
Understanding Why and Predicting When
Developers Adhere to Code-Quality Standards

Manish Motwani§ and Yuriy Brun
University of Massachusetts

Amherst, Massachusetts 01003-9264, USA

{mmotwani, brun}@cs.umass.edu

Abstract—Static analysis tools are widely used in software
development. While research has focused on improving tool
accuracy, evidence at Microsoft suggests that developers often
consider some accurately detected warnings not worth fixing:
what these tools and developers consider to be true positives
differs. Thus, improving tool utilization requires understanding
when and why developers fix static-analysis warnings.

We conduct a case study of Microsoft’s Banned API Standard
used within the company, which describes 195 APIs that can
potentially cause vulnerabilities and 142 recommended replace-
ments. We find that developers often (84% of the time) con-
sciously deviate from this standard, specifying their rationale,
allowing us to study why and when developers deviate from
standards. We then identify 23 factors that correlate with devel-
opers using the preferred APIs and build a model that predicts
whether the developers would use the preferred or discouraged
APIs under different circumstances with 92% accuracy. We also
train a model to predict the kind of APIs developers would
use in the future based on their past development activity, with
86% accuracy. We outline a series of concrete suggestions static
analysis developers can use to prioritize and customize their
output, potentially increasing their tools’ usefulness.

Index Terms—developer-centered static analysis, tools and
environments, empirical software engineering

I. INTRODUCTION

Static code analysis is an efficient way to identify software

bugs by reasoning about runtime behavior without executing

the code. Static analysis tools (SATs) are widely used in both

commercial closed-source [9], [51], [66] and open-source [5],

[21] development. At Microsoft, teams use SATs to monitor

adherence to a variety of code-quality standards, employing

engineers to continually improve SATs with state-of-the-art

methods. However, studies show that developers tend to fix

only a small fraction of the bugs reported by SATs [27], [43].

The common view is that the frequent false-positive warnings

these tools report is one of the main reasons developers under-

utilize the tools [22], [35], [43], [55], [71]. Accordingly, a large

research effort [14], [23], [24], [31]–[33], [64], [83], [85] has

focused on methods for increasing SATs’ accuracy. However,

anecdotal evidence at Microsoft shows that developers often
find true-positive warnings not worth fixing. At Microsoft,

teams typically designate developers to analyze a SAT’s warn-

ings to select the ones worth fixing. Other developers then

either fix the warnings, or explicitly label them as “won’t

§Work completed during an internship with Microsoft’s 1ES Security Tools
Group.

fix”, stating their rationale. When we presented a product

team with a 95%-accurate SAT for detecting deviations from

an important code-quality standard, the team considered only

∼45% of the tool’s true-positive warnings as worth fixing.

Analyzing why the team made these choices, we found that

teams often consider fixing warnings in non-production code

(e.g., tests) and code not targeting a current ship cycle, as not

worth their effort. Further, in some cases, fixing a warning

may degrade performance, and so teams elect to violate the

standard, but mitigate the associated risks by code reviews and

extra safety checks. These observations suggest that making

SATs more accurate may not be sufficient to achieve a desired

fix rate. In essense, what the teams consider to be true positives

differs from what SAT designers traditionally have.

The central goal of this paper is understanding when
and why development teams fix SAT warnings, and

developing models that accurately predict whether

warnings are worth bringing to the developers’ atten-

tion. These contributions can then lead to concrete sug-

gestions for SAT designers to improve SAT utilization,

complementing existing, accuracy-based methods.

Representing the first tangible step toward that goal, this

paper performs a case study on a single code quality standard

and a single SAT (both used at Microsoft), and develops a

machine-learning-based approach for predicting which SAT

warnings the developers fix. At Microsoft, teams follow Mi-

crosoft’s Security Development Lifecycle (SDL) process [48],

which consists of a set of practices to develop secure and

compliant software. Our study uses Microsoft’s Banned API

Standard [25], [63], which is part of SDL, and sarif-pattern-

matcher [50], which is one of several SAT solutions [49]

developed at Microsoft to detect potential violations. (Note

that the standard’s name is a misnomer. In practice, today,

the APIs it describes are merely discouraged rather than

banned completely from use. Developers are expected to make

reasoned decisions on API use, and, as this paper describes,

there exist contexts in which the use of these discouraged APIs

is, in fact, acceptable.) The Banned API Standard describes

195 discouraged APIs, which are known to sometimes be

unreliable and can cause software vulnerabilities, and 142 pre-

ferred C/C++ APIs, which are recommended replacements for

the discouraged ones, For example, the standard recommends

432

2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

2832-7659/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-SEIP58684.2023.00045

using strcpy_s, instead of strcpy as the latter can result

in buffer overflows [12].

Banned API Standard and sarif-pattern-matcher are well-

suited for our study for three reasons:

First, sarif-pattern-matcher is highly accurate for this stan-

dard. It is developed by Microsoft software quality assurance

experts and has very few false positives, and properly hides

warnings in natural language and in commented-out source.

Improving the accuracy of SATs is orthogonal (but comple-

mentary) to our study’s goals, making this standard with an

existing accurate SAT a good case study candidate.

Second, a large number of teams at Microsoft are expected

to follow this standard. Our analysis of 119,869 repositories

finds that 9,021 repositories use the Banned API Standard

(the main limiting factor is the standard’s applicability only

to C/C++). As violating the standard is known to cause

critical security vulnerabilities [72], teams consider the

standard very seriously. Our analysis is limited to 162 of

the 9,021 repositories that are actively maintained, have at

least 100 source files and 1,000 commits, and have more

contributions from internal Microsoft developers than external

open-source developers. These 162 repositories have code

contributions from around 15,000 developers, and belong to

49 projects from 15 diverse teams at Microsoft.

Third, developers surprisingly often (84% of the time)

chose to deviate from this standard and use discouraged

APIs, with justification, providing ample opportunities to

understand developer reasoning. In the 162 repositories, we

detected 479,987 discouraged and 93,663 preferred API usages

(573,650 total) associated with 3,137 developers.

This observation suggests that the vast majority of the warn-

ings sarif-pattern-matcher reports, despite seemingly being

true positives, in fact, do not result in code improvements.

These uses of discouraged APIs enable us to understand de-

veloper reasoning toward improving the SAT. The developers

make their decisions based on assessed risk, the availability of

a safe API alternative, and the complexity of correctly using

that API. For example, we find that teams tend to adhere to

the standard more in code that is under active development

and less in code borrowed from other projects. When reusing

legacy code with discouraged APIs, developers elect to im-

plement additional safety checks rather than reimplementing

that legacy functionality using preferred APIs. Further, teams

use preferred APIs more in non-test code and source files that

involve more editing and have multiple contributors. With the

goal of understanding such intricacies of API usages toward

improving SAT design, we identify and analyze 25 factors

that encode the circumstances in which teams implement

code-quality standards. We use these factors to model and

predict warning usefulness. This can allow SATs to prioritize

and customize their warnings by considering the development

context, improving their utility in the development process.

While our analysis focuses on this one standard, the method-

ology we describe should generalize to other code-quality stan-

dards and SATs, as both the methodology and the 25 factors

are agnostic of the standard.

To make our study possible, we extend sarif-pattern-matcher

to also detect preferred API call sites, to trace relevant

developer information, and to perform temporal analysis. In

addition to analyzing the 162 repositories, we do a deeper,

temporal case study on one repository over a 10-year span.

We answer three research questions:

RQ1: What factors correlate with development teams’ adher-

ence to the Banned API Standard?

Answer: Complexity of the project, work environment,

whether the code was under active development or non-

shipping, developer’s coding experience, and whether a

developer is an internal or an external employee.

RQ2: Can the correlated factors predict adherence to the

Banned API Standard?

Answer: An artificial-neural-network (ANN)-based

model can predict whether development teams will use

preferred or discouraged APIs with 92% accuracy.

RQ3: Can development team’s past activity, encoded in terms

of correlated factors, predict future standard adherence?

Answer: An ANN-based model trained on past behavior

can predict whether team will use preferred or discour-

aged APIs in the future with 86% accuracy.

SATs designed to detect usage of specific APIs can use these

prediction models to prioritize and customize their warnings,

improving utilization. Our findings drive our concrete recom-

mendations for improving SATs:

1) SATs can prioritize the warnings the developers are more

likely to address. For example, our analysis showed

that developers are more likely to address violations in

production code, and for some operations (e.g., stream

buffering) than for others (e.g., memory copy), often for

performance reasons. By prioritizing violations devel-

opers are likely to fix, SATs can ensure developers see

more of the warnings they will act on, earlier.

2) SATs can customize warnings to include suggestions on

how to address them, to improve developer compliance.

For example, our analysis found that for discouraged

APIs in reused legacy code, developers often opted to

add safety checks instead of replacing those APIs.

3) SATs can customize warning content based on who is

using them. Our analysis showed that more experienced

developers used more preferred APIs and may need

only a simple prompt to fix discouraged APIs. However,

novice developers may need to see more context about

the associated risks and potential solutions. A SAT

can also suggest code reviews when it believes other

developers would fix a warning left unfixed.

4) Team culture plays an important role in API use, which

can help customize SATs. For example, SATs could raise

an alarm if a team fails to follow a standard when other

teams likely would have, or allow a team to consciously

limit the warnings to those of the highest priority.

II. BACKGROUND

SATs reason about program behavior without running the

program. They typically combine different kinds of analy-

433

Repository
Database

Developer
Database

Annotated
Repositories

Define Code-
Quality Standard

Identify factors that
could affect

developers’ behavior

Step-1 Step-2

Step-3

Manual

Automated
Correlated factors

Step-4

Predict developers’
behavior using
correlated factors

Step-5

Static analysis tools
used by developers

Fig. 1: End-to-end methodology to determine what factors could influence development teams’ adherence to code-quality

standards and to predict this behavior from the identified factors.

ses that consist of independent rules. Each rule describes a

requirement that correct, high-quality code should meet. A

set of rules constitutes a code-quality standard. If the tool

encounters code that violates a rule, it reports a warning. It is

up to the developer to decide whether the warning is real and

worth addressing. In practice, SATs can detect software bugs

and vulnerabilities that range from purely syntactic ones [26]

to complex semantic ones that can be used to perform pro-

gram optimization [2] and fix security vulnerabilities [65].

However, the warnings produced by SATs are often coarse-

grained because they over-approximate program behavior to

encompass all possible inputs [44]. To address this, researchers

have explored the kinds of bugs that SATs can accurately

detect [22], [75] and the kinds of bugs developers tend to

fix, along with the time they take to fix them [27], [43], [45],

and methods to suggest automated fixes [40], [45].

Even though SATs provide several benefits, there exists

ample evidence that these tools are underutilized by develop-

ers [27], [40], [43]. A lack of accuracy (i.e., a high percentage

of false-positive warnings) and the manual effort required

for comprehending warnings to identify bugs that are worth

fixing are the two main issues that complicate the adoption

of SATs [43], [71]. Accordingly, a large research effort has

focused on methods for increasing SATs’ accuracy [14], [23],

[24], [31]–[33], [64], [83], [85]. These approaches consider

different aspects of a SAT’s warning, including factors related

to source code [23], [39], [85], repository history [80], and his-

torical data about fixing warnings [34] to detect true-positive

warnings. Further, researchers have also proposed ways to

automatically generate the fixes for the true-positive warn-

ings [40], [44]. A recent study, which is closest to our work,

investigates how developers use SATs in different development

contexts defined in terms of the coding activity (e.g., code

review, local programming, continuous integration), types of

SAT warnings (e.g., naming convention, logic, concurrency),

and whether developers update the configuration of SATs [77].

Their findings aim to produce novel automated strategies to

help developers pay attention to the right warnings depending

on the context they are in. Our proposed approach to help SATs

prioritize their true-positive warnings considering factors that

influence developers’ decision to act on them complements

these existing studies.

III. METHODOLOGY

Figure 1 shows our study’s five-step methodology.

Step-1: Enumerate factors that may influence development
teams’ adherence to code-quality standards. To identify the

factors that can be objectively measured and could influence

development teams’ adherence to code-quality standards in a

general software development setting, we analyzed (a) what

SATs Microsoft teams use in their workflow, (b) the infor-

mation available about developers in Microsoft’s developer

database, and (c) the meta-data of 119K+ repositories stored

in Microsoft’s repository database. We also considered the

23 “Golden Features,” the most important features for de-

tecting actionable warnings identified by Wang et al. [78] by

performing a systematic evaluation of the features (or factors)

that have been proposed in the literature to improve SAT’s

accuracy. Figure 2 shows the 25 factors our analysis identified

along with their computation method. To help the reader,

we sort these factors into three categories — developer, code

base, and quality standard — based on the information sources

used to derive the factor. In general, these factors measure

developers’ expertise, the complexity of development tasks,

work environment, and development teams’ motivation for

adhering to a code-quality standard. Note that the process

of identifying these factors and the factors themselves are

agnostic of the Banned API Standard, and thus can generalize

to other standards and SATs. Further, note that all of the

25 factors may/may not affect developers’ adherence to a

selected standard. In Step-4, we describe how to identify the

factors that are associated with the standard of interest.

Step-2: Define code-quality standard, extend SAT to detect
bugs and fixes along with their authors, and compute
factors. To perform the analysis, we first had to define a

code-quality standard that can be verified using a SAT. This

involves carefully crafting rules (code patterns) to accurately

detect code that adheres to or deviates from the code-quality

standard. Currently, SATs only use rules to detect the violation

434

Factor Description Computation Method Data Type

Factors Derived from Developer Information
CareerStageName designation of the developer computed from developer database categorical
YearsOfMSExperience number of years developer has worked at Microsoft (exclud-

ing the duration between the time when a developer left and
rejoined the company)

computed using developers leaving and
joining (or re-joining) dates

numerical

EmployeeLevel position of developer in organization hierarchy (CEO is 1 and
other junior employees have higher values)

computed from developer database numerical

JobTitleName job category that classifies developer’s designation (e.g., Ser-
vice Engineering, Software Engineering, Program Manage-
ment, Technical Delivery)

computed from developer database categorical

StandardTitle type of role within a job category that a developer is occu-
pying (e.g. Senior Service Engineer, Software Development
Engineer, Consultant)

computed from developer database categorical

AuthorChurn a developer’s code churn in a repository. This varies from
[−1, 1] and negative value indicates that developer rewrites
her code more often.

(LOCi−LOCd)/(LOCi+LOCd) where
LOCi and LOCd denote the lines of code
inserted and deleted by a developer, respec-
tively

numerical

WorkLocation country where the development team is located computed from developer database categorical
Department department (e.g., Canvas SKI Eng) to which developer be-

longs
computed from developer database categorical

ProjectType type of the project (e.g., OCAS Word) assigned to developer computed from developer database categorical
ProjectName project (e.g., OCAS-Word iOS/Mac) assigned to developer computed from developer database categorical
IsInternalMSEmployee whether developer is an internal (true) or external (false)

Microsoft employee
computed from developer meta-data dichotomous

EmployeeType whether a developer is full-time employee, contract-based
vendor, or other (e.g. intern)

computed from developer meta-data categorical

Factors Derived from Code Base Information
SourceLOC number of source code lines in a source file excluding

comments
implemented sarif-pattern-matcher module
to parse source files and count lines exclud-
ing comments

numerical

RepoLOC number of source code lines in a repository excluding com-
ments

implemented sarif-pattern-matcher module
to count the lines of code in all source files
in repository

numerical

FileChurn how often the source file is modified by developers. This
varies from [0, 1] and lower value indicates that file is
modified more often.

abs(LOCi − LOCd)/(LOCi + LOCd)
where LOCi and LOCd denote the lines
of code inserted and deleted in a source file,
respectively

numerical

SourceIntermittentChanges Number of developers who have contributed to a source file
prior to a given commit

computed by parsing the commit history of
source file to identify distinct developers

numerical

TeamSize number of peers of a developer who report to same manager computed using developer database numerical
RepositoryOrganization the product umbrella to which a repository belongs (e.g.,

office)
obtained from repository database categorical

RepositoryProject the project (within a product umbrella) to which the repository
belongs (e.g., OC, OE under office)

obtained from repository database categorical

Repository the code base to which a developer contributes and imple-
ments code quality standards (e.g., Office-Performance-HUD
under OE)

obtained from repository database categorical

IsTestCode whether the source file is a test code (true) or not (false) computed by parsing and matching patterns
in the source file enlistment path

dichotomous

IsActiveCode whether the source file is under active development (true) or
an external dependency (false)

computed by parsing the commit history.
An active source file should have at least
one commit that involves non-zero inser-
tions/deletions that are less than the total
LOC of the file.

dichotomous

Factors Derived from Quality Standard Information
RuleType conceptual topic to which a code-quality standard rule belongs

(e.g., APIs in Banned API Standard related to string copying)
manually analyzed quality standard rules to
categorize them into conceptual topics

categorical

QualityStandardApplicability prevalence of distinct code-quality standard rules in a repos-
itory

fraction of #distinct rules detected and total
#rules defined in the quality standard

numerical

QualityStandardDensity prevalence of code-quality standard in a repository fraction of #rules detected and total LOC numerical

Fig. 2: Factors that can influence development teams’ adherence to code-quality standards.

of rules. However if code does not violate any rule, that does

not imply that it follows all rules because it is possible that

the code may not implement any quality standard rule. Thus,

there is a need to create rules to explicitly detect code that

does follows the quality standard, but this can be challenging

for complex quality standards. Further, we need to extend SAT

to trace the developers who violated or adhered to the quality

standard rules to compute factors.

The Banned API Standard [25], [63] describes 195 discour-

aged APIs and 142 preferred APIs used as a replacement

435

for the discouraged APIs. The discouraged APIs are known

to, in some situations, cause severe vulnerabilities, such as

remote code execution, local elevation of privilege, arbitrary

code execution, and system compromise. Therefore, all devel-

opment teams are recommended to use the preferred APIs,

wherever applicable. For example, the standard recommends

using strcpy_s, wcscpy_s, _mbscpy_s, instead of

strcpy, wcscpy, _mbscpy, respectively, which can

cause buffer overruns.

We extended sarif-pattern-matcher [50], Microsoft’s open-

source SAT solution for detecting deviations from the Banned

API Standard in three ways. First, we augmented the exist-

ing set of rules that detect discouraged API use with new

rules to detect preferred APIs. This required creating regular-

expression-based patterns with criteria to minimize false pos-

itives (e.g., excluding API detection in commented out source

code and natural language code comments). Second, using

Git blame [13], we identified the developer who used the

detected preferred or discouraged API. Third, we performed

historical, temporal scanning of a code base for a given time

duration (specified using a start and end dates) at a given

fixed time interval. Finally, with help of an Microsoft data

mining expert, we mined developer and source code metadata

from the developer and repository databases using the Kusto

query language [11] to compute the 25 factors (recall Figure 2)

associated with each detected API use and annotated the API

use with the computed factors. As developer behavior can

change over time, we computed these factors at the instant

the developers used the detected API, approximated with the

time-stamp of the containing commit.

Step-3: Execute sarif-pattern-matcher to identify repos-
itories of interest. We executed sarif-pattern-matcher on

119,869 repositories, which include large product repositories,

such as Microsoft Windows, Microsoft Office, Skype, and

Bing, as well as small prototype repositories. sarif-pattern-

matcher found 9,021 repositories that use at least one of the

337 APIs defined by the Banned API Standard. From the

9,021 repositories, we selected the 162 repositories that have:

(1) at least 100 #source files (to ensure that it is not a toy repos-

itory), (2) at least 1,000 #commits (to ensure that repository

has sufficient development history), (3) more contributions

from internal Microsoft developers than the external open-

source developers (to ensure that majority of developers know

about the Banned API Standard), and (4) an associated product

or service that is under active development or maintenance (to

ensure that repository is not deprecated). These 162 reposito-

ries have contributions made by more than 15,000 developers

and belong to 15 diverse product teams at Microsoft. sarif-

pattern-matcher detected a total of 573,651 (93,675 preferred

and 479,976 discouraged) API usages in these 162 repositories

from 3,302 developers. We next annotated each API usage

with all the factors (recall Figure 2). While annotating, we

found that values for many developer-specific factors, such

as CareerStageName, EmployeeLevel, and Department, were

either marked as “unknown” or stored in private repositories

Factor # of Distinct Values
all cases complete cases

CareerStageName 15 13
YearsOfMSExperience 36 31
EmployeeLevel 9 5
JobTitleName 19 10
StandardTitle 62 16
AuthornChurn 1,278 463
WorkLocation 20 11
Department 241 142
ProjectType 531 86
PositionName 260 154
IsInternalMSEmployee 2 1
EmployeeType 3 1
SourceLOC 3,299 1,419

RepoLOC 161 91
FileChurn 1,105 788
SourceIntermittentChanges 79 68
TeamSize 49 40
RepositoryOrganization 15 12
RepositoryProject 49 26
Repository 162 91
IsTestCode 2 2
IsActiveCode 2 2
RuleType 19 18
QualityStandardApplicability 82 61
QualityStandardDensity 36 24

Fig. 3: Diversity in terms of distinct values for factors in the

annotated dataset of 162 repositories that contain 573,651 APIs

defined by the Banned API Standard. “All Cases” shows the

diversity in all of the annotated APIs while “complete cases”

shows the diversity in 27,136 subset of APIs for which all of

the factors are annotated successfully.

to which we did not have access. Figure 3 (“all cases”) shows

the diversity, in terms of the number of distinct values obtained

for each factor after annotating the 573,651 API usages.

Figure 3 “complete cases” shows the diversity of factors in

the 27,136 subset of API usages for which all of the factors

were annotated successfully. While conducting the statistical

analysis, as described in Step-4, we considered the API usages

for which the required factors were annotated successfully.

While conducting the prediction analysis, as described in Step-

5, we used complete cases of the annotated dataset, which

contains sufficient data to conduct the analysis.

Step-4: Empirically measure which factors correlate with
development teams’ adherence to the code-quality stan-
dards. We represented development teams’ choice to use a

preferred or discouraged API as a binary dependent variable.

Numerically, we used “1” for “preferred” and “0” for “discour-

aged”. Depending on each factor’s data type (see Figure 2),

we measured its correlation with development teams’ choice

of preferred or discouraged APIs using the appropriate non-

436

parametric statistical tests, which do not make any assumptions

on the underlying distribution of the data.

For each categorical or dichotomous factor, we created

a n × 2 contingency table where n represents the number

of distinct values the factor can take. For each value, the

table contains the distribution of preferred and discouraged

API usage by developers. We then ran a Chi-Square test of
independence [46] on the contingency table to see if the de-

velopment teams’ choice to use preferred or discouraged APIs

is independent of that factor. The Chi-Square test computes

a p-value (p) that indicates whether our null hypothesis (a

developers choice to use a preferred or discouraged APIs

is independent of the factor) should be rejected. For each

numerical factor, we split the distribution of that factor’s

values into two distribution samples: (1) the distribution of the

factor’s values for which developers used preferred APIs, and

(2) the distribution of the factor’s values for which developers

used discouraged APIs. We used Mann-Whitney U test [47],

which measures rank biserial correlation [19] to determine

if the difference between the two distribution samples was

statistically significant. That is, the test computes a p-value (p)

that indicates whether our null hypothesis (the two distribution

samples are statistically indistinguishable) should be rejected.

If the two distribution samples are statistically distinguishable,

it indicates that the development teams’ adherence correlates

with that factor.

We used the standard criteria for statistical significance,

p ≤ 0.05, to mean the factor correlates with development

teams’ adherence, and p > 0.1 to mean the factor does

not correlate. We also computed the effect size (es) i.e., the

strength of the correlations using Cramèrs’ V [42] for categori-

cal and dichotomous factors, and Somers’ D [57] for numerical

factors. While Cramèrs’ V ∈ {0, 1}, Somers’ D ∈ {−1, 1}.

As per Gignac et al. [18], we mapped effect size values to

adjectives: very weak (|es| < 0.1), weak (0.1 ≤ |es| < 0.2),

moderate (0.2 ≤ |es| < 0.3), and strong (0.3 ≤ |es|). To verify

that correlations observed were not arbitrary, we computed

the 95% confidence interval (CI) that tells us the range of

the effect size with 95% confidence. We therefore considered

correlations to be statistically significant when p ≤ 0.05 and
95% CI does not span 0.

Step-5: Predict adherence to the code-quality standard
from correlated factors. We formulated the problem of

predicting development teams’ adherence to the code-quality

standard from correlated factors as follows: Let F1, F2, ..., Fn

represent the n independent factors that influence development

teams’ adherence to the quality standard, and let y represent

the binary dependent variable indicating whether the team ad-

hered to (y = 1) or deviated from (y = 0) the quality standard.

Our goal was to compute a function f(F1, F2, ..., Fn) that

evaluates to P (y = 1), which is the probability that a team

will adhere to the quality standard. In the case of the Banned

API Standard, P (y = 1) represents team decides to use a

preferred API.

To solve this problem, we experimented using the logistic

X W1 W2 W3 W4 Y

h1 h2 h3 h4

Where:

s X : bs x n

W1 : n x 256

batch size (bs) = 64 W2 : 256 x bs

#factors (n) = 23 W3 : bs x 128

h1, h3: hidden dense W4 : 128 x 2

h2, h4: hidden dropout Y : bs x 2

Fig. 4: The architecture of the artificial neural network model

used to predict development teams’ adherence to code-quality

standards for given factors. “bs” and “n” denote the batch size

and the number of factors used for prediction, respectively.

regression and artificial neural network (ANN) [73] models,

and found that ANN performed better than logistic regression.

We trained and evaluated a five-layer ANN model consisting

of four hidden layers (h1 and h3 as dense while h2 and h4

as dropout layers) and one output layer that used non-linear

factor combinations of sigmoid and relu functions to learn

and predict adherence to the Banned API Standard. We used

sigmoid for the outermost hidden layer because its output

is a value between 0 and 1, making it useful for binary

classification; we used relu for inner hidden layers because

the fast computation made the model more efficient. Figure 4

shows the model’s architecture, along with its parameters

and the non-linear functions it uses. The model’s input is a

matrix whose columns represent multiple factors and each

row represents a development context (encoded in terms of

the factors) in which teams used preferred or discouraged

APIs. The model combines multiple factors using non-linear

functions to compute the output matrix that contains the

probability that a team would use a preferred API for each

row of the input matrix. The model used supervised learning

with a training and a test phase. During the training phase, the

model took as input both the input matrix and the expected

team choice to use a preferred or discouraged API (ground
truth), and learned the parameters (values of hidden layers) to

predict the ground truth from the given factors. To ensure that

the model did not over-fit on the training set, it was validated

on a fraction of the training set (i.e., the validation set) that was

not used for learning. If a model’s accuracy on the validation

set started to decrease, it starts to over-fit on the training set.

The model was trained until the max number of epochs were

reached or the model started to over-fit. During the test phase,

the trained model took as input only the matrix and output

the probability of teams’ choice to use preferred (P (y = 1))
or discouraged (P (y = 0)) APIs for each row in the input

matrix. We considered P (y = 1) > 0.5 to imply that a team

will use a preferred API.

437

We evaluated the ANN model under the following two sce-

narios: (1) Analysis over code bases. This scenario considered

the dataset of annotated API usages from all 162 repositories

and used uniform random sampling to create training and test

sets that were representative of all repositories. (2) Analysis
across time. This scenario considered the dataset of annotated

API usages detected from the case study repository at fixed

time intervals (15 days) starting from July 15, 2011 and ending

on Sept 30, 2021. (Our analysis uses fixed time intervals

instead of every commit for performance reasons. Analyzing

every commit over 10 years would require executing the SAT

on ∼25, 000 revisions; our analysis handled ∼2, 400 revi-

sions.) The training set consisted of annotated API usages

detected before April 30, 2020, and the test set consisted of

API usages detected on or after April 30, 2020. The model

learned from the development team’s past API usage to predict

their behavior in terms of using preferred or discouraged

APIs in the future. The hyper-parameters used for training the

models were: batch size = 64; validation split = 0.3; decaying

learning rate (lr) starting from 0.001 and decaying by a factor

of 0.1; dropout rate (h2) = 0.4; dropout rate (h4) = 0.3; loss

function = binary cross entropy; optimizer = adam.

IV. EVALUATION

This section answers three research questions about the de-

velopers’ adherence to the Banned API Standard, first describ-

ing the dataset and metrics used to answer these questions.

A. Dataset

Correlation Analysis. To identify correlations between

each factor and development teams’ adherence to the Banned

API Standard, we used the dataset of 573,651 API usages in

162 repositories annotated with 25 factors listed in Figure 2.

As not all APIs could be annotated with all the factors (recall

Step-3 in Section III), to analyze the correlation between a

factor and development teams’ adherence to the Banned API

Standard, we used a subset of the API usages that could be

annotated with that factor. While presenting correlation results,

we present the distribution of preferred and discouraged API

usages annotated with that factor.

Prediction over code bases. To make predictions about

development teams’ adherence to Banned API Standard, we

used the subset of 27,309 API usages that could be annotated

with all 23 of the correlated factors (with > 1 distinct

values in Figure 3 (“complete cases”) and with p < 0.05 in

Figure 5). We split this dataset into a training set consisting of

19,117 API usages (∼70%) and a test set, which consisting of

8,192 API usages (∼30%). To do this, we randomly sampled

the API usages from each class (preferred and discouraged)

to ensure that the overall class distribution (∼20% preferred

and ∼80% discouraged) was preserved in the training and

test sets. To prevent classification bias, we used the Synthetic

Minority Oversampling Technique (SMOTE) [10], a technique

to balance training sets, to balance the distribution of preferred

and discouraged APIs in the training set. This increased the

training set size from 19,117 to 27,545 with ∼43% preferred

and ∼57% discouraged API usages. Note that it is challenging

for techniques like SMOTE to exactly balance the distribution

of the two kinds of API usages. To address the remaining slight

imbalance, we used additional evaluation metrics, as described

in Section IV-B, to assess the performance of trained models.

Prediction across time. To make predictions about develop-

ment team’s use of preferred or discouraged APIs in the future

using the factors that encode their past API usage, we use the

case study repository that has been under active development

since July 5, 2011. We used sarif-pattern-matcher to scan this

repository at an interval of 15 days starting from July 15, 2011

to Sept 30, 2021. For each time-stamp, the API usages detected

by sarif-pattern-matcher were annotated with the factor values

computed for that time-stamp, as these values can change over

time. sarif-pattern-matcher detected a total of 199,872 API

usages (143,287 discouraged and 56,585 preferred) across

170 timestamps. We split the dataset into before/after a single

timestamp of April 30, 2020, such that all annotated API

usages before this date comprise the training set and all

usages on or after the selected date comprise the test set. This

resulted in 140,188 API usages (∼70%) in the training set and

59,684 (∼30%) in the test set. As many of the factors remain

constant for a single repository, for this analysis we used

the 7 factors (“AuthorChurn”, “SourceLOC”, “IsActiveCode”,

“IsTestCode”, “RuleType”, “FileChurn”, and “SourceIntermit-

tentChanges”) that change more frequently over time along

with the path of source files. Finally, we used SMOTE [10]

to balance the distribution of preferred and discouraged API

usages that resulted in a training set of 283,150 API usages

with ∼43% preferred and ∼57% discouraged APIs.

B. Evaluation Metrics

To measure correlation between individual factors and de-

velopment teams’ adherence to the Banned API Standard,

we use the p-value, effect size, and 95% CI computed for

that factor using appropriate statistical tests (see Step-4 in

Section III). We consider a correlation to be statistically

significant if p < 0.05 and 95% CI does not span 0. We

evaluate prediction models using the following metrics.

1) Accuracy: The ratio of correct predictions to all predic-

tions (note that predicting adherence is equally important

as predicting deviation for improving SAT’s utilization).

2) 95% CI: The range of Accuracy with 95% confidence.

3) AUC-ROC: Area under the ROC curve, which gives the

average accuracy of correctly predicting preferred API

usages and discouraged API usages. This varies from 0

to 1, where 1 corresponds to 100% accuracy. A value

between 0.7 to 0.8 is considered acceptable, 0.8 to 0.9

is excellent, and more than 0.9 is outstanding [41].

4) Confusion Matrix: A matrix to visualize the model

predictions and analyze the errors.

C. Results

RQ1: What factors correlate with development teams’
adherence to the Banned API Standard?

438

Overall Distribution Correlation
Factor preferred discouraged r 95% CI p

CareerStageName� 20, 175 116, 592 0.058 [0.051, 0.068] ε
YearsOfMSExperience⊕ 50, 657 245, 438 0.068 [0.062, 0.074] ε
EmployeeLevel⊕ 72, 069 356, 884 −0.104 [−0.108,−0.099] ε
JobTitleName� 69, 120 352, 176 0.080 [0.077, 0.083] ε
StandardTitle� 69, 092 351, 920 0.147 [0.144, 0.150] ε
AuthorChurn⊕ 80, 243 428, 150 −0.109 [−0.113,−0.105] ε
WorkLocation� 9, 779 54, 943 0.204 [0.189, 0.220] ε
Department� 9, 543 53, 330 0.447 [0.438, 0.463] ε
ProjectType� 22, 451 109, 393 0.367 [0.361, 0.377] ε
ProjectName� 23, 190 136, 527 0.407 [0.403, 0.417] ε
IsInternalMSEmployee� 93, 663 479, 946 0.025 [0.023, 0.028] ε
EmployeeType� 9, 793 55, 368 0.009 [0.001, 0.022] 0.141
SourceLOC⊕ 93, 073 473, 892 −0.018 [−0.022,−0.015] ε
RepoLOC⊕ 93, 675 479, 976 −0.064 [−0.068,−0.060] ε
FileChurn⊕ 93, 423 478, 562 0.137 [0.134, 0.141] ε
SourceIntermittentChanges⊕ 78, 473 394, 409 0.061 [0.058, 0.064] ε
TeamSize⊕ 71, 925 356, 287 0.003 [−0.002, 0.008] 0.167
RepositoryOrganization� 93, 675 479, 969 0.117 [0.114, 0.120] ε
RepositoryProject� 93, 667 479, 437 0.190 [0.187, 0.193] ε
Repository� 93, 612 478, 372 0.330 [0.328, 0.333] ε
IsTestCode� 93, 073 473, 892 0.064 [0.061, 0.066] ε
IsActiveCode� 93, 675 479, 976 0.065 [0.062, 0.068] ε
RuleType� 93, 670 479, 974 0.480 [0.477, 0.483] ε
QualityStandardApplicability⊕ 93, 675 479, 976 0.023 [0.019, 0.027] ε
QualityStandardDensity⊕ 93, 675 479, 976 −0.087 [−0.091,−0.083] ε

�: categorical or dichotomous factor; ⊕: numerical factor.

Fig. 5: Statistical test results for correlation between factors

and development teams’ adherence to the Banned API Stan-

dard. “Overall Distribution” is the distribution of preferred and

discouraged API use per factor. “r” is the correlation strength,

from very weak (|r | < 0.1) to strong (|r | > 0.3), while “95%

CI” is the range of “r” with 95% confidence. For the p values,

we report ε whenever p < 2.2×10−16 because that is the lower

bound allowed by R in p value computation.

Figure 5 lists the correlations between each factor (Figure 2)

and development teams’ adherence to the Banned API Stan-

dard. All but two factors (TeamSize and EmployeeType) had a

statistically significant (p < 0.05 and 95% CI does not span

0) correlation.

For categorical factors, we analyzed the distribution of

preferred and discouraged API usages across factor values

to identify when development teams tend to use each kind

of APIs. For example, analyzing the distribution across the

19 values of RuleType, we found that teams are more likely to

use preferred APIs for “path manipulation”, “stream buffer-

ing”, “string concatenation”, “string copy”, and “string pars-

ing” operations, while they are more likely to use discour-
aged APIs for “string formatting”, “string length”, “memory

copy”, and “string conversion” operations. We did a manual

investigation into a set of randomly selected discouraged API

usages and reviewed the related artifacts to investigate why
these choices were made. Our analysis revealed that in certain

scenarios teams used the discouraged APIs for performance

reasons and implemented additional checks in their code.

Similarly, analysis of other categorical factors revealed that

more experienced developers (indicated by specific values

of CareerStageName, JobTitleName, and StandardTitleName)

tend to use more preferred APIs. These results are consistent

with prior studies [3], [76] that show that developers with

more experience and expertise tend to write high-quality

code. Similarly, we found that teams were more likely to

adhere to the Banned API Standard if they were associated

with specific geographical locations (WorkLocation), depart-

ments (Department), projects (ProjectType and ProjectName)

and products (RepositoryOrganization, RepositoryProject, and

Repository). This indicates that adherence can be consistent

within teams but can differ across teams within the company

and these results corroborate the findings of Lavallée et

at. [36]. Due to non-disclosure agreement, we can not share

the specific factor values associated with developer or product

related details that were found to be associated with use of

discouraged and preferred APIs. Finally, teams tend to use

more preferred APIs in their non-test code (IsTestCode) and

code that is under active development or maintenance (Is-
ActiveCode) than in the external code borrowed from other

projects. Our qualitative analysis of these findings suggests

teams behave this way because test code is rarely shipped and

therefore considered less relevant, especially when chasing a

release deadline. External code was left as-is to avoid conflicts

with updates outside of their control.

Statistical tests for numeric factors revealed how adherence

to the Banned API Standard can be influenced by changing

factor values. For example, a very weak positive correlation

was observed for YearsOfMSExperience, suggesting that de-

velopers who have worked at Microsoft longer are slightly

more likely to use preferred APIs. On the other hand, a weak

negative correlation observed for EmployeeLevel indicates

that junior developers, whose EmployeeLevel is higher, are

likely to use more discouraged APIs. Similarly, we found

that developers who edit less code (AuthorChurn) or work on

large code bases (SourceLOC and RepoLOC) tend to use more

discouraged APIs, while developers who work on source files

that involve a lot of changes (FileChurn) and have multiple

developers working on them (SourceIntermittentChanges) tend

to use more preferred APIs. Some of these correlations ob-

served (e.g., for SourceLOC and AuthorChurn) are consistent

with the prior studies [61], [62].

Factors related to developers’ coding experience (role,

years of experience, career stage, author churn), com-

plexity (code base size, number of contributors to the

source file, file churn), work environment (department,

team, project, work location), motivation to adhere to

a code-quality standard (test vs. non-test code, and

external vs. internal code), and whether the developer

is an internal or an external employee significantly

correlate with development teams’ adherence to the

Banned API Standard.

RQ2: Can the correlated factors predict adherence to
the Banned API Standard?

The graphs at the top of Figure 6 show the ANN model’s

performance for 100 epochs on the training set. As shown, loss

decreases and accuracy increases on the training and validation

sets with increasing epochs and the convergence is achieved

after ∼85 epochs. After 100 epochs, the accuracy obtained on

the training set is 93.40% and 77.41% for the validation set.

439

accuracy

binary cross entropy

0 25 50 75 100

0.25

0.50

0.75

1.00

1.25

0.4

0.6

0.8

epoch

pe
rf

or
m

an
ce

Validation curve solid, training curve dashed

model training performance by epoch, dataset, and measure

Confusion Matrix Evaluation Metrics

reference
prediction preferred discouraged Accuracy: 0.9175

preferred 1,194 226 95% CI: [0.9113, 0.9234]

discouraged 450 6,322 AUC-ROC: 0.8459

total 1,644 6,548

Fig. 6: Performance of our ANN model for predicting de-

velopment teams’ choice to use preferred or discouraged

APIs over different code bases. The graphs show the model’s

performance during the training phase. “Confusion Matrix”

and “Evaluation Metrics” show the model’s performance on

the test set. Our model predicts choices with 92% accuracy.

The bottom of Figure 6 shows the trained ANN model’s

performance on the test set in terms of the evaluation metrics.

As shown, our model can predict whether teams will use

preferred or discouraged APIs with 92% accuracy, and the

0.8459 AUC-ROC shows this is excellent performance for this

prediction task.

An artificial-neural-network (ANN)-based model can

predict whether developers will use preferred or dis-

couraged APIs with 92% accuracy.

RQ3: Can development team’s past activity, encoded in
terms of the correlated factors, predict future standard
adherence? The graphs at the top of Figure 7 show the

training of the ANN model for 100 epochs. As shown, the

loss decreases and the accuracy increases on the training and

validation sets with increasing epochs and the convergence is

achieved after ∼88 epochs. After 100 epochs, the accuracy on

the training set was 93.60% and the validation set was 70.80%.

The bottom of Figure 7 shows the trained ANN model’s

performance on the test set in terms of the evaluation metrics.

As shown, the model predicts if developers will use preferred

accuracy

binary cross entropy

0 25 50 75 100

0.25

0.50

0.75

1.00

0.4

0.6

0.8

epoch

pe
rf

or
m

an
ce

Validation curve solid, training curve dashed

model training performance by epoch, dataset, and measure

Confusion Matrix Evaluation Metrics

reference
prediction preferred discouraged Accuracy: 0.8633

preferred 9,704 1,726 95% CI: [0.8605, 0.8661]

discouraged 6,431 41,823 AUC-ROC: 0.7879

total 16,135 43,549

Fig. 7: Performance of our ANN model for predicting de-

velopment team’s choice to use preferred or discouraged

APIs in the future from their past development activity. The

graphs show the model’s performance during the training

phase. “Confusion Matrix”, and “Evaluation Metrics” show

the model’s performance on the test set. Our model predicts

future choices with 86% accuracy.

or discouraged APIs with 86% accuracy, and the 0.7879 AUC-

ROC indicates the model’s performance is acceptable.

For the large code base with a decade of development

activity, an ANN-based model can predict if a team

will use preferred or discouraged APIs in the future

with 86% accuracy based on 7 factors computed from

past development activity.

D. Discussion and Threats to Validity

The factors presented in this paper are not an exhaustive

list and other factors could influence development teams’

compliance. For example, studies [78], [81]–[83] show that

factors related to SAT warnings are useful to improve SAT

accuracy. However, we do not consider such factors because

recent research showed that these factors cause data leakage,

leading to misleading results [28]. Further, a factor can encode

organization-specific context, and it is important to understand

the impact of such factors on the study. For example, instead

of using years of experience, we use YearsOfMSExperience

440

that measures the developers’ work experience at Microsoft

and disregards their previous experiences. We made this

choice because other companies may not use the Banned

API Standard, and so even experienced developers who are

new to Microsoft may be a novice when it comes to Banned

API Standard. Therefore, we consider such developers to be

novices. Although our methodology and factors generalize to

other software development scenarios, the results presented for

the Banned API Standard detected using sarif-pattern-matcher

are observational and rely on the dataset used for our analysis.

The ANN model to predict development team’s future ad-

herence to the Banned API Standard from their past behavior

performed reasonably well by using only 7 of the 23 correlated

factors in a single repository. However, when we used the same

set of factors to perform analysis over code bases, the accuracy

of the model dropped significantly. This indicates that factors

that vary across different teams contribute significantly when

predicting adherence over multiple code bases. These results

are consistent with a prior study [36] and our observation that

different teams at Microsoft had different adherence behaviors.

We address the threat to external validity by ensuring

that our evaluation datasets consist of the large and diverse

repositories that are representative of real-world software

development. We address the threat to internal validity by

computing necessary evaluation metrics (“effect size”, “95%

CI” and “AUC-ROC”), which give us statistical assurance that

our results are not influenced merely by the large size of our

dataset. Our collected dataset is incomplete, missing some val-

ues, particularly about the developers. This is not uncommon

in data collected from databases from multiple, real-world,

complex systems. We address threats posed by incomplete data

by only using the data points for which we have complete data

for our prediction modeling, and only using non-missing data

points for correlation computations. Our methods of detect-

ing API usages and computing IsTestCode and IsActiveCode
features use a heuristics-based approach; their accuracy may

influence our findings. While we use SMOTE, a popular

technique to balance the imbalanced training sets to prevent

classification bias, our results for predictions show that our

models predict discouraged APIs more accurately than the

preferred ones. This could be attributed to the SMOTE’s

performance in creating synthetic data points. We address

this threat of classification bias by computing AUC-ROC and

confusion matrix to analyze predictions for discouraged and

preferred API usages separately.

V. ACTIONABLE ADVICE FOR SAT DESIGNERS

Our analysis focused on the Banned API Standard and

sarif-pattern-matcher, but our methodology (Figure 1) and the

influencing factors (Figure 2) are standard and tool agnostic.

We next advise SAT designers how to improve SATs.

Prioritizing warnings based on context. SATs can predict

which warnings the teams are more likely to address —

whether by fixing the warnings or by adding safety checks or

taking other risk-mitigation steps — and rank those warnings

higher. For example, our analysis shows that prioritizing warn-

ings in production code, actively-under-development code,

code being worked on by more developers, and code with

higher churn is likely to get the warnings teams address to be

seen sooner.

Prioritizing warnings based on prior behavior and
improve fix suggestions. SATs can observe teams’ behavior

on code and extrapolate that behavior to prioritize warnings.

For example, our analysis observed that when reusing legacy

code, teams were less likely to replace discouraged APIs. If

the SAT identifies a warning in legacy code that has been

reused elsewhere by other teams, and those teams elected not

to replace the APIs, making them as “won’t fix,” the current

team is likely to do the same. The SAT can further make

suggestions for fixes similar to prior teams, such as adding

additional safety checks, rather than replacing the APIs. A SAT

that checks adherence to multiple standards can prioritize the

warnings of the standard more often complied to by the team.

Improving warnings content based on developer needs.
Our analysis identified that more experienced developers are

more likely to address warnings than novice developers. Poten-

tially, SATs can improve by customizing the information dis-

played with the warning. Novice developers may need to see

more context and deeper explanations of why a discouraged

API is unsafe, as well as potential solutions. More experienced

developers may only need to see the discouraged API use and

suggested preferred API.

Modern IDEs can run static analysis with every build (and

some proposals even suggest running static and dynamic

analyses in the background, continuously [29], [67], [68]).

SATs running in this way can use our models in a form of

speculative analysis [7], [8], [56] to predict teams’ actions and

proactively suggest the best coding practices suitable for the

given development context. Displaying all warnings in such a

continuous manner is likely to overwhelm the developer, but

using our predictive models can help focus the developer on

the most pertinent warnings that they are likely to address.

VI. RELATED WORK

Several studies have been conducted to identify developer

factors that affect code quality. Salamea et al. [69] analyzed

two open-source projects to investigate how code quality, mea-

sured in terms of technical debt (TD) (number of code smells

(e.g., duplicated code) produced per developer), is affected

by developer participation, experience, and communication

skills. They found that the level of participation (lines of code

contributed) of the developers and their experience (number

of months active) in the project have a positive correlation

with the amount of TD while their communication skills have

barely any impact. Alfayez et al. [3] analyzed 38 Apache

projects to investigate how developers’ frequency of commits,

their seniority, and the size of time lapses between their

commits relate to code quality. They found that developers’

frequency of commits and seniority are negatively correlated

with introducing defects and the size of the time lapses

441

between developers’ commits is positively correlated with

introducing defects in code.

Tufano et al. [76] analyzed five open-source Java projects to

identify how commit coherence (i.e., how much it is focused

on a specific topic), developers’ experience (measured using

the metrics that compute developers’ familiarity with the files

modified by them based on their commits), and the interfering

changes performed prior by other developers on the files

involved influence the likelihood that a commit induces a

fix. They found that fix-inducing commits are less coherent,

are produced by more experienced developers, and have a

higher number of past interfering changes than commits that

did not induce a fix. Li et al. [38] analyzed data of 76 de-

velopers in four open-source software projects to understand

how developers’ bug-introducing commit rates change over

time, and its possible dependency on lines of code (LOC).

They showed that developers’ bug-introducing commit rates

tend to include two phases: a first increasing phase and a

decreasing phase. Further, larger (in terms of LOC) commits

introduce a higher number of software defects. Qui et al. [61]

analyzed six open-source projects to investigate how devel-

oper quality (rate of non-bug-introducing commits) relates to

software evolution. They found that developer quality tends

to increase with software evolution, developers with more

code contribution are more likely to have higher developer

quality, and source code ownership does not have a consistent

and significant correlation with developer quality. Rahman

et al. [62] analyzed four open-source projects to understand

how developers’ file ownership, file experience, and overall

experience impact code quality. They reported that multiple

developers contributing to the same file reduces defective code,

developers introduce fewer defects in their own files, and

developer general experience (measure in terms of the deltas

committed to a repository up to a particular time) has a weak

relationship with code quality. Lavallée et at. [36] investigated

how organizational factors such as structure and culture impact

the working conditions of developers. They found that some

software teams tend to prefer quick-and-dirty solutions over

time-consuming ones, incurring technical debt due to fear of

exceeding their budget. All of these studies consider factors

that are related to either developer or code base properties.

Our work extends the state-of-the-art by using factors cov-

ering both, developer and code base aspects, along with the

properties of code-quality standards.

Due to the variable nature of code quality standards and the

onerous manual efforts required for compliance, the industry

is becoming more efficient by using automated means of rec-

ognizing, verifying, delegating, and monitoring compliance-

related tasks [16], [17]. Code quality is affected not only by

the developers but also by the process the developers follow.

For example, enforcing static analysis checks at commit time

can increase compliance [66], and adhering to testing practices

can improve code quality [4]. While certain types of tests

can be automatically generated, e.g., regression tests via Ran-

doop [58] or EvoSuite [15], most testing for new functionality

requires human-written oracles. Recent work has aimed to

generate such oracles automatically from comments or natural-

language specifications. Swami [52] generates oracles from

semi-structured specification and is able to discover defects

in code and ambiguities in specifications in mature projects,

such as the Rhino and Node.js JavaScript implementations.

Toradacu [20] and Jdoctor [6] and @tComment [74] extract

oracles from Javadoc comments, with Toradacu and Jdoctor

focusing on extracting oracles for exceptional behavior and

@tComment on extracting preconditions related to nullness

of parameters. C2S [86] captures developers’ intent by auto-

matically translating natural language comments in the source

code into formal program specifications.

In addition to static analyses that make suggestions for

developers for improving code quality, it is possible to im-

prove code quality automatically. Automated program repair

aims to automatically repair failing tests by modifying the

source code via a variety of methods [37]. For example,

genetic algorithms and random search through the space of

modifications can often find patches that pass the supplied

tests [59], [79]. Unfortunately, these repair mechanisms can

often break untested or undertested behavior [54], [60], [70],

and while some recent advances have improved the frequency

with which automated program repair techniques produce

correct patches [1], [30], [53], [84], [87], improving the quality

of automatically generated patches remains an open problem.

VII. FUTURE RESEARCH DIRECTIONS

This paper proposes a novel approach to predict circum-

stances in which development teams are likely to adhere to a

quality standard and act on the true positive warnings raised

by SATs. To accomplish this, our approach detects instances

of adherence to and noncompliance with a quality standard,

and developer and programming-context factors that correlate

with these instances. Our next steps are to use our findings

to improve SATs for the Banned API Standard and conduct

user studies to evaluate the effects of our improvements in

practice. However, this paper is merely a first step towards

understanding the relationships between these factors and

teams’ adherence. While our work potentially allows SATs to

detect context-aware situations in which to interpret rule ap-

plicability, future research can consider methods for detecting

context-aware situations that violate or adhere to code-quality

standards undetectable by rules alone. This can extend SATs to

detecting violations and compliances of more complex code-

quality standards than is possible today.

VIII. CONTRIBUTIONS

We have studied the problem of identifying when and why

development teams adhere to or deviate from code-quality

standards with the aim of improving SATs’ utilization. Our

large-scale case study at Microsoft has identified the factors

that affect the teams’ adherence and allowed the creation of

models for predicting situations in which teams will choose to

deviate from or adhere to the standards. SATs can use these

models to prioritize and customize their warnings, improving

their utility to the development process.

442

ACKNOWLEDGMENTS

We thank Michael C. Fanning, Larry Golding, Harleen K.

Kohli, Suvam Mukherjee, and Danielle Gonzalez for their

contributions to this work. This work is supported by the

National Science Foundation under grant no. CCF-1763423.

REFERENCES

[1] A. Afzal, M. Motwani, K. T. Stolee, Y. Brun, and C. Le Goues.
SOSRepair: Expressive semantic search for real-world program repair.
IEEE Transactions on Software Engineering (TSE), 47(10):2162–2181,
October 2021.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., 2006.

[3] R. Alfayez, P. Behnamghader, K. Srisopha, and B. Boehm. An
exploratory study on the influence of developers in technical debt. In
International Conference on Technical Debt, pages 1–10, 2018.

[4] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, 1st edition, 2008.

[5] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman. Analyzing
the state of static analysis: A large-scale evaluation in open source
software. In International Conference on Software Analysis, Evolution,
and Reengineering (SANER), pages 470–481, 2016.

[6] A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè,
and S. D. Castellanos. Translating code comments to procedure
specifications. In International Symposium on Software Testing and
Analysis (ISSTA), pages 242–253, 2018.

[7] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive detection of
collaboration conflicts. In Joint Meeting of the European Software Engi-
neering Conference and ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE), pages 168–178, September 2011.

[8] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Early detection
of collaboration conflicts and risks. IEEE Transactions on Software
Engineering (TSE), 39(10):1358–1375, October 2013.

[9] C. Calcagno and D. Distefano. Infer: An automatic program verifier for
memory safety of C programs. In NASA Formal Methods Symposium,
pages 459–465, 2011.

[10] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial
intelligence research, 16:321–357, 2002.

[11] M. Copeland. Kusto query language and threat hunting. In Cloud
Defense Strategies with Azure Sentinel, pages 185–211. Springer, 2021.

[12] W. A. Dahl, L. Erdodi, and F. M. Zennaro. Stack-based buffer overflow
detection using recurrent neural networks. CoRR, abs/2012.15116, 2020.

[13] E. Dauber, A. Caliskan, R. Harang, and R. Greenstadt. Git blame
who? Stylistic authorship attribution of small, incomplete source code
fragments. In Poster Track at the International Conference on Software
Engineering, pages 356–357, 2018.

[14] L. Flynn, W. Snavely, D. Svoboda, N. VanHoudnos, R. Qin, J. Burns,
D. Zubrow, R. Stoddard, and G. Marce-Santurio. Prioritizing alerts
from multiple static analysis tools, using classification models. In
International Workshop on Software Qualities and their Dependencies
(SQUADE), pages 13–20, 2018.

[15] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and
oracles. In International Symposium on Software Testing and Analysis
(ISSTA), pages 147–158, 2010.

[16] S. Ghaisas, M. Motwani, and P. R. Anish. Detecting system use
cases and validations from documents. In International Conference on
Automated Software Engineering (ASE), pages 568–573, 2013.

[17] S. Ghaisas, M. Motwani, B. Balasubramaniam, A. Gajendragadkar,
R. Kelkar, and H. Vin. Towards automating the security compliance
value chain. In Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), pages 1014–1017, 2015.

[18] G. E. Gignac and E. T. Szodorai. Effect size guidelines for individual
differences researchers. Personality and Individual Differences, 102:74–
78, 2016.

[19] G. V. Glass. Note on rank biserial correlation. Educational and
Psychological Measurement, 26(3):623–631, 1966.

[20] A. Goffi, A. Gorla, M. D. Ernst, and M. Pezzè. Automatic generation
of oracles for exceptional behaviors. In International Symposium on
Software Testing and Analysis (ISSTA), pages 213–224, July 2016.

[21] A. Gosain and G. Sharma. Static analysis: A survey of techniques
and tools. In Intelligent Computing and Applications, pages 581–591.
Springer India, 2015.

[22] A. Habib and M. Pradel. How many of all bugs do we find? a study of
static bug detectors. In International Conference on Automated Software
Engineering (ASE), pages 317–328, 2018.

[23] Q. Hanam, L. Tan, R. Holmes, and P. Lam. Finding patterns in static
analysis alerts: Improving actionable alert ranking. In Mining Software
Repositories (MSR), pages 152–161, 2014.

[24] S. Heckman and L. Williams. On establishing a benchmark for eval-
uating static analysis alert prioritization and classification techniques.
In International Symposium on Empirical Software Engineering and
Measurement (ESEM), pages 41–50, 2008.

[25] M. Howard and S. Lipner. The security development lifecycle, volume 8.
Microsoft Press Redmond, 2006.

[26] R. Huuck, A. Fehnker, S. Seefried, and J. Brauer. Goanna: Syntactic
software model checking. In International Symposium on Automated
Technology for Verification and Analysis, pages 216–221, 2008.

[27] N. Imtiaz, B. Murphy, and L. Williams. How do developers act on static
analysis alerts? An empirical study of coverity usage. In International
Symposium on Software Reliability Engineering (ISSRE), pages 323–
333, 2019.

[28] H. J. Kang, K. L. Aw, and D. Lo. Detecting false alarms from automatic
static analysis tools: How far are we? In International Conference on
Software Engineering (ICSE), 2022.

[29] H. Katzan, Jr. Batch, conversational, and incremental compilers. In
Spring Joint Computer Conference, pages 47–56, 1969.

[30] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun. Repairing programs
with semantic code search. In International Conference on Automated
Software Engineering (ASE), pages 295–306, November 2015.

[31] S. Kim and M. D. Ernst. Prioritizing warning categories by analyzing
software history. In Mining Software Repositories (MSR), 2007.

[32] U. Koc, P. Saadatpanah, J. S. Foster, and A. A. Porter. Learning
a classifier for false positive error reports emitted by static code
analysis tools. In International Workshop on Machine Learning and
Programming Languages (MAPL), page 35–42, 2017.

[33] U. Koc, S. Wei, J. S. Foster, M. Carpuat, and A. A. Porter. An empirical
assessment of machine learning approaches for triaging reports of a java
static analysis tool. In Conference on Software Testing, Validation and
Verification (ICST), pages 288–299, 2019.

[34] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler. Correlation exploita-
tion in error ranking. In International Symposium on Foundations of
Software Engineering (FSE), pages 83–93, 2004.

[35] T. Kremenek and D. Engler. Z-ranking: Using statistical analysis to
counter the impact of static analysis approximations. In International
Static Analysis Symposium (SAS), pages 295–315, 2003.

[36] M. Lavallée and P. N. Robillard. Why good developers write bad code:
An observational case study of the impacts of organizational factors on
software quality. In International Conference on Software Engineering
(ICSE), pages 677–687, 2015.

[37] C. Le Goues, M. Pradel, and A. Roychoudhury. Automated program
repair. Communications of the ACM, 62(12):56–65, Nov. 2019.

[38] Y. Li, D. Li, F. Huang, S.-Y. Lee, and J. Ai. An exploratory analysis
on software developers’ bug-introducing tendency over time. In IEEE
International Conference on Software Analysis, Testing and Evolution
(SATE), pages 12–17, 2016.

[39] G. Liang, L. Wu, Q. Wu, Q. Wang, T. Xie, and H. Mei. Automatic
construction of an effective training set for prioritizing static analysis
warnings. In International Conference on Automated Software Engi-
neering (ASE), page 93–102, 2010.

[40] K. Liu, D. Kim, T. F. Bissyandé, S. Yoo, and Y. Le Traon. Mining
fix patterns for findbugs violations. IEEE Transactions on Software
Engineering (TSE), 47(1):165–188, 2021.

[41] J. N. Mandrekar. Receiver operating characteristic curve in diagnostic
test assessment. Journal of Thoracic Oncology, 5(9):1315–1316, 2010.

[42] T. Marchant-Shapiro. Chi-square and cramer’s v: what do you expect.
Statistics for political analysis: Understanding the numbers, pages 245–
272, 2015.

[43] D. Marcilio, R. Bonifácio, E. Monteiro, E. Canedo, W. Luz, and
G. Pinto. Are static analysis violations really fixed? A closer look at
realistic usage of SonarQube. In International Conference on Program
Comprehension (ICPC), pages 209–219, 2019.

443

[44] D. Marcilio, C. A. Furia, R. Bonifácio, and G. Pinto. Automatically
generating fix suggestions in response to static code analysis warnings.
In International Working Conference on Source Code Analysis and
Manipulation (SCAM), pages 34–44. IEEE, 2019.

[45] D. Marcilio, C. A. Furia, R. Bonifácio, and G. Pinto. Spongebugs:
Automatically generating fix suggestions in response to static code
analysis warnings. Journal of Systems and Software, 168:110671, 2020.

[46] M. L. McHugh. The chi-square test of independence. Biochemia medica:
Biochemia medica, 23(2):143–149, 2013.

[47] P. E. McKnight and J. Najab. Mann-whitney U test. The Corsini
encyclopedia of psychology, 2010.

[48] Microsoft. Microsoft security development lifecycle. https://www.
microsoft.com/en-us/securityengineering/sdl/, 2021.

[49] Microsoft. Practice #9 - perform static analysis security test-
ing (SAST). https://www.microsoft.com/en-us/securityengineering/sdl/
practices/\#practice9, 2021.

[50] Microsoft. sarif-pattern-matcher. https://github.com/microsoft/sarif-
pattern-matcher, 2021.

[51] A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot, D. Kästner,
S. Wilhelm, and C. Ferdinand. Taking static analysis to the next level:
proving the absence of run-time errors and data races with astrée. In
European Congress on Embedded Real Time Software and Systems
(ERTS), 2016.

[52] M. Motwani and Y. Brun. Automatically generating precise oracles from
structured natural language specifications. In International Conference
on Software Engineering (ICSE), pages 188–199, May 2019.

[53] M. Motwani and Y. Brun. Better automatic program repair by using
bug reports and tests together. In International Conference on Software
Engineering (ICSE), May 2023.

[54] M. Motwani, M. Soto, Y. Brun, R. Just, and C. Le Goues. Quality of
automated program repair on real-world defects. IEEE Transactions on
Software Engineering (TSE), 48(2):637–661, February 2022.

[55] T. Muske and A. Serebrenik. Survey of approaches for handling static
analysis alarms. In International Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 157–166, 2016.

[56] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Speculative
analysis of integrated development environment recommendations. In
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 669–682, October 2012.

[57] R. Newson. Parameters behind “nonparametric” statistics: Kendall’s tau,
somers’ d and median differences. The Stata Journal, 2(1):45–64, 2002.

[58] C. Pacheco and M. D. Ernst. Randoop: Feedback-directed random
testing for Java. In Conference on Object-oriented Programming Systems
and Applications (OOPSLA), pages 815–816, 2007.

[59] Y. Qi, X. Mao, and Y. Lei. Efficient automated program repair through
fault-recorded testing prioritization. In International Conference on
Software Maintenance (ICSM), pages 180–189, Sept. 2013.

[60] Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems. In International Symposium on Software Testing and Analysis
(ISSTA), pages 24–36, 2015.

[61] Y. Qiu, W. Zhang, W. Zou, J. Liu, and Q. Liu. An empirical study
of developer quality. In International Conference on Software Quality,
Reliability, and Security Companion (QRS-C), pages 202–209, 2015.

[62] F. Rahman and P. Devanbu. Ownership, experience and defects: A fine-
grained study of authorship. In International Conference on Software
Engineering (ICSE), pages 491–500, 2011.

[63] T. Rains. Microsoft’s Free Security Tools – banned.h.
https://www.microsoft.com/en-us/security/blog/2012/08/30/microsofts-
free-security-tools-banned-h/, 2012.

[64] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and G. Rother-
mel. Predicting accurate and actionable static analysis warnings:
An experimental approach. In International Conference on Software
Engineering (ICSE), page 341–350, 2008.

[65] V. Sachidananda, S. Bhairav, and Y. Elovici. OVER: Overhauling
vulnerability detection for IoT through an adaptable and automated static
analysis framework. In Symposium on Applied Computing, pages 729–
738, 2020.

[66] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan.
Lessons from building static analysis tools at google. Communications
of the ACM, 61(4):58–66, 2018.

[67] D. Saff and M. D. Ernst. Reducing wasted development time via
continuous testing. In International Symposium on Software Reliability
Engineering (ISSRE), pages 281–292, November 2003.

[68] D. Saff and M. D. Ernst. An experimental evaluation of continuous
testing during development. In International Symposium on Software
Testing and Analysis (ISSTA), pages 76–85, July 2004.

[69] M. J. Salamea and C. Farré. Influence of developer factors on code
quality: A data study. In International Conference on Software Quality,
Reliability and Security Companion (QRS-C), pages 120–125, 2019.

[70] E. K. Smith, E. Barr, C. Le Goues, and Y. Brun. Is the cure worse than
the disease? overfitting in automated program repair. In Joint Meeting
of the European Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE),
pages 532–543, September 2015.

[71] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford.
How developers diagnose potential security vulnerabilities with a static
analysis tool. IEEE Transactions on Software Engineering, 45(9):877–
897, 2018.

[72] M. Stagg. This Microsoft Windows RCE vulnerability gives an at-
tacker complete control. https://www.synack.com/blog/this-microsoft-
windows-rce-vulnerability-gives-an-attacker-complete-control/, 2021.

[73] D. Svozil, V. Kvasnicka, and J. Pospichal. Introduction to multi-layer
feed-forward neural networks. Chemometrics and intelligent laboratory
systems, 39(1):43–62, 1997.

[74] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens. @tComment: Testing
Javadoc comments to detect comment-code inconsistencies. In Inter-
national Conference on Software Testing, Verification, and Validation
(ICST), pages 260–269, 2012.

[75] D. A. Tomassi. Bugs in the wild: Examining the effectiveness of static
analyzers at finding real-world bugs. In Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), pages 980–982, 2018.

[76] M. Tufano, G. Bavota, D. Poshyvanyk, M. Di Penta, R. Oliveto,
and A. De Lucia. An empirical study on developer-related factors
characterizing fix-inducing commits. Journal of Software: Evolution
and Process, 29(1):e1797, 2017.

[77] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and
A. Zaidman. How developers engage with static analysis tools in
different contexts. Empirical Software Engineering, 25(2):1419–1457,
2020.

[78] J. Wang, S. Wang, and Q. Wang. Is there a “golden” feature set for
static warning identification? An experimental evaluation. In Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), 2018.

[79] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically
finding patches using genetic programming. In International Conference
on Software Engineering (ICSE), pages 364–374, 2009.

[80] C. Williams and J. Hollingsworth. Automatic mining of source code
repositories to improve bug finding techniques. IEEE Transactions on
Software Engineering, 31(6):466–480, 2005.

[81] X. Yang, J. Chen, R. Yedida, Z. Yu, and T. Menzies. Learning
to recognize actionable static code warnings (is intrinsically easy).
Empirical Software Engineering, 26(3):1–24, 2021.

[82] X. Yang and T. Menzies. Documenting evidence of a reproduction of
‘is there a “golden” feature set for static warning identification? —
an experimental evaluation’. In Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), page 1603, 2021.

[83] X. Yang, Z. Yu, J. Wang, and T. Menzies. Understanding static
code warnings: An incremental ai approach. Expert Systems with
Applications, 167:114134, 2021.

[84] H. Ye, M. Martinez, and M. Monperrus. Neural program repair
with execution-based backpropagation. In International Conference on
Software Engineering (ICSE), page 1506–1518, 2022.

[85] U. Yüksel and H. Sözer. Automated classification of static code
analysis alerts: A case study. In International Conference on Software
Maintenance (ICSM), pages 532–535, 2013.

[86] J. Zhai, Y. Shi, M. Pan, G. Zhou, Y. Liu, C. Fang, S. Ma, L. Tan, and
X. Zhang. C2S: Translating natural language comments to formal pro-
gram specifications. In Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), page 25–37, 2020.

[87] Q. Zhu, Z. Sun, Y. an Xiao, W. Zhang, K. Yuan, Y. Xiong, and L. Zhang.
A syntax-guided edit decoder for neural program repair. In Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), page 341–353, 2021.

444

