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ABSTRACT
Software behavioral models have proven useful for design,
validation, verification, and maintenance. However, existing
approaches for deriving such models sometimes overgener-
alize what behavior is legal. We outline a novel approach
that utilizes inferred likely program invariants and method
invocation sequences to obtain an object-level model that
describes legal execution sequences. The key insight is using
program invariants to identify similar states in the sequences.
We exemplify how our approach improves upon certain as-
pects of the state-of-the-art FSA-inference techniques.

Categories and Subject Descriptors
D.2 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Verification

Keywords
dynamic analysis, likely invariants, specification mining

1. INTRODUCTION
Behavioral software specifications play an integral role in

software design, validation, verification, testing, and mainte-
nance [17]. Behavioral models, such as statecharts [8], allow
early system specification, design-decision evaluation, and
prototype development. Inferred behavioral models can help
verify the implementation [9] and guide test-case generation
to improve test coverage [7, 14]. In software maintenance,
behavioral models help engineers understand complex ob-
jects and their interactions [13], as well as support debug-
ging, fault detection, and detecting other anomalies [6, 18].

The outlined usage scenarios have motivated the develop-
ment of a variety of methods for inferring behavioral spec-
ifications from system executions. The most relevant ex-
isting methods can be classified into two major categories:
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(1) inferring likely state invariants (e.g., [3, 4]) and (2) in-
ferring finite-state automata (FSA)-based behavioral models
(e.g., [2, 15]). The state invariant methods suggest likely val-
ues of system variables at particular execution points (e.g.,
they provide a method’s pre- and postconditions). These
invariants illustrate “snapshots” of internal system state and
do not explicitly capture the interactions and sequences of
invocations. The FSA approaches aim to comprehensively
describe method execution sequences from a set of dynamic
method invocation traces. A major obstacle in this task is
that the execution traces provide a highly detailed but lim-
ited subset of the possibly infinite set of legal executions.
Hence, these FSA approaches generalize from the observed
executions by merging states that exhibit similar behavior.
Most existing approaches for FSA inference are based on
the kTail algorithm [1], which merges states based on the
similarity of the next k invocations in the trace. While au-
tomating such generalizations is highly desirable for complex
software systems [5], FSA inference for such systems can
produce imprecise, overgeneralized models containing many
spurious behaviors [12].

Recently, Lo et al. [11] enhanced the kTail algorithm by
incorporating state information. They proposed first infer-
ring temporal properties that generally hold for the dynamic
traces, and then merging states, while ensuring that the
merge does not violate the inferred properties. However, this
approach only considers the observed execution sequences
and does not consider internal state information. We posit
that the quality of the generated behavioral models can be
further improved by considering information about the state
of internal class variables. In this paper, we propose a novel
approach that uses not only execution traces but also dynam-
ically inferred program invariants. This enables us to over-
come the aforementioned shortcomings of the two classes of
behavioral specification-inference techniques. Our approach
is fully automated and requires only compiled executables.

2. BACKGROUND
In this section, we describe StackAr, a data structure

we will use as a running example throughout this paper,
and two program analysis artifacts: invariants generated by
Daikon [4] and method invocation traces. We then describe
an FSA generated using today’s state-of-the-art techniques
and highlight the flaws in that FSA that our approach cor-
rects by leveraging program invariants.
StackAr is an array implementation of a stack. Created

with a certain capacity, StackAr has seven public meth-
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Figure 1: Three example StackAr method invocation traces.

ods: void push(x), Object top(), Object topAndPop(),
void makeEmpty(), boolean isEmpty(), and boolean is-

Full(). Internally, StackAr represents its stack as an array
Object[] theArray and the top of the stack as int topOf-

Stack. Whenever a push is performed on a full stack, an
exception is thrown, while a topAndPop() on an empty stack
returns null. A sample implementation of StackAr is avail-
able with the Daikon download.

The Daikon dynamic invariant detector [4] is a dynamic
program analysis tool. Daikon observes data values of pro-
gram executions and reports invariants that hold over all
executions. Each invariant is a mathematical description of
observed relationships among data values that the program
computes. Together, invariants form an operational abstrac-
tion that contains preconditions, postconditions, and object-
level properties. For example, Daikon may report that in
observed executions, an object variable capacity was always
greater than 0. The invariants are sound over the observed
executions but are not guaranteed to be true in general.

We now illustrate Daikon’s invariants with the StackAr ex-
ample. After observing some executions, Daikon can report
several object-level invariants: theArray is never null; the
topOfStack index is never smaller than −1 and is always
less than the length of theArray; the elements of theAr-

ray are null for indices larger than topOfStack and non-
null otherwise. Daikon generates pre- and postconditions
for StackAr’s methods in a similar manner.

Daikon produces operational specifications to facilitate un-
derstanding of internal class logic and postulate legal static
“snapshots” at particular execution points. However, more
interaction-oriented behavioral descriptions that describe the
legal invocation sequences are useful for the development
tasks discussed in Section 1. The most direct description of
legal invocation sequences are the recorded invocation traces.
On the downside, such traces are verbose, and fail to convey
information that is sufficiently general to facilitate object
behavior understanding. The kTail algorithm [1] general-
izes the behavior from the observed sequences and has been
recognized as a promising solution to behavioral model infer-
ence [11, 13]. Specifically, the kTail algorithm merges those
states in the traces whose next k invocations are identical
— i.e., identical k-tails. Selecting an appropriate k in the
kTail method involves an innate tradeoff between precision
(smaller k implies more spurious merges) and generalization
(larger k implies fewer merges). Very similar to the kTail
method is the kHead method that merges states based on k
preceding invocations. In this paper, we focus on applying
the kTail method; parallel results can be drawn for kHead.

To illustrate the kTail method, we will utilize three ex-
ample StackAr invocation traces: creating and using a stack
of capacity zero, one, and two (depicted in Figure 1). Each
node represents a program state and each transition repre-

sents a method invocation, labeled with the method name
and the return values. Let us now consider how kTail works
on the given traces for k = 3. The algorithm correctly
merges states S1 and S6 in Trace 1 because the three fol-
lowing invocations from each state are isEmpty()=false,
top()=null, and topAndPop()=null. However, the algo-
rithm also merges states S1 in Trace 1 and S15 in Trace
3. This merge represents an incorrect generalization; it al-
lows a non-zero-capacity stack to change capacity to zero
after isFull() invocation returns false. The state-of-the-
art kTail -based FSA generation techniques (e.g., [11, 13]) all
suffer from similar overgeneralization flaws. In the following
section, we demonstrate how our approach uses program in-
variants to avert such model overgeneralization.

3. APPROACH
In this section, we outline our technique, which overcomes

the shortcomings of both, program invariant inference and
FSA-based dynamic behavioral model synthesis. Our pro-
posed technique has two phases. In phase 1, we derive an
FSA that captures legal invocation sequences of an object’s
public interface based on the inferred data-value invariants.
The primary idea behind phase 1 is that such an FSA can
simulate the dynamic method invocation traces, while al-
lowing us to gain more knowledge about the internal ob-
ject states at particular points in those traces. In phase 2,
we use the collected dynamic invocation traces to refine the
invariant-based FSA into an object-level FSA that is both
more general than the dynamic invocation traces and more
precise than the invariant-based FSA.

3.1 Generating an Invariant-Based FSA
The goal of the first phase of our approach is to create an

object-level FSA that describes all legal invocation sequences
— those sequences that do not violate the methods’ inferred
likely invariants. We first create the FSA states based on a
set of p first-order predicates observed by Daikon (we only
use the predicates defined on boolean and numerical vari-
ables). For example, for StackAr, Daikon reports p = 4
predicates: P1 = (topOfStack = −1), P2 = (topOfStack ≥
0), P3 = (topOfStack < size(theArray) − 1), and P4 =
(topOfStack = size(theArray)− 1). The set of FSA states
includes a special initial state and up to 2p possible combina-
tions of the p predicates. While the largest theoretical state
space for StackAr is 1 + 24 = 17 states, our FSA has only
four states (plus the initial state) due to predicate interde-
pendence (e.g., P1 and P2 cannot be simultaneously true).
We summarize our solution for dealing with such predicate
interdependence below.

We next determine the legal transitions among the states,
based on the inferred pre- and postconditions. To that end,
we leverage our previous efforts [10]: an algorithm that syn-
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Figure 2: The invariant-based StackAr FSA.

thesizes behavioral models from pre- and postcondition spec-
ifications and execution scenarios. Daikon’s invariants spec-
ify how each method’s invocation affects the predicates, al-
lowing us to generate all legal FSA transitions. A transition,
labeled with a method invocation, exists between two states
if that method’s precondition is satisfied in the source state
and the postcondition is satisfied in the destination state.
The resulting object-level FSA contains a state for each legal
object state and a transition for each legal method invoca-
tion within the object state. Figure 2 depicts the FSA for
StackAr. Note that while the largest theoretical number of
non-constructor transitions with 4 states and 6 invocations
is 96, some such transitions are illegal (e.g., push on a full
stack), so our FSA contains only 27 legal transitions.

For complex objects, the state space can get rather large.
To enable construction of the invariant-based FSA, we utilize
off-the-shelf Satisfiability Modulo Theories (SMT) solvers.
We hypothesize that modern SMT solvers can efficiently
decide whether a candidate state’s predicate value assign-
ment is satisfiable, and whether an invocation’s invariants
are satisfiable for the 〈source, destination〉 state pair. To
test this hypothesis, we extended the implementation of our
synthesis algorithm [10] to use the Yices SMT solver [19]
when checking formula satisfiability. Our initial experience
demonstrated that we can construct an invariant-based FSA
almost instantaneously from StackAr invariants, as well as
slightly more-complex object invariants. In our future work,
we plan to further test the performance of FSA construction,
and explore additional opportunities for optimizing and re-
ducing the number of performed satisfiability checks.

3.2 Adding Invocation Traces
The second phase of our approach is concerned with com-

bining the information about (1) inferred data invariants
captured with the invariant-based FSA, and (2) the collected
dynamic invocation traces. Since the invariant-based FSA
can be overly general and imprecise, and the dynamic traces
can be overly specific, we argue that combining the two in an
intelligent manner can result in a general yet precise behav-
ioral model. We suggest two promising strategies for cou-
pling these different types of information. In Section 3.2.1,
we propose enhancing the kTail algorithm by simulating the
dynamic trace on the invariant-based FSA and applying an
additional merging criterion involving the simulation results.
In Section 3.2.2, we propose refining the FSA with the be-
havior captured in the dynamic traces. The latter strategy is
based on our previous algorithm that synthesizes a partial-
behavior model from a component’s method invariants and
positive execution scenarios [10].

3.2.1 Enhancing the kTail Algorithm
In Section 2, we showed how the popular kTail algorithm

can produce imprecise models due to spurious state merges.
Lo et al. [11] demonstrated that including some state infor-
mation can help produce more-precise models by avoiding
undesirable merges. Our work is based on the premise that
meaningful state information can be obtained from the in-
ferred program invariants, which we accumulate with the
invariant-based FSA. We propose simulating the dynamic
traces on the invariant-based FSA and recording the tra-
versed states. Formally, a sequence of invariant-based FSA

state transitions S0
I0→ S1

I1→ . . .
In−1→ Sn

In→ Sn+1 simu-
lates a trace T = M0 → M1 → . . . → Mn if Ii = Mi for
each i ∈ [0, n]. We then use the simulation results as an
additional state-merging criterion: two states in a dynamic
invocation trace can be merged when they have identical k-
tails and are simulated with the same state (set of states)
in the invariant-based FSA. For example, the simulation of
Trace 1 from Figure 1 on the StackAr’s invariant-based FSA
from Figure 2 exposes that Trace 1’s state S0 corresponds
to StackAr invariant-based FSA’s S0, while Trace 1’s states
S1–S10 pertain to the FSA state S4. Furthermore, Trace 3’s
state S15 corresponds to the invariant-based FSA’s S1; con-
sequently, the spurious merge of Trace 1 and Trace 3 states,
performed by the other kTail algorithms, would be avoided.

The availability of the likely program invariants drives ad-
ditional optimizations, such as identification of side-effect-
free invocations (e.g., StackAr’s isEmpty and top). Hence,
the states connected with transitions corresponding to side-
effect-free invocations can be merged, turning the transitions
into self-transitions. For example, states S1, S2, and S3 in
Trace 3 can be merged into a state with self-transitions on
isEmpty and top. Yet another postulated benefit of using
state information in the kTail algorithm is achieving high-
quality results while using a smaller k (in the basic kTail , a
smaller k results in more spurious merges). Note that our
approach can similarly enhance the kHead algorithm.

3.2.2 Refining the Invariant-based FSA
As an alternative to model generalization from dynamic

traces, we propose refining the derived invariant-based FSA
and making it more specific to the traces at hand. The
refinement process is similar to the algorithm we proposed
in [10], where we refine an initial partial-behavior model,
which is based on the method pre- and postconditions, with
the behavior depicted in positive example executions (sce-
narios). The high-level idea is to take an initial FSA model
(from Section 3.1), which contains only maybe transitions
(i.e., behavior that does not violate the invariants, but has
also not yet been confirmed with an execution sequence), and
to refine the maybe transitions traversed when simulating the
invocation traces on the FSA into required transitions.

To achieve this, we would first simulate all of the dynamic
traces on the invariant-based FSA. Next, we refine a state
traversed with the trace into two new states. The first state
would have incoming transitions labeled with the invocation
Il that lead into the state being refined, while the outgoing
transitions would remain the same as those of the original
state. Additionally, the transition corresponding to invoca-
tion Il would be refined to a required transition. The second
state would account for all of the original state’s incoming
transitions that are not labeled with invocation Il and for all
the outgoing transitions that remain identical to the original
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Figure 3: The StackAr FSA refined with invocation
traces.

state’s transitions. For example, the first push invocation in
Trace 3 refines StackAr invariant-based FSA state S2 into
two new states, S′

2 and S′′
2 , as shown in Figure 3. S′

2 has
incoming transitions on push, while S′′

2 has incoming transi-
tions on topAndPop. Note that maybe transitions in Figure 3
are marked with ‘?’. The beginning of Trace 3 is captured
in the refined automaton with the following FSA sequence:

S0
StackAr→ S′

1
isFull→ S′

1
isEmpty→ . . .

The proposed refinement method may seem to potentially
result in a large FSA due to the involved state splitting.
However, the current version of our refinement algorithm [10]
bounds the number of possible refinements by allowing a sin-
gle state with incoming transitions labeled with I per pred-
icate value combination. For larger objects, we may utilize
a smaller number of state predicates to more efficiently ob-
tain an invariant-based FSA; in such cases increasing this
refinement bound could benefit the quality of the obtained
automata. Additionally, we plan to assess the utility of sta-
tistics-based reasoning about state refinements (similar to [2,
16]). For example, trace statistics, annotated on FSA tran-
sitions, may uncover some invocation causalities that can be
effected in additional state refinements.

Another benefit of refining the invariant-based FSA in the
described manner is identification of transitions that are le-
gal according to the inferred invariants, but are not executed
in the system executions. Hence, such behavior is a strong
candidate for further testing and refinement of the object
specification. For example, the refinement process identifies
that the looping transition labeled makeEmpty on state S′

2 is
not traversed with the dynamic traces since it is a maybe
transition. A detailed inspection of the implementation re-
veals this particular transition to be impossible and a result
of overgeneralized program invariants.

4. DISCUSSION
In this paper, we presented an approach to improve the

state-of-the-art in generating object-level behavioral mod-
els from dynamically observed executions. It does so by
combining the information about likely data-value invari-
ants and dynamic invocation sequences. The scalability of
our approach can be sensitive to the complexity and num-
ber of objects, which can be a shortcoming compared to the
lightweight kTail -based algorithms. However, the invariant-
based FSA is an abstraction and we can consider invariants
for only a subset of the object variables, trading scalability
for precision. In addition, future generations of SMT solvers

should be able to efficiently manage even more complex spec-
ifications. Another concern regarding our approach is suffi-
cient coverage of interesting executions, but this is a general
concern for dynamic behavior analysis. Finally, we believe
that our approach can be straightforwardly applied to the
context of static analysis enhanced with dynamic traces for
improving static invariant detectors and contract specifica-
tions (a similar idea has already appeared in [16]).
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