1.05] 0.98 (0.04) [0.90, 1.07]
Conscientiousness 0.97 (0.05) [0.88, 1.07] 0.94 (0.05) [0.85, 1.04]
Extraversion 0.94 (0.04) [0.87, 1.01] 0.99 (0.04) [0.91, 1.08]
Neuroticism 0.93 (0.04) [0.86, 1.01] 0.91 (0.04) [0.83, 0.99]
Openness 1.18 (0.05) [1.09, 1.29] 1.08 (0.04) [0.99, 1.17]

Note. O.R.= odds ratio; SE = standard error; CI = confidence interval. Bold
indicates significant effects at p < .05.

Figure 7: Interaction effect of presence of blindspot and cyclo-
matic complexity (CC) on puzzle accuracy. X-axis shows the
three levels of CC: low (≤ 2), medium (3 – 4) and high (> 4).
Y-axis shows predicted accuracy (predicted probability of cor-
rectly solving a puzzle). Error bars represent 95% confidence
intervals after Bonferroni correction of the p-value.

that detection of security vulnerabilities benefits from a developer’s
ability and willingness to think of different scenarios and program
inputs that might cause a piece of software to generate unexpected
results. None of the other tested personality traits showed any sig-
nificant effect. This finding is in line with previous research [23]
that programming aptitude was not associated with agreeableness
or neuroticism.

4.2 Strengths and limitations
Our work takes a novel approach by analyzing blindspots in API
functions from the developers’ perspective, thereby considering vari-
ables such as perception of code, level of cognitive function, ex-
perience, and personality. This interdisciplinary approach joints
forces from computer science and psychology to understand how
API blindspots cause security vulnerabilities.

A strength of our study was that it used a behavioral approach
in addition to self-reporting by providing developers actual pro-
gramming scenarios and assessing their ability to solve them. Our
study also assessed performance-based cognitive functioning levels
as possible predictors of puzzle accuracy.

Our sample was diverse, comprising 109 developers, made up of
mostly professionals from different countries.For recruitment, we
used snowball sampling [5], which meant participants could refer
other developers. This word-of-mouth technique is often applied
in research, particularly when targeting a specific group of individ-
uals (i.e., developers). It was advantageous in allowing our team
to reach developers we could not have otherwise found using our
standard recruiting techniques (flyers, forums, social media groups,
personal networks). However, it can also introduce bias by reduc-
ing random sampling and adding possible interdependence to the
data. In our study, 41.3% of the participants chose the referral
option with only 8.3% of the referred individuals enrolling in the
study.

We conducted an a-priori power analysis to determine the appro-
priate sample size and number of puzzles needed considering our
factorial design and with regard to our primary study aims. How-
ever, to counter possible fatigue effects, as suggested during the pi-
loting phase of this research, we asked developers to only complete
six puzzles. This resulted in a limited number of observations, thus
not allowing a robust examination of some of the effects (i.e., API
usage type, cyclomatic complexity). Therefore, we conducted ex-
ploratory analysis on these puzzle features to generate preliminary
results, which we hope will spur future research. These prelimi-
nary results suggested that developers’ detection of blindspots was
particularly difficult for puzzles with I/O usage function and with
high cyclomatic complexity. Increasing the number of puzzles each
developer solves would, in future research, enhance the analytic
power and allow a more comprehensive analysis of diverse puz-
zle subtypes. However, to avoid fatigue and attrition, future stud-
ies should focus on a few such categories at a time. For example,
to examine the moderation effect of I/O functions on developers’
ability to detect blindspots, I/O functions could be varied between
puzzles, while keeping cyclomatic complexity and number of pa-
rameters consistent.

Because of compatibility issues between some developers’ browser
versions and our audio recording system software, we were not able
to collect complete cognitive data for all participants. This missing
data reduced the sample size in the analyses pertaining to the cog-
nitive measures, thus reducing power to detect significant effects.
Also, even though the cognitive tasks administered in the present
study are widely used, they may not have been sensitive enough
to differentiate between developers and/or may not have targeted
cognitive processes that are particularly relevant for detection of
blindspots in API functions.

4.3 Recommendations
Our results provide important insights for the software and API de-
velopment community and corroborates aspects of related research
in code review and developers’ perceptions of code. Our data sup-
ports the notion that blindspots in API functions lead to the intro-
duction of vulnerabilities in software, even when used by experi-
enced developers. Given these findings, API designers should con-
sider addressing developers’ misconceptions and flawed assump-
tions when working with APIs to increase code security. For ex-
ample, before release to the public, new or updated API functions
should undergo pilot testing with developers not involved in the
function’s design and implementation. This pilot testing could be
modeled after the approach used in our study. Furthermore, developer-
centric testing should be conducted with existing APIs, so that
misconceptions of specific categories of APIs can be better doc-
umented. In this context, given our preliminary findings regarding
the more pronounced effect of blindspots for I/O-related API func-
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tions, greater effort should be invested in improving the design and
documentation of I/O-related functions, especially considering the
high prevalence of I/O operations in today’s software.

Our data did not provide support for the claim that developers’ abil-
ity to detect blindspots could be associated with their perceptions
of problem difficulty, code clarity, function familiarity, confidence
in their ability to solve code, their experience, expertise, and cogni-
tive functioning, or any tested personality traits, with the exception
of openness. It could be assumed that a developer who is confi-
dent and familiar with the programming scenario and API func-
tions at hand, who has many years of programming experience,
especially with a particular programming language, is cognitively
high functioning, and is self-disciplined (high conscientiousness),
suspicious of situations in general (low agreeableness) and emo-
tionally stable (low neuroticism), would be better in detecting secu-
rity blindspots, and would, consequently, write more secure code.
These assumptions were not supported by our data. Rather, our data
suggests that cognitively high functioning, experienced, confident
developers can still fall for security blindspots. Software security
awareness education may be a useful approach to educate devel-
opers about these risks. Such educational approaches could train
developers not to rely on beliefs and gut feelings when using API
functions. Increased risk awareness could lead to developers asking
themselves more questions about how API function usage may re-
sult in unexpected outcomes, and could motivate them to rely more
on diagnostic tools.

In large software development companies, it has become common
to assign different teams to work on the various aspects of code.
For example, within Google [42, 24], three distinct groups may
work on functionality, security, and privacy aspects of the software
separately. Such a diversified approach has the potential to mini-
mize the introduction of vulnerabilities in code because there will
be a group of developers whose primary task would be to iden-
tify how an adversary can exploit source code and cause security
and privacy breaches. However, not many companies can afford to
hire developers to address security alone. The common rationale
is that all developers should create secure functionality. However,
as discussed in Section 1, and supported by our data, this mindset
maybe misleading. Both of these tasks are cognitively demanding
and thus, one team to address both might be a zero-sum game.

Another practice often applied in companies is to hire an expert
who is highly familiar with security vulnerabilities and has good
knowledge of programming languages to decrease the chance of
code vulnerabilities. Our results suggest that this rationale might
also be misleading, in that even highly experienced, cognitively
high functioning developers experience difficulties in detecting se-
curity blindspots in API functions.

Taken together, our study findings are applicable in the following
areas: (1) design, implementation, and evaluation of new APIs;
(2) addressing of blindspots in legacy APIs; (3) development of
novel methods for developer recruitment/training based on person-
ality assessment; and (4) improvement of software development
processes in organizations (e.g., establishment of separate security
vs. functionality teams).

5. RELATED WORK
Our work intersects the areas of API usability, programming lan-
guage design, and developers’ practices and perceptions of security.
In this section we provide a discussion of related work, and position
our work with respect to these earlier initiatives.

5.1 API usability
Our work falls into the still young, but growing topic of API usabil-
ity, which focuses on how to design APIs in a manner that reduces
the likelihood of developer errors that can create software vulnera-
bilities. A recent article presents an overview of this field [34]. For
example, Ellis et al. [17] showed that, despite its popularity, the fac-
tory design pattern [20] was detrimental to API usability because
when incorporated into an API it was difficult to use.

Most studies of API usability have focused on non-security con-
siderations, such as examining how well programmers can use the
functionality that an API intends to provide. Our work is, thus, a
significant departure from this research direction, although it shares
many of the same methodologies.

Two of the few existing studies on security-related API usability
were conducted by Coblenz et al. [10, 11] and by Weber et al. [61].
Stylos and Clarke [55] had concluded that the immutability fea-
ture of a programming language (i.e., complete restriction on an
object to change its state once it is created) was detrimental to API
usability. Since this perspective contradicted the standard security
guidance (“Mutability, whilst appearing innocuous, can cause a
surprising variety of security problems” [48, 32]), Coblenz et al.
investigated the impact of immutability on API usability and secu-
rity. From a series of empirical studies, they concluded that im-
mutability had positive effects on both security and usability [11].
Based on these findings they designed and implemented a Java lan-
guage extension to realize these benefits [10].

Recent work has investigated the usability of cryptographic APIs.
Nadi et al. [35] identified challenges developers face when using
Java Crypto APIs, namely poor documentation, lack of cryptogra-
phy knowledge by the developers, and poor API design. Acar et
al. [1] conducted an online study with open source Python devel-
opers about the usability of the Python Crypto API. In this study,
developers reported the need for simpler interfaces and easier-to-
consult documentation with secure, easy-to-use code examples.

In contrast to previous work, our study focused on understanding
blindspots that developers experience while working with general
classes of API functions.

5.2 Programming language design
Usability in programming language design has been a long-standing
concern. Initially, most of the related literature was non-empirical,
but empirical studies of programming language design have be-
come more popular. For example, Stefik and Siebert [54] showed
that syntax used in a programming language was a significant bar-
rier for novices. Our work has the potential to contribute to pro-
gramming language design, since our focus is on understanding
security blindspots in API function usage, and the function traits
that exacerbate the problem.

5.3 Developer practices and perceptions of se-
curity and privacy
Balebako et al. discussed the relationship between the security and
privacy mindsets of mobile app developers and company charac-
teristics (e.g., company size, having a Chief Privacy Officer, etc.).
They found that developers tend to prioritize security tools over pri-
vacy policies, mostly because of the language of privacy policies is
so obscure [7].

Xie et al. [66] conducted interviews with professional developers
to understand secure coding practices. They reported a disconnect
between developers’ conceptual understanding of security and their
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attitudes regarding personal responsibility and practices for soft-
ware security. Developers also often hold a “not-my-problem” at-
titude when it comes to securing the software they are developing;
that is, they appear to rely on other processes, people, or organiza-
tions to handle software security.

Witschey et al. [63] conducted a survey with professional develop-
ers to understand factors contributing to the adoption of security
tools. They found that peer effects and the frequency of interaction
with security experts were more important than security education,
office policy, easy-to-use tools, personal inquisitiveness, and better
job performance to promote security tool adoption.

Acar et al. [4] and Green and Smith [27] suggest a research agenda
to achieve usable security for developers. They proposed several
research questions to elicit developers’ attitudes, needs, and priori-
ties in the area of security. Oltrogge et al. [38] asked for developers’
feedback on TLS certificate pinning strategy in non-browser based
mobile applications. They found a wide conceptual gap about pin-
ning and its proper implementation in software due to API com-
plexity.

A survey conducted by Acar et al. [2] with 295 app developers
concluded that developers learned security through web search and
peers. The authors also conducted an experiment with over 50 An-
droid developers to evaluate the effectiveness of different strategies
to learn about app security. Programmers who used digital books
achieved better security than those who used web searches. Recent
research corroborates this finding by showing that the use of code-
snippets from online developer forums (e.g., Stack Overflow) can
lead to software vulnerabilities [3, 18, 59].

Recent studies have investigated the need and type of interventions
required for developers to adopt secure software development prac-
tices. Xie et al. [65] found that developers needed to be motivated
to fix software bugs. There has also been some work on how to
create this motivation and encourage use of security tools. Several
surveys identified the importance of social proof for developers’
adoption of security tools [33, 62, 64].

Research on the effects of external software security consultancy
suggests [43] that a single time-limited involvement of develop-
ers with security awareness programs is generally ineffective in
the long-term. Poller et al. [44] explored the effect of organiza-
tional practices and priorities on the adoption of developers’ secure
programming. They found that security vulnerability patching is
done as a stand-alone procedure, rather than being part of product
feature development. In an interview-based study by Votipka et
al. [60] with a group of 25 white-hat hackers and software testers
on bug finding related issues, hackers were more adept and efficient
in finding software vulnerabilities than testers, but they had more
difficulty in communicating such issues to developers because of a
lack of shared vocabulary.

In a position paper, Cappos et al. [9] proposed that software vul-
nerabilities are a blindspot in developers’ heuristic-based decision
making mental models. Oliveira et al. [37] further showed that se-
curity is not a priority in the developers’ mindsets while coding.
They found, however, that developers did adopt a security mindset
once primed about the topic.

Our work complements and extends previous investigations on the
effect of API blindspots on writing secure code, and in determining
the extent to which developers’ characteristics (perceptions, exper-
tise/experience, cognitive function, and personality) influence such
capabilities.

6. CONCLUSIONS
In this paper, we report the results of an empirical study on under-
standing blindspots in API functions from the perspective of the
developer. We evaluated developers’ ability to perceive blindspots
in a variety of code scenarios and examined how personal charac-
teristics, such as perceptions of the correctness of their answers,
familiarity with the code, years of professional experience, level
of cognitive functioning, and personality, affected this capability.
We also explored the influence of programming scenario charac-
teristics (API usage type, cyclomatic complexity) on developers’
performance in detecting blindspots.

Our study asked 109 developers to work on a set of six naturalis-
tic programming scenarios (puzzles), comprising four puzzles with
blindspots and two without blindspots. Developers were not in-
formed about the security focus of this investigation. Our results
showed that: (1) developers were less likely to correctly solve puz-
zles with blindspots than puzzles without blindspots, with this ef-
fect more pronounced for I/O API functions and complex code sce-
narios; (2) developers’ level of cognitive functioning and (3) their
expertise and experience did not predict their ability to detect blind-
spots; however, (4) those who exhibited more openness as a person-
ality trait did show a greater ability to detect blindspots.

Our findings have the potential to inform the design of more se-
cure APIs. Our data suggests that API design, implementation, and
testing should take into account the potential security blindspots de-
velopers may have, particularly when using I/O functions. Further,
our findings that experience and cognition may not predict develop-
ers’ ability to detect blindspots, suggest that the emerging practice
of establishing separate functionality vs. security teams in a given
project may be a promising strategy to improve software security.
This strategy may also constitute a more cost-effective paradigm
for secure software development than solely relying on one group
of experts, expected to simultaneously address both functionality
and security.
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