
Synthesizing Partial Component-Level Behavior Models
from System Specifications

Ivo Krka, Yuriy Brun, George Edwards, and Nenad Medvidovic
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781, USA

{krka,ybrun,gedwards,neno}@usc.edu

ABSTRACT
Initial system specifications, such as use-case scenarios and prop-
erties, only partially specify the future system. We posit that syn-
thesizing partial component-level behavior models from these early
specifications can improve software development practices. In this
paper, we provide a novel algorithm for deriving a Modal Transi-
tion System (MTS) for individual system components from system-
level scenario and property specifications. The generated MTSs
capture the possible component implementations that (1) necessar-
ily provide the behavior required by the scenarios, (2) restrict be-
havior forbidden by the properties, and (3) leave the behavior that
is neither explicitly required nor forbidden as undefined. We also
show how our algorithm helps to discover potential design flaws.

Categories and Subject Descriptors
D.2 [Software Engineering]: Requirements/Specifications; D.2
[Software Engineering]: Software Architectures

General Terms
Algorithms

Keywords
behavior model synthesis, Modal Transition Systems, scenarios,
constraints, partial specifications

1. INTRODUCTION
Early software development activities, such as elicitation and re-

finement of requirements, and preliminary design, occur in the con-
text of incomplete information and uncertainty. These activities
benefit from, and also result in, partial specifications that capture
high-level system behavior while deferring many decisions to sub-
sequent development phases. Two commonly used types of such
specifications are (1) scenarios that exemplify important system
use cases and module interactions (e.g., UML sequence diagrams),
and (2) properties that model conditions and constraints on system
elements (e.g., OCL constraints). Scenario and property models are
focused and straightforward but partial views of a system: they do
not describe all functionality that the system will provide nor how

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’09, August 24–28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-001-2/09/08 ...$10.00.

that functionality will be implemented. This feature of scenarios
and properties allows architects to defer decisions about some as-
pects of the system, cope with ambiguous requirements, and grad-
ually refine the system requirements and architecture.

Software architects often utilize the available set of scenarios
and properties in order to refine the architectural design and pro-
duce component-oriented behavior models. Component-level mod-
els are required for rigorous architectural analysis and form a ba-
sis for subsequent implementation. Numerous techniques (e.g., [4,
6, 19, 21]) leverage scenario and/or property specifications to de-
rive behavior models of system components. However, these ap-
proaches produce final models of component behavior and ignore
the partial nature of the input specifications [18]. We argue that de-
signers need formal models that precisely, while partially, describe
system components in terms of (1) the behavior required by the
scenarios, (2) the behavior prohibited by the constraints, and (3)
the potential behavior that is neither required nor forbidden by the
specifications. The architect must then decide while performing
the architectural refinement whether the potential behavior should
become required or prohibited.

Other recently proposed approaches for behavior model synthe-
sis from scenarios and properties [17, 20] account for the inherent
partiality of these specifications by representing system behavior
with Modal Transition Systems (MTS). MTSs are both formal, in
the sense that they have precisely-defined semantics, and partial, in
that they permit the inclusion of behaviors about which only limited
information is yet available. MTSs represent behavior as a set of
states and a set of transitions between those states. Each transition
may be either a required or a potential transition.

Current MTS-synthesis approaches have several shortcomings:

1. They produce system-level, as opposed to component-level,
models, implicitly assuming that each component has global
knowledge of the system’s execution.

2. They generate models only from a single narrowly focused
specification formalism (e.g., epLSC [17]).

3. They make restrictive assumptions about the specifications
(e.g., each scenario is executable from the initial state [20]).

4. They scale poorly with system size, resulting in prohibitively
large system-level models.

In this paper, we give a detailed description of our algorithm for
generating component-level MTSs from system specifications. In
our earlier short paper, we outlined the intuition behind the algo-
rithm [11]. Our approach is directly motivated by the above ob-
servation that architects need formal, component-oriented models
that capture the inherent partiality of early specifications. We de-
rive component-level MTSs from (1) system-level scenarios, cap-
tured as UML sequence diagrams, and (2) system-level properties,
captured as OCL constraints. Our algorithm directly addresses

305

mailto:krka@usc.edu,ybrun@usc.edu,gedwards@usc.edu,neno@usc.edu

the aforementioned shortcomings of the existing behavior model
synthesis approaches. We first translate the provided system-level
properties to behavioral restrictions on individual components. For
each component, we generate an MTS that captures component
behaviors that are not prohibited by the derived component-level
properties. We then extract the conditions under which provided
scenarios execute and refine the initial MTS with the behavior from
the scenarios. We also show how artifacts generated using our algo-
rithm expose potential design flaws, including misspecified scenar-
ios, overly restrictive properties, and inconsistencies between the
system and component viewpoints.

The rest of the paper is organized as follows. In Section 2 we
provide the background on the utilized specification and behav-
ior modeling formalisms; we also introduce a running example.
In Section 3, we provide a detailed description of the individual
phases of our component-level MTS synthesis algorithm. We eval-
uate the algorithm by (1) analyzing the complexity of the algo-
rithm’s phases (Section 3) and (2) showing how the generated arti-
facts facilitate the discovery of specification discrepancies and po-
tential design flaws (Section 4). We overview the related work in
Section 5 and conclude with Section 6.

2. BACKGROUND
In this section, we describe the notations we use to specify sce-

narios and properties (Section 2.1) and formally define the for-
malisms we use to capture the behavior of software components
(Section 2.2). We also introduce an example system leveraged in
this paper (Section 2.3).

2.1 Scenarios and Properties
System scenarios and properties, generated during requirements

elicitation or obtained from the domain knowledge, may be speci-
fied in a variety of ways. For this task, we leverage two commonly
used formalisms: (1) UML Sequence Diagrams (SDs) [16] to spec-
ify the use case scenarios, and (2) OCL constraints [16] to capture
the system properties. Figure 1 presents the Web cache system
specified using these formalisms.

In general, SDs consist of lifelines that represent runtime com-
ponent instances participating in a scenario1, and arrows between
the lifelines that represent component interactions. For clarity and
brevity, the discussion in this paper is limited to SDs without ad-
vanced constructs; however, our algorithm is capable of handling
complex constructs such as (1) SD reference (by replacing the ref-
erence with the actual sequence), (2) parallelism and conditionals
(by creating a separate SD for each possible execution sequence),
and (3) loops (we discuss loops in Section 3).

As in previous work [18, 21], we define pre- and postconditions
on individual system operations as conjunctive clauses of Boolean
expressions on high-level system domain variables. Although we
showcase our approach on OCL constraints representable in propo-
sitional logic, where the domain variables are mapped to atomic
propositions, the presented concepts are generally applicable to the
subset of OCL that can express first-order logic terms. We believe
that the high level, abstract nature of properties specified during
early development phases makes them well-suited for specification
via first-order relations on predicates expressed in OCL.

2.2 Modal Transition Systems
A Labeled Transition System (LTS) [14] is a state machine-based

formalism that labels transitions to specify which actions can occur

1If SD lifelines do not map to distinct components, the architect
should provide this mapping in order to use our algorithm.

requestCacheData

Client Cache Server

requestServerData

responseServerData
responseCacheData

requestCacheData

responseCacheData

Scenario 1:

requestCacheData
 pre: requestPending = false
 post: requestPending = true

responseCacheData
 pre: requestPending = true

and cached = true
 post: requestPending = false

requestServerData
 pre: requestPending = true

and cached = false
 post:

responseServerData
 pre:
 post: cached = true

dataUpdate
 pre:
 post: cached = false

Constraints:

requestCacheData

Client Cache Server

responseCacheData

requestCacheData
requestServerData

responseServerData
responseCacheData

Scenario 2:

dataUpdate

Figure 1: Web cache specification.

in each state. LTSs are often used to model the required behavior
of a software component. A Modal Transition System (MTS) [12]
is a generalization of LTS that allows modeling of transitions that
are neither explicitly required nor prohibited in particular states
as potential transitions. An example MTS depicted in Figure 5
(discussed in more detailed later in the paper) contains only po-
tential transitions which are marked with ‘?’ at the end of the la-
bels. For instance, this means that it is not yet known whether
responseServerData should be required or prohibited in s0.

DEFINITION 1 (LABELED TRANSITION SYSTEM (LTS)). A
labeled transition system L is a tuple (S, A, ∆, s0), where S is a
finite set of states, A is a finite set of labels, ∆ ⊆ (S × A × S) is
a transition relation, and s0 is the initial state.

DEFINITION 2 (MODAL TRANSITION SYSTEM (MTS)). A
modal transition system M is a 5-tuple (S, A, ∆r , ∆p, s0), where
∆r ⊆ ∆p, (S, A, ∆r , s0) is an LTS comprising the required tran-
sitions and (S, A, ∆p, s0) an LTS comprising potential transitions.

The strong refinement relation of MTSs [7] captures the notion
of converting potential transitions into required transitions or re-
moving them from the model, based on newly available informa-
tion. An MTS N is a strong refinement of an MTS M if N has all
the required behavior of M , some required behavior that was pre-
viously only potential in M , and potential behavior that was also
potential in M . We use the notation s

l−→r s′ if there is a required
transition from state s to s′ labeled l, and s

l−→p s′ if there is a
potential transition from state s to s′ labeled l.

DEFINITION 3 (STRONG REFINEMENT RELATION). For all
MTSs M and N , a strong refinement relation R is a binary re-
lation R ⊆ SM × SN , (sM0,sN0) ∈ R, such that for each pair
(sM ,sN)∈ R:
1.(∀l,s′

M)(sM
l−→rs

′
M⇒(∃s′

N)(sN
l−→rs

′
N∧(s′

M , s′
N)∈R))

2.(∀l,s′
N)(sN

l−→ps′
N⇒(∃s′

M)(sM
l−→ps′

M∧(s′
M , s′

N)∈R))

We say that MTS N refines MTS M if there exists a strong re-
finement relation R from M to N .

2.3 Running Example
We leverage the simplified Web cache system depicted in Fig-

ure 1 to illustrate important concepts throughout the paper. As
mentioned earlier, the system specification consists of a set of UML
SDs and OCL pre- and postconditions on system operations.

In Scenario 1 from Figure 1, Client requests data from Cache,
Cache fetches the data from Server and returns it to Client. A

306

Component
Constraint
Generation

 Sequence
Diagram

Annotation

Initial MTS
Generation

Final MTS
Generation

Annotated SDs

Initial MTSsComponent
constraints

Component
constraints

OCL,
SDs

SDs
System specifications

Final MTSs

Phase 3

Phase 4

Phase 2

Phase 1

Figure 2: MTS synthesis algorithm phases.

subsequent request is then directly retrieved from Cache. In the
other scenario, Client asks for data that is already cached, and the
data is directly returned. Next, a dataUpdate occurs (indicating
that the data has changed), and a subsequent data request is redi-
rected to Server. Similarly, the constraints in Figure 1 imply that
Cache requests data from Server only if there is a pending client
request (requestPending = true) and the data is not cached
(cached = false). It is important to note that these variables are
system-level, rather than component-level, domain variables.

3. SYNTHESIZING MTS MODELS
This section describes our algorithm that automatically gener-

ates a component-level MTS for each component in a software sys-
tem from a set of scenario and property specifications. As we will
demonstrate, the generated MTSs — in addition to being useful as
a basis for traditional detailed design and analysis activities — can
also be used to discover discrepancies between system-wide and
component-centric perspectives. These discrepancies often repre-
sent flaws in the system’s design.

We assume that a system’s early specifications are available in
the form of (1) a set of UML SDs and (2) a set of OCL constraints
specified on system domain variables. We expect that software ar-
chitects and domain experts are generally able to provide such spec-
ifications. The presented approach is also well suited in case of in-
cremental provision of specifications, since additional information
will mainly only refine the previously synthesized model.

The final result of our algorithm is a set of component-level
MTSs that capture the behavior required by the specifications and
do not allow the behavior proscribed by the specifications. Sev-
eral important obstacles must be overcome in order to generate the
component-level MTSs:

1. Obtaining constraints on the behavior of individual compo-
nents, when input specifications are given at the level of the
whole system.

2. Constructing the state space of each component and deter-
mining all potential transitions that are not proscribed by the
provided system specification.

3. Determining the conditions under which a specified scenario
can execute from each component’s perspective.

4. Incorporating information about required system behavior,
which is captured in system scenarios, into the partial behav-
ior models of components.

Our algorithm consists of four distinctive phases, as depicted in
Figure 2. Each phase explicitly addresses one of the above chal-
lenges. The following sections describe the phases of our algorithm
in detail. We evaluate the worst-case time complexity and the com-
plexity expected in practice of the algorithm’s phases. Additionally,
we formally prove that Phase 4 of the algorithm ensures the strong
refinement relation [7] between the initial and the final MTSs.

Phase 1: Component Constraint Generation
The first phase of our algorithm produces a set of OCL constraints
on the behavior of each component in the system. These constraints
are used in later phases of the algorithm to create initial component
MTSs and annotate SDs. For each component C, we derive OCL
constraints that define pre- and postconditions on both the provided
and expected operations of C. The major steps in this phase of the
algorithm are described next.

Derive provided and required operations.
In our approach, we do not assume the availability of a compo-

nent’s operation signatures; hence we first extract the set of compo-
nent operations from the available specifications. We define the set
PC of component C’s provided operations and the set EC of C’s
expected operations as follows:

DEFINITION 4 (PROVIDED OPERATIONS). For every com-
ponent C, for all operations o, o ∈ PC iff there exists an SD with
operation o labeled on an incoming arrow into C’s lifeline. We call
PC the set of C’s provided operations.

DEFINITION 5 (EXPECTED OPERATIONS). For every com-
ponent C, for all operations o, o ∈ EC iff there exists an SD with
operation o labeled on an outgoing arrow from C’s lifeline. We call
EC the set of C’s expected operations.

For example, responseCacheData is Client’s provided operation,
while requestCacheData is its expected operation (see Figure 1).

Derive significant domain variables.
As noted earlier, our approach is intended for early development

phases, when explicit information about the behavior of a compo-
nent is not available. In order to derive a component’s behavior
model, we leverage domain variables. Specifically, we determine
component states based on the value assignments of domain vari-
ables that affect that component’s behavior — different states will
have different value assignments. Additionally, assigning values to
domain variables for each state helps us determine whether a com-
ponent is allowed to invoke an operation when in a particular state.

Not every domain variable affects the behavior of a component.
For example, the value of domain variable cached does not affect
the behavior of Client in the Web cache system (recall Figure 1):
Client will send data requests whether or not the data is cached.
Therefore, we must determine which domain variables restrict the
behavior of a specific component. For a component C, we first
determine which domain variables restrict C’s outgoing behavior
and refer to these variables as C’s significant domain variables.

DEFINITION 6 (SIGNIFICANT DOMAIN VARIABLES). Let V
be the set of system domain variables. For each component C,
VC ⊆ V is the set of significant domain variables iff for all v ∈ VC ,
v appears in a precondition of an expected operation in EC .

For Cache in the Web cache system, cached and requestPend-
ing are Cache’s significant domain variables because Cache should
invoke requestServerData and responseCacheData only depending
on the values of these variables.

Derive scoped domain variables.
To complete a component’s behavior model, we need to deter-

mine for every component state whether any provided operations
may be invoked while the component is in that state. We utilize the
system specifications to infer the conditions (in terms of domain
variable values) that have to hold for a provided operation to be in-
voked. For a component C, we first determine the set of domain
variables that are only modified by operations in which C partici-
pates. We term these scoped domain variables because they exist
globally inside C’s “scope”: these variables are modified only by

307

GENCOMPCONSTR(constr Cons, comp C)
1 create new empty constraint set ConsC

2 for each operation o in EC

3 for each expression e in preo

4 if e is defined on any variable in VC

5 ConsC .add(o.pre, e)
6 for each expression e in posto

7 if e is defined on any variable in VC ∪ UC

8 ConsC .add(o.post, e)
9 for each operation o in PC

10 for each expression e in preo

11 if e is defined on any variable v in UC

12 ConsC .add(o.pre, e)
13 for each expression e in posto

14 if e is defined on any variable in VC ∪ UC

15 ConsC .add(o.post, e)
16 return ConsC

Figure 3: Deriving component-level constraints.

C’s operations. The constraints that specify when C’s provided
operations may be invoked (from C’s perspective) are defined in
terms of scoped domain variables.

DEFINITION 7 (SCOPED DOMAIN VARIABLES). Let V be
the set of system domain variables. For each component C, let
UC be the set of scoped domain variables, such that v ∈ UC iff v
is modified only by the operations o ∈ PC ∪ EC .

For instance, requestPending is Client’s only scoped domain
variable; Client has global knowledge of requestPending’s value.

Translate system-level to component-level constraints.
After obtaining the sets VC and UC , we can derive component-

level constraints from the available system-level constraints. The
system-level constraints cannot be applied as-is because, as pre-
viously stated, not every domain variable affects a component’s
behavior. We thus leverage the knowledge of a component C’s
significant and scoped domain variables to decide which subex-
pressions of the operation pre- and postcondition are relevant from
C’s perspective. For example, Client’s component-level constraints
(Figure 4) contain the precondition requestPending = true for
responseCacheData, which differs from responseCacheData’s sys-
tem-level precondition (Figure 1) because cached does not restrict
the behavior of Client. Pseudocode in Figure 3 describes, in detail,
the steps for obtaining the component-level constraints. In the rest
of the paper we refer to both the component C’s significant domain
variables and scoped domain variables as C’s significant variables.

Complexity analysis: Let NC be the number of components in
the system, NSD be the number of SDs, NOP be the number of
distinct operations, NV be the number of domain variables, LSD

be the maximum length of an SD, NSV be the maximum number
of component’s significant variables, and NCOP be the maximum
number of component’s operations (we will use these symbols in
our complexity analysis of each of the algorithm phases). In Phase
1, we make a single pass through each SD and two passes through
each operation’s constraints. Thus, the worst-case time complexity
for this phase is Θ(NSD × LSD + NC × NOP). In practice, we
expect NSD and NOP to be the largest factors, ranging to up to

requestCacheData
 pre: requestPending = false
 post: requestPending = true
responseCacheData
 pre: requestPending = true
 post: requestPending = false

Figure 4: Client’s component-level constraints.

several hundred, so this phase of the algorithm will execute in time
linear in the number of SDs and distinct operations.

Phase 2: Initial MTS Generation
After deriving the set of component-level constraints for each com-
ponent C, we generate an initial MTS MC that captures all the
possible behavior that is not proscribed by these constraints. We
capture this behavior as potential transitions labeled with the op-
eration names. In this section, we describe the steps performed to
create the set of initial component-level MTSs.

Extend the MTS definition.
Earlier, we pointed out that we distinguish component’s behavior

states based on the value assignment of their significant variables.
Additionally, during construction of the initial MTS we need to
decide whether or not a transition between two states should be
added to the MTS. To effectively address these requirements, we
extend the earlier definition of an MTS.

DEFINITION 8 (MTS DEFINITION EXTENSION). Extended
MTS MC is a structure (S, A, ∆r , ∆p, s0, TC , Map), where (S,
A, ∆r , ∆p, s0) is an MTS as specified in Definition 2, TC is the
set of vectors of possible truth assignments for C’s significant vari-
ables, and function Map : S → TC maps each state in MC to a
vector of truth assignments for C’s significant variables.

For example, consider Cache in the Web cache system. TCache

has vectors 〈false, false〉, 〈false, true〉, 〈true, false〉, and 〈true, true〉.
These combinations correspond to the possible truth assignments of
significant variables requestPending and cached.

Create an initial state.
The first step in the construction of an initial MTS is defining

the starting MTS state s0 and setting Map(s0) to the initial val-
ues of the component’s significant variables. The initial values can
typically be extracted from the system requirements or otherwise
obtained from a domain expert. For example, the initial state of
Cache’s MTS (Figure 5) has the corresponding significant variable
value mapping Map(s0) = 〈false, false〉 pertaining to initial values
of requestPending and cached.

Expand the MTS with new transitions and states.
We do not know a priori all the states that comprise the state

space of a component’s MTS. Therefore, after creating the starting
MTS state, we gradually construct the desired MTS by (1) adding
new transitions from existing states and (2) adding new states if the
transition should lead to a state that is not already in the MTS. To
determine which transitions are allowed from a particular state, we
leverage the definition below.

DEFINITION 9 (ALLOWED MTS TRANSITIONS). A transi-
tion s

o→p s′ labeled with the name of the operation op is allowed
iff (1) the op’s precondition is satisfied in s (i.e., for Map(s)) and

S0 <F,F> S1 <F,T>

requestServerData?

requestCacheData?

S2 <T,F> S3 <T,T>

requestCacheData?

responseServerData?

responseCacheData?

responseServerData? responseServerData?

responseServerData?

Figure 5: Cache’s initial MTS. States are marked with values
of 〈requestPending,cached〉.

308

GENINITIALMTS(comp C, cons ConsC, vec init)
1 create new MTS MC

2 create initial state s0 with Map(s0) = init
3 MC .S.add(s0)
4 iterator it = MC .S.iterator()
5 while iterator.hasNext() 6= NULL
6 scurr = iterator.nextElement()
7 for each operation o ∈ RC ∪ PC

8 if Map(scurr) satisfies C.preo

9 {let Snext be a set of states s for which

10 transition scurr
o→p s is allowed}

11 for each s ∈ Snext

12 if s /∈MC .S
13 MC .S.add(s)

14 MC .∆p.add(scurr
o→p s)

15 return MC

Figure 6: Generating an initial MTS.

op’s postcondition is satisfied in s′, and (2) s and s′ have identical
values for those significant variables that are not modified by op.

Hence, we add the transitions that are allowed from existing
states to the MTS under construction, and add their destination
states s′ to the MTS if these are not already contained in the state
set. By following these steps, we ensure that we do not create any
transitions that violate the constraints. The generated MTS can con-
tain non-deterministic transitions since we do not explicitly model
transition guards. Reasoning about non-determinism should thus
be performed by the architect. The pseudocode in Figure 6 details
the steps we perform to generate an initial MTS for a component.

For example, in Cache’s initial MTS, starting with state s0, we

expand the MTS with two transitions: s0
requestCacheData→p s2 and

s0
responseServerData→p s1, because the preconditions of request-

CacheData and responseServerData are satisfied in s0 (see Fig-
ure 5). Further, we add new state s1, which preserves s0’s value
of requestPending and satisfies responseServerData’s postcon-
dition; and state s2, which preserves s0’s value of cached and satis-
fies requestCacheData’s postcondition. Additional expansion steps
result in the complete MTS from Figure 5.

Complexity analysis: In Phase 2, we gradually build the state
space and add necessary transitions to the initial MTSs. The worst-
case time complexity for this phase is Θ

(
2NSV ×NCOP ×NC

)
.

Although exponential, this complexity should not be problematic
in practice for several reasons. First, NSV will be reasonably small
because, in practice, a component will be concerned only with a
subset of domain variables, and NSV will not increase with the
system size. Second, the maximum number of states 2NSV is, in
practice, significantly reduced because the constraints will prohibit
a number of combinations of variable assignments.

Phase 3: Sequence Diagram Annotation
In this phase of our algorithm, we annotate the input SDs in a way
similar to that proposed by Whittle and Schumann [21]. The pur-
pose of the annotation process is to enrich the information captured
in the SDs by determining the most general conditions that need
to hold for the execution of the scenario. For each SD, we create
an annotated SDC for each participating component C. SDC rep-
resents the scenario from C’s perspective. To annotate an SD, we
make two passes through it. The first pass adds an initial set of an-
notations that pertain to the individual operation invocations, while
the second pass propagates values between adjacent annotations.

To incorporate the information from SDs into the initial MTSs
from Phase 2, we need to know which states of the MTSs are
traversed when the sequence of operations executes as specified.
Therefore, for each component, we enrich the SDs with annota-

ANNOTATE(SD SDC, comp C)
1 for each operation invocation i ∈ SC

2 {create two new vectors anC,i and an′
C,i indexed

3 by C’s significant variables and initialized to ?}
4 for each C’s significant variable v
5 if v must be assigned a value x to satisfy C.prei

6 anC,i[v] = x
7 if v must be assigned a value x to satisfy C.posti

8 an′
C,i[v] = x

9 if anC,i[v] = ? and an′
C,i[v] 6= ?

10 and anC,i[v] = an′
C,i[v] is not a requirement

11 anC,i[v] = ?
12 if an′

C,i[v] = ? and anC,i[v] 6= ?
13 and anC,i[v] = an′

C,i[v] is not a requirement
14 an′

C,i[v] = ?
15 return SDC

Figure 7: The initial SD annotation steps.

tions that describe the necessary conditions on the component’s
significant variables at particular points of the execution. Each an-
notation is a vector, and each field in the vector corresponds to a
component’s significant variable. Variables that must be true are
annotated with ‘T’ and those that must be false are annotated with
‘F’. In the case of Cache, for example, each annotation will char-
acterize the necessary values of requestPending and cached at
different points of the Web cache system scenarios (Figure 1).

Create the initial set of annotations.
We create the initial set of annotations directly from the compo-

nent-level constraints. The initial annotations capture the general
conditions that have to be satisfied before and after operations are
invoked. The annotation before (after) an operation specifies the
values of significant variables that have to hold to satisfy the op-
eration’s precondition (postcondition). The initial annotations we
create are minimal annotations.

DEFINITION 10 (MINIMAL ANNOTATION). For all compo-
nents C, SDs SDC , and an operation invocation instances i in
SDC , an annotation anC,i before (after) i is a minimal annotation
iff anC,i satisfies i’s precondition (postcondition), and for all fields
anC,i[v] in the annotation vector with a specified truth assignment,
modifying the field would violate i’s precondition (postcondition).

By creating only minimal annotations we ensure that (1) we do
not create annotations which violate the constraints, and (2) the
most general conditions are captured (i.e., adding more undefined
fields violates the constraints). Details of the creation of initial an-
notations can be found in Figure 7. For clarity, we focus on the
case when there exists a unique minimal annotation that captures
the necessary conditions before (after) the operation invocation. In
practice, however, multiple annotations may be needed to capture
these conditions (e.g., when a component’s state is changed de-
pending on the value of operation parameters). In this case we
create multiple copies of the SD with different valid annotations.

Figure 8a depicts the initial set of annotations from Cache’s per-
spective for the Web cache system Scenario 1. The initial annota-
tion before the first invocation of requestCacheData in Figure 8a
is 〈F,?〉 because requestPending must be false to satisfy the re-
questCacheData’s precondition, while cached is left undefined.

Propagate the annotation values.
The initial set of SD annotations captures the conditions that

must be satisfied before and after any invocation of individual op-
erations. In an SD however, an operation invocation is preceded
and/or followed by other invocations; the surrounding context of
an invocation can impose additional conditions that have to hold.
Specifically, the annotation after an invocation in the SD should
not conflict with the annotation before the next invocation in the

309

requestCacheData

requestServerData

responseServerData

responseCacheData

requestCacheData

responseCacheData

<F,?>
<T,?>

<T,F>
<T,F>
<?,*>
<?,T>

<T,T>
<F,T>
<F,?>
<T,?>
<T,T>
<F,T>

requestCacheData

requestServerData

responseServerData

responseCacheData

requestCacheData

responseCacheData

<F,F>

<T,F>

<T,F>

<T,T>

<F,T>

<T,T>

<F,T>

(a) (b)Cache Cache

Figure 8: Annotated SD from Cache’s perspective (a) after ini-
tial annotation, and (b) after propagation. Annotation fields
specify values of 〈requestPending,cached〉.

PROPAGATE(SD SDC, comp C)
1 boolean changeF lag = true
2 while changeF lag = true
3 changeF lag = false
4 for each invocation i ∈ SDC

5 for each C’s significant variable v
6 if anC,i[v] 6= ? and an′

C,i[v] = ?
7 an′

C,i[v] = anC,i[v] and changeF lag = true

8 if anC,i[v] = ? and an′
C,i[v] 6= ?

9 anC,i[v] = an′
C,i[v] and changeF lag = true

10 for each adjacent invocation pair (ik, ik + 1) ∈ SDC

11 for each C’s significant variable v
12 if an′

C,ik
[v] is assigned and anC,ik+1 [v] ∈ {?, ?}

13 anC,ik+1 [v] = an′
C,ik

[v] and changeF lag = true

14 if an′
C,ik

[v] ∈ {?, ?} and anC,ik+1 [v] is assigned

15 an′
C,ik

[v] = anC,ik+1 [v] and changeF lag = true

16 report unification conflicts and inconsistencies
17 return SDC

Figure 9: The SD value propagation steps.

SD (we assume there are no side effects between invocations). In
other words, the two annotation vectors should be consistent.

DEFINITION 11 (VECTOR CONSISTENCY). For all compo-
nents C and annotation vectors an1C and an2C of component C’s
significant variable assignments, an1C and an2C are consistent iff
for each variable v, an1C [v] = an2C [v] whenever both an1C [v]
and an2C [v] have a defined truth assignment.

The objective of the propagation is for the already consistent an-
notations after one invocation and before the next in the SD to be
identical. Hence, we propagate values between these adjacent an-
notations: each annotation field an1C [v] which is undefined in one
annotation is assigned the value of that field an2C [v] in the other
annotation if an2C [v] is defined. The new value is then also prop-
agated to the undefined significant variable in the other annotation
of the same operation if the operation does not modify the value of
that variable. We iterate through an SD and apply these propaga-
tion steps as long as there are values that can be further propagated.
The details of the propagation process are elaborated in Figure 9.

Figure 8b shows the final annotated SD from Cache’s perspec-
tive. Observe that the annotation before the topmost requestCache-
Data invocation became 〈F,F〉, although it was initially 〈F,?〉. The
propagation of the cached value occurred as follows. The initial
annotation before requestServerData imposes cached to be false.
This value is propagated to the annotation after requestCacheData
which initially had cached undefined. Since requestCacheData
does not modify cached, the value (false) is further propagated to
the annotation before requestCacheData. We can infer from the

topmost annotation that there are no pending requests and the data
entry is not cached before the specified scenario executes.

This phase of our algorithm can also account for the SD loop
construct by checking whether the annotations before and after the
loop are consistent. This phase also discovers and reports conflicts
that appear during the propagation. A discovered conflict implies
that the relevant scenario cannot occur in the system as specified.
We describe the reasons for and implications of these conflicts in
Section 4.1. We also create a system-level annotated SDSY S in the
same manner, which is then used to discover potential design flaws
(Section 4.2).

Complexity analysis: This phase of our algorithm has the worst-
case complexity of Θ

(
NC ×NSD × L2

SD × 2NSV
)
. This worst-

case occurs for extremely complex constraints that include the ma-
jority of the significant variables. Since high-level constraints con-
structed manually by architects tend to be much simpler [1], the
factor exponential in NSV will, in practice, actually be polynomial.

Phase 4: Final MTS Generation
In the last phase of our algorithm, we leverage the set of initial
MTSs and the set of annotated SDs to construct the set of final
component-level MTSs. In the process of MTS refinement, we first
determine the MTS states from which a scenario can execute, then
traverse the MTS according to the annotated scenario, and convert
the traversed potential transitions to required.

Determine the launching state(s) for a scenario.
In our approach, we do not require the scenarios to start execut-

ing from the initial components’ states. We deduce the set of MTS
states from which the scenario execution can start, which we refer
to as SD’s launching MTS states, based on the following definition.

DEFINITION 12 (LAUNCHING MTS STATE). For all compo-
nents C, SDs SDC , and MTSs MC with the state set S and the
truth assignment mapping Map, s ∈ S is a launching MTS state
for SDC iff Map(s) is consistent with the first annotation in SDC .

For example, only the launching state in Cache’s initial MTS
(Figure 5) for annotated SD SDCache from Figure 8b is s0 because
Map(s0) = 〈F,F〉 is identical to the first annotation in SDCache.

Traverse through the MTS.
For each state in the set of launching MTS states for an SD, we

traverse the MTS starting from that state. The first traversed tran-
sition s1

op→ s2 is labeled with the name of the first invoked oper-
ation op in the SD, while s1 is the launching state and s2 is a state
consistent with the annotation after op in the SD. If the traversed
transition t is a potential transition, we refine the MTS by mak-
ing t required, provided that conditions discussed in the next step
hold. We then perform the same step from t’s destination state for
the next invocation in the scenario, and repeat this process for all
the invocations in the SD. In case of Cache, the first transition we
traverse is s0

requestCacheData→p s2. Figure 10 provides a detailed
description of the MTS traversal.

Refine the MTS with required behavior from SDs.
Refining a traversed potential transition t by simply modifying

it to required would make the resulting MTS overspecified. For
example, imagine we traverse Cache’s initial MTS from Figure 5

over the transition s2
requestServerData→p s2 for some SD. If this

transition was modified to required, we would introduce a required
self-loop in s2 on requestServerData. This would make the MTS
overspecified since it would now impose that subsequent invoca-
tions of requestServerData must be supported, although the SD re-
quires that only one such invocation is necessarily supported.

310

GENERATEFINALMTS(MTS MC, SD SDC)
1 MTS M = MC

2 {stateSet S′ ⊆MC .S where s ∈ S′

3 satisfy annotation before SDC .firstOp}
4 for each op ∈ SDC .orderedOperations
5 stateSet Snext = ∅
6 for each s ∈ S′

7 for each t : s
op→ s2 in M

8 where s2 satisfies the annotation after op
9 MTS N = M
10 if t is a required transition
11 Snext.add(s2)
12 if t is a potential transition

13 if ∃t2 : (s3
op→r s2) in M

14 set t required in N
15 Snext.add(s2)
16 else (s′, s′′) = REFINE(M,N,s,s2,op)

17 set s′ op→r s′′ in N
18 Snext.add(s2)
19 M = N
20 S′ = Snext

21 return M

REFINE(MTS M, MTS N, st s, st s2, oper opcurr)
1 {refine s2 in N into s′

2 and s′′
2

2 where Map(s′
2) = Map(s′′

2) = Map(s2)}
3 if s = s2 in M
4 s = s′

2 in N

5 for each t2 : s3
op′
→ s2 in M and s2 6= s3

6 create t′2 : s3
op′
→ s′

2 in N

7 for each t2 : s2
op′
→ s3 in M and s2 6= s3

8 create t′2 : s′
2

op′
→ s3 in N and t′′2 : s′′

2
op′
→ s3 in N

9 for each t2 : s2
op′
→ s2 in M

10 create t′2 : s′
2

op′
→ s′

2 in N and create t′′2 : s′′
2

op′
→ s′

2 in N

11 for each t2 : s3
opcurr→ s′

2 in N

12 create t′2 : s3
opcurr→ s′′

2 in N
13 return (s, s′′

2)

Figure 10: Final MTS generation phase.

To address this issue, we refine the destination state s2 of a tra-
versed transition t labeled with op into two new states s′

2 and s′′
2 .

State s′′
2 is the new destination of all of s2’s incoming transitions

labeled with op, while s′
2 is the new destination state for s2’s re-

maining incoming transitions. Transition t (terminating at s′′
2)is

then modified into a required transition and the next step in the
MTS traversal is performed from s′′

2 . REFINE in Figure 10 details
these steps. Finally, after iterating over all of the annotated SDs, the
final MTS has as much of its potential behavior refined to required
as can be determined from the provided SDs, while remaining a
strong refinement of the initial MTS as we prove below.

Figure 11 shows the first two steps in the MTS refinement for
Cache and the final MTS that is obtained after stepping through
the whole SDCache (recall Figure 8b). The bolded parts in the first
three MTSs show the traversed transition, its source and destination
state, as well as the transition that was refined in the previous step.
The enumerations in Cache’s final MTS depict how Cache supports
Scenario 1 from Figure 1 through required transitions.

In the first step of Cache’s MTS refinement, we traverse the tran-

sition t : s0
requestCacheData→p s2. We refine the destination state s2

to s′′
2 , which has all of s2’s incoming transitions defined on request-

CacheData, and state s′
2, which has s2’s incoming transitions de-

fined on requestServerData. We also modify t to become a required
transition. The next step in Figure 11 shows the result obtained af-

ter traversing the transition s′′
2

requestServerData→p s′
2 corresponding

to the invocation of requestServerData in the SD. The final MTS
satisfies all constraints from Figure 1 and realizes the sequence de-
scribed in Scenario 1. The final MTS also captures behavior that

has yet to be decided, such as whether Cache can repeatedly invoke
requestServerData.

Complexity analysis: Similarly to Phase 3, the worst-case com-
plexity of Phase 4 is Θ

(
NC ×NSD × L2

SD × 2NSV
)
. By us-

ing appropriate data structures, we can reduce this complexity to
Θ

(
2NSV ×NCOP ×NC

)
. As discussed earlier, the constraints’

nature will render the practical complexity polynomial in NSV .

Refinement Proof
In this section we prove the strong refinement relation between an
initial MTS and the final MTS generated by our algorithm.

THEOREM 1. The initial MTS and the final MTS produced by
the presented algorithm share the strong refinement relation.

PROOF. (by induction)
Base case: By definition of strong refinement (Definition 3), the

initial MTS is its own strong refinement.
Inductive Hypothesis: Given an MTS M , after a single itera-

tion of the algorithm from Figure 10 on a transition t (the loop in
lines 7–19 of GENERATEFINALMTS), the produced MTS N is a
strong refinement of M . Because the strong refinement relation is
transitive, proving the inductive hypothesis implies that the final
MTS is a strong refinement of the initial MTS.

We start by constructing a relation between states in M and N .
This relation depends on the transition t. If t is a required tran-
sition (lines 10–11 of GENERATEFINALMTS), N is identical to
M , which preserves the strong refinement relation. If t is a po-
tential transition, s

op→p s2, and there exists a required incoming
transitions into s2 labeled with op (lines 13–15 of GENERATEFI-
NALMTS), then N has a single potential transition modified to a
required transition, and thus N is a strong refinement of M .

The final MTS N may, by construction (ensured by REFINE),
have only two distinct types of states: type 1 states have only in-
coming potential transitions, and type 2 states have at least one
incoming required transition and all the incoming transitions are
labeled with the same operation. Dealing with the traversed transi-
tions with a destination type 1 states is already discussed above.

REFINE and lines 16–18 of GENERATEFINALMTS take care of
traversed transitions t : s

op→p s2 that reach type 2 states and ensure
that R = {(si, si)|si 6= s2} ∪ {(s2, s

′
2), (s2, s

′′
2)}, which we will

show, is a strong refinement relation. For all the MTS states that
do not have a transition to s2, no modifications are made, so R is a
strong refinement for those states. For each state sj , sj 6= s2, with
outgoing transition to s2, the first strong refinement condition (see
Definition 3) is directly satisfied since type 2 states have no incom-
ing required transition. The second condition of strong refinement
is satisfied because:

1. For each transition (sj
l→p s′

2) in N , transition (sj
l→p s2)

existed in M (ensured by lines 5–62).
2. For each transition (sj

l→p s′′
2) in N , transition (sj

l→p s2)
existed in the M (ensured by lines 13–14).

Finally, we show that (s2, s
′
2) ∈ R and (s2, s

′′
2) ∈ R satisfy the

strong refinement conditions. We do so by enumerating over all
possible transitions to and from those states:

1. For each transition (s2
l→r sj) in M , N has required tran-

sitions (s′
2

l→r sj) and (s′′
2

l→r sj) (ensured by lines 7–9).
This statement satisfies the first condition of the strong re-
finement definition.

2. No transition (s′
2

l→p sj) in N , such that sj 6= s′
2 and

sj 6= s′′
2 , violates the second strong refinement condition

as transition (s2
l→p sj) existed in M (ensured by line 8).

2Unless otherwise specified, line numbers refer REFINE.

311

Traverse and refine S0→S2

S0 <F,F> S1 <F,T>

requestServerData?

requestCacheData?

S2 <T,F> S3 <T,T>

requestCacheData?

responseServerData?

responseCacheData?

responseServerData?

responseServerData?

responseServerData?

S0 <F,F> S1 <F,T>

requestServerData?

requestCacheData

S2' <T,F> S3 <T,T>

requestCacheData?

responseServerData?responseCacheData?

responseServerData?

responseServerData?

responseServerData?

S2'' <T,F>

requestServerData?

responseServerData?

...

S0 <F,F> S1' <F,T>

requestCacheData

S3'' <T,T>

requestCacheData?

responseServerData?

responseCacheData

responseServerData?

S2'' <T,F>

responseServerData?

S2' <T,F>

requestServerData?

responseServerData

S3' <T,T>

responseServerData?

responseCacheData

S1'' <F,T>

requestCacheData

responseServerData?

responseServerData?

(1)

(2)

(3)

(4)

(5)

(6)

requestServerData

S0 <F,F> S1 <F,T>

requestServerData?

requestCacheData

S2' <T,F> S3 <T,T>

requestCacheData?

responseServerData?

responseCacheData?

responseServerData?

responseServerData?

responseServerData?

S2'' <T,F>

requestServerData

responseServerData?

Traverse and refine S2''→S2'

Traverse and refine S2'→S3

Final MTS

Figure 11: From the initial to the final MTS for cache.

3. No transition (s′′
2

l→p sj) in N , such that sj 6= s′
2 and

sj 6= s′′
2 , violates the second strong refinement condition

as transition (s2
l→p sj) existed in M (ensured by line 9).

4. No transition of either the form (s′
2

l→p s′
2) or (s′′

2
l→p s′

2)
in N violates the second strong refinement condition as tran-
sition (s2

l→p s2) existed in M (ensured by lines 10–12).

5. No transition of either the form (s′
2

l→p s′′
2) or (s′′

2
l→p

s′′
2) in N violates the second strong refinement condition as

transition (s2
l→p s2) existed in M (lines 10–14).

Therefore, no transitions in N violate the strong refinement con-
dition, and thus N is a strong refinement of M .

4. DISCOVERING DESIGN FLAWS
In this section, we further evaluate our algorithm. We discuss

how the algorithm aids the discovery of potential design flaws,
which, to our knowledge, are overlooked by the existing synthesis
approaches. First, the SD annotation phase of our algorithm discov-
ers all scenarios that cannot execute as specified. Second, analysis
of the annotations on the component-level and system-level SDs
created by our algorithm can suggest subtle design flaws that result
from inconsistencies between component states and the expected
system state. Third, analysis of the generated MTSs of different
components can suggest likely design flaws resulting from overly
restrictive or overly permissive constraints. In this section, we ex-
plore the origins and implications of each of the three discrepan-

cies. We also propose solutions an architect may apply depending
on the nature of the system under development.

To support the exploration of the design flaws and the applica-
tion of our technique on a number of examples, we have devel-
oped a prototype tool, MTSGen [15]. MTSGen currently takes a
system’s specification in terms of scenarios and properties defined
on Boolean variables, and automatically constructs the component-
level MTSs according to our algorithm. To assess the scalability
of our technique, we have used MTSGen to automatically generate
component MTSs from specifications comprising up to 50 compo-
nents, 300 system operations, 200 domain variables, and 200 sce-
narios. The average duration of the synthesis for the largest result-
ing specifications was, on average, 36 seconds on a mid-range Win-
dows PC, while the resulting models had approximately 60 states.
This is consistent with the specification and resulting model sizes
we expect to see in real-world systems.

4.1 Scenario Cannot Execute as Specified
By modeling the behavior of the system in two different and

complementary ways, namely, via scenarios and properties, the ar-
chitect is forced to truly understand the system specifications and
the behavior implied by those specifications. In the propagation
steps of SD annotation (Phase 3 of our algorithm from the previ-
ous section), we discover discrepancies between the input scenar-
ios (SDs) and properties (constraints). Discrepancies arise when
a scenario is supposed to exhibit behavior that is prohibited by
some constraint. The discrepancy is discovered in the following
two cases: (1) when the annotations after one and before the next

312

requestCacheData

requestServerData

dataUpdate

<T,F>
<T,F>

<F,T>

<T,T>

...

...

requestData

responseData

removePermission

responseData
 pre:
 post: requestPending = false

System-perspective:
<T,T>

Component perspective:
<T,F>

...

removePermission
 pre:
 post: permission = false

Client

Client WebServer SubscribeServer

Cache Server(a)

(b)

Figure 12: Example scenarios with specification discrepancies.

invocation in the SD are not consistent, and (2) when an operation
does not modify a particular significant variable v, but the anno-
tation fields corresponding to v before and after the invocation are
defined and have different values.

For example, in the specification of the Web cache system (Fig-
ure 1), Scenario 2 contains a discrepancy. The discrepancy shown
in Figure 12a is unveiled during the SD annotation from Cache’s
perspective: the value of cached in the annotation after request-
CacheData is false, while it is true in the annotation before re-
questServerData. According to the scenario, Cache should request
Server data after the invocation of dataUpdate. However, Cache is
not aware of that invocation and considers the data cached. There-
fore, requestServerData invocation would not occur as cached =
true conflicts with the precondition of requestServerData.

A conflict of this type has multiple possible causes and solutions.
For instance, one or more constraints may be overly restrictive (i.e.,
the scenario is valid, but a constraint prevents it). In this case, the
architect should consider relaxing the constraint that prevents the
scenario’s execution. More importantly, the architect should inves-
tigate the reasons why the constraint is not required to hold for the
particular scenario. Are there special cases that require application
of a different constraint set? Is the system in a different operat-
ing mode in which some constraints are irrelevant? For example,
the problem in Figure 12a may be resolved by relaxing the con-
straint on requestServerData. However, this would require addi-
tional analysis to ensure that undesired behavior is not introduced.

Another cause of this type of discrepancy is that the scenario is
misspecified and one or more constraints correctly prevents its exe-
cution. In this case, the architect should either correct the scenario
or remove it. This problem can result if the scenario is lacking a re-
quired invocation, performs prohibited invocations, or invocations
occur out of order. The underlying cause of the conflict may be a
simple oversight during the scenario’s construction, or it may indi-
cate a larger issue that requires design modifications. For example,
a component may be lacking execution information because it does
not have access to the required resources. The problem from Fig-
ure 12a may be resolved by adding to Cache a new provided oper-
ation dataChanged which changes cached to false. Server would
need to provide a notification of every dataUpdate invocation by
invoking dataChanged, and the discrepancy would be removed.

4.2 System And Component Views Differ
There are cases when a scenario can execute according to both

the component- and system-level perspectives, but undesired be-
havior can still occur due to internal component states that differ
from the expected system state. For example, consider the Web
server system from Figure 12b, which resembles the Web cache
system. In the Web server system, WebServer provides partial data
to an unsubscribed Client, and full data if Client is subscribed. In
the depicted scenario, SubscribeServer, which manages the sub-
scriptions, removes Client’s subscription thus making a domain
variable permission false. Because responseData does not have
any preconditions, the scenario executes correctly. However, com-
parison of annotations in SDWebServer and SDSY S discovers that
fields corresponding to permission differ (highlighted in the dia-
gram), which, in this particular case, unveils undesired behavior.

These types of issues can thus be uncovered by comparing each
component’s annotated SD, which captures the component’s inter-
nal states, with the system-wide annotated SD, which captures the
expected and desired states at different points of the scenario exe-
cution. Intuitively, the comparison of component-level and system-
wide annotations provides an automatic determination of which
components are not “in sync” with the expected system state. These
state inconsistencies can result from either of the following causes:
(1) a scenario allows a domain variable to be legally modified via
some invocation, but all interested components are not notified,
hence their states become inconsistent with the system state, (2) a
scenario allows a variable to be modified in a manner that is incom-
patible with the system-wide scenario; as a consequence, a compo-
nent with an inconsistent state may perform an invocation that also
moves the callee to an inconsistent state.

If such state inconsistencies are discovered, the architect should
decide whether the specified behavior is indeed legal behavior. If
not, the most common strategy for addressing these problems is to
add a method invocation to the scenario that notifies all the relevant
components of the new variable value. Ultimately, the discovery of
this issue can lead to substantial design modifications. For exam-
ple, if a variable is discovered whose value is of interest to many
components, the architect may elect to employ a publish-subscribe
architecture to distribute updates.

4.3 Component-Level MTSs Differ
The final output of our algorithm is a set of component-level

MTSs. The reachable states in a component MTS represent the
valid combinations of the significant state variables for that com-
ponent. We can perform comparisons of the different components’
MTS state sets to enumerate the valid value combinations for sig-
nificant variables that are not in common to the components. In
the Web cache system, for example, if the initial values of domain
variable cached is true, then Cache’s MTS would only have states
in which cached = true, while Server’s MTS would have states
where cached = true and states where cached = false.

Such a discrepancy may (though it need not) indicate a design
flaw and should be further analyzed. There are two possible causes
of the discrepancy. First, the system may be underconstrained so
that certain undesired behaviors are not prevented and a component
can end up in an illegal state. In this case, the architect should mod-
ify existing constraints to make them more restrictive or add new
constraints to explicitly disallow the behaviors leading to the illegal
state. Second, component may be overconstrained and, as a result,
is unable to reach a desirable state. To address this issue, the ar-
chitect should relax the constraints that apply to the component or
introduce new operations that lead to the desired state. As noted be-
fore, however, caution must be exercised when relaxing constraints

313

to ensure that invalid behavior is not introduced, and the reason that
the constraint does not apply should be understood fully.

5. RELATED WORK
There exist a number of approaches for synthesis of system-

and component-level behavior models from system specifications.
As we noted earlier, the existing approaches for component-level
model synthesis produce final (as opposed to partial) models. Whit-
tle and Schumann [21] proposed an algorithm for generating com-
ponent statecharts from scenarios and properties. Their algorithm
works on similar inputs as our algorithm, but without considering
the behavior that is neither prohibited nor required by the specifica-
tions. Uchitel et al. [18] demonstrate the importance of considering
the specifications’ partiality during architectural refinement.

Mäkinen and Systä [13] developed a semi-automated approach
for using architect guidance to synthesize component statecharts
from SDs. Damas et al. [3] propose inductively inferring a system-
level LTS and subsequently decomposing it into component-level
LTSs from scenarios interactively provided by the user. A later
extension of this approach reduces the number of questions to the
user [4] by incorporating FLTL properties [8]. However, these
techniques can synthesize overspecified models.

Uchitel et al. [19] put forward a technique for component-level
LTS model synthesis from MSCs [10] and discovering implied sce-
narios. The resulting LTS models are constructed from LTS models
of individual scenarios, which are composed according to an addi-
tional high-level MSC. Our algorithm does not require the archi-
tect to specify explicit relations between scenarios. The approach
by Harel et al. [9] synthesizes statecharts from LSCs [5]. In their
approach, additional events that synchronize the states of different
components augment the statecharts.

Recent relevant approaches construct LTSs based on pre- and
postcondition specifications [2, 6]. De Caso et al. [6] focus on gen-
erating more abstract models than we do, in order to support valida-
tion of the specifications. Their tool Contractor accepts a rich set of
variable types, which we plan to offer in MTSGen in the future. De
Caso’s approach, however, does not consider other types of specifi-
cations. Alarjeh et al.’s technique [2] facilitates refinement of pre-
and postconditions based on system goals and scenarios. These
two approaches natively complement our approach by supporting
validation and refinement of properties at the system level.

The work we present in this paper addresses the problem of in-
herent partiality of early system specifications. The main distinc-
tion between our work and the work done in [17, 20] is that we gen-
erate component-level, as opposed to the system-level, MTS mod-
els. Work by Uchitel et al. [20] generates system-level MTSs from
scenarios and property specifications while imposing each scenario
to start from the initial MTS state. Conversely, we determine the
starting state for a scenario based on the SD annotations. Sibay et
al. [17] present a novel scenario specification formalism, epLSC,
and demonstrate synthesis of system-level MTSs from epLSCs.

In general, none of the above approaches accounts for the types
of design flaws our algorithm helps to discover (Section 4).

6. CONCLUSIONS
In this paper, we proposed a novel technique for synthesizing

partial component-level behavior models from high-level system
specifications. Generating partial component-level models, as op-
posed to system-level models, introduces more rigor into the re-
quirements elicitation and architectural refinement processes and
aids the discovery of several classes of potential problems. We de-

scribed our algorithm in detail, analyzed its complexity, and demon-
strated the types of specification discrepancies we can discover. In
our on-going work, we are evaluating the usefulness of the discov-
ered discrepancies, and are exploring ways of using the component
MTSs for requirements elicitation and off-the-shelf component se-
lection. We are also working on extending our algorithm to encom-
pass additional specifications, including information about system
goals, architectural styles, and negative scenarios.

Acknowledgments
This work is supported by the National Science Foundation under
Grant numbers ITR-0312780, CSR-0720612, and SRC-0820170.

7. REFERENCES
[1] J. Ackermann and K. Turowski. A library of OCL

specification patterns for behavioral specification of software
components. In Proc. of CAiSE, 2006.

[2] D. Alarjeh et al. Learning operational requirements from
goal models. In Proc. of ICSE, 2009.

[3] C. Damas et al. Generating annotated behavior models from
end-user scenarios. IEEE TSE, 31(12), 2005.

[4] C. Damas et al. Scenarios, goals, and state machines: a
win-win partnership for model synthesis. In Proc. of FSE,
2006.

[5] W. Damm and D. Harel. LSCs: Breathing life into message
sequence charts. Form. Meth. Syst. Des., 19(1), 2001.

[6] G. de Caso et al. Validation of contracts using enabledness
preserving finite state abstractions. In Proc. of ICSE, 2009.

[7] D. Fischbein and S. Uchitel. On consistency and merge of
modal transition systems. In Proc. of FSE, 2008.

[8] D. Giannakopoulou and J. Magee. Fluent model checking for
event-based systems. In Proc. of FSE, 2003.

[9] D. Harel et al. Synthesis revisited: Generating statechart
models from scenario-based requirements. Form. Meth. in
Soft. and Sys. Modeling, 3393, 2005.

[10] ITU. Message sequence charts, 2000.
[11] I. Krka, G. Edwards, Y. Brun, and N. Medvidovic. From

system specification to component behavioral models. In
Proc. ICSE NIER, 2009.

[12] K. G. Larsen and B. Thomsen. A modal process logic. Logic
in Computer Science, 1988.

[13] E. Mäkinen et al. MAS–an interactive synthesizer to support
behavioral modeling in UML. In Proc. of ICSE, 2001.

[14] R. Milner. Communication and concurrency. Prentice-Hall,
1989.

[15] MTSGen.
http://www-scf.usc.edu/~krka/MTSGen.zip.

[16] D. Pilone and N. Pitman. UML 2.0 in a Nutshell. O’Reilly
Media, Inc., 2005.

[17] G. Sibay et al. Existential live sequence charts revisited. In
Proc. of ICSE, 2008.

[18] S. Uchitel et al. Behaviour model elaboration using partial
labelled transition systems. In Proc. of ESEC/FSE, 2003.

[19] S. Uchitel et al. Incremental elaboration of scenario-based
specifications and behavior models using implied scenarios.
ACM TOSEM, 13(1), 2004.

[20] S. Uchitel et al. Behaviour model synthesis from properties
and scenarios. In Proc. of ICSE, 2007.

[21] J. Whittle and J. Schumann. Generating statechart designs
from scenarios. In Proc. of ICSE, 2000.

314

http://www-scf.usc.edu/~krka/MTSGen.zip

	1 Introduction
	2 Background
	2.1 Scenarios and Properties
	2.2 Modal Transition Systems
	2.3 Running Example

	3 Synthesizing MTS Models
	Phase 1: Component Constraints Generation
	Phase 2: Initial MTS Generation
	Phase 3: Sequence Diagram Annotation
	Phase 4: Final MTS Generation
	Refinement Proof

	4 Discovering Design Flaws
	4.1 Scenario Cannot Execute as Specified
	4.2 System And Component Views Differ
	4.3 Component-Level MTSs Differ

	5 Related Work
	6 Conclusions
	Acknowledgments

	7 References

