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ABSTRACT
Formally verifying software is a highly desirable but labor-intensive
task. Recent work has developed methods to automate formal ver-
ification using proof assistants, such as Coq and Isabelle/HOL, e.g.,
by training a model to predict one proof step at a time and using
that model to search through the space of possible proofs. This
paper introduces a new method to automate formal verification:
We use large language models, trained on natural language and
code and fine-tuned on proofs, to generate whole proofs at once.
We then demonstrate that a model fine-tuned to repair generated
proofs further increasing proving power. This paper: (1) Demon-
strates that whole-proof generation using transformers is possible
and is as effective but more efficient than search-based techniques.
(2) Demonstrates that giving the learned model additional context,
such as a prior failed proof attempt and the ensuing error message,
results in proof repair that further improves automated proof gener-
ation. (3) Establishes, together with prior work, a new state of the art
for fully automated proof synthesis. We reify our method in a proto-
type, Baldur, and evaluate it on a benchmark of 6,336 Isabelle/HOL
theorems and their proofs, empirically showing the effectiveness of
whole-proof generation, repair, and added context. We also show
that Baldur complements the state-of-the-art tool, Thor, by auto-
matically generating proofs for an additional 8.7% of the theorems.
Together, Baldur and Thor can prove 65.7% of the theorems fully
automatically. This paper paves the way for new research into using
large language models for automating formal verification.

CCS CONCEPTS
• Software and its engineering → Software verification; For-
mal software verification; • Theory of computation → Au-
tomated reasoning; • Computing methodologies → Neural
networks; Machine learning approaches.
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1 INTRODUCTION
Formal software verification — proving software correctness and
other properties — is one of the most challenging tasks software
engineers can undertake. It is highly effective at producing high
quality software. For example, CompCert, a C compiler verified
using the Coq interactive theorem prover [88], was the only com-
piler on a list including the ubiquitous GCC and LLVM, in which
a comprehensive study found no bugs [106]. Similarly, the seL4
project resulted in an highly reliable operating system microker-
nel [44]. However, the cost of manual formal verification — writing
the proofs — is often prohibitive. For example, the proof of the C
compiler is more than three times as long as the compiler code it-
self [51]. As a result, recent research has focused on automated proof
synthesis, which can lead to fully automating formal verification.

There are two promising approaches for automating proof syn-
thesis. The first is to use hammers, such as Sledgehammer [71]
for the Isabelle proof assistant. Hammers iteratively apply known
mathematical facts using heuristics. The second is to use search-
based neural theorem provers, such as DeepHOL [5], GPT-f [73],
TacticZero [100], Lisa [38], Evariste [46], Diva [22], TacTok [23],
and ASTactic [105]. Given a partial proof and the current proof
state (which consists of the current goal to prove and the list of
known assumptions), these tools use neural networks to predict
the next individual proof step. They use the proof assistant to eval-
uate the proposed next proof steps, which returns a new set of
proof states. Iterating this procedure results in a tree-like struc-
ture, which defines a search through the space of possible proofs.
Neural theorem provers rely on diverse neural architectures, such
as Wavenet [5, 92], graph neural networks [69], short long-term
memory models [22], and language models with the transformer
architecture [31, 73].
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In this paper, we propose Baldur, a different, simpler approach to
proof synthesis. We show that using large language models (LLMs),
fine-tuned on proofs, can produce entire proofs for theorems. LLMs
are scaled-up transformer models trained on a large amount of text
data, including natural language and code, that have proven to be
remarkably effective across a wide variety of applications, including
question answering, and text and code generation [9, 16]. Here, we
show their remarkable effectiveness for whole proof generation.

The main contributions of our work are:
• Wedevelop Baldur, a novel method that generates whole

formal proofs using LLMs, without using hammers or
computationally expensive search.

• We define a proof repair task and demonstrate that
repairing incorrectly generated proofs with LLMs fur-
ther improves Baldur’s proving power when the LLM
is given access to the proof assistant’s error messages.

• We demonstrate empirically on a large benchmark that
Baldur, when combined with prior techniques, signifi-
cantly improves the state of the art for theorem proving.

We design Baldur to be able to work with any LLM internally,
but we evaluate our implementation using two versions of Min-
erva [52], one with 8 billion parameters and another with 62 billion
parameters. By contrast, existing tools that use (L)LMs for theorem
proving, either predict individual proof steps [31, 37, 38], or rely on
few-shot prompting and require the existence of natural language
proofs as hints [39].

We evaluate Baldur on the PISA dataset [38] of Isabelle/HOL the-
orems and their proofs used in recent state-of-the-art Isabelle/HOL
proof synthesis evaluations [37, 38]. The dataset consists of 183K
theorems, of which we use 6,336 for measuring effectiveness. Our
evaluation answers the following research questions:

RQ1: How effective are LLMs at generating whole proofs?
LLMs outperform small-model-driven search-based
methods. Baldur (without repair) is able to generate whole
proofs for 47.9% of the theorems completely automatically,
whereas search-based approaches prove 39.0% [37].

RQ2: Can LLMs be used to repair proofs?
LLMs can repair proofs, including their own erroneous
proof attempts. Baldur proves an additional 1.5% of the
theorems when given access to a previous erroneous proof
attempt and the error messages produced by the proof as-
sistant, even when controlling for the computational cost
of the additional inference. The error message is crucial for
this improvement.

RQ3: Can LLMs benefit from using the context of the theorem?
In-context learning is remarkably effective for LLM-
based theorem proving.With context, Baldur proves 47.5%
of the theorems, but only 40.7% without context for the same
model size.

RQ4: Does the size of the LLM affect proof synthesis effectiveness?
Larger LLMs do perform better, suggesting that our ap-
proach will continue to improve with further developments
in LLM research.

RQ5: How do LLMs compare to other state-of-the-art proof gen-
eration methods?
Baldur complements state-of-the-art approaches by
proving theorems they do not. Together with Thor [37],
a tool that combines a learned model, search, and a ham-
mer, Baldur can prove 65.7% of the theorems, whereas Thor
alone proves 57.0%. These findings suggest that LLM- and
search-based methods’ ideas complement each other and can
work together to further improve the automation of formal
verification. An ensemble of 10 different fine-tuned Baldur
models proves 58.0%.

By leveraging LLMs, Baldur simplifies the proof synthesis pipeline,
greatly reducing the complexity and cost of the fine-grained inter-
action between the prediction model and the proof assistant that
search-based methods require. This reduction enables us to leverage
the power of LLMs, which would be prohibitively computationally
expensive if synthesis required as many LLM queries as search-
based methods. Further, those calls would require re-encoding with
each step the additional information the LLM might need, whereas
our approach allows us to make a single call and process the con-
text only once, sampling multiple proofs of multiple proof steps,
at once.1 Overall, our study strongly suggest that LLMs are a very
promising direction of research for automating formal verification,
and identifies several new avenues for future explorations.

2 THE BALDUR APPROACH
Prior approaches to proof synthesis employ a neural model to pre-
dict the next proof step given the current proof state. The proof step
predictions then guide a search strategy, such as best-first search
or depth-first search. Throughout the search, the proof assistant
needs to check each proof step prediction to determine whether it is
valid. This means that existing proof synthesis tools require a tight
interaction between the neural network and the proof assistant. As
we move to using LLMs, this results in complex systems, as LLMs
need to run on specialized hardware (GPUs or TPUs), while proof
assistants run on CPUs.

We explore a simpler, yet effective method: fine-tuning LLMs
to generate complete proofs. This simplification avoids the fine-
grained interaction between neural model and the proof assistant,
allowing us to run the jobs of generating proofs and checking
completely separately. Besides reducing complexity, this can also
improve efficiency, because (1) it enables us to use large batch
sizes, which can significantly improve hardware utilization during
inference (cf. [74]), and (2) when providing additional context to
the model, the context now does not have to be reprocessed for
each proof step, but only once per proof.

We fine-tune LLMs on proof data to generate entire proofs and
explore the impact of giving the LLMs additional information. Our
approach and implementation include the following:
• We fine-tune an LLM to generate an entire proof given only

the theorem statement. We call this model the proof generation
model (Section 2.1).

• We provide a model a proof attempt that did not check along
with the corresponding error message from the proof assistant

1Alternatively path advanced caching strategies in the prediction servers of large
language models could address this problem. This is beyond the scope of our work.
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Proof Generation Model

 <THEOREM> Theorem Statement <PROOF>

Isabelle
(Proof Assistant)

No error Error

Success

  Candidate Proof  

Failure

Input: 

Figure 1: An example of using the proof generation model to
generate a proof.

so that the model may attempt to find a better proof. We call
this model the proof repair model (Section 2.2).

• We provide text from the same theory file that the problem was
taken from. We add only the lines from the theory file that
immediately precede the theorem we want to prove. We call this
added information the theory file context and we add it to the
proof generation model (Section 2.3).

• The LLM that we fine-tune at the core of all of this is Min-
erva [52], which is pretrained on a mathematics corpus. We
describe our Baldur-specific implementation details for how we
use this model (Section 2.4).
These fine-tuned LLMs and their interaction with the Isabelle

proof assistant make up our tool Baldur. This section details the
Baldur approach, which includes creating training datasets and
leveraging LLMs to generate and repair proofs.

2.1 Proof Generation
Existing proof generation methods using neural models generate
the proof one step at a time. In contrast, our approach generates
the entire proof, as illustrated with a single example in Figure 1.
We use only the theorem statement as input to our proof generation
model. We then sample a proof attempt from this model and perform
proof checking using Isabelle. If Isabelle accepts the proof attempt
without an error, then we have proven the theorem. Otherwise, we
can try sampling another proof attempt from the proof generation
model. Explicitly, the input and output of our proof generation
model is as follows:
• Input: theorem statement.
• Output: candidate proof.

Example. To illustrate the power of the proof generation ap-
proach in our tool Baldur, we first consider, as an example, the
theorem fun_sum_commute.

lemma fun_sum_commute:

assumes "f 0 = 0" and "∧x y. f (x + y) = f x + f y"

shows "f (sum g A) = (Σa∈A. f (g a))"

The theorem states that for an additive function 𝑓 where 𝑓 (0) =
0, and an arbitrary function 𝑔, applying 𝑓 on the sum of the set
resulting from applying 𝑔 on each element in a given set is equal to
the sum of applying 𝑔 followed by 𝑓 to each element in that set. In
this context, the sum over an infinite set is taken to be zero. This
theorem is from a project in the Archive of Formal Proofs called
Polynomials, specifically in the file Utils.thy.

The human-written proof distinguishes between two cases: when
the set is finite and when it is not. Induction is used for the finite
set case.

proof (cases "finite A")

case True

thus ?thesis

proof (induct A)

case empty

thus ?case by (simp add: assms(1))

next

case step: (insert a A)

show ?case by (simp add:

sum.insert[OF step(1) step(2)]

assms(2)

step(3))

qed

next

case False

thus ?thesis by (simp add: assms(1))

qed

If we were to derive a training example from this example, the
input would be theorem statement and the target would be this
human-written proof.

Our tool Baldur, using the proof generation model, is able to
generate the following correct proof for this statement.

by (induct A rule: infinite_finite_induct)

(simp_all add: assms)

Baldur recognizes that induction is necessary and applies a spe-
cial induction rule called infinite_finite_induct, following the
same overarching approach as the human-written proof, but much
more succinctly. It is interesting to note that Sledgehammer, the
hammer for Isabelle, cannot prove this theorem by default, as it
requires induction.

Training Data Creation. To train the proof generation model,
we construct a new proof generation dataset. Existing datasets
for training models in neural theorem provers contain examples of
individual proof steps. Each training example includes, at minimum,
the proof state (the input) and the next proof step to apply (the
target). Given a dataset that contains individual proof steps, we
want to create a new dataset so that we can train models to predict
entire proofs at once. So we extract the proof steps of each theorem
from the dataset and concatenate them to reconstruct the original
proofs. We use this data to generate training examples for the
proof generation model, where the input consists of the theorem
statement and the target consists of the proof.
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In particular, this means that we drop the proof states from the
dataset, which make up most of the text in the dataset. We argue
that for Isabelle proofs this is not necessarily a problem, as Isabelle
uses a declarative proof language that is designed to be human-
readable. This is in contrast to other proof assistants, such as Coq,
where the proofs are typically written in a procedural style that is
not easy to interpret for humans without using the proof assistant
to generate the intermediate proof states.

Inference. We fine-tune an LLM on our data to predict the entire
proof given only a theorem statement. To synthesize a proof us-
ing the fine-tuned LLM, we provide a potentially unseen theorem
statement and sample a fixed number of sequences (typically 16
or 64) from the language model, where a sequence is an entire
proof attempt. We tune the sampling temperature from a small set
(between 0.0 and 1.4 in increments of 0.2), which is a multiplicative
factor on the log probabilities of the distribution of tokens sampled
in each step.

Proof checking. After sampling proofs from the model, we check
all of them with the proof assistant. This means that we first load
the context in which the theorem was originally proven and then
replace the original proof of the theorem with the one we sampled
from the model. If Isabelle accepts any of the sampled proofs, we
report the theorem as proven.

2.2 Proof Repair
If a proof is not accepted, Isabelle returns an error message that is
intended to help humans with debugging their proof script. Existing
proof generation methods, however, have no way to leverage error
messages.

Building off our proof generation approach, we explore the use
of error messages to improve neural theorem provers by developing
a proof repair approach. Starting with just the problem statement,
we apply the proof generation model from Section 2.1 to sample
a proof attempt. If Isabelle accepts the proof attempt, we can stop.
Otherwise, we use the error message returned by the proof checker
and the incorrect proof attempt to construct an example to serve as
input to the proof repair model. As depicted in Figure 2, we use the
theorem statement, the incorrect proof, and the error message as
input to our proof repair model. We then sample the proof attempt
from this model, and perform proof checking in the same way as
the proof generation approach. Explicitly, the input and output of
our proof repair approach pipeline are as follows:

• Input: theorem statement, incorrect proof, error message.
• Output: candidate proof.

Example. Starting from the theorem fun_sum_commute, we il-
lustrate an example of the proof repair approach in our tool Baldur.
We apply the proof generation model to obtain more proof attempts.
The following is a proof attempt generated by Baldur, which fails
in the proof checker.

proof (induct A)

case (insert x A)

thus ?case

by (simp add: assms(2))

qed simp

Proof Repair Model

 <THEOREM> Theorem Statement 
<INCORRECT_PROOF> Incorrect Proof 
<ERROR> Error Message <PROOF>

Isabelle
(Proof Assistant)

No error Error

Success

  Candidate Proof  

Failure

Input: 

Figure 2: An example of using the proof repair model to
repair an incorrect proof.

Baldur attempts to apply an induction, but fails to first break
down the proof into two cases (finite vs. infinite set). Isabelle returns
the following error message:

Step error: Unable to figure out induct rule

At command "proof" (line 1)

The error message details where the error occurs (line 1) and
that the issue is regarding the induct rule. With these strings as
input, using the proof repair model, Baldur can attempt to generate
a correct proof for this statement. If we want to instead derive a
proof repair training example from these strings, we concatenate the
theorem statement, the failed proof attempt, and the error message
to serve as the input, and we use the correct human-written proof
(recall from previous section) as the target.

Training Data Creation. To train the proof repair model, we need
to generate a proof repair training set. Figure 3 details the training
data creation process. Using the proof generation model, we sample
one proof with temperature 0 for each problem in the original
training set used to train the proof generation model. Using the
proof assistant, we record all failed proofs and their error messages.
We then proceed to construct the new proof repair training set.
For each original training example, we concatenate the theorem
statement, the (incorrect) candidate proof generated by the proof
generation model, and the corresponding error message to obtain
the input sequence of the new training example. For the target
sequence, we reuse the ground truth proof from the original training
example. We fine-tune the pretrained LLM on the proof repair
training set to obtain the proof repair model.

2.3 Adding Context
LLMs possess impressive in-context learning abilities (cf. [9, 16])
that allow them to flexibly use information that is provided as part of
the input sequence (and, in fact, as part of their own output [68, 97]).
In order to explore to what extent in-context learning can help in the
theorem proving domain, we extend their inputs with potentially
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Proof
Generation

Model

Isabelle
(Proof Assistant)

  <THEOREM> Theorem Statement 
<INCORRECT_PROOF> Candidate Proof 

<ERROR> Error Message <PROOF>

No error

Proof Repair Model
Training Example

 <THEOREM> Theorem Statement  <PROOF>

Proof Generation Model
Training Example

Error

 Ground Truth Proof 

Ground Truth Proof 

No 
example

  Candidate Proof  

  Error Message  

Input: Output:

Input: Output:

Figure 3: Training data creation for the proof repair model.

helpful context. Adding to our proof generation approach, we use
the theory file contexts (the lines preceding the theorem statement)
as input to our proof generation model with context. Explicitly, the
input and output of our proof generation model with context is as
follows:

• Input: theory file context and theorem statement.
• Output: candidate proof.

Example. Continuing the example, the theory file context di-
rectly preceding fun_sum_commute is the following theorem state-
ment and its associated proof.

lemma additive_implies_homogenous:

assumes "∧x y. f (x + y) = f x +

((f (y::'a::monoid_add))::'b::cancel_comm_monoid_add)"

shows "f 0 = 0"

proof -

have "f (0 + 0) = f 0 + f 0" by (rule assms)

hence "f 0 = f 0 + f 0" by simp

thus "f 0 = 0" by simp

qed

The proof generation model with context in Baldur can leverage
this additional information. Strings that appear in the theorem
statement for fun_sum_commute, such as "f 0 = 0", appear again
in this context, and so the additional information surrounding them
could help the model make better predictions.

Training Data Creation. We add the lines of the theory file that
precede the theorem statement to serve as additional context. This

means that context can include statements, such as the previous
theorems, definitions, proofs, and even natural language comments.
To make use of the available input length of LLMs, we first add up to
50 preceding statements from the same theory file. During training,
we first tokenize all these statements, and then we truncate the left
of the sequence to fit the input length.

Premise Selection. Many proofs make frequent use of definitions
and previously proven statements, also known as premises. Some
neural theorem provers, such as HOList [5], focus entirely on the
problem of selecting the right set of premises, which has been
shown to be quite successful in theorem proving.

Premise selection is clearly similar to the addition of context in
some aspects, but we want to emphasize some key differences: (1)
Adding context is an extremely simple technique that only requires
rudimentary text processing, (2) by adding the preceding lines of
the theory file, the model can only observe a small fraction of the
available premises, (3) most of the added context consists of proofs.

2.4 Large Language Model
We use Minerva [52], a large language model pretrained on a mathe-
matics corpus based on the PaLM [16] large language model. Specif-
ically, we use the 8 billion parameter model and the 62 billion
parameter model. The Minerva architecture follows the original
Transformer architecture [93], but has some noteworthy differences.
It is a decoder-only transformer with maximum sequence length of
2,048 tokens. The model uses

• rotary position encodings [86] instead of sinusoidal absolute
position embeddings,

• parallel layers [8], which compute the feed forward layer
and the attention layer in parallel and add up their results
instead of computing them in sequence, and

• multi-query attention, which uses a single key-value pair
per token per layer for faster decoding [84].

As this model is not a contribution of this paper, we refer the
reader to prior work for lower-level details on the Minerva archi-
tecture [16].

Baldur-specific implementation details. The proof generation task
naturally consists of an input, which is the theorem statement
(potentially augmentedwith additional information), and the output
(target), which is the proof for the theorem. To work with the
decoder-only model, we concatenate the inputs and targets, but the
loss is only computed over the target during fine-tuning so that
the model is learning to conditionally generate the target given the
input and not the input itself. The inputs use bidirectional attention
while the targets use causal attention as in PrefixLM [76].

As the transformer has a maximum context length of 2048, we
pad the sequences with zeros if they are too short, and we need to
truncate them if they are too long. Inputs to the model are truncated
to the maximum input length by dropping tokens on the left. The
rationale for dropping tokens on the left is that the additional
context is given before the theorem statement, and can be truncated
more safely than the theorem statement itself. Similarly, targets (i.e.
the proof to generate) are truncated on the right to the maximum
target length.
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We used a maximum input length of 1536 and a maximum target
length of 512 all experiments but the repair study and the 62b model,
which used 1024 and 1024 instead. We use a drop-out rate of 0.1 for
both generation and repair models to address overfitting.

During sampling from the language model we restrict the choice
of the next token to the 40 tokens with the highest score, also called
top-K sampling [21]. We sample sequences with a maximal length
of 256 tokens. The model was trained to generate up to 512 tokens,
but since most successful proofs are relatively short, this limitation
has little impact on the proof rate while saving some compute.

We use a batch size of 32, and fine-tune for up to 100,000 steps,
but we observed that the model begins to overfit to the training set
after 50,000 to 70,000 steps. For inference, we selected checkpoints
from just before the model started to overfit.

3 EVALUATION
This section presents our experiments answering the following
research questions:
RQ1: How effective are LLMs at generating whole proofs?
RQ2: Can LLMs be used to repair proofs?
RQ3: Can LLMs benefit from using the context of the theorem?
RQ4: Does the size of the LLM affect proof synthesis effectiveness?
RQ5: How do LLMs compare to other state-of-the-art proof gen-

eration methods?
To answer these questions, we trained several language models

using the approach from Section 2, and evaluated them on the PISA
benchmark (see Section 3.2).

3.1 Experimental Setup
Machine specification. For most of the training runs of the 8b

model, we used 64 TPUv3 cores distributed across 8 hosts. For
training the 62b model, we used 256 TPUv3 cores distributed across
32 hosts. For most inference jobs, we used between 32 inference
servers using 8 TPUv3 cores each.

Proof Checker. We use the PISA codebase [38] under a BSD 3-
clause license, which allows us to interact with the Isabelle proof
assistant to check proofs. To run large jobs of the proof checker, we
package it in a Docker container and run it on GCP. We extended
the proof checker to discard any proofs that contain “sorry” or
“oops”, which are keywords that skip proofs, but otherwise pass the
proof checker. We apply a timeout of 10 seconds to each proof step
in the proof checker.

3.2 PISA Benchmark
We derive our datasets from the PISA dataset [38], which includes
the Isabelle/HOL repository under a BSD-style license and the
Archive of Formal Proofs (AFP) from October 2021. The AFP is a
large collection of Isabelle/HOL proof developments. PISA includes
the core higher-order logic library of Isabelle, as well as a diverse
library of proofs formalised with Isabelle. This includes mathemat-
ics proofs and verification of software and hardware systems. The
PISA dataset comes with a 95%/1%/4% split of theorems for the
training/validation/test sets, which we follow in this work as well.

For the test set, prior work randomly chose 3,000 theorems from
the test set to report their results on. We report our results on

the complete test set. Some entries in the dataset are not proper
theorems (starting with the keyword “lemmas” instead of “lemma”),
which we filter out, as did prior work. This leaves us with a total of
6,336 theorems in our test set (originally 6,633 theorems).

It is worth noting that, as with any LLM-based work, there is
the potential for proofs from the test set to have leaked into the
LLM pretraining data. Minerva was trained on a dataset consisting
of scientific papers from the arXiv preprint server and web pages
that include mathematical expressions [52]. While the pretraining
data for the Minerva LLM at the base of our models does not in-
clude the PISA dataset, it does contain code that may include some
Isabelle/HOL proofs found in PISA. This should be kept in mind
when interpreting the results.

3.3 RQ1: How effective are LLMs at generating
whole proofs?

We aligned our methodology with the methodology described in
Thor [37] to enable a comparison between various methods. The
Thor paper includes informative baselines for the PISA benchmark,
including Sledgehammer, a method relying on heuristic search, and
a language model approach using search.

Sledgehammer and the search-based language model approach
achieve 25.6% and 39.0%, respectively. In comparison, our naive
proof generation approach with an 8b language model achieves a
proof rate of 34.8% with 16 samples and of 40.7% with 64 samples.
The comparison is even more favorable if we consider the other
variants of Baldur, which achieve a proof rate of up to 47.9%.

We observe that the comparison depends on the computational
cost that we spend during inference. While comparing the cost
required for the two methods is involved, one measure we can use
is the amount of computational resources reserved during proof
generation. For a single proof, the language model approach using
search [37] requires a TPUv3 with 8 cores for 216 seconds,2 while
our methodology also requires a TPUv3 with 8 cores for around 35
seconds to sample 64 proofs— a difference of factor 6. This argument
disregards the time spent on proof checking, which is intentional:
proof checking is done on CPUs, which is cheap compared to time
spent on TPUs. So, disentangling these two workloads can lead to
significant reductions in computational cost.

RA1: These results demonstrate that LLMs can generate
full proofs just as well as smaller language models aug-
mented with a search strategy.

3.4 RQ2: Can LLMs be used to repair proofs?
We trained models for proof generation and repair as detailed in
Section 2. If we sample from the proof generation model once with
temperature 0, collect the failed proofs, and then repair once with
temperature 0, we generate an additional 266 or 4.2% correct proofs.
However, in this comparison, the generate + repair approach uses
two samples, while the generate approach has only one sample. For
a fair comparison, we have to compare the repair approach to the
generate approach with additional inference attempts.

2Jiang et al. state in Section 4.1 [37] that 1,000 problems take around 60 TPU hours.
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Figure 4: Ratio of theorems proven vs inference cost.

Model 16 samples 64 samples

Baldur 8b generate 34.8% 40.7%
Baldur 8b generate + repair 36.3%∗ —
Baldur 8b w/ context 40.9% 47.5%
Baldur 62b w/ context 42.2% 47.9%

Baldur 8b w/ context ∪ Thor — 65.7%

Figure 5: Proof rate of different models.
∗The repair approach uses half the number of samples, and
then one repair attempt for each sample.

Figure 4 plots the proof success rate of the generate approach and
the repair approach against the number of proof attempts. Note that
the number of samples for the repair approach does not perfectly
align with the number of samples for the generate approach. This
is because the generate approach tends to produce multiple copies
of the same proofs, which we deduplicate before repair, and only
generate one repair attempt per failed proof attempt. For each
of the number of samples of the generate approach, we tune the
temperature in the range of 0.0 to 1.4 in increments of 0.2, and we
always use temperature 0 for the repair approach.

The repair approach consistently outperforms the plain proof
generation model, which only uses the theorem statement as input.
To shed some light on what causes the gains, we trained another re-
pair model with the same information, except without the error mes-
sage. Figure 4 shows this model’s proof success rate; it does not sur-
pass the performance of the plain generation model when normal-
ized for inference cost. This suggests that the information in the er-
ror message is crucial for the observed gains of the repair approach.

RA2: LLMs can be used to repair proofs, including their
own failed proof attempts, boosting overall proving power.

3.5 RQ3: Can LLMs benefit from using the
context of the theorem?

Figure 5 reports the impact of adding theory file context to our plain
generation approach. At 64 samples, the proof rate increases from
40.7% to 47.5% for the same model size. Figure 6 plots the proof
success rate of the generation model with and without context
against the number of proof attempts. We observe that the proof
generation models with context consistently outperform the plain
generation model. We illustrate the complexity of generated proofs
with several examples [24].

To get a better understanding of where these gains are coming
from, we inspected 5 randomly sampled examples that the model
using context was able to solve, but the plain generation model
could not. We determined the lists of problems each model could
solve, computed their difference, and then sampled 5 examples
uniformly at random. For examples that had multiple correct proofs
generated by the model, we selected one at random.

While the sample size is not large enough to make quantitative
judgements, it appears that the model frequently makes use of
similar proofs in the context.We observe that for 3 of the 5 examples,
the model readily copies and adapts proofs that exist in its context.
For another example, the model made use of a premise that did
not occur in its context, which happened to also be used in the
ground truth proof, but with a different tactic. In the final example,
the model found a simpler proof that did not occur like this in the
context. This suggests that the addition of context does not play
the same role as premise selection.

RA3: LLMs can benefit from the context in which the
theorem occurred in the theory file, both quantitatively
by increasing proving power, and qualitatively by copying
and adapting nearby proofs.
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Figure 6: Ratio of theorems proven vs. inference cost for models with different sizes and temperatures.

3.6 RQ4: Does the size of the LLM affect proof
synthesis effectiveness?

We fine-tuned and evaluated the 62b version of Minerva on the
proof generation task with context. Figure 5 reports that for 16
samples, the large model can prove an additional 1.3% over the
8b model, resulting in a total proof rate of 42.2%. For 64 samples,
the large model can prove an additional 0.4% over the 8b model,
resulting in a total proof rate of 47.9%.

Figure 6 plots the proof success rate of the generation model
with context for the 8b model and the 62b model against the num-
ber of proof attempts. We observe that the 62b proof generation
model with context outperforms the 8b proof generation model
with context. One caveat here is that we were not able to tune hy-
perparameters as well due to the higher cost of these experiments,
so an optimally tuned 62b model may perform even better.

RA4: Theorem proving performance improves with the
scale of the language model.

3.7 RQ5: How do LLMs compare to other
state-of-the-art proof generation methods?

While comparisons across different neural theorem provers are hard
in general, we can compare to Thor [37], one of the most effective
approaches available. Thor also relies on language models, but uses
smaller models (700m parameters) and uses a different kind of proof
step as its prediction target. Instead of using the human ground
truth proofs, Thor generates a new training set and aims to solve
each proof step by generating a declarative statement, which is
then solved using Sledgehammer. That is, Thor disentangles the
planning stage of the next proof step, which is the specification of
the target state (using a “have” statement) and premise selection,
which is done by Sledgehammer. This enables Thor to solve a total
of 57% of the problems.

AFP Topic Test set Baldur Thor

Computer Science 4,019 50.0% 57.5%
Logic 966 51.6% 53.6%
Mathematics 2,200 41.9% 50.5%
Tools 102 53.9% 51.8%

Figure 7: Proof rate by AFP topic classification, and the num-
ber of theorems in each category. There are only 6,336 theo-
rems in total in the test set, but the projects these theorems
appear in can be covered by multiple topics.

By contrast, Baldur solves up to 47.9% of the problems. While
there is a significant gap, we argue that the means by which the
two techniques improve over plain language modeling are largely
orthogonal. Figure 5 reports a large gain from 57% to 65.7% when
we consider the union of Baldur and Thor, which supports this
hypothesis. Additionally, we find that an ensemble of 10 different
fine-tuned Baldur models proves 58.0%.

We compare Baldur’s and Thor’s proof rates on different types of
problems. The AFP is indexed by four overarching topics: computer
science, logic, mathematics, and tools. The authors of individual
proof developments self-identity which topics their projects fall
into. We use these provided topic labels to determine the categories
of problems from our test that Baldur and Thor can most effectively
solve. Figure 7 shows the breakdown of which theorems in the test
set fall into which topics, and Baldur’s and Thor’s proof success
rates on these theorems. In terms of relative performance, Baldur
performs better than Thor on problems related to tools and similarly
on problems related to logic. We observe that Thor outperforms
Baldur on problems related to mathematics and computer science.
For mathematics proofs, we hypothesize that premise selection
may be particularly useful, and Thor’s use of Sledgehammer is
likely what gives it a leg up on solving these mathematics problems.
Overall, we observe some complementarity in Baldur’s and Thor’s
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effectiveness on problems of different topics, though future work
should examine this complementarity in more depth.

RA5: Our findings suggest that LLM-based methods and
search-based methods are complementary, and together
can lead to large gains in proving power.

4 DISCUSSION: WHAT’S NEXT?
Our evaluation shows that LLMs can generate whole proofs at once,
and can repair their own mistakes, forming the basis for an effective
and simple approach to proof synthesis. Moving forward, we find
three directions particularly promising:
(1) integrating proof generation and proof repair models into a

new learnable proof search strategy,
(2) investigating alternative data splits corresponding to differ-

ent goals, and
(3) evaluating these techniques across different proof assis-

tants.

Learnable Proof Search. While our generate + repair approach
to proof synthesis lets us avoid costly proof search procedures, it
also lends itself to a new proof search strategy. The search strategy
would work as follows:
(1) use the generation model to sample candidate proofs,
(2) use the repair model to attempt to repair those proofs, and
(3) continue to use the repair model to repair the repair-model-

generated attempts from (2).
This paves the way for a learnable proof search strategy.

We demonstrate a proof-of-concept of this new proof search
strategy. We sample once using the generation model, repair the
generated sample using the repair model, and repair the repair
model’s attempt using the repair model. When using both models,
we sample with temperature 0. So the inference cost in this setup
is 3 (1 for the first generation, 1 for the first repair, and 1 for the
second repair).

The generate + repair approach with inference cost of 2 proves
24.9% of the test set theorems. With a second repair attempt, it
proves an additional 1.3%, for a total of 26.2%. The generation ap-
proach with inference cost of 3 proves 25.4%, which is 0.8% less
than the second repair attempt for the same inference cost.

To make this a more viable proof search strategy, future work
needs to focus on generating proof repair training data that better
mirrors the required changes for the subsequent repair attempts.
When proof checking, the resulting error message is for the first oc-
curring error, typically from the first couple of lines of the predicted
proof. So the proof repair model will only learn to address these
types of errors. An alternative approach could be, for example, to
take the training examples from the proof generation model and
use the first few lines of the human-written ground truth proof as
a proof prefix. We could then concatenate this proof prefix to the
end of the input. Since it is a decoder-only model, we can simply
sample the model’s attempt at the rest of the proof. If the proof
prefix concatenated with the rest of the proof does not check, then
that can serve as a new training example for the proof repair model.

Alternative Data Splits. The PISA benchmark that we use to
evaluate our approach commits to a particular data split between
training data and testing data. It is interesting to note, however,
that different data splits may themselves correspond to different
goals, even fixing the same evaluation task and metric. Moving
forward, it may be useful to consider different kinds of data splits
corresponding to different goals, even fixing the same dataset and
benchmark suite. Here, we consider two different splits: theorem-
wise and project-wise.

PISA uses a random theorem-wise split of the theorems appear-
ing the AFP. This means that for any theorem in the test set, the
theorems and (the corresponding proofs) that appear before or af-
ter that theorem may be in the training set. This split is useful to
evaluate since a forward-looking goal of neural theorem prover
researchers is to integrate these tools directly into proof assistants,
where they could make use of the full project context. That project
context may include human-written proofs of nearby theorems
that look similar (or even identical) to one another — automatically
repurposing and adapting those proofs can be quite fruitful.

By contrast with PISA, CoqGym [105], the neural theorem prover
benchmark suite for the Coq proof assistant, uses a project-wise
split, where training and testing data come from entirely different
projects. This is useful when the goal is to help proof engineers
who start completely new projects and want an automated proof
synthesis tool to prove as much as it can. A tool that is trained and
evaluated in a setting where it expects that it has seen proofs in a
given proof development, as may happen with a theorem-wise split,
may not perform as well in this new setting. Explicit consideration
for the data split and the goals it achieves may help drive neural
theorem proving research even further.

Different Proof Assistants. To make better sense of new strides
in neural theorem proving, it makes sense to evaluate the same
techniques across many different proof assistants. But this remains
challenging. Consider once again the problem of data splits: since
prover developments that evaluate on CoqGym [22, 23] follow the
same project-wise split as CoqGym, it can be hard to make sense of
how those developments compare to those trained and evaluated
using theorem-wise data splits, like our own Baldur.

We used an established benchmark of Isabelle/HOL proofs to
fairly compare Baldur to prior work and to increase the chances
that our results generalize. However, we observed that search-based
proof-synthesis tools for other proof assistants tend to prove a
smaller fraction of theorems than we have found in our work. For
example, Diva [22], the current state of the art for the Coq proof
assistant, proves 33.8% of its benchmark automatically. This could
be a reflection of size and quality of the available training data or
the complexity of the available evaluation data (which, by necessity,
is different from what we use because it involves theorems and
proofs in different languages), or a more fundamental difference in
the complexity of synthesizing proofs in these respective languages.

Future work should allow for direct comparisons by porting the
developed techniques across proof assistants. Cross-proof-assistant
benchmark suites may help substantially with this, but still have
their limitations. For example, MiniF2F [110] implements the same
benchmark suite for Math Olympiad problems across many differ-
ent proof assistants. But math problems are not evenly represented
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across proof assistants, which draw different user communities
with different emphases. Fair comparisons between proof assistants
are hard, but we do believe they are necessary.

5 RELATEDWORK
Existing methods for automating formal theorem proving can be
classified into two categories, hammers and search-based methods.
Hammers, such as CoqHammer [19] and Sledgehammer [71], it-
eratively use a set of precomputed mathematical facts to attempt
to “hammer” out a proof. While hammers are powerful, they lack
the ability to employ certain tactics, such as induction, preventing
them from proving certain large classes of theorems. Search-based
methods use a prediction model that, given some information about
a partially written proof, the target theorem being proven, and the
current proof state, predicts a set of next likely proof steps. The
methods then use metaheuristic search [32] to attempt to synthesize
a proof. They iterate querying the prediction model for the likely
next steps and using the proof assistant to get feedback on those
steps and prune non-promising paths, generating a search tree of
possible proofs. The proof assistant also determines when the proof
is complete. The tools mostly differ in the prediction model they use,
which are typically learned automatically. For example, ASTactic
uses only the proof state [105], TacTok uses the proof state and the
partially written proof script [23], Diva (which combines the use of
many models) also uses the proof term [22], and Passport also uses
identifier information [83]. Other search-based techniques include
Tactician [7], Proverbot9001 [82], and GamePad [35] for Coq; Tactic-
Toe [26] for HOL4; and DeepHOL [5, 69] for HOL Light. Prior work
has found that hammers and search-based methods are complemen-
tary, each often proving theorems the other cannot [22, 23, 105],
though effective user interfaces are needed to help proof engineers
use these tools [2]. Thor [37] combines a search-based method with
a hammer, using both a prediction model and Sledgehammer in its
search. By contrast, our Baldur uses an LLM to generate an entire
proof at once and then to one-shot repair it.

The most closely related work to ours is LISA [38], which fine-
tunes a pretrained language model on a large Isabelle/HOL proof
corpus, and uses it inside of a search procedure to predict proof
steps. GPT-f [73] likewise combines a generative language model
with proof search to target the Metamath proof language. A Monte-
Carlo tree search approach outperforms GPT-f in Lean [46].

TacticZero [100] learns not just tactics but also proof search
strategies for end-to-end proof synthesis, rather than relying on a
single fixed proof search strategy like other neural theorem proving
approaches. The approach works by way of deep reinforcement
learning, and improves over the previous state of the art on a bench-
mark for the HOL4 theorem prover.

A related problem to neural theorem proving is autoformal-
ization: the automatic translation of natural language specifica-
tions and proofs into formal, machine-checkable specifications and
proofs. LLMs have shown promise for autoformalization of specifi-
cations, and automatically generated proofs of the resulting autofor-
malized specifications have been used to improve a neural theorem
prover on a widely used benchmark suite in Isabelle/HOL [101].
ProofNet [4] introduces a dataset and benchmark suite for auto-
formalization in Lean, based on undergraduate mathematics, and

shows preliminary promising results autoformalizing proofs on
that benchmark using Codex [14] with few-shot learning. Autofor-
malization of both theorems and proofs in Coq shows promise on
a small preliminary benchmark suite [18]. Autoformalization for
specification logics in verification is also promising [30].

The Draft, Sketch, and Provemethod (DSP) [39] presents a hybrid
between theorem proving and autoformalization, which, similar to
our approach, makes use of LLMs for theorem proving. It provides
informal proofs as drafts for the LLM to translate into a formal
proof sketch, which is then proven via Sledgehammer. In contrast,
we use fine-tuning for LLMs, do not make use of Sledgehammer,
and do not rely on the availability of natural language proofs.

Pretrained language models can be used to answer natural-
language mathematics questions [67]. Large language models, such
as Minerva [52] and PaLM [16], have been evaluated on natu-
ral language mathematics benchmarks, such as GSM8k [17] and
MATH [33]. The ProofNet [4] benchmark suite mentioned above
includes informal proofs alongside formal proofs as a benchmark.

We introduce the proof repair task, with error messages. This
is a new machine learning task for formal proofs. We show that
solving this task improves neural theorem proving performance.
Proof engineers perform proof repair constantly during formal
proof development [79]. Automating this task first arose with the
advent of symbolic tools for automatic proof repair in the Coq proof
assistant [77], and has since made its way into tools for other proof
systems [55]. Our work is among the first to explore proof repair
in a machine learning context, and the first we are aware of to use
error messages for a proof repair task, and to use repair to improve
performance of proof synthesis.

There are numerous other tasks that machine learning tools for
proofs consider that may either help users with proof development
directly, or improve neural theorem proving performance them-
selves. For example, PaMpeR [62] predicts proof methods alongside
explanations in Isabelle/HOL. ACL2(ml) [34] generates helper lem-
mas and suggests similar theorems in ACL2. Other popular proof-
related tasks leveraging machine learning include premise selec-
tion and datatype alignment [78]. Nonfunctional and data-centered
properties [25, 60, 61] can also benefit from formal verification [6],
but more research is necessary both on manual and automated ap-
proaches to verifying such properties. Probabilistic verification has
successfully provided guarantees for such properties for machine
learning systems [27, 57, 89, 96].

Our approach can help minimize human effort in formal veri-
fication by automatically synthesizing proofs for some theorems.
Other tools that assist humans writing formal verification proofs
can similarly save time, and can be complementary to our work for
theorems Baldur cannot prove fully automatically. iCoq [10, 11],
and its parallelized version PiCoq [70], find failing proof scripts in
evolving projects by prioritizing proof scripts affected by a revision.
iCoq tracks fine-grained dependencies between Coq definitions,
propositions, and proof scripts to narrow down the potentially af-
fected proof scripts. QuickChick [47], a random testing tool for Coq,
searches for counterexamples to executable theorems, helping a
programmer to become more confident that a theorem is correct.
Roosterize [63, 65] can suggest names for lemmas, and language
models can also help automatically format proofs [64], both improv-
ing readability and maintainability. Mutation analysis can identify
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weak specifications, when mutating definitions does not break their
proofs [12, 36]. The mutation operators could, hypothetically, be
applied in repair and in providing feedback for developers as to
why a proof has broken.

The automated program repair field studies the task of taking a
program with a bug, evidenced by one or more failing tests, and
automatically producing a modified version of the program that
passes all the tests [50]. Generate-and-validate repair techniques
use search-based techniques or predefined templates to generate
many syntactic candidate patches, validating them against the
tests (e.g., GenProg [49], Prophet [53], AE [98], HDRepair [48],
ErrDoc [91], JAID [13], Qlose [20], and Par [43], ssFix [102], Cap-
Gen [99], SimFix [41], Hercules [81], Recoder [111], among others).
Techniques such as DeepFix [29] and ELIXIR [80] use learned mod-
els to predict erroneous program locations, as well as the patches.
It is possible to learn how to repair errors together by learning
how to create errors, which can increase the amount of available
training data, but poses an additional challenge of learning to ap-
proximate making human-like errors [107]. Unfortunately, these
automated program repair techniques often overfit to the avail-
able tests and produce patches that, while passing all the tests, fail
to encode the developers’ intent [59, 66, 75, 85]. Improving the
quality of the resulting repairs can be done via improving fault
localization strategies [3, 40, 45, 54, 58, 87, 103], patch generation
algorithms (e.g., heuristic-based [41, 49, 53, 72, 91, 99], constraint-
based [1, 28, 42, 56, 94], and learning-based [15, 29, 80]), and patch
validation methodologies [90, 95, 104, 108, 109]. By contrast, in
Baldur’s domain of theorem proving, it is impossible to produce
a proof that appears to prove the theorems, but actually fails to
do so, because the theorem prover acts as an absolute oracle for
the correctness of the proof. As a result, it may be more difficult to
produce a proof in the first place, but if techniques in this domain
do produce proofs, they are guaranteed to be correct.

6 CONTRIBUTIONS
This paper is the first to fine-tune large language models to generate
entire proofs of theorems without the need for proof search or
hammers. We demonstrate that this approach is more effective
and more efficient than prior methods that use one-step-at-a-time
search-based generation, and that it is complementary to existing
search-based and hammer-based approaches: Together, our Baldur
and prior tools can fully automatically synthesize proofs for 65.7%
of the theorems in a large Isabelle/HOL benchmark, establishing
a new state of the art. We further demonstrate that generate-and-
repair improves proof synthesis when the language model is given
access to the error messages produced by erroneous proofs.

This work opens new avenues of research into (1) using LLMs to
automate theorem proving and simplify formal verification of soft-
ware properties, (2) repair approaches, both for proofs and, poten-
tially, more traditional automated program repair tasks, and (3) the
use of context (e.g., failed synthesis attempts and error messages)
in proof generation. Our very encouraging results suggest a bright
future for automated proof generation and repair using LLMs.

DATA AVAILABILITY
This work uses T5X, which is publicly available: https://github.com/
google-research/t5x. The scripts to launch training and inference,
and to process the training data and results rely on proprietary
Google infrastructure, which inhibits us from publicly releasing the
code. Our evaluation uses the PISA codebase and dataset, which
are also publicly available: https://github.com/albertqjiang/Portal-
to-ISAbelle.
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