
Automatic Mining of Specifications
from Invocation Traces and Method Invariants

Ivo Krka∗ Yuriy Brun Nenad Medvidovic
Google Inc. University of Massachusetts University of Southern California

Zurich, Switzerland Amherst, MA, USA Los Angeles, CA, USA
krka@google.com brun@cs.umass.edu neno@usc.edu

ABSTRACT
Software library documentation often describes individual meth-
ods’ APIs, but not the intended protocols and method interactions.
This can lead to library misuse, and restrict runtime detection of
protocol violations and automated verification of software that uses
the library. Specification mining, if accurate, can help mitigate
these issues, which has led to significant research into new model-
inference techniques that produce FSM-based models from program
invariants and execution traces. However, there is currently a lack of
empirical studies that, in a principled way, measure the impact of the
inference strategies on model quality. To this end, we identify four
such strategies and systematically study the quality of the models
they produce for nine off-the-shelf libraries. We find that (1) using
invariants to infer an initial model significantly improves model
quality, increasing precision by 4% and recall by 41%, on average;
(2) effective invariant filtering is crucial for quality and scalability
of strategies that use invariants; and (3) using traces in combina-
tion with invariants greatly improves robustness to input noise. We
present our empirical evaluation, implement new and extend existing
model-inference techniques, and make public our implementations,
ground-truth models, and experimental data. Our work can lead to
higher-quality model inference, and directly improve the techniques
and tools that rely on model inference.
Categories and Subject Descriptors:
D.2.5 [Testing and Debugging]: Debugging aids, Tracing
General Terms: Algorithms, Design, Modeling
Keywords: Model inference, execution traces, log analysis

1. INTRODUCTION
Developers frequently use existing software libraries. Unfortu-

nately, many libraries are poorly documented, hindering reuse and
forcing developers to re-engineer existing solutions [23, 51]. Even
heavily-used, well-documented libraries contain documentation in-
accuracies as updates to the documentation lag or fail to follow

∗This work was completed while Ivo Krka was a PhD student at the
University of Southern California.

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from Permissions@acm.org.

Copyright held by the owner/author(s). Publication rights licensed to ACM.

FSE ’14, November 16–22, 2014, Hong Kong, China
ACM 978- 1-4503-3056-5/14/11
http://dx.doi.org/10.1145/2635868.2635890

code updates [14, 54]. Further, natural-language documentation
can be ambiguous and misunderstood by developers [13], caus-
ing library misuses that lead to subtle, latent, and costly faults. A
promising way to ease library use is to automatically mine accurate
specifications from existing uses of those libraries [59]. Numerous
specification mining techniques have been proposed [2, 3, 4, 11, 17,
20,21,24,39,41,43,52,58] and used for test case generation [16,41],
debugging [4], validation [18], and fault localization [48].

The quality of the inferred specifications is critical to their suc-
cessful use. In fact, most research on specification inference focuses
on improving the quality of the inferred specifications. Yet, the rela-
tionship between the principles employed by inference techniques,
and the quality of the models they produce is not well understood,
and existing studies have not pursued to improve this understanding
in the context of real-world software. The goal of this paper is
to systematically evaluate the principles behind existing inference
techniques, particularly with respect to the input data used by the
techniques, to understand the effects of these principles on the in-
ferred models’ quality and on the scalability of the inference. The
main contributions of this work are (1) an enhanced understanding
of how to best design and improve inference techniques, and (2) a
novel technique that implements these improvements.

Existing mining techniques either (1) infer finite state machine
(FSM) models that support the observed invocation sequences (also
referred to as execution traces) [2,4,10,21,39,43,49,56], or (2) iden-
tify high-level properties — declarative class and method invariants
— by observing how a library’s state (its internal variables) changes
at runtime [11, 20, 57]. Hence, the utility of the dynamic inference
techniques in general, and FSM-inference techniques in particular,
critically depends on how rich the inferred models are and how close
they are to the true model of the system’s behavior. The primary
focus of FSM-inference research has been to improve the inferred
models’ precision (e.g., [10,39,41,49,56]). Recent research suggests
that the inferred models’ quality can be improved by extending the
FSM inference that relies solely on execution traces, by also using
internal state information available during execution [16, 41]. In the
limit, the Contractor algorithm demonstrates that FSM inference
can rely exclusively on internal state information [18].

While existing evaluations of model inference research have made
substantial contributions, they also have had significant limitations
our work addresses. Most importantly, to properly compare in-
ference techniques, it is necessary to understand how well they
perform on real software, and how their underlying principles (e.g.,
reliance on inferred state invariants vs. reliance on execution traces)
affect model quality. Many existing studies of model quality rely
on simulated execution traces, as opposed to traces from actual
software systems [10, 36, 39]. As simulations are typically more
controlled than real software, this runs the risk of inaccurately esti-

178

http://dx.doi.org/10.1145/2635868.2635890


mating how the techniques perform in the wild. Meanwhile, those
studies performed on real software typically estimate the quality of
the inferred models via proxies. For example, the quality is some-
times measured via test coverage [41], the number of automatically
detected faults [16, 21], or case-study analysis of manually discov-
ered faults [3, 4, 18], instead of the more generalizable information
retrieval metrics of precision and recall [36].

Further, there are no studies to date that thoroughly measure the
effects of the types of input information used by inference techniques
on the quality of the resulting models. In particular, there are four
possible strategies to dynamic FSM inference:
1. Traces-only: infer models from execution traces only.
2. Invariants-only: infer models from invariants.
3. Invariant-enhanced-traces: infer models from execution traces

and then enhance them with invariants.
4. Trace-enhanced-invariants: infer models from invariants and

then enhance them with execution traces.
In this context, the research questions “How do these strategies

impact the quality of the inferred models?” and “Under what cir-
cumstances are they effective?” remain unanswered. (Notably, the
empirical study conducted by Lo et al. [40] provides an initial com-
parison of the first and the third strategies above.)

To answer these questions, this paper provides an empirical study
that compares the quality of models inferred by four techniques
that, respectively, implement the above four strategies. The k-
tail [5] inference algorithm, representing the traces-only strategy,
is employed and enhanced by many model-inference techniques
(e.g., [2, 3, 39, 41, 43, 49]). We select k-tail because k-tail mod-
els turn out to already be highly precise in our evaluations, and
further precision improvements would not affect our findings. CON-
TRACTOR++, representing the invariants-only strategy, is our own
extension of the Contractor technique [18] that creates models based
solely on the inferred state invariants. CONTRACTOR++ addresses
the limitations of Contractor when applied to dynamically inferred,
as opposed to manually specified, state invariants. SEKT, represent-
ing the invariants-enhanced-traces strategy, is our own extension
of k-tail that uses state invariants to restrict the way k-tail merges
execution traces. SEKT expands on Lorenzoli et al.’s gk-tail algo-
rithm [41] by relaxing restrictions on how and which invariants are
inferred for small subsets of the execution traces. Finally, TEMI,
representing the trace-enhanced-invariants strategy, is a novel tech-
nique we have developed as part of this research that first infers a
model based on the state invariants [20], and then refines that model
with the information from the execution traces.

A systematic, careful evaluation of the four strategies has two crit-
ical requirements. First, the findings must be generalizable. Second,
they must be applicable to real-world systems. Our evaluation relies
on nine widely-used, open-source libraries selected from a range
of domains. Further, our evaluation derives the execution traces by
running eight real-world, publicly-available applications that use the
selected libraries. By doing so, our evaluation reflects more closely
than most existing studies the scenario of an engineer encountering
a poorly documented library and trying to infer a usage model from
other open-source software uses of that library. We compare the
quality — represented by precision and recall — of the models
produced by the four strategies. We also assess two important and
often overlooked aspects of model inference: the scalability of the
strategies and their robustness to noise in the inputs.

We make four evidence-supported conclusions:
1. Invariants-only and trace-enhanced-invariants strategies produce

significantly higher recall than the traces-only and invariant-
enhanced-traces strategies, while maintaining (or, in rare cases,
minimally reducing) the already high precision.

2. In the general case, invariant-enhanced-traces and trace-enhanced-
invariants strategies that combine the two types of execution in-
formation slightly improve the precision of the inferred models,
while maintaining the recall.

3. Invariant filtering that keeps only a limited set of relevant invari-
ant types is crucial to enhancing the scalability of techniques
that implement invariants-only and trace-enhanced-invariants
strategies.

4. While the quality of models inferred by invariants-only and
trace-enhanced-invariants strategies is similar in most cases, com-
bining an FSM inferred from invariants with execution traces
circumvents the risks associated with noisy invariants. Such
noise significantly reduces the quality of invariants-only strategy
models, making it also perform worse than the traces-only and
invariant-enhanced-traces strategies.

The remainder of the paper is organized as follows. Section 2
overviews the background. Section 3 details the techniques repre-
senting the four strategies. Section 4 evaluates those techniques,
while Section 5 discusses the impact of the results. Section 6 places
our work in the context of related research. Finally, Section 7 sum-
marizes the paper’s contributions.

2. BACKGROUND
This section provides the background necessary for the discus-

sions in this paper. Section 2.1 introduces StackAr, our running
example data structure. Section 2.2 defines the MTS formalism
used by three of the model-inference techniques in Section 3 and
discusses how execution traces map to an MTS. Finally, Section 2.3
defines program state and discusses state invariants.

2.1 Example Library: StackAr
StackAr is a Java implementation of a stack, distributed with

Daikon [15, 20]. Initialized with an integer capacity, StackAr has
six public methods: push(x), top(), topAndPop(), makeEmpty(),
isEmpty(), and isFull(). Internally, StackAr represents its stack
as an array (theArray) and has a pointer to the top of the stack
(topOfStack). A push() on a full stack generates an exception. A
top() or topAndPop() on an empty stack returns null.

2.2 Modal Transition System (MTS)
An MTS [33] is an FSM-based model with labeled transitions

between states. A state represents a specific point in the execution of
a system or module; a transition represents the system’s change from
one state to another, caused by some invocation. In an MTS, there
are two explicit kinds of transitions: required, which are transitions
that are certain to occur and are common to all FSMs, and maybe,
which are uncertain transitions unique to MTSs. We use the notation

s l−→r s′ and s l−→m s′, respectively, to denote required and maybe
l-labeled transitions between states s and s′.

The most common input to a model-inference algorithm is a set of
observed execution traces. An execution trace — a runtime record-
ing of public method invocations and internal data values between
those invocations — can be represented by an MTS with states cor-
responding to variable values and transition labels composed of the
method name, input values, and return value.

2.3 Program State and State Invariants
A program’s concrete state is represented by the values of the

program’s variables at a given snapshot in the program’s execution.
However, for non-trivial programs, there exist intractably many
concrete states. For example, for StackAr, there are an infinite

179



DataStructures.StackAr:::CLASS
this.topOfStack >= -1
this.topOfStack <= size(this.theArray[])-1

DataStructures.StackAr.push(java.lang.Object):::ENTER
this.topOfStack < size(this.theArray[..])-1
this.topOfStack >= -1

DataStructures.StackAr.push(java.lang.Object):::EXIT103
orig(this.topOfStack) < size(this.theArray[..])-1
this.topOfStack >= 0
this.topOfStack - orig(this.topOfStack) - 1 == 0
size(this.theArray[..]) == orig(size(this.theArray[..]))

Figure 1: A subset of Daikon’s program invariants on
StackAr.

number of concrete states represented by the contents of theArray.
Therefore, it is common to consider and reason about abstract pro-
gram states [17,62] defined with first-order predicates over program
variable values: Different program states correspond to different
combinations of predicate evaluations. For StackAr, one reasonable
predicate that can be used to define abstract state is “is the stack not
full?” (topOfStack< size(theArray)−1).

Program-state invariants can be used to automatically extract
relevant predicates. Invariants hold true at certain program execution
points. For example, an object-level invariant, such as size ≥ 0
holds at all program points. While developers can manually specify
program invariants in the code or in other documentation [18, 46],
static and dynamic analyses can automatically infer invariants.

A commonly used tool for automatic invariant inference is Dai-
kon [20], which observes data values of program executions and
infers invariants that hold over all observed executions. The in-
ferred invariants consist of method pre- and postconditions and
object invariants. Figure 1 shows eight invariants Daikon infers
for StackAr: two object-level invariants, and two preconditions
and four postconditions for push(). As preconditions and object
invariants help determine which methods can execute in a particular
state, the predicates that appear in Daikon-inferred preconditions
and object invariants are good candidates for defining abstract pro-
gram state. For StackAr, Daikon reports four predicates:
P1 = (topOfStack≥−1),
P2 = (topOfStack≥ 0),
P3 = (topOfStack< size(theArray)−1), and
P4 = (topOfStack≤ size(theArray)−1).
Four boolean predicates can define 24 = 16 abstract program states.
However, many of these states can be automatically eliminated be-
cause of predicate interdependencies. For example, StackAr’s P2
cannot be true when P1 is false.

KTAIL(trace-set traces, int k)
1 MTS T = PTAl(traces)
2 for each pair T.s1,T.s2 in T.S
3 if TAIL(T.s1,k) = TAIL(T.s1,k)
4 MERGE(T.s1, T.s1)
5 return T

Figure 2: The k-tail algorithm.

3. INFERENCE ALGORITHMS
This section details the four algorithms that respectively imple-

ment each the four model inference strategies (recall Section 1).
k-tail (Section 3.1) implements the traces-only strategy by reason-
ing exclusively about the invocation sequences observed in the
execution traces. Contractor [18] (Section 3.2) builds a model by
reasoning about the potentially allowed invocation sequences based
on manually specified state invariants. To apply Contractor on dy-
namically inferred invariants, we have developed CONTRACTOR++
via a set of non-trivial extensions of Contractor. SEKT (Section 3.3)
is our extension of k-tail inference that implements the invariant-
enhanced-traces strategy by considering the program states extracted
from invariants as a k-tail merging criterion. Finally, TEMI (Sec-
tion 3.4) implements the trace-enhanced-invariants strategy by first
building an MTS that adheres to the invariants and then refining it
according to the execution traces.

3.1 Traces-Only: Traditional k-tail
The existing k-tail algorithm [5] concisely captures a library’s

API protocol as an MTS with required-only transitions by merging
the states from the execution traces. The algorithm merges every
pair of states with identical sequences of the next k invocations
(hence “k-tail”). Figure 2 details the algorithm. In the first step (line
1), k-tail builds a prefix-tree-acceptor (PTA). The PTA is an MTS
obtained by merging the initial states of each trace into a single
initial state, and from that state, merging all those states that are
reached by the same invocation sequence (e.g., states s1 through
s4 of Trace 1, are merged with states s1 through s4 of Trace 4,
respectively). Subsequently, lines 2–4 analyzes each pair of states
in the PTA for tail equivalence; line 4 merges the equivalent states.

The k-tail algorithm relies on selecting an appropriate k. This
choice typically involves a tradeoff between precision (smaller k im-
plies more spurious merges due to the limited scope) and complete-
ness/recall (larger k implies fewer merges and less generalization)
of the generated model. Because of that, the existing k-tail-based
techniques (e.g., [39,41,49]) have aimed to improve the algorithm’s
precision with smaller k. Despite some improvements, the existing
k-tail-based algorithms still suffer from limitations described next.

S0
StackAr

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Trace 1 (capacity: 0)

S0 S4 S5
push

S6 S7 S8 S9 S10

Trace 2 (capacity: 1)

S11 S12 S13 S14

S0 S1 S2 S3

Trace 3 (capacity: 2)

S4 S8

StackAr

StackAr

S1 S2 S3

ET TPN Emp TPN

TPN ET FF FT EF TV FF ET TPNTNTPVTN

Emppush push

TN FT ET TN FT

TN: topPop() = null

TV: top() ≠ null
TPN: topAndPop() = null

TPV: topAndPop() ≠ null
Emp: makeEmpty()

Legend:

ET: isEmpty() = true

EF: isEmpty() = false

FT: isFull() = true

FF: isFull() = false

S15
push

S16
Emp

S17
push

S5 S6
TPVpush

S7
Emppush

S9
push

S10
push

S11
TPV

S12
push

S13
TPV

S14
TPV

S15
push

S16
push

S17
TPV

S18
Emp

S0
StackAr

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Trace 4 (capacity: 5)

ET TPN Emp TPNTN FF ET TN FF

S0 S1 S2 S3 S4 S8
StackAr Emppush push

S5 S6
TPVpush

S7
Emppush

S9
push

S10
push

S11
TPV

S12
push

S13
TPV

S14
TPV

S15
push

S16
push

S17
TPV

S18
Emp

Trace 5 (capacity: 6)

Figure 3: Five example StackAr invocation traces.

180



CONTRACTOR(inv-set invariants)
1 MTS T , T.S = /0

2 for each tuple enabled ∈ invariants.methods
3 clause statePred = /0

4 for each method ∈ enabled
5 statePred = statePred∧method.preCond
6 for each method /∈ enabled
7 statePred = statePred∧¬method.preCond
8 if SMT-ISCONSISTENT(statePred)
9 add T.senabled to T.S
10 for each pair T.s1,T.s2 in T.S and method in inv.methods
11 if SMT-ISCONSISTENT(T.s1 ∧method.preCond)
12 and SMT-ISCONSISTENT(T.s2 ∧method.postCond)

13 add T.s1
method−→r T.s2 to T.transitions

14 return T

Figure 4: The Contractor algorithm.

To illustrate k-tail and its shortcomings, we use five StackAr
invocation traces, corresponding to creating and using stacks of
different capacities (Figure 3). Let us consider how 2-tail that
considers the method return values as part of its merging criterion
works on these traces. The algorithm correctly merges states s1 and
s6 in Trace 1 because the two following invocations from each state
are isEmpty()=true and top()=null. The algorithm also merges
states s1 in Trace 1 and s11 in Trace 2. However, this merge is
imprecise as it allows a non-zero-capacity stack to change capacity
to zero after an invocation of isFull() from s10 to s11 in Trace 2.
The k-tail models are also incomplete for those traces in which pairs
of methods happen to be, but are not actually required to be, invoked
in a specific order (e.g., top() is always invoked after isEmpty()
in Figure 3). The existing k-tail-based techniques (e.g., [39, 41, 49])
all suffer from these limitations.

3.2 Invariants-Only: CONTRACTOR++
As mentioned earlier, CONTRACTOR++ comprises two parts: (1)

the core algorithm Contractor [18], a recent algorithm that creates
MTS models exclusively based on program invariants, and (2) our
enhancements to Contractor take enable it to work on inferred, as
opposed to manually specified, program invariants.

Figure 4 lists the Contractor algorithm. Contractor uniquely char-
acterizes the model’s states by the combination of methods enabled
in each state (lines 2–9 build the state set T.S). This abstraction
is thus referred to as enabledness. A state (i.e., a combination
of enabled methods) is legal if the preconditions of the enabled
methods are consistent with one another. The algorithm checks for
consistency of the preconditions in lines 2–9 with the help of an
off-the-shelf Satisfiability Modulo Theories (SMT) solver, such as
Yices [61]. Lines 10–14 create a transition on a method between
two states if that method’s precondition is satisfied in the source
state and the postcondition is satisfied in the target state.

To use Contractor in our evaluation, we had to enhance its inputs
in two significant ways, without which both the accuracy and scal-
ability of the algorithm would be notably lower. We refer to these
enhancements as CONTRACTOR++, and use CONTRACTOR++ as
the implementation of the invariants-only inference strategy.

We refer to the first enhancement as Method Distinction: Since
Contractor does not consider predicates of the methods’ output
values, in CONTRACTOR++ we represent each (method, return-
value) combination as a distinct method with its own invariants.
Otherwise, for example, the model inferred for StackAr would
have only two states: the first one with all methods enabled, and the
second one with push() prohibited and all other methods allowed.
Such a model is imprecise as it allows, for example, pushing on a
stack of 0-capacity, or popping non-null values from an empty stack.

ADVANCEDMERGE(st T1.S, st T2.P, int k, set pred)
1 if Tail(T1.S, k) 6= Tail(T2.P, k)
2 return false
3 if EVALGLOBAL(T1.S, pred) 6= EVALGLOBAL(T2.P, pred)
4 return false
5 return true

Figure 5: The SEKT algorithm uses ADVANCEDMERGE to de-
termine if two states should be merged.

We refer to the second enhancement as Invariant Filtering: In-
stead of using manually-specified invariants, CONTRACTOR++ uses
Daikon-inferred invariants, filtered to avoid less meaningful invari-
ants and to make the algorithm scale, since dynamically inferred
invariants typically have higher complexity than the manually spec-
ified ones [46]. We consider the relational invariants on boolean
and integer variables (e.g., IntEqual, IntGreaterThan), and the
IsNull invariant on objects. Further, we consider internal variables
up to a depth of one (i.e., we consider an object’s fields, but not
those fields’ fields). For collections, we consider their sizes but not
their elements. Without these enhancements, the original Contractor
algorithm’s models are of significantly lower quality than reported
below for CONTRACTOR++. Note that the same set of filters are
employed in (and were, in fact, originally developed for) TEMI.

3.3 Invariant-Enhanced-Traces: SEKT
While k-tail has been used extensively in prior work (recall Sec-

tion 3.1), our State-Enhanced k-tail, SEKT, is the first algorithm
that extends k-tail using program state information inferred from the
full set of observed executions. The most closely related algorithm,
proposed by Lorenzoli et al. [41], infers invariants only for the lim-
ited set of states that are merged during PTA construction (recall
Figure 2). Due to this limited scope for learning relevant invariants,
Lorenzoli et al.’s algorithm may err both in allowing and rejecting
merges, which may decrease both the precision and the recall of
the resulting model [40]. For example, this approach merges the
states in StackAr’s Trace 1 and Trace 4 from Figure 3 because they
follow the same invocation sequence, despite the different method
parameter and return values. Consequently, the resulting merged
trace erroneously implies that a stack of size 0 is the same as one of
size 5 even though isFull returns different values.

In contrast to Lorenzoli et al.’s algorithm, SEKT modifies the
k-tail algorithm by adding a new global merge requirement: The
merging states must correspond to the same abstract program state.
Method ADVANCEDMERGE in Figure 5 details this merging crite-
rion and is incorporated into k-tail by replacing the original con-
dition specified in line 3 of Figure 2. The pred parameter of AD-
VANCEDMERGE is the set of predicates that define the program
states, and T1.S and T2.P are the two potential to-be-merged states.
Lines 1–2 of ADVANCEDMERGE test the tail similarity; lines 3–4
check for matching program states. The state matching compares
whether the two concrete variable evaluations correspond to the
same abstract program state (EVALGLOBAL).

The new merging condition can prevent erroneous merges. For
example, SEKT avoids the spurious merge of s1 in Trace 1 and s11 in
Trace 2 in the StackAr traces from Figure 3 (recall Section 3.1): The
condition in line 3 of ADVANCEDMERGE is satisfied, thus rejecting
the merge, since only predicates P1 and P4 (from Section 2.3) are
true in s1, but only P1 and P3 are true in s11.

3.4 Trace-Enhanced-Invariants: TEMI
Trace-Enhanced MTS Inference, TEMI, infers an MTS that in-

cludes but differentiates (1) the behavior asserted legal by the in-

181



GENERATEINVARIANTMTS(set pred, inv-set invariants)
1 MTS invariantMTS, set toProcess, isProcessed = /0

2 set predCombinations = COMBINE(pred)
3 for each combination ∈ predCombinations
4 if SMT-ISCONSISTENT(combination)
5 add combination to invariantMTS.states
6 add invariantMTS.initSt to toProcess
7 while toProcess 6= /0

8 currentSt = toProcess.pop
9 add currentSt to isProcessed
10 for each methodInv ∈ invariants
11 if SMT-ISCONSISTENT(methodInv.pre∧ currentSt)
12 for each targetSt ∈ invariantMTS.states
13 if SMT-ISCONSISTENT(methodInv.post∧ targetSt)
14 if targetSt /∈ isProcessed add targetState to toProcess

15 add currentSt methodInv.name−→m targetSt to invariantMTS.transitions
16 return invariantMTS

Figure 7: Constructing of an invariant-based MTS.

variants and (2) the behavior observed in the traces. TEMI consists
of two phases. The first phase, conceptually similar to CONTRAC-
TOR++, constructs an MTS with only maybe transitions, capturing
all invocation sequences of an object’s interface allowed by the in-
variants. We call this model an invariant-based MTS. The second
phase promotes transitions observed in the traces from maybe to re-
quired. The remaining maybe transitions stem from generalizations
performed during invariant inference. As we demonstrate later in
the paper, these generalizations are error-prone when working with
a partial, limited set of execution traces. TEMI is loosely inspired
by our earlier work on refining requirements-level use-case scenar-
ios [29]. We have previously outlined an early version of TEMI [31],
but the algorithmic details and evaluation in this paper are new.

Phase I: Synthesis of the Invariant-Based MTS
The method GENERATEINITIALMTS (Figure 7) synthesizes an
invariant-based MTS. It first constructs the prospective state space
invariantMTS.states (lines 3–5) based on the set pred of predicates
from method preconditions. For each possible combination of the
predicate evaluations (line 2), GENERATEINVARIANTMTS uses
Yices to check if that combination, in conjunction with object in-
variants, is satisfiable (line 4). For StackAr, Daikon inferred 4
predicates (recall Section 2.3); Yices rejects as unsatisfiable every
predicate combination with P1 = false and P2 = true.

After determining the valid states, GENERATEINVARIANTMTS
creates transitions between those states (the loop in lines 7–15).
Each transition added in line 15 has a source state that satisfies
the appropriate method preconditions, and a destination state that
satisfies the postconditions, similarly to CONTRACTOR++. The
resulting invariant-based MTS contains a state for every reachable
program state and a transition for every invocation sequence that is
legal according to the invariants [29].

Figure 8 depicts the invariant-based MTS for StackAr. Although
the largest theoretical state space for StackAr is 24 = 16 states,
with an additional initial state, the generated invariant-based MTS
has only 5 states (including the initial state). There are several self-
transitions that capture methods that do not change the program
state. By contrast, the k-tail-based algorithms implicitly consider
every method to be state-changing.

TEMI’s construction of the invariant-based MTS is conceptually
similar to CONTRACTOR++ as it uses a predicate-based abstrac-
tion of the program state. In contrast to Contractor, whose predi-
cates are the full method preconditions, TEMI uses the individual
clauses that appear in the invariants. The reason we choose this
finer-grain abstraction is that the automatically inferred postcondi-

S0

S4 S3

S2S1

p
u
sh

?

ET?, FT?, Emp?, 

TN?, TPN?

ET?, FF?, Emp?, 

TN?, TPN?

push?, EF?, FF?, 

TV?, TPV?

EF?, FT?, TV?

TPV
?

Emp?, TPV?

push?

StackAr?

S
ta

ck
A

r?

push?

E
m

p
?,

 T
P

V
?

Figure 8: The invariant-based StackAr MTS.

REFINEINVARIANTMTS(MTS invMTS, set traces)
1 currentSt = invMTS.initialState
2 for each currentEv ∈ traces
3 for each nextSt ∈ invMTS.states
4 if SMT-ISCONSISTENT(nextSt∧ currentEv.post)∧

currentSt currentEv−→m nextSt
5 REFINESTATE(currentSt,nextSt,currentEv,invMTS)
6 currentSt = nextSt′
7 for each st1 ∈ invMTS.refinedSt

8 for each st1
l−→m st2 ∈ invMTS.transitions

9 if ∃st1
l−→r st3 remove st1

l−→m st2
10 for each state1,state2 ∈ invMTS.refinedSt
11 where state1.programSt = state2.programSt
12 if st1.outTrans≈ st2.outTrans MERGE(st1, st2)
13 return invMT S

REFINESTATE(state currentSt, state nextSt, event currentEv, MTS invMTS)
1 if currentSt = nextSt require currentStcurrentEv−→r nextSt
2 else
3 add nextSt′ to invMTS.states, rename nextSt to nextSt′′

4 replace currentStcurrentEv−→γ nextSt′′ with currentStcurrentEv−→r nextSt′

5 for each nextSt′′ l−→γotherSt in invMTS.transitions

6 if nextSt′′ 6= otherSt add nextSt′ l−→γotherSt to invMTS.transitions

7 else add nextSt′ l−→γnextSt′ to invMTS.transitions

Figure 9: Refining the invariant-based MTS according to the
traces.

tions tend to be more complex than the manually written ones [46].
For example, consider a method postcondition that consists of
a set of implication clauses that relate the program state before
and after a method invocation: [(PreState1)⇒ (PostState1)]∧ . . .∧
[(PreStaten)⇒ (PostStaten)]. The states in the TEMI’s invariant-
based MTS would correspond to the different states PreState1, . . . ,
PreStaten, and each state would have a transition to its appropri-
ate next state PostState1, . . . , PostStaten. On the other hand, Con-
tractor’s model would have a single state corresponding to all the
pre-states with nondeterministic transitions to the post-states, thus
resulting in a less precise model.

Phase II: Refining the Invariant-based MTS
TEMI uses observed trace information to refine the invariant-based
MTS by promoting to required those maybe transitions that corre-
spond to observed invocations. REFINEINVARIANTMTS in Figure 9
describes this refinement algorithm. In [30], we summarize addi-
tional optimizations introduced to improve the scalability of TEMI
as well as extensions that add further information to the inferred
models. We omit their discussion for brevity as they are not part of
the core algorithm.

182



S0

S4' S3'

S1'

p
u
sh

ET, FT, 

TN, TPN, 

Emp

ET, FF, Emp, 

TN, TPN

EF, FT, 

TV

StackAr

S
ta

ck
A

r

S1''

ET, FF, Emp?, 

TN, TPN

TPV, Emp

push
S1'''

S2

push, EF?, FF?, 

TV?, TPV

push

ET?, FF?, Emp?, 

TN?, TPN?

S3''
TPV

push

EF?, FT?, 

TV?

TPV
, E

m
ppu

sh

E
m

p

Figure 10: The StackAr MTS refined with invocation traces.

A direct approach to incorporating trace information into the
invariant-based MTS is to simulate the traces on the MTS and
promote each traversed maybe transition (denoted with ‘?’ on the
label) to a required transition (without ‘?’). However, this approach
can result in imprecisions because states may be visited multiple
times, and the produced model would not distinguish between the
different visits. This can “stitch” together a required transition from
one trace to a required transition from another trace, resulting in an
invocation ordering that never occurred. For example, consider the
direct refinement of the invariant-based MTS from Figure 8 based
on the StackAr traces from Figure 3. The resulting MTS allows a
spurious sequence in which — based on Trace 2 — push(x) from
an empty stack (state S1) to a full stack (S3) is followed — based on
Trace 3 — by topAndPop() to a partially full stack (S2).

To avoid such issues, REFINEINVARIANTMTS enhances the
direct refinement strategy by also refining the visited states (the
refinement process is captured in lines 2–6). When REFINEINVARI-
ANTMTS visits a state in the invariant-based MTS, it first splits it
into two states (line 5, where REFINESTATE, shown in the bottom
portion of Figure 9, is called). The first refined state (nextSt′ in RE-
FINESTATE) has only one incoming transition, which corresponds
to the currently processed trace invocation (currentEv). The second
refined state (nextSt′′) keeps the remaining incoming transitions of
the original state. Each state keeps all of the original outgoing tran-
sitions and self-transitions (lines 5–7 in REFINESTATE). The state
splitting enables each state to express different behavior according
to the incoming transitions. For example, StackAr’s MTS depicted
in Figure 10 is obtained by refining the invariant-based MTS from
Figure 8 with the traces from Figure 3. The push(x) invocation
from S5 to S6 in Trace 2 (Figure 3) splits StackAr’s invariant-based
state S3 (Figure 8) into two new states S′3 and S′′3 (Figure 10). S′3 is
reachable from empty-stack states, while S′′3 is reachable from a par-

tially full stack. Furthermore, the transition S′1
push−→r S′3 is promoted

to required since it has been observed in the traces.
Once the MTS is refined according to the traces, REFINEINVARI-

ANTMTS uses the newly incorporated required transitions to further
improve the model. First, REFINEINVARIANTMTS removes spuri-
ous nondeterministic transitions for each method, using a heuristic
that if a state has non-deterministic transitions on a method, and
some of those transitions are observed (required) while others are un-
observed (maybe), then the unobserved transitions can be removed
(lines 7–9) because they are likely a product of overly general invari-
ants. For example, StackAr’s refined MTS in Figure 10 does not
have a maybe transition from S′3 on topAndPop() to a partially full
stack state S2. This is because such behavior was never observed.

By contrast, a direct transition to an empty stack (S′3
topAndPop−→r S′′1 )

was observed in Trace 2. This distinction between the refined states

Application Type Exec. Libraries

StackArTester [15] unit test unit test StackAr

jEdit [26] text editor end-user StringTokenizer

jlGUI [28] media player end-user StringTokenizer

Columba [9] e-mail client end-user Signature, Socket,
SMTPProtocol

jFTP [27] file transfer end-user Signature,
SftpConnection

JarInstaller [25] packaging end-user ZipOutputStream

DaCapo Xalan [12] benchmark
perfor- NumberFormatStr-
mance ingTokenizer,
test ToHTMLStream

Voldemort [55] distributed unit tests Socketdatabase

Figure 11: Eight applications that exercise the evaluated li-
braries.

S′3 and S′′3 was not present in the original invariant-based MTS due
to topAndPop()’s incomplete postcondition.

4. EVALUATION
To evaluate the four model inference strategies, we used the four

respective algorithms to infer models of nine open-source libraries.
To generate the execution information necessary for our analysis,
we exercised the libraries using other readily-available, open-source
applications we found on the web. We then compared the quality
of the models inferred by each of the four algorithms. Section 4.1
describes the applications and the libraries our evaluation uses. Sec-
tion 4.2 explains the setup and goals of our evaluation. Sections 4.3,
4.4, and 4.5 present the evaluation results. Finally, Section 4.6
addresses the threats to the validity of our findings.

4.1 Subject Libraries and Applications
Our nine evaluation libraries span five categories:
1. Data structures (DataStructures.StackAr)

2–3. Data processing (org.apache.xalan.templates.Elem-
Number.NumberFormatStringTokenizer, to which we will
refer as NFST, and java.util.StringTokenizer)

4. Authentication and data-integrity verification
(java.security.Signature)

5–6. Data streaming (java.util.zip.ZipOutputStream and
org.apache.xml.serializer.ToHTMLStream)

7–9. Distributed communication and message exchange
(org.columba.ristretto.smtp.SMTPProtocol,
net.sf.jftp.net.wrappers.SftpConnection, and
java.net.Socket)

To collect invocation traces for these libraries, we used eight open-
source applications. Figure 11 describes the applications and the
way we ran them to exercise the libraries. For example, we exercised
StringTokenizer’s functionality by running jEdit as an end-user
who edits and saves text, and Socket’s functionality by running
Voldemort’s unit tests that involve socket-based communication. We
provided all techniques with the same set of traces and inferred
invariants as inputs. The collected traces contained all invocations
of the selected classes.

4.2 Evaluation Setup
This section describes our quality metrics, the process for assess-

ing a model’s quality based on ground-truth models, our hypotheses,

183



S0

ZipOutput

Stream
S1

S2

S3

putNextEntry, 

write

closeEntry

close

c
lo

se

Figure 12: ZipOutputStream’s ground-truth model.

and our experiments.

4.2.1 Metrics
To measure the quality of a model, we compare it to a ground-

truth model (see Section 4.2.2). We perform this comparison in
terms of precision and recall [36]. Precision measures the fraction
of one thousand traces generated by the inferred model that are
allowed by the ground-truth. Recall measures the fraction of one
thousand ground-truth traces that are allowed by the inferred model,
suggesting how complete the model is. Since the evaluated models
can have infinite traces, we restricted the length of the traces to twice
the number of transitions in the ground-truth model.

4.2.2 Ground-Truth Models
Evaluating the quality of the inferred models requires a set of

ground-truth models that represent the libraries’ legal behavior. To
this end, we used the ground-truth models that were manually ex-
tracted as a part of related work [16, 47]. We modified those models
when we discovered imprecisions that we were able to validate by in-
specting the source code, and when the models included non-public
methods. We removed from the ground-truth models all transi-
tions on methods that were never invoked in the collected traces.
(This simplification equally impacts the recall of our techniques
and of the existing techniques, and thus does not affect our conclu-
sions. Meanwhile, the precision of the techniques is unaffected as
the removed methods are not present in the inferred models.) For
libraries without an existing ground-truth (NFST, ToHTMLStream,
and SftpConnection), two doctoral students inspected the source
code and API documentation, and manually constructed the mod-
els. As an example, Figure 12 depicts the ground-truth models for
ZipOutputStream.

4.2.3 Hypotheses
Our evaluation tests the following hypotheses:

Hypothesis 1: Models inferred using invariants-only and trace-en-
hanced-invariants strategies are of significantly higher qual-
ity as compared to models inferred using traces-only and
invariant-enhanced-traces strategies.

Hypothesis 2: Execution traces can circumvent imprecisions stem-
ming from invariant inference that may be incomplete.

Hypothesis 3: Invariant filtering is a necessary aspect of invariants-
based dynamic model inference techniques.

4.2.4 Experimental Design
For each library, we inferred seven models: traditional k-tail

and SEKT with k ∈ {1,2}, optimistic and pessimistic TEMI, and
CONTRACTOR++. The pessimistic TEMI model removes maybe
transitions (thus treating unobserved invocations as illegal), while
the optimistic model retains all transitions. We do not report results
of k-tail for k > 2 because those k values led to fewer merges, which
lowered the recall without notable precision improvement.

In the experiments, for each library, we performed three steps:
(1) execute applications that use the library to generate traces, (2) run
the seven inference algorithms on those traces, and (3) measure
the precision and recall of the inferred models. The implementa-
tion, observed traces, inferred models, and ground-truth models
are publicly available: http://softarch.usc.edu/wiki/doku.
php?id=inference:start.

4.3 Inferred Model Precision and Recall
This section assesses the quality of the inferred models, as com-

pared to the ground truth. Figure 13 shows the precision (P) and
recall (R) of each algorithm’s models. Figure 13 distinguishes the
algorithms along two dimensions: The algorithms developed fully
as part of our research, placed in the central portion of the table,
are separated from the existing algorithms by the two vertical lines;
the different shadings distinguish implementations of traces-only
and invariant-enhanced-traces strategies from the algorithms that
implement invariants-only and trace-enhanced-invariants strategies.
Next, we (1) compare the models’ precision and recall; (2) analyze
the reasons for better recall of models inferred via the invariants-
only and trace-enhanced-invariants strategies; and (3) explain the
differences between models inferred using those two strategies.

For all libraries, except StringTokenizer, CONTRACTOR++
and TEMI produce models of superior recall and comparable or
better precision than the traditional k-tail and SEKT algorithms. For
example, the k-tail models of SMTPProtocol allow only a single
message to be sent before terminating the connection. The TEMI
model correctly generalizes the observed behavior and allows multi-
ple messages, which improves the recall. Compared with SEKT, for
example, the precision of the optimistic TEMI is lower in the cases
where TEMI either included an erroneous transition or inferred erro-
neous states due to incomplete invariants. Pessimistic TEMI does
resolve the imprecisions due to erroneous transitions by considering
only required transitions.

Figure 13 indicates that TEMI and CONTRACTOR++, have sig-
nificantly higher recall than the k-tail-based algorithms. This is
because the invariants help to distinguish between those invocations
that change program state, in turn restricting future invocations, and
those that do not. For example, ToHTMLStream’s invariants indicate
no restrictions on its method invocations and the CONTRACTOR++
model has a single state with a self-transition for every method. In
contrast, the k-tail models capture irrelevant invocation restrictions
inferred from the traces. Furthermore, the results confirm that, while
the traces-only strategy has high precision on average, its complete
dependence on execution traces can result in precision-lowering
spurious merges (e.g., this happened for models of StackAr and
SftpConnection).

Our evaluation results also suggest that TEMI is slightly-to-mod-
erately more precise than CONTRACTOR++, while having nearly-
identical recall. The differences in precision stem from the ways
these two approaches construct model states and the way TEMI
incorporates the observed invocations. As discussed in Section 3.4,
multiple TEMI states may be logically mapped to a single CON-
TRACTOR++ state; the CONTRACTOR++ state may have additional,
precision-lowering, transitions that do not exist in the TEMI states.

The difference in precision is especially pronounced for String-
Tokenizer and SMTPProtocol, whose recall CONTRACTOR++ im-
proved by up to 1%, but at a precision cost of 7–8%, as compared to
optimistic TEMI. CONTRACTOR++’s model of StringTokenizer
allowed illegal invocation sequences in which a first invocation
of hasMoreTokens() returned false but a subsequent invocation
returned true. This occurred because CONTRACTOR++ is not al-
ways able to precisely capture postconditions that relate post-state

184

http://softarch.usc.edu/wiki/doku.php?id=inference:start
http://softarch.usc.edu/wiki/doku.php?id=inference:start


Library
Traditional Traditional SEKT SEKT Optimistic Pessimistic CONTRACTOR++1-tail 2-tail 1-tail 2-tail TEMI TEMI

P R P R P R P R P R P R P R

StackAr 64% 30% 83% 30% 97% 30% 97% 30% 99% 94% 100% 71% 99% 94%
NFST 100% 21% 100% 21% 100% 21% 100% 21% 96% 57% 96% 44% 96% 57%
StringTokenizer 100% 52% 100% 51% 100% 51% 100% 50% 100% 51% 100% 50% 93% 52%
Signature 100% 61% 100% 61% 100% 61% 100% 61% 100% 88% 100% 88% 100% 88%
ToHTMLStream 100% 26% 100% 26% 100% 26% 100% 26% 100% 100% 100% 100% 100% 100%
ZipOutputStream 100% 37% 100% 36% 100% 37% 100% 35% 100% 63% 100% 47% 100% 63%
SMTPProtocol 100% 20% 100% 20% 100% 20% 100% 20% 96% 77% 100% 66% 88% 78%
Socket 94% 24% 97% 21% 100% 23% 100% 21% 100% 67% 100% 51% 100% 67%
SftpConnection 61% 31% 96% 29% 100% 30% 100% 29% 97% 48% 100% 33% NA NA

Average 95% 34% 98% 33% 100% 34% 100% 33% 99% 75% 99% 65% 97% 75%

Figure 13: Precision (P) and recall (R) comparison of k-tail, SEKT, TEMI, and the CONTRACTOR++ (enhanced Contractor) al-
gorithms. The Average row excludes results for SftpConnection, because CONTRACTOR++ ran out of memory during model
generation.

values to pre-state values. For SMTPProtocol, TEMI removed un-
observed transitions on getState(), which remained in the CON-
TRACTOR++ model due to incomplete invariants.

In general, the causes behind CONTRACTOR++’s imprecision
were more varied than those that impacted the recall of TEMI: While
TEMI’s recall may deteriorate because of overly restrictive invari-
ants abstracted by CONTRACTOR++, CONTRACTOR++’s precision
may be hampered by incomplete invariants, intricate relationships
between invariants, and invocation dependencies that invariants can-
not capture. We note that, while issues such as overly restrictive or
incomplete invariants can be mitigated by collecting additional exe-
cutions, invariant complexity and implied invocation dependencies
cannot be mitigated in such a way.

Our results strongly support Hypothesis 1 from Section 4.2: Uti-
lizing program state information from invariants to create an
initial model, before potentially augmenting it with information
about invocation sequences from the execution traces, signifi-
cantly improves the quality of dynamically inferred models. Our
results also suggest that combining program state information
with information about invocation sequences from execution
traces results in near perfectly-precise models, as was the case
for our invariant-enhanced-traces (SEKT) and trace-enhanced-
invariants (TEMI) algorithms.

4.4 Sensitivity to Invariant Quality
In the real world, the collected execution data may be partial, and

the results of invariant inference noisy. Model inference’s aim is
to maintain high precision under noise: Even a moderate drop in
precision could render the produced model useless [48].

To evaluate the impact of invariant noise, we removed random
subsets of invariant clauses and measured the resulting precision
and recall of the TEMI and CONTRACTOR++ models. For each
library, we generated 20 models for each of the cases when 10%
and 20% of the invariant clauses are removed. The results in Fig-
ure 14 suggest that (1) the precision of pessimistic TEMI is robust
to variations in invariant quality, (2) optimistic TEMI models out-
perform CONTRACTOR++ by yielding higher precision and recall,
(3) noisy environments require enhancing invariants with trace in-
formation, and (4) decreased invariant quality negatively affects
CONTRACTOR++’s performance. We elaborate on each point next.

1. Invariant incompleteness did not affect the near-perfectly pre-
cise (99%) pessimistic TEMI models. This confirms that the MTS
refinement procedure (recall Section 3.4) appropriately introduces
the trace information even when the initial model is imperfect. In
particular, pessimistic TEMI models have 8–13% higher precision

than optimistic TEMI and CONTRACTOR++ models, while also
having 33% higher recall than comparably precise k-tail models,
which are not affected by noisy invariants (see Figure 13).

2. When faced with noisy invariants, the optimistic TEMI models
outperform CONTRACTOR++ in the average case by 1–4% in both
precision and recall. The reasons were twofold: (1) Incomplete
invariants add erroneous nondeterministic transitions; the degree of
nondeterminism is higher in CONTRACTOR++ models, leading to
lower precision. (2) Incomplete invariants cause TEMI’s refinement
procedure to correctly split states and subsequently remove the
undesired maybe transitions only from the appropriate state.

3. In the average case, noisy invariants caused the TEMI models’
precision to drop from 99% (Figure 13) to 89–91% (Figure 14);
the precision dropped by 42% and 33% in the two extreme cases —
StackAr and Socket. A reason for the extremes is that the states
in TEMI’s Socket model can have a number of incorrect nondeter-
ministic transitions that confirm the connection (isConnected()=
true) before it has been established. This highlights the crucial
role of augmenting invariants-only models with trace information:
isConnected() never returns this result in the actual traces and the
erroneous transitions do not exist in the pessimistic TEMI models.

4. Incomplete invariants affect performance, making CONTRAC-
TOR++ less efficient due to a higher number of allowed program
states. This, in turn, results in a higher number of SMT queries that
cause the scalability problems further discussed in Section 4.5.

We conclude that invocation trace information is necessary to
circumvent potential imprecisions in the invariants-only models.
Hypothesis 2 holds for trace-enhanced-invariants models, as less
reliable inferred program invariant information is augmented
with information about invocation sequences from the execution
traces. While lower quality invariants reduce the precision of
the maybe transitions, the pessimistic TEMI models remained
almost perfectly precise with unchanged recall, which makes
pessimistic TEMI the most appropriate choice when an engineer
is running an unfamiliar system to infer a model of a poorly
documented library.

4.5 Impact of Invariant Filtering
As noted earlier, the high quality of invariants-only models is

critically dependent on having meaningful and manageable invari-
ants as inputs. This is best described using the differences between
the original Contractor algorithm [18] and CONTRACTOR++, our
enhancement of Contractor with invariant filters (recall Section 3.2).

Figure 15 outlines the model quality when the enhancements are
not applied. Compared to CONTRACTOR++, when the input invari-

185



Library
Optimistic Optimistic Pessimistic CONTRACTOR++ Optimistic Pessimistic CONTRACTOR++TEMI TEMI TEMI TEMI TEMI

full invariant set 10% invariants removed 20% invariants removed
P R P R P R P R P R P R P R

StackAr 99% 94% 67% 96% 100% 71% 70% 95% 66% 96% 100% 80% 61% 97%
NFST 96% 57% 90% 59% 96% 44% 86% 60% 86% 60% 96% 44% 82% 69%
StringTokenizer 100% 51% 90% 77% 100% 50% 92% 69% 82% 79% 100% 50% 91% 72%
Signature 100% 88% 96% 90% 100% 88% 96% 88% 92% 91% 100% 88% 88% 77%
ToHTMLStream 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
ZipOutputStream 100% 63% 100% 69% 100% 47% 100% 69% 100% 76% 100% 47% 100% 73%
SMTPProtocol 96% 77% 96% 77% 100% 66% 86% 74% 94% 78% 100% 66% 80% 62%
Socket 100% 67% 61% 69% 100% 51% NA NA 58% 71% 100% 51% NA NA

Average 99% 76% 91% 81% 99% 67% 90% 79% 89% 83% 99% 67% 86% 79%

Figure 14: Precision (P) and recall (R) comparison of TEMI, and the CONTRACTOR++ algorithms in a noisy environment (when
some of the invariants are removed). TEMI is more robust to the noise, with almost-perfectly precise pessimistic TEMI, while
delivering slightly higher recall on average. The Average excludes results for Socket, because CONTRACTOR++ ran out of memory
during model generation.

ants are not filtered (No Invariant Filtering in Figure 15), a modest
1% average increase in precision comes at the expense of a sizable
drop in recall (up to 54%, in the case of SMTPProtocol). When
the different method return points are not handled separately (No
Method Distinction), the resulting models are 25% less precise on
average, although the average recall increases by 10%. Omitting our
enhancements also accentuated Contractor’s scalability problems,
denoted as NA values, discussed next.

Each CONTRACTOR++ SMT query includes the invariants of all
methods, and such a query is generated for every possible combina-
tion of methods’ invariant evaluations (recall Section 3.2). Hence,
CONTRACTOR++ queries are longer and more resource consuming
than TEMI’s queries. In the case of SftpConnection, which has
22 methods with 684 invariant clauses, the SMT solver runs out of
memory (Figure 13); this happens in five additional cases when our
enhancements are not applied (Figure 15), as well as the one case
with noisy invariants (Figure 14). Since CONTRACTOR++ is built
using the combination of Python and C, the memory is allocated by
the operating system, which kills the SMT solver’s process once the
memory consumption makes the system unstable.

Overall, our evaluation results confirm Hypothesis 3, as invariant
filters that keep only a limited set of relevant invariant types
have shown to be crucial to enhancing the scalability as well
as the quality of techniques that implement invariants-only and
trace-enhanced-invariants strategies.

4.6 Threats to Validity
We now outline the threats to our evaluation’s validity and discuss

our mitigation strategies.

Library CONTRACTOR++ No Invariant No Method
Filtering Distinction

P R P R P R

StackAr 99% 94% 99% 94% 77% 100%
NFST 96% 57% 98% 40% 78% 66%
StringTokenizer 93% 52% 91% 77% 47% 77%
Signature 100% 88% 100% 78% NA NA
ToHTMLStream 100% 100% 100% 100% NA NA
ZipOutputStream 100% 63% NA NA NA NA
SMTPProtocol 88% 78% 100% 24% NA NA
Socket 100% 67% 96% 60% 86% 68%

Figure 15: Precision (P) and recall (R) of Contractor models
with and without SEKT- and TEMI-specific invariant filters.

Ground-truth bias. The ground-truth models were, in part, man-
ually constructed. This may make them biased to the specifier’s
expertise. To mitigate this threat, we used the publicly available
ground-truths from other researchers [16, 47], and modified them
only if we were able to validate the modifications by inspecting the
source code. We also made multiple iterations over the resulting
models with two specifiers.

Subject libraries and applications. The selection of libraries
and applications that invoke them may bias the evaluation results.
For instance, models of a well-known library may not be representa-
tive of dynamically inferred models in general. Similarly, mature
applications may be more careful in using a library’s functionality.
To this end, we selected libraries of different types and popularity
(e.g., well documented Java libraries vs. less widely known NFST).
We also used applications from several different domains and of
different maturities, popularities, and sizes (e.g., widely used Volde-
mort vs. less popular JarInstaller). Finally, we had to address the
bias stemming from inferring models based on traces obtained from
unit and integration tests. Hence, we collected some of the uti-
lized traces by executing open-source applications in ways that an
end-user would use them to explore the available features.

Metrics. There are multiple ways of comparing the generated
models with the corresponding ground-truth models (e.g., recall
and precision of the simulated traces vs. graph comparison), which
could potentially yield different results. Our mitigation strategy
used metrics that have been proposed and adopted by the research
community [36], and are consistent with our goal of comparing
model behavior, not structural similarity.

5. OUR FINDINGS’ IMPACT
While studying inferred model quality is an interesting exercise on

its own, our findings, which confirm the high quality and robustness
of trace-enhanced-invariants models, should motivate further appli-
cation of model inference in practice. Below, we briefly elaborate
on the utility of having the different types of generated models, and
discuss the potential impact of our higher-quality trace-enhanced-
invariants models on several development activities.

Model quality. The high overall quality of the inferred models
can aid a variety of software development tasks including API under-
standing [1, 18], debugging, test generation [41], and runtime fault
detection [22, 48]. For example, during debugging a programmer
can analyze if a given library is invoked as expected. Similarly, an
inferred trace-enhanced-invariants model that exhibits high recall
(i.e., that is complete) can help to detect invocations that violate the
library’s protocol [48], while avoiding spurious warnings.

186



Required vs. maybe transitions. The TEMI models contain ob-
served required transitions and unobserved maybe transitions. This
dichotomy is useful for several reasons. For example, as discussed
in Section 4.4, when the available executions are not comprehensive,
the resulting invariants can be noisy. In such cases, a developer
can rely on TEMI models due to almost perfect precision of the
required transitions. In addition, the required MTS transitions can
be augmented with frequencies of method invocations. This can
benefit recommender systems [6, 7, 42, 50] in prioritizing examples
by selecting those that commonly occur in actual executions.

Program state information. While our evaluation focused on
the invocation sequences, our models also relate the model states
to the internal program states. Hence, instead of having to gain a
comprehensive understanding of a library’s source code or to strictly
rely on the available API-level documentation, a programmer can
use the state information to “peek inside” the library’s implementa-
tion. Similarly, tools that detect protocol violations (e.g., [48]) may
provide more informative warnings by referring to program state.

Trace-oriented models. The invariant-enhanced-traces models
can be more appropriate for development tasks that require trace-
specific information, despite their significantly lower recall than
that of the TEMI models. For example, detailed analysis of how an
unfamiliar program communicates with a library requires compact,
yet accurate representation of the traces themselves as opposed
to a representation of the library’s full API protocol. The SEKT
algorithm produces such models, while the k-tail algorithm is less
reliable due to its sole dependence on execution traces.

6. RELATED WORK
Program invariants have been used to directly synthesize FSM

models [18], and to augment the k-tail algorithm with transition
invariants [41]. As noted in Sections 4.3 and 4.4, TEMI is more
appropriate than CONTRACTOR++ for dynamic specification mining
because (1) it has higher precision, (2) it is more resilient to invariant
noise, and (3) unlike Contractor, it distinguishes between observed
and unobserved invocations. By contrast, starting from the observed
executions and using Daikon [20] to infer transition invariants [41]
results in other imprecisions, as discussed in Section 3.3.

The k-tail algorithm [5] serves as a basis for many FSM-inference
techniques from invocation traces [10, 36, 37, 39, 41, 49, 56]. These
algorithms (1) extend k-tail to improve its precision or recall [10,
39, 49, 56], (2) build larger frameworks with k-tail as the inference
algorithm [37, 49], and (3) enhance the models with information
about invocation probabilities [37] and program state and method
parameters [41]. Additional merges can make the models more com-
pact [10, 49], while stricter merging conditions based on pairwise
sequencing invariants can improve precision [39, 56]. In general,
these approaches’ recall is only as good as the traditional 1-tail
and, for our evaluation libraries, their precision cannot surpass the
precision of SEKT. Synoptic [4], CSight [3], and Perfume [43, 44]
use the CEGAR [8] approach to create a coarse initial model, and
then refine it using counterexamples that falsify temporal invariants.
InvariMint [2] presents a declarative specification language for ex-
pressing model-inference algorithms, and improves the efficiency
of algorithms, but neither their precision nor recall.

There are other ways to aid development tasks than inferring
models, such as detecting method invocation patterns [21, 60] and
inter-object sequence charts [32, 38]. These patterns can detect
code anomalies [22, 48]. Scenario-based views of a system’s behav-
ior, such as parametrized [38] and symbolic [32] sequence charts,
facilitate understanding of a system’s runtime interactions.

While we used both CONTRACTOR++ and TEMI in combination
with invariants inferred by Daikon [20], invariants-only and trace-

enhanced-invariants techniques can be adapted to work with other
invariant-inference techniques. Examples of such techniques include
techniques that combine inference with symbolic program execu-
tion [11] and enhance it by using simple, manually written initial
invariants [57] or manually-written relations between methods [35].

Static [19, 53] and hybrid techniques [17, 58] provide two alter-
natives to specification mining based strictly on invocation traces.
Shoham et al. [53] infer, from client-side code, FSM models that
over-approximate the actual invocation sequences. By contrast, our
algorithms work on traces generated from multiple parts of the code
and, potentially, from multiple applications. De Caso et al. [19]
statically analyze C programs for invariants and use Contractor to
create models that allow more behavior than the ground truth.

ADABU [17] infers the concrete program state by statically find-
ing side-effect-free invocations and combines that information with
test case executions. While the concrete program state is also ab-
stracted using predicates, these predicates are predetermined and do
not relate multiple variables (e.g., ADABU abstracts integers only
as negative, zero, or positive). Together with test case generation,
ADABU can improve model quality, enabling code verification [16].
However, this requires tailored unit test executions. Compared to
TEMI, ADABU uses limited invariants and infers one model per
runtime object, which hampers its applicability to rich classes and
executions that involve many objects of the same type. Whaley
et al. [58] create a separate submodel for each field of a class, an-
alyzing if a method modifies a given field, and creating a 1-tail
model that combines static and dynamic information about method
invocations with respect to that field. Unlike TEMI, this approach
requires static analysis, creates multiple submodels, and considers
only one-step history (1-tail), limiting its applicability.

7. CONCLUSIONS
Using a software library is a non-trivial task hampered by a lack

of appropriate documentation for describing the required but often-
implicit invocation protocols. This paper studied how different
model-inference strategies perform when applied to libraries whose
behavior is exercised using real software. The recent scalability
improvements of the dynamic inference techniques have resolved
many of the obstacles to their application in the real world: these
techniques are now able to handle large sets of execution traces [4,
34] and large sets of runtime data values [45, 61]. However, there
are still noticeable gaps in understanding the quality of the models
produced by model-inference techniques.

As part of this research, we enhanced one existing technique,
and presented two novel algorithms, SEKT and TEMI, that com-
bine execution traces with automatically inferred program-state
invariants. Our evaluation demonstrates that invariants-only and
trace-enhanced-invariants significantly outperform the traces-only
and invariant-enhanced-traces strategies. Trace-enhanced-invariants
models, produced by TEMI, also exhibit superior recall, while being
robust to noisy inputs. Our results highlight the significant impact
of using program-state information to infer high-quality models. In
addition, our research highlights the benefits of combining different
types of runtime information to enhance inferred models and, in turn,
to effectively support development tasks. In our future work, we
plan to study whether this combination can enhance model-inference
for concurrent libraries and multi-object protocols [34].

8. ACKNOWLEDGMENTS
This work has been supported by the National Science Foundation

under award numbers 1117593, 1218115, and 1321141. The work
has also been supported in part by Infosys Technologies Ltd.

187



9. REFERENCES

[1] N. Beckman, D. Kim, and J. Aldrich. An empirical study of
object protocols in the wild. In the European Conference on
Object-Oriented Programming (ECOOP), 2011.

[2] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst,
and A. Krishnamurthy. Unifying FSM-inference algorithms
through declarative specification. In the International Confer-
ence on Software Engineering (ICSE), 2013.

[3] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy.
Inferring Models of Concurrent Systems from Logs of their
Behavior with CSight. In the International Conference on
Software Engineering (ICSE), 2014.

[4] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D.
Ernst. Leveraging existing instrumentation to automatically
infer invariant-constrained models. In the Joint Meeting of
European Software Engineering Conference and Symposium
on Foundations of Software Engineering (ESEC/FSE), 2011.

[5] A. Biermann and J. Feldman. On the synthesis of finite-state
machines from samples of their behavior. IEEE Transactions
on Computers, 21(6), 1972.

[6] M. Bruch, M. Monperrus, and M. Mezini. Learning from exam-
ples to improve code completion systems. In the Joint Meeting
of European Software Engineering Conference and Sympo-
sium on Foundations of Software Engineering (ESEC/FSE),
2009.

[7] R. P. Buse and W. Weimer. Synthesizing API usage exam-
ples. In the International Conference on Software Engineering
(ICSE), 2012.

[8] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided Abstraction Refinement. In Computer
Aided Verification, pages 154–169, 2000.

[9] Columba e-mail client. http://sourceforge.net/
projects/columba, 2013.

[10] J. Cook and A. Wolf. Discovering models of software pro-
cesses from event-based data. ACM Transactions on Software
Engineering and Methodology, 7(3), 1998.

[11] C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy: Dynamic
symbolic execution for invariant inference. In the International
Conference on Software Engineering (ICSE), 2008.

[12] DaCapo benchmark. http://www.dacapobench.org, 2009.
[13] B. Dagenais and M. Robillard. Creating and evolving devel-

oper documentation: understanding the decisions of open
source contributors. In the Symposium on Foundations of Soft-
ware Engineering (FSE), 2010.

[14] B. Dagenais and M. Robillard. Recovering traceability links
between an API and its learning resources. In the International
Conference on Software Engineering (ICSE), 2012.

[15] The Daikon invariant detector. http://groups.csail.mit.
edu/pag/daikon, 2009.

[16] V. Dallmeier, N. Knopp, C. Mallon, G. Fraser, S. Hack, and
A. Zeller. Automatically generating test cases for specification
mining. IEEE Transactions on Software Engineering, 38(2),
2012.

[17] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller. Min-
ing object behavior with ADABU. In the Workshop on Dy-
namic Analysis (WODA), 2006.

[18] G. de Caso, V. Braberman, D. Garbervetsky, and S. Uchitel.
Automated abstractions for contract validation. IEEE Transac-
tions on Software Engineering, 38(1), 2012.

[19] G. de Caso, V. Braberman, D. Garbervetsky, and S. Uchitel.
Enabledness-based program abstractions for behavior valida-
tion. ACM Transactions on Software Engineering and Method-
ology, 22(3), 2013.

[20] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco,
M. S. Tschantz, and C. Xiao. The Daikon system for dynamic
detection of likely invariants. Science of Computer Program-
ming, 69(1), 2007.

[21] M. Gabel and Z. Su. Javert: Fully automatic mining of general
temporal properties from dynamic traces. In the Symposium
on Foundations of Software Engineering (FSE), 2008.

[22] M. Gabel and Z. Su. Online inference and enforcement of tem-
poral properties. In the International Conference on Software
Engineering (ICSE), 2010.

[23] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match: Why reuse is still so hard. IEEE Software, 26(4), 2009.

[24] C. Ghezzi, M. Pezzè, M. Sama, and G. Tamburrelli. Mining
Behavior Models from User-intensive Web Applications. In
the International Conference on Software Engineering (ICSE),
2014.

[25] JarInstaller. http://sourceforge.net/projects/
kurumix, 2013.

[26] jEdit. http://www.jedit.org, 2014.
[27] JFtp client. http://j-ftp.sourceforge.net, 2013.
[28] jlGUI. http://www.javazoom.net/jlgui/jlgui.html,

2010.
[29] I. Krka, Y. Brun, G. Edwards, and N. Medvidovic. Synthe-

sizing partial component-level behavior models from system
specifications. In the Joint Meeting of European Software En-
gineering Conference and Symposium on Foundations of Soft-
ware Engineering (ESEC/FSE), 2009.

[30] I. Krka, Y. Brun, and N. Medvidovic. Automatically min-
ing specifications from invocation traces and method invari-
ants. Technical Report CSSE-2013-509, Center for Systems
and Software Engineering, University of Southern California,
2013.

[31] I. Krka, Y. Brun, D. Popescu, J. Garcia, and N. Medvidovic.
Using dynamic execution traces and program invariants to
enhance behavioral model inference. In the International Con-
ference on Software Engineering New Ideas and Emerging
Results Track (ICSE NIER), 2010.

[32] S. Kumar, S.-C. Khoo, A. Roychoudhury, and D. Lo. Inferring
class level specifications for distributed systems. In the Inter-
national Conference on Software Engineering (ICSE), 2012.

[33] K. G. Larsen and B. Thomsen. A modal process logic. Logic
in Computer Science, 1988.

[34] C. Lee, F. Chen, and G. Roşu. Mining parametric spec-
ifications. In the International Conference on Software
Engineering (ICSE), 2011.

[35] K. Li, C. Reichenbach, Y. Smaragdakis, and M. Young.
Second-order constraints in dynamic invariant inference. In the
Joint Meeting of European Software Engineering Conference
and Symposium on Foundations of Software Engineering
(ESEC/FSE), 2013.

[36] D. Lo and S. Khoo. QUARK: Empirical assessment of
automaton-based specification miners. In the Working
Conference on Reverse Engineering (WCRE), 2006.

[37] D. Lo and S. Khoo. SMArTIC: Towards building an accurate,
robust and scalable specification miner. In the Symposium on
Foundations of Software Engineering (FSE), 2006.

188

http://people.cs.umass.edu/brun/pubs/pubs/Beschastnikh14icse.pdf
http://people.cs.umass.edu/brun/pubs/pubs/Beschastnikh14icse.pdf
http://sourceforge.net/projects/columba
http://sourceforge.net/projects/columba
http://www.dacapobench.org
http://groups.csail.mit.edu/pag/daikon
http://groups.csail.mit.edu/pag/daikon
http://sourceforge.net/projects/kurumix
http://sourceforge.net/projects/kurumix
http://www.jedit.org
http://j-ftp.sourceforge.net
http://www.javazoom.net/jlgui/jlgui.html


[38] D. Lo and S. Maoz. Scenario-based and value-based specifica-
tion mining: Better together. In the International Conference
on Automated Software Engineering (ICSE), 2010.

[39] D. Lo, L. Mariani, and M. Pezzè. Automatic steering
of behavioral model inference. In the Joint Meeting of
European Software Engineering Conference and Symposium
on Foundations of Software Engineering (ESEC/FSE), 2009.

[40] D. Lo, L. Mariani, and M. Santoro. Learning extended fsa
from software: An empirical assessment. Journal of Systems
and Software, 85(9), 2012.

[41] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation
of software behavioral models. In the International Conference
on Software Engineering (ICSE), 2008.

[42] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin.
Speculative analysis of integrated development environment
recommendations. In the Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA),
2012.

[43] T. Ohmann, M. Herzberg, S. Fiss, A. Halbert, M. Palyart,
I. Beschastnikh, and Y. Brun. Behavioral Resource-Aware
Model Inference. In International Conference On Automated
Software Engineering (ASE), Västerås, Sweden, 2014.

[44] T. Ohmann, K. Thai, I. Beschastnikh, and Y. Brun. Mining
Precise Performance-Aware Behavioral Models from Existing
Instrumentation. In the International Conference on Software
Engineering New Ideas and Emerging Results (ICSE NIER)
track, 2014.

[45] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sulli-
van, et al. Automatically patching errors in deployed software.
In the Symposium on Operating Systems Principles (SOSP),
2009.

[46] N. Polikarpova, I. Ciupa, and B. Meyer. A comparative study
of programmer-written and automatically inferred contracts.
In the International Symposium on Software Testing and
Analysis (ISSTA), 2009.

[47] M. Pradel, P. Bichsel, and T. R. Gross. A framework for
the evaluation of specification miners based on finite state
machines. In the International Conference on Software
Maintenance (ICSM), 2010.

[48] M. Pradel and T. R. Gross. Leveraging test generation and

specification mining for automated bug detection without
false positives. In the International Conference on Software
Engineering (ICSE), 2012.

[49] S. P. Reiss and M. Renieris. Encoding program executions. In
the International Conference on Software Engineering (ICSE),
2001.

[50] R. Robbes and M. Lanza. How program history can im-
prove code completion. In the International Conference on
Automated Software Engineering (ASE), 2008.

[51] M. Robillard. What makes APIs hard to learn? Answers from
developers. IEEE Software, 26(6), 2009.

[52] M. Schur, A. Roth, and A. Zeller. Mining behavior models
from enterprise web applications. In the Joint Meeting of
European Software Engineering Conference and Symposium
on Foundations of Software Engineering (ESEC/FSE), 2013.

[53] S. Shoham, E. Yahav, S. J. Fink, and M. Pistoia. Static
Specification Mining Using Automata-Based Abstractions.
IEEE Transactions on Software Engineering, 34(5), 2008.

[54] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software
Architecture: Foundations, Theory, and Practice. John Wiley
& Sons, 2009.

[55] Project Voldemort. http://www.project-voldemort.com,
2014.

[56] N. Walkinshaw and K. Bogdanov. Inferring finite-state models
with temporal constraints. In the International Conference on
Automated Software Engineering (ASE), 2008.

[57] Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer. Inferring
better contracts. In the International Conference on Software
Engineering (ICSE), 2011.

[58] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction
of object-oriented component interfaces. In the International
Symposium on Software Testing and Analysis (ISSTA), 2002.

[59] T. Xie et al. Data mining for software engineering. Computer,
42(8), 2009.

[60] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perra-
cotta: Mining temporal API rules from imperfect traces. In
the International Conference on Software Engineering, 2006.

[61] Yices SMT Solver. http://yices.csl.sri.com, 2009.
[62] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst. Combined static

and dynamic automated test generation. In the International
Symposium on Software Testing and Analysis (ISSTA), 2011.

189

http://people.cs.umass.edu/brun/pubs/pubs/Ohmann14ase.pdf
http://people.cs.umass.edu/brun/pubs/pubs/Ohmann14ase.pdf
http://people.cs.umass.edu/brun/pubs/pubs/Ohmann14icse-nier.pdf
http://people.cs.umass.edu/brun/pubs/pubs/Ohmann14icse-nier.pdf
http://people.cs.umass.edu/brun/pubs/pubs/Ohmann14icse-nier.pdf
http://www.project-voldemort.com
http://yices.csl.sri.com

	1 Introduction
	2 Background
	2.1 Example Library: StackAr
	2.2 Modal Transition System (MTS)
	2.3 Program State and State Invariants

	3 Inference Algorithms
	3.1 Traces-Only: Traditional k-tail
	3.2 Invariants-Only: Contractor++
	3.3 Invariant-Enhanced-Traces: SEKT
	3.4 Trace-Enhanced-Invariants: TEMI

	4 Evaluation
	4.1 Subject Libraries and Applications
	4.2 Evaluation Setup
	4.2.1 Metrics
	4.2.2 Ground-Truth Models
	4.2.3 Hypotheses
	4.2.4 Experimental Design

	4.3 Inferred Model Precision and Recall
	4.4 Sensitivity to Invariant Quality
	4.5 Impact of Invariant Filtering
	4.6 Threats to Validity

	5 Our Findings' Impact
	6 Related Work
	7 Conclusions
	8 Acknowledgments
	9 Rerefences

