
From System Specifications to Component Behavioral Models

Ivo Krka, George Edwards, Yuriy Brun, and Nenad Medvidovic
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781, USA

{krka,gedwards,ybrun,neno}@usc.edu

Abstract

Early system specifications, such as use-case scenarios
and properties, rarely completely specify the system. Partial
models of system-level behavior, derived from these speci-
fications, have proven useful in early system analysis. We
believe that the scope of possible analyses can be enhanced
by utilizing component-level partial models. In this pa-
per, we outline an algorithm for deriving a component-level
Modal Transition System (MTS) from system-level scenario
and property specifications. The generated MTSs capture
the possible component implementations that (1) necessar-
ily provide the behavior required by the scenarios, (2) re-
strict behavior forbidden by the properties, and (3) leave the
behavior that is neither explicitly required nor forbidden as
undefined. We discuss how these generated models can help
discover system-design flaws, support requirements elicita-
tion, and help select off-the-shelf components.

1 Introduction

Design activities that take place during the early phases
of system development, such as elicitation, definition, and
refinement of requirements, occur in the context of incom-
plete information and uncertainty. These activities benefit
from, and also result in, partial system specifications that
capture high-level system behavior while deferring many
decisions to subsequent design phases. Two commonly
used types of such specifications are (1) scenarios (e.g.,
UML sequence diagrams) that model examples of impor-
tant system use cases, and (2) properties (e.g., OCL con-
straints) that model conditions and constraints on as well as
relationships among system elements.

Scenarios and properties form a basis for gradual defi-
nition and refinement of system requirements and architec-
ture, and can be used for early system analysis (e.g., dis-
covery of design defects and conflicting requirements). The
utility of scenarios and properties arises from their ability to

express partial but straightforward views of the system that
are useful for communicating intent among stakeholders.

Numerous existing techniques [4, 9, 10, 11] leverage sce-
nario and/or property specifications to derive concrete be-
havioral models of system components that can be lever-
aged for architectural analysis and assessment. However,
these approaches ignore the partial and limited nature of
such specifications by attempting to generate complete be-
havioral models. Instead, we argue that designers need for-
mal models that describe systems in terms of (1) behavior
required by the scenarios, (2) behavior prohibited by the
constraints, and (3) potential behavior that is neither re-
quired nor forbidden by the specifications.

Recently, researchers have developed automated pro-
cesses for deriving Modal Transition Systems (MTSs) [3],
a partial behavior modeling formalism, from system sce-
narios and properties [6, 7]. An MTS describes the be-
havior of a system via states with transitions, which are
labeled as either required or potential transitions. MTSs
have proven useful in requirements elicitation, architectural
refinement [6, 7], and verification that a system implemen-
tation satisfies specified properties [2].

Current approaches to MTS derivation adopt a system-
wide view and synthesize only system-level MTSs. How-
ever, modern systems are typically built from indepen-
dent components, and behavioral models that exploit a
component-oriented perspective are required for rigorous
architectural analysis. We are developing algorithms and
methods for (1) deriving component-level MTSs from sys-
tem-level scenarios and properties, and (2) leveraging com-
ponent-level MTSs in system development.

In this paper, we outline our algorithm for component-
level MTS generation from system scenarios and properties
(Section 3) and describe how our algorithm can help dis-
cover system-design flaws (Section 4). We also envision
component-level MTSs (1) assisting in requirements elic-
itation, (2) supporting selection of candidate off-the-shelf
components, and (3) enabling comparison of as-intended
and as-implemented systems.

ICSE’09, May 16–24, 2009, Vancouver, Canada
978-1-4244-3494-7/09/$25.00 c© 2009 IEEE 315 Companion Volume

mailto:krka@usc.edu,gedwards@usc.edu,ybrun@usc.edu,neno@usc.edu

Client

provided:

 responseCacheData()

Cache

provided:

 requestCacheData()

 responseServerData()

 dataChanged()

Server

provided:

 requestServerData()

 dataUpdate()

Scenario:

responseCacheData()

 pre: cached = true

 post:

requestServerData()

 pre: cached = false

 post:

responseServerData()

 pre:

 post: cached = true

dataUpdate()

 pre:

 post: cached = false

dataChanged()

 pre:

 post: cached = false

Constraints:

Interfaces:

requestCacheData()
Client Cache Server

requestServerData()

responseServerData()
responseCacheData()

requestCacheData()

responseCacheData()

Figure 1. Scenario, property, and component inter-
face specifications for a web cache system.

2 Background and Related Work

In order to ease the adoption of our techniques, we em-
ploy previously defined specification formalisms that are al-
ready in widespread use [3, 5]. We use basic UML sequence
diagrams [5] to depict scenarios and OCL [5] to capture in-
tended system properties. Like other research on behavioral
models [8, 10], we leverage only a subset of OCL: con-
junctive (AND) clauses of Boolean expressions on system
variables that define pre- and postconditions of system op-
erations. Figure 1 illustrates an example specification of a
web cache system (described in further detail in Section 3).

The MTS [3] formalism extends on the LTS formal-
ism [9] to permit modeling of potential transitions (in ad-
dition to required transitions). The strong refinement rela-
tion [1] of MTSs results in the conversion of potential tran-
sitions into required transitions or removal of the potential
transitions, based on new knowledge about system behav-
ior. MTS N is a refinement of MTS M if and only if every
required transition in M is also required in N and every po-
tential transition in N is also potential in M . We refer the
reader to [1] for formal, complete definitions of MTSs and
the strong refinement relation.

In related work, Whittle and Schumann [10] proposed
an algorithm to generate component statecharts from sce-
narios and properties. Mäkinen and Systä [4] developed a
semi-automated approach for synthesizing statecharts from
sequence diagrams with architect guidance. The method
of Ziadi et al. [11] synthesizes component statecharts from
sequence diagrams with complex constructs (such as refer-
ences, loops, and forks). Finally, Uchitel et al. [9] put for-
ward a technique to generate component-level LTS models
and compose those models to discover implied scenarios.
All four of the above approaches presume complete system

Component-

level constr.

generation

 Sequence

Diagram

annotation

Initial MTS

generation

Final MTS

generation

Annotated sequence

diagrams

Initial MTSsOCL constraints

OCL constraints

OCL, SDs,

interfaces

SDs

System specifications

Final MTSs

Phase 3

Phase 4

Phase 2

Phase 1

Figure 2. Phases of the MTS-generation algorithm

specification, which is not realistic during early design [8].
The work we present here addresses this problem by

generating partial component-level behavioral models from
partial system-level specifications. Furthermore, the main
conceptual distinction between our work and the work done
in [6, 7] is that we generate component-level MTS models
as opposed to the system-level MTS models. By moving the
focus from the system-wide perspective to a component-
level perspective, we enable the benefits outlined in Sec-
tion 1.

3 Generating Component-Level MTSs

In this section, we outline our algorithm for generating
component-level MTSs from scenario and property spec-
ifications. Figure 2 depicts four phases of the algorithm.
The inputs to the algorithm are UML sequence diagrams
describing system execution scenarios and OCL constraints
defining pre- and postconditions on component operations.
The scenarios can be defined on different sets of compo-
nent operations, while the OCL constraints are defined on a
set of system state variables. Additionally, we assume the
availability of provided interface specifications for system
components, e.g., such as those typically provided in UML
class diagrams.

The algorithm first derives component-level constraints
(Phase 1), which are later used to define the state space
of generated MTSs (Phase 2) and derive the conditions
on system state variables under which scenarios can exe-
cute (Phase 3). The returned set of component-level MTSs
(Phase 4) requires all behavior specified in scenarios and
allows behavior that does not conflict with component-level
constraints as potential behavior.

Figure 1 depicts an example specification for a simple
web caching system. In the given scenario, a Client requests
data from the Cache, which then fetches the data from the
Server. The Cache handles the subsequent request from the

316

Client. We now provide the functional descriptions of the
phases of the algorithm.

Phase 1: Component-level constraint generation. The
first phase of our algorithm translates the system-level con-
straints, defined on system state variables, into constraints
on the behavior of each component. First, using the OCL
constraints, we determine which system state variables
(called component’s relevant state variables) constrain invo-
cations of each component’s required operations. Second,
for each component, we determine which constraints (called
the component-level constraints) contain only the expres-
sions from the pre- and postconditions of that component’s
interface operations defined on that component’s relevant
state variables. For example, the Client from Figure 1 does
not have any relevant state variables as the specifications
do not constrain the Client in sending requests to Cache.
Cache, however, has cached as the relevant state variable
because Cache’s behavior is constrained by the value of
cached. Cache’s component-level constraints are thus de-
fined on cached.

Phase 2: Initial MTS generation. The second phase
of our algorithm creates initial component MTSs that cap-
ture all potential behaviors of components, i.e., behaviors
that are not proscribed by component-level constraints from
Phase 1. We construct the initial MTS for a component
A as follows. First, we create a set of states, such that
each state is assigned a unique truth assignment of the ex-
pressions in A’s component-level constraints. We then add
a potential transition labeled o from each state S to each
state P if and only if the preconditions of o hold in S and
the postconditions of o hold in P . For example, the ini-
tial MTS of the Cache has a potential transition labeled
responseServerData from state cached = false to state
cached = true.

Phase 3: Sequence diagram annotation. The third
phase of our algorithm derives the conditions under which
the given scenarios can execute. The scenario specifications
convey information about the sequences of events the sys-
tem should exhibit, but usually do not provide information
about the conditions under which these sequences can ac-
tually execute. We address this issue in a manner similar
to Whittle et al. [10]: for each component, we annotate
that component’s interactions in each scenario with the truth
assignments of component-level constraint expressions that
must be satisfied before and after the interaction occurs. For
instance, this phase of our algorithm discovers that, from
Cache’s perspective, cached must initially be false but must
ultimately be true in the given scenario. This phase of the
algorithm also discovers discrepancies between the scenario
and property specifications.

Phase 4: Final MTS generation. The last phase of
our algorithm produces desired component-level MTSs by
combining the initial MTSs and the annotated sequence di-

agrams. For component A, we refine potential behavior in
the initial MTS by adding required behavior captured in
the corresponding annotated scenario. A potential transi-
tion from state S to state P on operation o is changed to a
required transition if the scenario annotation (i.e., expres-
sion truth assignments) before o is satisfied in S, and the
scenario annotation after o is satisfied in P . We also refine
state P into two new states P1 and P2, each one account-
ing for a particular subset of P ’s incoming transitions. Both
P1 and P2 have the same outgoing transitions as P . Fig-
ure 3 shows the final MTS for the Cache component with
potential transitions marked with “?” and required transi-
tions in bold. There are no required transitions for opera-
tion dataChanged as this operation does not appear in the
scenario specification. Further, from the final MTS, we can
observe that cached changes from false to true during the
responseServerData operation.

4 Utilizing Component-Level MTSs

In this section, we outline the design flaws our MTS gen-
eration process can discover and discuss potential uses of
component-level MTSs. Component-level MTSs can facil-
itate a number of benefits, including: (1) requirements elic-
itation, (2) selection of candidate OTS-components, and (3)
comparison of designed and implemented components.

Discovery of specification discrepancies. The annota-
tion of sequence diagrams (Phase 2) directly exposes two
types of potential problems in system specifications: con-
flicts between the specified scenarios and properties and the
presence of inconsistent component states. Discrepancies
between scenarios and properties occur when constraints
prohibit the sequence of operations described in a sequence
diagram. A discrepancy may be the result of either overly
restrictive constraints or misspecified scenarios. Inconsis-
tent states arise when multiple components’ expected values
for a system state variable differ.

Requirements elicitation. Eliciting requirements from
system-level MTSs, as in [7], can introduce design flaws be-
cause requirements gathered using a system-level perspec-
tive can conflict with what is implementable at the com-
ponent level. For example, a new scenario extracted from
a system-level MTS might only be possible when all par-
ticipants have global knowledge. However, this assump-
tion does not hold in component-based systems without in-
curring significant synchronization overhead. On the other
hand, eliciting requirements using component-level MTSs
provides some assurance that inconsistent assumptions are
not introduced. In the web cache system, the Cache MTS
can serve as the basis of new requirements such as: (1) the
dataChanged operation may be invoked at any time, and
(2) requestServerData shall be invoked only when there
is a pending Client request.

317

S0

<cached=false>

S1

<cached=false>

RQS?

S2

<cached=false>

S3

<cached=true>

RQS?

RPS?

DC?

RQC

RPS?

DC? RPS

DC?

S5

<cached=true>

S4

<cached=true>

DC?

DC?

DC?

RQC

RQC RQS

RPS?

RPS?

RPC?

RPC

RPC RQC?

RQC?

RQCRPS?

dataChanged = DC

requestCacheData = RQC

requestServerData = RQS

responseServerData = RPS

responseCacheData = RPC

Figure 3. Generated component-level MTS for a web cache component

Off-the-shelf (OTS) component selection. Modern
component-based systems rely heavily on reuse. However,
OTS-component selection processes are often based on ad-
hoc and labor-intensive analyses of stakeholder interests.
Component-level partial behavioral models can guide the
OTS-component selection process because they capture the
required behavior that must be implemented in the final
system and the potential behavior that is neither explicitly
required nor prohibited by the requirements. Component-
level MTSs may thus be used to mine OTS-component
repositories for suitable components that exhibit the re-
quired behavior and possibly provide a subset of the po-
tential behavior.

As-intended vs. as-implemented system comparison.
Generated component-level MTSs capture architects’ in-
tent, as defined in scenarios and properties. However, the
implemented system might differ significantly from those
intentions. While comparing whole-system behavior to the
specification is a complex task, component-level compari-
son may be far simpler. Further, identification of differences
between the specification and the implementation may as-
sist analysis of potential risks associated with providing
functionality that was not originally intended and/or remov-
ing or modifying functionality that was nominally required.

5 Summary

Generating component-level MTSs from system-level
scenario and property specifications detects discrepancies
within the specifications, assists further requirements elici-
tation, facilitates OTS-component selection, and can verify
the consistency of a component’s implementation with its
specification. Our planned next steps are to (1) prove our
algorithm’s correctness by ensuring that it does not create
conflicts with the specifications under any circumstances,
(2) evaluate its utility on real-world systems, also compar-

ing it with other model synthesis techniques, and (3) im-
plement tool support for creating and utilizing component-
level MTSs. We will assess the tractability and usability
of all four ways of utilizing MTSs described in this pa-
per. We envision the automated generation of component-
level MTSs greatly influencing the early system develop-
ment processes.

References

[1] D. Fischbein and S. Uchitel. On consistency and merge of
modal transition systems. In Proc. of FSE, 2008.

[2] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-
based model checking using modal transition systems. In
Proc. of CONCUR, 2001.

[3] K. G. Larsen and B. Thomsen. A modal process logic. Logic
in Computer Science, 1988.

[4] E. Mäkinen and T. Systä. MAS — an interactive synthesizer
to support behavioral modelling in UML. In Proc. of ICSE,
2001.

[5] D. Pilone and N. Pitman. UML 2.0 in a Nutshell. O’Reilly
Media, Inc., 2005.

[6] G. Sibay, S. Uchitel, and V. Braberman. Existential live se-
quence charts revisited. In Proc. of ICSE, 2008.

[7] S. Uchitel, G. Brunet, and M. Chechik. Behaviour model
synthesis from properties and scenarios. In Proc. of ICSE,
2007.

[8] S. Uchitel, J. Kramer, and J. Magee. Behaviour model elab-
oration using partial labelled transition systems. In Proc. of
FSE, 2003.

[9] S. Uchitel, J. Kramer, and J. Magee. Incremental elaboration
of scenario-based specifications and behavior models using
implied scenarios. ACM TOSEM, 13(1), 2004.

[10] J. Whittle and J. Schumann. Generating statechart designs
from scenarios. In Proc. of ICSE, 2000.

[11] T. Ziadi, L. Helouet, and J.-M. Jezequel. Revisiting state-
chart synthesis with an algebraic approach. In Proc. of ICSE,
2004.

318

	1 Introduction
	2 Background and Related Work
	3 Generating Component-Level MTSs
	4 Utilizing Component-Level MTSs
	5 Summary

