
Automated Analysis and Code Generation for Domain-Specific Models

George Edwards

University of Southern California
gedwards@usc.edu

Yuriy Brun

University of Massachusetts
brun@cs.umass.edu

Nenad Medvidovic

University of Southern California
neno@usc.edu

Abstract—Domain-specific languages (DSLs) concisely ex-
press the essential features of system designs. However, using a
DSL for automated analysis and code generation requires devel-
oping specialized tools. We describe how to create model analysis
and code generation tools that can be applied to a large family of
DSLs, and show how we created the LIGHT platform, a suite of
such tools for the family of software architecture-based DSLs.
These tools can be easily reused off-the-shelf with new DSLs,
freeing engineers from having to custom-develop them. The key
innovation underlying our strategy is to enhance DSL metamod-
els with additional semantics, and then automatically synthesize
configurations and plug-ins for flexible analysis and code gen-
eration frameworks. Our evaluation shows that, for a DSL of
typical size, using our strategy relieves software engineers of de-
veloping approximately 17,500 lines of code, which amounts to
several person-months of programming work.

I. INTRODUCTION

Some software-intensive systems, such as aerospace sys-

tems and sensor network applications, require rigorous design

modeling. Domain-specific modeling tools and languages al-

low meticulous design analysis and automatic code generation,

improving system quality. In contrast to standardized model-

ing languages like UML, domain-specific languages (DSLs)

allow engineers to focus on the design decisions relevant to the

domain and use the most suitable concepts and abstractions.

Today’s model-driven engineering (MDE) platforms, such

as the Generic Modeling Environment (GME) [10] and the

Eclipse Graphical Modeling Framework (GMF) [11], ease the

creation of custom model editors for DSLs. Software engineers

only need to define a metamodel — a formal specification of a

DSL — and these platforms automatically synthesize a model

editor that uses the DSL’s symbols and enforces its syntax.

Nevertheless, industry adoption of domain-specific model-

ing technologies has been more limited than that of standard-

ized modeling solutions, particularly UML. One key reason for

this disparity is that DSL analysis and code generation tools

(often referred to as model interpreters) must be constructed

manually. Meanwhile, UML-based analysis and code genera-

tion tools are available off-the-shelf. While domain-specific

tools can perform more targeted analysis and more complete

code generation, the difficulty of tool creation and maintenance

reduces the appeal of domain-specific modeling, particularly

for small- and medium-scale software systems [18].

In this paper, we present a solution that greatly reduces

the costs of model interpreter creation and maintenance. We

show how specific enhancements to metamodels can allow an

MDE platform to automatically synthesize analysis, simula-

tion, and code generation tools, just as existing MDE platforms

automatically synthesize model editors. While our approach

applies to DSLs in general, in this paper we focus on soft-

ware architecture-based modeling. The field of software archi-

tecture is characterized by a large number of DSLs, arising

from different architectural styles, design patterns, modeling

notations, analysis tools, middleware platforms, and frame-

works [23]. We implement our approach in an MDE plat-

form called LIGHT (Leveraging Isomorphism to Generate

Heterogeneous DSL Toolchains). LIGHT allows engineers to

customize architecture-based DSLs for their particular project

modeling needs and then automatically synthesize (1) a model

editor, (2) a system simulator for analyzing latency, mem-

ory usage, energy consumption, and reliability, and (3) a

middleware-based system implementation. LIGHT eliminates

a substantial amount of tool building and maintenance work

required by existing MDE platforms.

Consider a team designing the software module for a moon-

landing spacecraft. The team wants to (1) create models to

formalize their designs, (2) evaluate those designs in simula-

tion, and (3) automatically generate code from the model to

ensure the implementation conforms with the model. Recog-

nizing the highly specialized nature of the software and the

need to focus on design decisions specific to the domain, the

team decides to use an architecture DSL.

Using existing MDE tools, the team specifies the DSL me-

tamodel and uses the generated editor to develop a series

of architecture models. They then develop a custom model

interpreter that translates their domain-specific models into

simulation code. As we discuss in Section V, this coding effort

can amount to as much as four person-months of work for a

DSL of moderate size and complexity.

In contrast, using LIGHT, the team only needs to specify a

slightly expanded DSL metamodel, and LIGHT generates the

model editing, simulation, and code generation tools automati-

cally from the metamodel. If the team makes changes to the

DSL, the tools are automatically updated to conform to the

new semantics. As we discuss in Section V, the effort required

to create the expanded metamodel is minor compared to the

effort of creating model interpreters.

The insight that allows LIGHT to automate model inter-

preter creation and maintenance is that model editors and

model interpreters are isomorphic [6]: rendering models within

an editor is just another form of model interpretation. The im-

plication of this insight is that model editors and interpreters

can be treated as analogs conceptually and architecturally — a

hypothesis we set out to validate by designing, implementing,

and evaluating LIGHT.

2012 Joint Working Conference on Software Architecture & 6th European Conference on Software Architecture

978-0-7695-4827-2/12 $26.00 © 2012 IEEE

DOI 10.1109/WICSA-ECSA.212.24

161

Our work’s contributions are a novel architecture for creat-

ing modeling, analysis, and code generation toolchains from

DSL metamodels; LIGHT, an instantiation of the architecture
targeted at architecture-based development; an evaluation of

LIGHT’s utility across nine different architectural DSLs; and

an elaboration of the trade-offs associated with LIGHT.

In the rest of the paper, Section II outlines the problem

we aim to solve; Section III describes our solution and its

applicability, while Section IV details the implementation of

LIGHT; Section V evaluates LIGHT; Section VI compares

our approach to related work; Section VII concludes the paper.

II. THE DSL MODEL INTERPRETER PROBLEM

Throughout this paper, we will rely on Lunar Lander (LL),

the moon-landing spacecraft software introduced in Section I,

to illustrate important concepts. LL has been used as an instruc-

tional tool for software architecture concepts, via its many vari-

ations [23]. Suppose an engineering team is tasked with build-

ing LL. They analyze the requirements and arrive at high-level

design goals, including: components should be independent

(facilitating reuse) and dynamically configurable (enabling

runtime system adaptations), and critical components should

be replicable (trading off efficiency for reliability).

Based on these goals, the team employs the Myx [2] archi-

tectural style. Myx supports layered architectural composition,

flexible construction of distributed systems, and their dynamic

adaptation. Furthermore, the team elects to rigorously model

candidate designs to (1) document the architecture, (2) evalu-

ate alternative designs with respect to latency and reliability,

and (3) generate code for the implementation. For example, the

team would like to explore alternative component replication

strategies in an off-the-shelf simulation tool.

Recognizing LL’s highly specialized nature and the need to

focus on design decisions specific to the domain, the team uses

a DSL to model candidate designs. Using a DSL frees the team

from the constraints and feature bloat of a standardized lan-

guage like UML, allows them to customize the look-and-feel

of diagrams, and allows a single model to contain all relevant

information (e.g., parameters needed for latency analysis).

The team decides to use an MDE platform, such as GME

or GMF. To do so, the team specifies a metamodel for their

DSL in a provided metamodel editor. The metamodel encodes

the rules of the Myx style and defines the necessary latency

and reliability analysis parameters. The metamodel is spec-

ified using the MDE platform’s metamodeling language (or

metalanguage); objects in the metamodel are instances of

the metalanguage types (called metatypes). Each metatype

instance captures the definition for a domain-specific type. For

example, the team can define a MyxLink type in their DSL that

represents an association between component interfaces. In a

GME metamodel, the MyxLink type could be an instance of

the Connection metatype. In the team’s models of candidate

LL designs, individual associations between components are

then represented by instances of the MyxLink type.

Using the metamodel, existing MDE platforms automati-

cally create a custom model editor by generating configuration

files or plug-ins for a model editor framework. The editor

renders the model and allows model manipulations while en-

forcing the DSL constraints. For example, instances of the

MyxLink type might be rendered as dashed lines. Using an

MDE platform in this way allows the LL team to automatically

generate a custom graphical editor for their DSL.

However, existing MDE platforms provide only a partial

remedy: they do not provide built-in analysis and code gen-

eration support. Instead, they require engineers to implement

custom model interpreters. For example, if the LL team wants

to use an off-the-shelf simulation tool (e.g., MATLAB) to an-

alyze candidate designs, they must implement an interpreter

that translates their DSL models into the tool’s input format.

Similarly, to generate code for a runtime platform (e.g., .NET),

the team must implement an interpreter to produce that code.

While some existing MDE platforms provide specialized APIs

and languages for implementing interpreters (for example,

Java Emitter Templates used with GMF), these only reduce,

and do not eliminate, interpreter implementation effort. MDE

platforms cannot automate this process because the metatypes

provided by these platforms lack sufficient semantics to be

automatically mapped to other forms. Their semantics are lim-

ited to those needed to synthesize model editors (i.e., map

metatypes to graphical display elements). As we show in Sec-

tion V, creating the interpreter to generate executable simu-

lations from Myx models requires the LL team to write over

17.5K non-trivial lines of code.

Thus, the consequences of existing MDE’s limitations are:

(1) Analysis and generation tools must be manually con-

structed, which is difficult [13], [21]. (2) Language and tool

reuse is hard, as using them in new contexts can require signif-

icant rework. (3) The maintenance of domain-specific analysis

tools and code generators is burdensome, as they must be

updated whenever the corresponding DSL changes.

III. AUTOMATED SYNTHESIS OF MODEL INTERPRETERS

This section describes our approach to building an MDE

platform. The approach is aimed at drastically reducing the

effort required to create end-to-end domain-specific modeling

toolchains. Our guiding idea is to leverage additional seman-

tics within metamodels to enable generation of configuration

files and plug-ins for extensible analysis and code generation

frameworks. Our approach comprises three activities: (1) the

MDE platform developers select the analysis and code gen-

eration capabilities the platform will support, (2) they extend

the semantics of the platform metatypes to enable those capa-

bilities, and (3) they create a metainterpreter and model inter-
preter framework that together perform the synthesis of tools

that implement those capabilities. This process only needs to

be carried out by MDE platform developers; platform users
(such as the LL team) obtain the MDE platform off-the-shelf

and automatically generate tools for their DSL.

162

A. Capability Selection

The developers of an MDE platform must first select which

analysis and code generation capabilities to support, based on

the expected usage of the platform. This decision is funda-

mental to our proposed MDE platform architecture because it

determines which semantics the metamodels will include. We

do not address the process of making this decision in this paper

and instead focus on how to implement an already chosen set

of capabilities. For our LIGHT reference implementation of

the approach, we chose to support a model editor, a middle-

ware platform, and a simulation engine that analyzes latency,

memory usage, energy consumption, and reliability.

B. Metatype Semantics Extension

Whereas today’s approaches require engineers using a DSL

to manually build model interpreters that encode semantics,

our approach embeds these semantics in the DSL metamodel.

We describe these metamodels in Section IV-A. A set of

metainterpreters then automatically generates the model inter-

preters from the metamodel. We describe the metainterpreters

in Section IV-B. Since the metamodel is crucial for the in-

terpreter generation, it is important to determine the exact

semantics the metamodel needs to capture. To automatically

synthesize model interpreters, the metamodel must define a

complete semantic mapping from domain-specific elements to

target platform elements (e.g., graphical elements for an editor

or language constructs for a code generator).

For example, consider the MyxLink DSL type from the Myx

metamodel developed by the LL team. In an existing MDE

platform such as GME, this type might be defined by an in-

stance of the Connection metatype. GME is pre-programmed

with the presentation semantics (model editor behavior) of in-

stances of the Connection metatype: drawing a line between

two objects. Thus, GME maps MyxLink instances in LL mod-

els to classes that render a dashed line. GME does not know,

e.g., the simulation semantics of instances of the Connection
metatype. On the other hand, using our approach, as imple-

mented in LIGHT, MyxLink is an instance of a specially de-

fined Link metatype that includes presentation semantics as

well as simulation and code generation semantics.

Our approach directly attaches semantics to metatypes as

(1) semantic assumptions, which are behavior definitions that

hold for all domain-specific types that are instances of that me-

tatype, and (2) semantic properties, which are typed attributes

and associations with other metatypes that allow an engineer

to select among various behavior options. For example, in

LIGHT, a semantic assumption is that all domain-specific

types defined by instances of the Link metatype exhibit the

behavior of transferring data between two other entities. A

semantic property of the Link metatype, called capacity, al-

lows engineers to specify, in the metamodel, whether the data

transfer channel can become full and the resulting behavior.

This approach has the advantage that metamodel developers

do not need to write intricate formal specifications. However,

the metatype assumptions and properties are chosen by the

metalanguage designers, thus the space of semantics that can

be captured is fixed. This results in a trade-off between the abil-

ity to synthesize supporting toolsets and DSL flexibility. At-

taching additional semantics to metatypes increases the space

of model editors, analysis engines, and code generators that

can be synthesized. For example, current MDE platforms only

synthesize model editors because their metatype semantics

include only visualization and editing concerns. On the other

hand, attaching additional semantics to metatypes decreases

the space of DSLs that can be specified in a domain-specific

modeling platform. For example, if metatypes include fixed

semantics for graphical rendering and editing, they cannot

be (easily) used to specify a textual language. Section IV-A

discusses the semantics captured in LIGHT’s metalanguage.

C. Interpretation Component Development

Our approach fundamentally differs from existing ap-

proaches, including our own previous work, in its mechanism

for model interpretation. The approach does not require any

manually coded components to perform system analysis or

to generate executable code. Figure 1 depicts the roles and

interactions of the MDE platform components that participate

in analysis and code generation. Each interpretation capability

is implemented through a paired metainterpreter and model
interpreter framework (MIF). As noted earlier, we have im-

plemented three such interpretation capabilities in LIGHT (a

model editor generator, a simulation generator, and a code gen-

erator) using this general architecture. We summarize the func-

tion of metainterpreters and MIFs here, while Section IV-B

discusses their details.

Metamodel Editor Model Editor

Framework

Application Model

MDE Platform

Component

Model Data Flow

Generates

Model

Key

Model Interpreter
Framework

Execution
Environment

Metamodel

Type Definitions

Presentation

Definitions

Execution
Definitions

Metainterpreter

Metainterpreter

Presentation
Semantics

Execution

Semantics

Presentation Rules

Transformation Rules

Executable

Model
Transformation Logic

Metatype
Properties

Semantics

Framework
Extension

Execution

Logic

Presentation Logic

Figure 1. Our approach to automated tool generation for DSLs.

163

Existing MDE platforms lack MIFs and their associated

metainterpreters. Metainterpreters (1) take as input a me-

tamodel, including the metatype properties needed to map

domain-specific models to a target platform, (2) use those

metatype properties to derive domain-specific type semantics,

and (3) determine a set of rules for transforming each domain-

specific type to the analysis, simulation, or execution platform

language. Metainterpreters encode the transformation rules in

an automatically-generated MIF extension for a specific MIF;

the MIF implements the actual transformation logic.

Each MIF is a template for a family of model interpreters.

To be reusable, a MIF encapsulates transformation logic or al-

gorithms that are useful in a variety of contexts and can be flex-

ibly applied in different ways to achieve different semantics.

A MIF is analogous to a virtual machine in that it provides and

executes an instruction set composed of model transformation

operations. Transformation steps that only depend on semantic

assumptions (i.e., not metatype properties) are hard-coded into

the MIF, while transformation steps that vary based on meta-

type properties are programmable via extension points. In this

way, our approach is distinct from a product-line approach, as

new tools (“products”) are built from custom generated code,

rather than compositions of pre-built components.

A domain-specific type’s semantics are a subset of all possi-

ble semantics permitted by the MDE platform; each possible

semantic option corresponds to a different usage of MIF ex-

tension points. Therefore, a metainterpreter includes (1) a

mapping of the metatype instance property values to a set

of semantic definitions, and (2) a mapping of semantic defi-

nitions to a set of MIF extension point usages. A generated

MIF extension, which may take the form of configuration

files or plug-ins, modifies, extends, and controls the function-

ality of the MIF using extension points built into the MIF.

The extended MIF converts a domain-specific model into an

executable or analyzable program for the target platform.

IV. THE LIGHT PLATFORM

To verify the feasibility of our approach, we built the LIGHT

MDE platform. LIGHT is intended for software architecture-

based modeling, analysis, and code generation. LIGHT au-

tomatically generates model interpreters for any DSL de-

fined by a LIGHT metamodel, by configuring a model in-

terpreter framework (MIF) with a domain-specific MIF ex-

tension generated by a corresponding metainterpreter. Each

such metainterpreter-MIF pair generates a different type of

interpreter. LIGHT contains three such pairs that target, re-

spectively, GME’s open-source model editor [10], a variant of

the Adevs discrete event simulation engine [19], and the Prism-

MW middleware platform [17]. Engineers can use LIGHT to

create domain-specific models in a customized model editor,

analyze those models in the simulator, and generate code for

Prism-MW with virtually no tool-building overhead.

To use LIGHT, engineers first create a DSL metamodel

via LIGHT’s provided metamodel editor. Then, to generate

the three interpreters, LIGHT first invokes the appropriate

metainterpreter, which produces an MIF extension (a set of

C++ plug-in classes) by deriving the simulation or implemen-

tation semantics of the DSL types in the metamodel. LIGHT

then compiles the provided MIF (also implemented in C++)

with the extension. The output of the compilation is a domain-

specific model editor, simulation generator, or Prism-MW code

generator, already configured with DSL’s custom semantics.

Next, we discuss LIGHT’s metamodeling facilities (Section

IV-A) and the implementation of LIGHT’s model interpre-

tation components (Section IV-B). We then focus on using

simulations generated by LIGHT to analyze models with re-

spect to latency, reliability, and other qualities (Section IV-C).

Details of the Prism-MW code generator are elided for space.

A. Metamodeling

LIGHT maps DSL types to runtime objects (e.g., simula-

tion and Prism-MW objects) through the use of a metalan-

guage enhanced with semantic assumptions and properties

(recall Section III). We designed the LIGHT metalanguage in

a two-step process. First, since LIGHT is intended for software

architecture-based modeling, analysis, and code generation,

we conducted a literature review to identify the common ele-

ments, abstractions, and patterns used for architectural models.

We identified ten important metatypes: architecture, compo-
nent, resource, interface, link, implementation, operation, task,

data type, and property. Second, we defined the semantic

assumptions and properties for each metatype. Recall that se-

mantic assumptions are behavior definitions that are inherent

to each LIGHT metatype and hold for all domain-specific

types that are instances of that metatype (and thus do not need

to be specified in metamodels). Semantic assumptions can be

further classified as capabilities and responsibilities. Capabili-

ties describe behaviors that instances of the metatype exhibit

by default, while responsibilities describe behavior constraints

that instances of the metatype must respect. Semantic proper-

ties are typed attributes and associations that capture semantic

variations and options. Software engineers customize the se-

mantics of a DSL by setting the values of semantic properties

in a LIGHT metamodel.

Figure 2 depicts the ten LIGHT metatypes (and an Entity
supertype) and their semantic properties. An Architecture
defines a system as a collection of components, resources, and

other types, and their relationships. A Component defines a

set of interfaces and maps each interface to either the interface

of a sub-component or an implementation. Each Interface
defines a component interaction point. Implementations cap-

ture computational logic and state in terms of sequences of

instructions (e.g., methods) or state-transition systems (e.g.,

Finite State Processes). Links represent logical connections

among interfaces used to exchange information and control.

Resources are entities provided by the execution environment

that components use to perform tasks. Operations define

component service access points in terms of data and control

164

signature

output

input

mapping

connection

state

direction

platform
functionality

domainProperty

behavior

application

destinationsource
Architecture

Resource Component

form

DataType

Interface

control

synchronous

queuing

delay

capacity

loses

routing

Linktype

Property

class

units

protocol

name

Entity

definition

entrant

Task

Implementation

composite

model

opaque

instantiable

Operation

Figure 2. Summary of the LIGHT metatypes.

exchange and are grouped together within interfaces. Tasks

are reusable units of functionality within a component. Finally,

DataTypes represent objects exchanged between components

or maintained as part of a component’s state.

To understand the space of DSLs that can be captured in

a LIGHT metamodel (and for which a custom tools can be

automatically synthesized) is it necessary to understand the

semantic assumptions and properties of LIGHT metatypes.

Any language whose semantics are (1) compatible with the

semantic assumptions, and (2) within the semantic options

provided by the metatype properties can be described. Due to

space constraints, we cannot explain the semantic assumptions

and properties of all ten metatypes here. Instead, we will

highlight three LIGHT metatypes: Component, Interface,

and Resource (see Figure 3). We elaborate on these three

types next; we refer the reader to [15] for a complete table of

all metatypes and [8] for their detailed descriptions.

A LIGHT component is an independently instantiable and

deployable unit of computation and information that encapsu-

lates reusable blocks of logic. Domain-specific type definitions

for components specify compatible implementation and in-

terface types. Examples of domain-specific component types

include “JavaBean,” “web server,” or, in the case of the LL,

“MyxComponent.” Components define interaction points in the

form of LIGHT interfaces. The domain-specific type definition

for an interface restricts the allowed types of data and control

exchange between components. Examples of domain-specific

interface types include “HTTP port,” “publish-subscribe API,”

or, in the case of the LL, “MyxAsynchronousInterface.”

The relationship between an interface and a component has

a designated direction (recall Figure 2) of either implements
or invokes. The direction affects the semantics of the inter-

face in several ways. First, the flow of information in the two

directions is opposite: an invoking component sends the inter-

face’s inputs and receives its outputs; an implementing com-

ponent receives the inputs and sends the outputs. Second, the

mode of interaction — either method-based or message-based
— is derived from the directions of the interfaces that are con-

nected via a given link: method-based interactions occur when

an invoked interface (e.g., an object reference) is linked to an

implemented interface (e.g., an object), while message-based

interactions occur when two invoked interfaces are linked (e.g.,
two send-message/receive-message interfaces).

Resources are provided by the computing environment and

are used by application implementations to perform tasks.

Resources require (simulated) time in order to fulfill task re-

quests, and contention over resources results in the emergent

behavior of applications. Each resource may optionally permit

an arbitrary level of parallelism; in other words, a resource

may be capable of servicing multiple requests simultaneously.

Resources are required to specify the available quantity of the

resource (the capacity), which may be a positive real num-

ber if the resource is continuous or a natural number if the

resource is discrete. For example, bandwidth may be modeled

as a continuous resource, while threads in a thread pool are

an example of a discrete resource. Resources may be process-

ing (e.g., CPUs or threads), communication (e.g., network

interfaces), or data resources (e.g., files or buffers).

To illustrate how custom semantics are specified in a LIGHT

metamodel, we return to the Myx metamodel introduced in

Section II. Myx allows for multiple types of interfaces with

different semantics. The following semantic definitions are

taken verbatim from the Myx specification (emphasis added):

1. The default form for an interface in Myx is a set of one or more methods that can
be called.
2. Every interface is designated as either a provided or a required interface...
3. Links have exactly two endpoints. Each link connects exactly one required inter-
face to one provided interface.
4. All bricks have two “domains” called top and bottom. All interfaces on a brick
must be assigned to one of these domains.
5. In a synchronous invocation ... the calling component passes its thread of control
to the called component, [which] completes its invocation and returns control to the
calling component.
6. In an asynchronous invocation, the invoking brick continues processing after ini-
tiating the invocation, which proceeds concurrently in a separate thread of control.

The excerpt of the Myx metamodel shown in Figure 4

illustrates how the above semantics are captured in LIGHT.

The metatype of each object is indicated using stereotypes,

but this is merely a syntactic choice — for example, different

shapes or colors could be used to differentiate the metatypes.

MyxInterface, an abstract base type for other interfaces, de-

clares one or more JavaMethodDecl operations (capturing #1

from the table above). The direction of the port properties

of MyxBrick is implements for MyxProvidedInterface
and invokes for MyxRequiredInterface (#2).

MyxSyncLink and MyxAsynchLink connect ex-

actly one MyxProvidedInterface to exactly one

MyxRequiredInterface (#3). MyxBrick has topDomain
and bottomDomain properties, which are sets of

MyxInterfaces (#4). A MyxSynchronousInterface passes

a thread of control, mandates that the invoker and invokee

experience interactions simultaneously, and disallows queue-

ing of interactions (#5). A MyxAsynchronousInterface, on

the other hand, does not pass a thread of control, allows the

invoker to initiate an interaction that is experienced by the

invokee at a later time, and allows interaction queueing (#6).

The metamodel for a different architecture DSL would have

165

Embedded Semantic Assumptions Properties
Capabilities Responsibilities Name (Type) Description

C
o
m
p
o
n
e
n
t

• Manage and prioritize interactions between internal
implementations and external links
• Multiplex/demultiplex, filter, and monitor interactions
• Delegate externally initiated interactions to component
implementations
• Transmit internally initiated interactions to external en-
tities via established links

• Specify mappings from imple-
mented interfaces to subcompo-
nent interfaces or tasks
• Ensure interaction takes place
via interfaces and protect in-
ternal information and behavior
from being manipulated directly

port (Interface associa-
tion)

Specifies the types of interfaces through which
the component’s implementations may interact

functionality
(Implementation asso-
ciation)

Designates the types of implementations that
may be used to realize the component’s provided
services

composite (Boolean
attribute)

Indicates that the component is a hierarchy of
subcomponents

I
n
t
e
r
f
a
c
e

• Ensure type conformance (data adheres to input and
output data type definitions)
• Ensure mode conformance (participants in an interac-
tion are uniformly method- or message-based)
• Ensure control conformance (an execution thread is
transferred iff both source and target interfaces expect
it)
• Block an execution thread to create synchrony

• Declare at least one operation

signature (Operation
association)

Indicates the operation types that may be speci-
fied by the interface type

control (Boolean at-
tribute)

Enables exchange of control flow across the inter-
face type

synchronous
(Boolean attribute)

Forces synchronization across interface; caller(s),
callee(s) experience interactions simultaneously

queuing (Boolean at-
tribute)

Allows queuing of interactions over the interface

R
e
s
o
u
r
c
e

• Accept, queue, execute, and return service requests
• Manage the allocation of pooled or divisible resources
to requests
• Maximize request execution parallelism as allowed by
the metatype property specification

• Specify the available quan-
tity/capacity
• Specify a scheduling discipline

class (Enumeration at-
tribute)

Specifies whether the resource is a computation,
communication, or information (data) resource

units (Enumeration at-
tribute)

Defines whether the units of the resource are con-
tinuous or discrete

protocol (Enumera-
tion attribute)

Allows the resource to be held until released by
the service requester

instantiable
(Boolean attribute)

Permits the resource to be created on demand

Figure 3. Metatype semantics for the Component, Interface, and Resource metatypes. A complete table with all metatypes appears in [15].

<<port>>
direction=implements

<<destination>> 1

<<signature>> 1..*

1 <<source>>

<<port>>
direction=invokes 0..*

type=set<MyxInterface>

JavaMethodDecl
<<Operation>>

MyxProvidedInterface
<<Interface>>

delay=true
capacity=false
routing=false

MyxLink
<<Link>>

type=enum
{upward,

downward}

direction
<<Property>>

MyxSyncLink
<<Link>>

MyxProvSyncIntf
<<Interface>>

MyxReqSynclntf
<<Interface>>

1 <<destination>>

MyxAsynchLink
<<Link>>

MyxInterface
<<Interface>>

MyxBrick
<<Component>>
composite=true

bottomDomain
<<Property>>

type=set<MyxInterface>

topDomain
<<Property>>

MyxProvAsyncltf
<<Interface>>

MyxReqAsyncltf
<<Interface>>

1 <<source>>

MyxSynchronousInterface
<<Interface>>
control=true

synchronous=true
queuing=false

MyxRequiredInterface
<<Interface>>

MyxAsynchronousInterface
<<Interface>>
control=false

synchronous=fasle
queuing=true

type=enum
{request,

notification}

type
<<Property>>

0..*

Figure 4. An excerpt of the Myx metamodel that defines Interface types.

different types and semantics defined. For example, the meta-

model of AADL [9], which is targeted at embedded real-time

systems, includes execution platform components, such as

processors and memory. AADL Interfaces are called ports.

One type of port, the event port, causes an immediate transfer

of control, but also can be queued at the recipient, resulting in

different semantics than the interfaces found in Myx.

Using LIGHT, if engineers wish to change the semantics of

their DSL, or add new DSL types, they can simply update the

metamodel and regenerate the supporting tools. For example,

if the LL development team decided that they wanted to alter

the standard Myx semantics in some way (e.g., by making

MyxLinks delay-free), they could do so by changing a single

property, as opposed to dealing with low-level interpreter code.

Finally, since the semantic variability permitted by the

LIGHT metalanguage is restricted by the set of defined seman-

tic assumptions and properties for each metatype — meaning

that some DSL semantics cannot be captured in a LIGHT

metamodel — LIGHT provides a “backdoor” mechanism for

defining semantics: engineers are able to insert custom be-

havioral definitions directly at the modeling level. LIGHT

allows any default behavior to be overridden with a custom

definition by providing a pointer to an external semantic speci-

fication file. For example, LIGHT does not provide a means

for links to correlate interaction events, that is, to hold one

event indefinitely until another event satisfying a condition

occurs. However, such semantics can be added by specifying

event correlating behavior directly in the native language of

the target runtime platform. Custom semantics must be di-

rectly executable because LIGHT cannot translate this logic

and treats custom behavior definitions as a black box.

B. Interpretation

Recall from Section III that domain-specific interpreters

are composed of an MIF and generated code for the MIF (an

MIF extension). This section focuses on the implementation

of MIFs and MIF extensions in LIGHT, with a particular

emphasis on the reusable aspects of their design. Given the

space limitations, we attempt to highlight the most important

elements of MIF design, and omit the details of less interesting

aspects of MIFs.

The architecture of LIGHT interpreters uses the visitor-
traverser style [14]. In accordance with this style, each inter-

preter is structured as two distinct modules: one to traverse

models and another to generate code (see Figure 5). The model

traversal module contains the logic for navigating through the

model and invoking the code generator on each model object.

The code generator module contains the logic for outputting

code for the target analysis, simulation, or execution platform.

The use of the visitor-traverser style provides a basis for

increasing the flexibility of MIFs by decoupling domain-

166

Domain-Specific
Model

Model Traversal Module

Perform Traversal Invoke Code Generator

Code Generation Module

Component

Code

Generator

Link

Code

Generator

Interface

Code

Generator

Figure 5. LIGHT model interpreter functions.

independent interpretation logic (i.e., logic that does not vary

from one metamodel to another) from domain-specific logic

(i.e., logic that depends on the types and properties defined in

a metamodel). This decoupling is necessary because classes

implementing the domain-specific logic must be individually

generated and customized for each metamodel.

The code generation module of a LIGHT interpreter is

a combination of classes built into the MIF and generated

classes in an MIF extension. Returning to Figure 1, the built-in,

domain-independent classes are represented by the Transfor-
mation Logic within the MIF; these classes implement code

generation operations. The generated, domain-specific classes

are represented by the Transformation Rules; these classes

contain instructions for applying code generation operations.

At the implementation level, the domain-independent logic

is contained within MIF classes corresponding to each meta-

type, called metatype classes, while the domain-specific logic

is contained within MIF extension classes corresponding to

each metatype instance (i.e., each domain-specific type defined

in a metamodel), called type classes. The metatype classes

define template methods that implement specific interpretation

tasks, and these methods are selectively invoked and parame-

terized by the type classes. In this way, the MIF implements

the high-level structure of interpretation algorithms but allows

customization of the algorithms by MIF extensions.

To illustrate how semantics specified in a LIGHT meta-

model are encoded as transformation rules within an MIF

extension, we return to the Myx version of the LL model.

Recall that, in the Myx architectural framework, component

interfaces may be synchronous or asynchronous. Synchronous

interfaces have the same semantics as Java method calls,

and accordingly the following properties are specified in the

Myx metamodel for the MyxSynchronousInterface type:

control=true, synchronous=true, queuing=false. Con-

sequently, the Myx MIF extension for LIGHT’s simulation

generator MIF contains a MyxSynchronousInterface type

class, which invokes the generateThreadPasser() method

of the Interface metatype class, but does not invoke its

generateEventQueue() method.

Figure 6. A screenshot of an LL model in the automatically generated Myx
model editor.

The described design results in several important benefits:

• The design factors out the common structure of model

interpretation algorithms to simplify code reuse, while

still providing a straightforward way for domain-specific

logic to customize the interpretation process.

• The design allows the MIF to limit and control the ways in

which interpretation may be customized, ensuring that a

MIF extension does not “break” the interpretation process

or violate the constraints of the target runtime platform.

• The design ensures consistency of metatype properties

and avoids duplication of common properties by allowing

metatype properties and domain-specific properties to be

separated within distinct classes.

C. Simulation

LIGHT automatically generates fully configured, domain-

specific interpreters that today have to be programmed manu-

ally. One type of interpreter generated by LIGHT is simulation

generators for XDEVS, a stand-alone simulator for analyz-

ing the dynamic behavior of complex systems [7]. XDEVS

is a component-based variant of the widely used Adevs [19]

event-based simulation platform. LIGHT’s simulation gen-

erators consist of the XDEVS MIF (built into LIGHT) and

domain-specific XDEVS MIF extension code (autogenerated

by LIGHT). We have used the LIGHT-generated XDEVS sim-

ulators to perform latency [24], memory usage, energy con-

sumption [22], and reliability [20] analyses. Here, we briefly

describe how simulation can be used to analyze the Myx LL.

Suppose an engineer wishes to evaluate how replication of

a critical LL component might affect performance and relia-

bility. While running an additional replica will likely require

more resources and decrease performance, the system relia-

bility will improve. Comparing the two possible designs is

difficult because performance and reliability depend on the

complex interactions of numerous components, the execution

environment, and other factors.

Figure 6 shows a screenshot of the automatically generated

Myx model editor with one of the two possible LL designs.

We used LIGHT to generate XDEVS simulation code from

167

0

50

100

150

200

250

0 1000 2000 3000 4000 5000

Lunar Lander Request Latency

Simulation Time (s)

O
bs

er
ve

d
La

te
nc

y
(m

s)

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

0 1000 2000 3000 4000 5000

Lunar Lander Component Reliability

Co
m

po
ne

nt
 R

el
ia

bi
lit

y
Simulation Time (s)

Replication No replication

Figure 7. Latency and error rates computed in a Lunar Lander simulation.

both LL designs, modeled in Myx. Each model consists of

approximately 20 software components. Each component in-

cludes several lines of code (using the “backdoor” mechanism

described in Section IV-A) to map input messages to output

messages. We used XDEVS’s native facilities to instrument

the simulation with probes and quantify the two properties of

interest. Figure 7 summarizes the end-to-end latency and fail-

ure rate data from the simulations. The two graphs quantify the

intuition stated above. The graphs allow an engineer to make

an informed architectural decision and provide quantitative ra-

tionale regarding whether the performance cost of replication

is acceptable, or whether the system reliability requirements

can be met without replication.

V. EVALUATION

To evaluate the utility of LIGHT, we created metamodels

for nine software architecture DSLs. We simulated domain-

specific system models conforming to these metamodels using

LIGHT’s XDEVS simulation generator components and the

XDEVS discrete event simulation engine.1 Note that the ability

to generate simulations from architectural models is not novel;

rather, the novelty comes from the ability to do so without

writing any custom code by hand. Therefore, we evaluated

LIGHT according to programming effort it saved. We did not

evaluate the accuracy of analysis results produced, as this is

a product of the targeted analysis tool (XDEVS in this case),

and is not related to the LIGHT approach itself. In this section,

we define our evaluation metrics and present the results of

applying LIGHT to the nine DSLs.2

A. Metrics

We used two sets of evaluation metrics: Implementation
effort metrics measure the effort saved through code generation

and reuse. Maintenance effort metrics measure the relative

ease of performing DSL modifications in a metamodel, as

afforded by LIGHT, rather than in interpreter source code, as

is necessary in other MDE platforms.

1We also generated executable Prism-MW code. The results were compara-
ble to those we show for simulation and we omit them for space.

2The LIGHT source code and all metamodels used in the evaluation can be
downloaded from http://softarch.usc.edu/∼gedwards/LIGHT/LIGHT.zip.

Metamodel Description

AADL
Modeling language targeted for specification and analysis of
real-time embedded systems.

xADL 2.0 Core
A common set of fundamental modeling abstractions for soft-
ware architectures.

Ecore Eclipse metamodel for object-oriented systems.

C2
Component- and message-based architectural style for flexi-
ble, extensible software systems.

Client/server Ubiquitous request/response architectural style.

Pipe-and-filter Concurrent data-stream architectural style.

Publish-
subscribe

Asynchronous and anonymous message distribution architec-
tural style.

Myx
Layered architectural style for flexible construction of dis-
tributed systems.

Prism Event-based style for embedded, mobile applications.

Figure 8. Nine metamodels used in the evaluation.

The implementation effort metrics are:

• Number of domain-specific types in the metamodel,

which is a measure of metamodel size and complexity.

• Lines of generated interpreter code by the metainterpreter

in the form of MIF extensions.

• Total lines of reused interpreter code, which is the sum

of (1) the 16,243 SLOC in the XDEVS MIF (built into

LIGHT for reuse) and (2) the generated SLOC in the MIF

extension for each metamodel.

• Lines of generated code per domain-specific type.
• Lines of reused code per domain-specific type.
The maintenance effort metrics were computed by (1) per-

forming a set of modifications to a DSL, (2) regenerating the

XDEVS MIF extension for the DSL, and (3) diffing the previ-

ous and new MIF extensions to determine the impact of the

DSL changes. The maintenance effort metrics are:

• The number of metamodel objects altered.
• The number of interpreter classes altered.
• The number of interpreter methods altered.
• Lines of code altered per domain-specific type.
• Total lines of code altered.

The first metric provides an indication of the level of effort

needed to achieve a modification using the LIGHT approach;

the remaining metrics indicate the level of effort that would

be required using a conventional approach.

The implementation and maintenance effort metrics are

language-specific. We suggest below a mechanism for convert-

ing these metrics into more language-independent programmer

person-months.

B. Results

Figure 8 summarizes our nine subject metamodels. For

each metamodel, Figure 9a displays the implementation effort

metrics for the XDEVS simulation generator components.

Note that the model editor components and code generated

for a specific application model, such as LL, would also be

automatically generated using previous approaches, so these

metrics are not included. All the code included in the counts in

Figure 9a would need to be written by hand using a previous

approach. Figure 9a shows that the DSLs range in the number

168

metamodel
domain- sloc total sloc generated total reuse

specific types generated reuse sloc per type per type

AADL 86 2,306 18,549 27 216
Ecore 76 1,277 17,520 17 231
xADL Core 53 1,195 17,438 23 329
C2 42 1,268 17,511 30 417
Client/server 34 1,091 17,334 32 510
Pipe-and-filter 29 957 17,200 33 593
Pub-sub 50 1,779 18,022 36 360
Myx 62 1,493 17,736 24 286
Prism 54 1,678 17,921 31 332

(a)

50 1779 18022 36
62 1493 17736 24
54 1678 17921 31

4436
11807
16243

16500

17000

17500

18000

18500

19000

15 20 25 30 35 40

Lines of Generated Code per Domain-Specific Type

To
ta

l L
in

es
 o

f R
eu

se
d

Co
de

 1

2
3

4
5

6

7
8 9

1 AADL
2 ECore
3 xADL
4 C2
5 Client/server
6 Pipe-and-filter
7 Pub/sub
8 Myx
9 Prism

(b)

Figure 9. The collected implementation effort metrics (a) are summarized
based on metamodel size, total reused code, and generated code per type (b).

of domain-specific types defined (a rough indicator of the

metamodeling effort required). This is to be expected as the

nine DSLs vary widely in their scope and features. Using a

conventional approach, the number of domain-specific types

would be the same, but each domain-specific type would be

somewhat easier to define because there are fewer metatype

property values to set. This is the single added cost of using our

approach as compared to existing techniques; however, this

cost is eclipsed by the resulting savings, as discussed below.

Figure 9b illustrates the relationship between metamodel

size, generated code per type, and total code reuse. The di-

ameter of each circle represents the size of the corresponding

metamodel. The larger metamodels generally result in greater

overall reuse, but the reuse benefits are amortized over a larger

metamodeling effort, resulting in a smaller benefit per domain-

specific type. This reinforces the intuition that, for very large

metamodels, more implementation effort is avoided, but meta-

modeling consumes a larger share of the overall effort.

To estimate the savings incurred by using LIGHT, we ap-

plied the widely-used COCOMO II model [1]. As indicated in

Figure 9a, the average amount of code reused in the implemen-

tation of domain-specific simulation generators for the nine

DSLs is ∼17,500 SLOC. Let us assume that this amount of

code had to be written manually.3 COCOMO II’s estimates of

the required effort for a project of this size range between 4.2

and 23.4 person-months, depending on the project parameters.

Figure 10 shows the maintenance effort metrics for seven

DSL modifications. To obtain a broad sample, we modified

3While we do not have access to manually implemented versions of these
simulation generators, we expect that their size would be proportional to the
size of the automatically generated versions.

different metamodels in different ways, including introduc-

ing new inheritance and containment relationships, changing

metamodel properties, and adding or removing types. The

resulting changes in the generated code depended on the spe-

cific modifications. For example, inheritance modifications

tended to affect a large number of classes but may not have

changed any methods within those classes (as in the case of

client/server). In contrast, containment modifications affected

a small number of classes but resulted in more new code (as

in the case of AADL).

While the number of lines of code altered in response to

the changes was, in some cases, quite small, these changes

tended to be spread over a relatively large number of classes

and methods in comparison to the relatively small number

of metamodel objects that were altered. This implies that

modifications required for DSL evolution are more widely

scattered, and therefore more time-consuming to implement,

in interpreter source code than in a metamodel. Moreover, a

metamodel may be more understandable and easier for a new

engineer to modify, which is important when the DSL must

be maintained over a period of time.

VI. RELATED WORK

Our work builds upon prior research in architecture

modeling, product line architectures, model-driven engi-

neering, model-driven architecture, system analysis and

simulation, and application frameworks. Here, we specifically

highlight three notable DSL-based approaches that attempt

to automate generation of model interpreters. We also discuss

the relationship of LIGHT to our own previous work.

Cadena [12] is a model-driven toolchain for component-

based systems. Bogor is an extensible model checker that can

be applied to Cadena models. Similarly to LIGHT, Bogor

allows engineers to reuse the analysis infrastructure while cus-

tomizing selected constructs and behaviors. However, some of

the mechanisms that enable extension and reuse in Bogor are

specific to model checking, making them difficult to generalize

and apply to other types of analysis or code generation.

DUALLY [16] supports interoperability among architec-

ture DSLs. DUALLY leverages engineer-defined mappings

between DSL metamodels and a core set of architectural con-

cepts codified in a metamodel, called A0. Thus, the analysis

and code generation tools available for any DSL with a defined

mapping can be applied to architectural models specified in

other DSLs. Although DUALLY eliminates the need to manu-

ally program model transformations, it still requires defining

the mappings between languages. Also, introducing additional

model transformations makes traceability more challenging.

ALFAMA [21] automates the construction of DSLs for ap-

plication frameworks. ALFAMA leverages an aspect-oriented

domain-specific modeling (DSM) layer that defines specializa-
tion aspects that modularize framework hot-spots (extension

points) and associates those aspects with DSL concepts. The

169

metamodel
types classes methods sloc altered sloc

affected altered altered per type altered

AADL 2 3 10 64.5 129
Client/server 4 10 1 5 20
C2 2 4 1 7 14
Ecore 1 4 4 19 19
Pub-sub 1 3 4 22 22
Myx 5 8 12 20.4 102
Prism 4 7 14 21 84

0

5

10

15

20

25

30

Types Affected

Classes Altered

Methods Altered

Code Altered/ Type

Figure 10. The collected maintenance effort metrics.

DSM layer allows engineers to bypass metamodel develop-

ment. This has many merits but also some drawbacks. First,

high-level metamodels are more maintainable than low-level

source code. Second, inferring DSLs from framework hot-

spots tightly couples the DSL to a particular framework. As

with LIGHT, the automation gains of the ALFAMA approach

reduce DSL flexibility in some circumstances.

We previously studied factoring out and modularizing

domain-independent and domain-specific model interpreta-

tion logic, an approach we implemented in the XTEAM plat-

form [3]–[5]. XTEAM promoted reuse of significant portions

of model interpreter implementations, but still required en-

gineers to manually program certain domain-specific logic.

In contrast, LIGHT leverages the isomorphism and generates

model interpreters using the same method that has already

proven so successful for the construction of model editors.

VII. CONTRIBUTIONS

Automatically synthesizing modeling tools reduces the cost

of using DSLs. This makes the benefits of domain-specific

modeling, traditionally enjoyed by large-scale development

projects, accessible to small- and medium-sized projects. We

implemented our approach in LIGHT and evaluated LIGHT by

generating three model interpreters for each of nine different

DSLs to demonstrate that it significantly reduces the required

programming effort and system maintenance.

LIGHT does not come without limitations. One seeming

limitation is a slightly increased metamodeling burden over

existing MDE approaches. However, this is more than com-

pensated for by the implementation savings. Another, real

limitation stems from the trade-off between the expressiveness

and flexibility of the supported DSLs on the one hand, and the

ability to automatically synthesize tools on the other. Finally,

we have not evaluated the impact of changes to the semantics
of the LIGHT metatypes, but such a change would clearly

require significant effort by the MDE platform developers.

REFERENCES

[1] B. Boehm et al., Software Cost Estimation with Cocomo II.
Prentice Hall, 2000.

[2] E. Dashofy, “Supporting stakeholder-driven, multi-view soft-
ware architecture modeling,” Ph.D. dissertation, UCI, 2007.

[3] G. Edwards et al., “Construction of analytic frameworks for
component-based architectures,” in SBCARS, 2007.

[4] ——, “Scenario-driven dynamic analysis of distributed archi-
tectures,” in FASE, 2007.

[5] G. Edwards and N. Medvidovic, “A methodology and frame-
work for creating domain-specific development infrastructures,”
in ASE, 2008.

[6] G. Edwards, Y. Brun, and N. Medvidovic, “Isomorphism in
model tools and editors,” in ASE, 2011.

[7] G. Edwards et al., “A highly extensible simulation frame-
work for domain-specific architectures,” USC, Tech. Rep. USC-
CSSE-2009-511, 2009.

[8] G. Edwards, “Automated synthesis of domain-specific model
interpreters,” Ph.D. dissertation, USC, 2010.

[9] P. H. Feiler et al., “The architecture analysis & design language:
An introduction,” Software Engineering Institute, Tech. Rep.
CMU/SEI-2006-TN-011, 2006.

[10] “The generic modeling environment,” http://www.isis.
vanderbilt.edu/Projects/gme/.

[11] “The Eclipse graphical modeling framework,” http://www.
eclipse.org/modeling/gmf/.

[12] G. Jung et al., “A type-centric framework for specifying het-
erogeneous, large-scale, component-oriented, architectures,” in
GPCE, 2007, p. 42.

[13] G. Karsai et al., “On the use of graph transformation in the
formal specification of model interpreters,” Journal of Universal
Computer Science, vol. 9, no. 11, pp. 1296–1321, 2003.

[14] G. Karsai, “Structured specification of model interpreters,” in
ECBS, 1999, pp. 84–90.

[15] “LIGHT metatype quick reference guide,” http://softarch.usc.
edu/∼gedwards/xteam2/MetatypeTable.pdf.

[16] I. Malavolta et al., “Providing architectural languages and tools
interoperability through model transformation technologies,”
IEEE TSE, vol. 36, no. 1, pp. 119–140, 2010.

[17] S. Malek et al., “A style-aware architectural middleware for
resource-constrained, distributed systems,” IEEE TSE, vol. 31,
no. 3, pp. 256–272, 2005.

[18] P. Mohagheghi and V. Dehlen, “Where is the proof? — A re-
view of experiences from applying MDE in industry,” in MDA
Foundations & Applications, 2008.

[19] J. J. Nutaro, Building Software for Simulation: Theory and
Algorithms, with Applications in C++. Wiley, 2010.

[20] R. Roshandel et al., “Estimating software component reliability
by leveraging architectural models,” in ICSE, 2006.

[21] A. L. Santos et al., “Automating the construction of domain-
specific modeling languages for object-oriented frameworks,”
JSS, 2010.

[22] C. Seo, “Prediction of energy consumption behavior in
component-based distributed systems,” Ph.D. dissertation, USC,
2008.

[23] R. N. Taylor et al., Software Architecture: Foundations, Theory
and Practice. Wiley Publishing, 2009.

[24] M. Woodside, “Tutorial introduction to layered modeling of
software performance,” Carleton University, Tech. Rep., 2002.

170

