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Automated program repair techniques use a buggy program and a

partial specification (typically a test suite) to produce a program

variant that satisfies the specification. While prior work has stud-

ied patch quality [10, 11] and maintainability [2], it has not exam-

ined whether automated repair techniques are capable of repairing

defects that developers consider important or that are hard for

developers to repair manually. This paper tackles those questions.

Our study considers nine automated repair techniques for C

and Java: AE [12], GenProg [13], a Java reimplementation of Gen-

Prog [7], Kali [10], a Java reimplementation of Kali [7], Nopol [1],

Prophet [6], SPR [5], and TrpAutoRepair [9].

We analyze popular bug tracking systems and source code repos-

itories to identify parameters relevant to defect importance, inde-

pendence, and complexity, and test effectiveness. We compute these

parameters for two benchmarks of defects often used for automated

program repair, ManyBugs [4] (185 C defects) and Defects4J [3]

(357 Java defects). We further analyze developer-written patches

for these defects to identify characteristics of those patches that

may influence automated repair.

Our study answers the following questions: Is a repair tech-

nique’s ability to produce a patch for a defect correlated with that

defect’s (RQ1) importance, (RQ2) complexity, (RQ3) effectiveness of

the test suite, or (RQ4) dependence on other defects? (RQ5) What

characteristics of the developer-written patch are significantly as-

sociated with a repair technique’s ability to produce a patch? And,

(RQ6) what defect characteristics are significantly associated with

a repair technique’s ability to produce a high-quality patch?

We find that (RQ1) Java repair techniques are moderately more

likely to patch higher-priority defects; for C, there is no correlation.

There is little to no consistent correlation between producing a

patch and the time taken by developer(s) to fix the defect, as well

as the number of software versions affected by that defect. (RQ2) C
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repair techniques are less likely to patch defects that required de-

velopers to write more lines of code and edit more files. (RQ3) Java

repair techniques are less likely to patch defects with more trigger-

ing or more relevant tests. Test suite statement coverage has little

to no consistent correlation with producing a patch. (RQ4) Java

repair techniques’ ability to patch a defect does not correlate with

that defect’s dependence on other defects. (RQ5) Repair techniques

struggle to produce patches for defects that required developers to

insert loops or new function calls, or change method signatures. Fi-

nally, (RQ6) Only two of the considered repair techniques, Prophet

and SPR, produce a sufficient number of high-quality patches to

evaluate. These techniques were less likely to patch more complex

defects, and they were even less likely to patch them correctly.

The main contributions of this paper are:

• The publicly-released annotation of 409 defects in ManyBugs and

Defects4J, to be used for evaluating automated repair applicability.

• A methodology for evaluating the applicability of repair tech-

niques, with the goal of encouraging research to focus on impor-

tant and hard defects.

• The evaluation of nine automated program repair techniques’

applicability to 409 ManyBugs and Defects4J defects.
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