
Isomorphism in Model Tools and Editors
George Edwards
Blue Cell Software

Los Angeles, CA, USA
george@bluecellsoftware.com

Yuriy Brun
University of Washington

Seattle, WA, USA
brun@cs.washington.edu

Nenad Medvidovic
University of Southern California

Los Angeles, CA, USA
neno@usc.edu

Abstract—Domain-specific languages (DSLs) are modeling lan-
guages that are customized for a specific context or project.
DSLs allow for fast and precise modeling because the language
features and constructs can be precisely tailored based on the
needs of the modeling effort. There exist highly customizable
model-editing tools that can be easily configured to support
DSLs defined by end-users (e.g., system architects, engineers, and
analysts). However, to leverage models created using these tools
for automated analysis, simulation, and code generation, end-
users must build custom analysis tools and code generators. In
contrast to model editors, the implementation and maintenance
of these analysis and code generation tools can be tedious and
hampers the utility of DSLs. In this paper, we posit that analysis
and code generation tools for DSLs are, in fact, isomorphic to
model editing tools. The implication of this insight is that model
editors, analysis tools, and code generators can be treated as
analogs conceptually and architecturally, and highly customizable
analysis and code generation tools for DSLs can be built using
the same approach that has already proven successful for the
construction of DSL model editors.

I. INTRODUCTION

Domain-specific models are becoming increasingly utilized
in consumer electronics, distributed robotics, different classes
of embedded systems, and many other complex, software-
intensive systems. Modeling allows for both rigorous design
analysis, which can improve overall system quality, and auto-
mated code generation, which can accelerate development. In
particular, domain-specific models can be tailored to a relevant
class of applications, allowing architects to concentrate only
on those decisions that are of importance in the domain. In the
context of a given domain, domain-specific languages (DSLs)
result in more concise and intuitive models than standardized
modeling languages such as UML.

However, because a DSL may contain arbitrary constructs,
today, model analysis and code generation tools must be
customized to work with each individual DSL. This places an
undue burden on the architects who wish to use DSLs: they
are forced to spend time building intricate, complex model
analysis and generation tools, rather than reuse existing ones.
In contrast, model-driven engineering (MDE) platforms, such
as the Generic Modeling Environment (GME) [1] and the
Eclipse Graphical Modeling Framework (GMF) [2], ease the
creation of customized model editors to support a given DSL.
Figure 1 shows that software architects can construct domain-
specific model editors using these MDE platforms quickly and
easily by defining a metamodel — a formal specification of a
DSL.

Metamodel Editor

Metamodel

DSL Specification

Configurable Model

Editor

Type Definitions

Views

Constraints

Domain-Specific

Models

LQNModel

LQNTask

LQNC

all

Rate

Synchroni

sm

Multiplicity

Discipline

Priority

LQNHo

st

Multiplicity

Discipline

Speed

Model

Editor

Config

Files

Model

Editor

Plug-ins

Fig. 1. MDE platforms use a metamodel to generate and configure a model
editor.

In this paper, we argue that existing MDE platforms make
an implicit, yet crucial, distinction between model editors
and model interpreters (automated analysis, simulation, and
code-generation tools). These platforms expect editors and
interpreters to be built in vastly differing ways — editors
through configuration of an off-the-shelf tool while inter-
preters through manual, time-consuming, and error-prone end-
user development [4]. As a result, while DSLs have expe-
rienced widespread industry adoption in large-scale defense
and aerospace programs, such adoption in small business and
desktop application development [6] has remained relatively
limited. We posit that the distinction at the heart of MDE is a
false dichotomy, i.e., that model editors and interpreters are, in
fact, isomorphic. This isomorphism becomes apparent if one
regards the process of rendering models within an editor as
just one possible form of model interpretation.

The implication of this insight is that model editors, analysis
tools, and code generators can be treated as analogs concep-
tually and architecturally. More importantly, model analysis
and code generation tools can be constructed using the same
method that has already proven successful for the construction
of model editors. This paper presents an argument in support
of this guiding insight. The paper then outlines a strategy for
constructing an MDE tool-chain that exploits the isomorphism
of model editors and interpreters, treats interpreters in the same
manner that editors have been treated in the past, and thereby
allows their automated construction and reuse.

The rest of this paper is organized as follows. Section II
overviews important concepts. Section III explains how model
editors and interpreters can be treated isomorphically. Finally,
Section IV reviews related work.

978-1-4577-1639-3/11/$26.00 c© 2011 IEEE ASE 2011, Lawrence, KS, USA

458

II. DOMAIN-SPECIFIC MODELING

To understand and appreciate the shortcomings of existing
MDE platforms, it is necessary to understand the processes
required to leverage domain-specific models for automated
quality analysis and code generation. This section summarizes
the key concepts and processes in domain-specific modeling.

A. Model Transformation

Analysis and code generation using domain-specific models
is achieved through model transformation, which is a process
that maps an input model to an output model. Model transfor-
mation is one of the central activities in model-driven develop-
ment paradigms such as model-driven architecture (MDA) and
model-driven engineering (MDE) because it allows a single
model to be used for a variety of purposes.

In a domain-specific modeling project, model transforma-
tions are used to map high-level, domain-specific design
models to other types of models that can be directly analyzed
and executed. Model transformations are commonly used to
automatically generate the type of models required by a
specific analysis tool or implementation code for a specific
run-time platform. For example, a transformation might map
an architecture description language (ADL) to an executable
C++ program. In practical terms, a model transformation is
usually implemented by a plug-in to the model editor, which
we refer to as a model interpreter, as depicted in Figure 2.

B. Metamodeling

Recall that current MDE platforms use a DSL specification
called a metamodel to automatically synthesize a custom
model editor that supports the DSL. Software engineers spec-
ify the metamodel using a metamodel editor and metamodeling
language (or metalanguage) provided by the modeling plat-
form. The metalanguage provides a set of types, or metatypes,
that an engineer instantiates to define the domain-specific
modeling types. These metamodeling concepts are depicted
in Figure 3.

Once a metamodel has been defined, the engineer invokes
a special built-in metamodel interpreter, or metainterpreter, to
generate configuration files and/or plug-ins for a configurable,
pluggable model editor framework, also provided by the MDE
platform. The model editor framework uses the configuration
files and plug-ins to visually render the domain-specific model

Configurable Model

Editor

Domain-Specific

Models

LQNModel

LQNTask

LQNC

all

Rate

Synchroni

sm

Multiplicity

Discipline

Priority

LQNHo

st

Multiplicity

Discipline

Speed

In
te

rp
re

te
r

A
P

I

Model Interpreters

Domain-Specific

Model

Transformation

Logic

Executable

Source

Code

Analyzable

Formal

Models

Fig. 2. MDE platforms provide pluggable interfaces and APIs for model
interpreters to extract and manipulate the information contained in models
and generate other types of artifacts.

D
ef

in
es

Metalanguage

Metatype

DSL Type

Metamodel

Metamodel

Object

Domain-Specific

Language

Model

Object

Domain-Specific

Model

Instance of

Instance of

Conforms to

Conforms to

M
e

ta
m

o
d

e
lin

g

T
ie

r
M

o
d

e
lin

g
 T

ie
r

Fig. 3. Typing and instantiation relationships among metamodels and
domain-specific models.

types, manage an internal representation of the model, and
enforce constraints on model well-formedness, according to
metamodel specification (recall Figure 1).

C. Modeling Semantics

When domain-specific modeling with metamodeling is used,
one set of semantics are applied to the metatypes defined in
the metamodel, and a second set of semantics are applied to
the types defined in the domain-specific models.

First, the metainterpreter implemented by an MDE platform
applies a set of semantics to the metatypes when it performs
a model transformation from a metamodel to a set of con-
figuration files for a model editor. These metatype semantics
capture how the domain-specific types will be rendered and
manipulated in the domain-specific model editor. In other
words, these semantics, which we will term presentation
semantics, define the behavior of the domain-specific types
within the run-time environment of the model editor.

Second, model interpreters built by end-users apply a set of
semantics to their models when they perform design analysis
and code generation. These interpreters define the conse-
quences of the use of domain-specific types within a given
context, or semantic domain, such as a simulation, analysis
tool, or run-time environment. In other words, these semantics,
which we will term analysis semantics or code generation
semantics, define the behavior of domain-specific types within
run-time environments other than the model editor.

Using existing MDE platforms, presentation semantics
are defined in a totally different way than analysis and
code generation semantics. Presentation semantics are defined
through properties (attributes and associations) attached to the
metatypes. For example, a metatype may have attributes that
define its shape and color, where it appears on the screen,
or what happens when it is clicked in the editor. Since the
available metatype properties are fixed by the developer of

459

the MDE platform a priori, there are a finite number of
options available to end-users to define the behavior of their
domain-specific types within the editing tool. This limitation
means that end-users have flexibility to change the presentation
semantics of their types, but only within certain constraints.
However, it also means that end-users can very quickly and
easily create customized model editors for their DSLs, without
having to write any code — all they have to do is set a few
properties in their metamodels.

In constrast, analysis and code generation semantics are
defined by the transformations implemented in model inter-
preters. Since end-users are free to implement any transfor-
mation they wish, these semantics are totally unconstrained.
However, defining analysis and code generation semantics this
way leads to burdensome interpreter development and main-
tenance, as well as other negative side effects. For example,
semantic definitions become buried in low-level source code,
making it difficult for a new engineer joining a project to
determine what the semantics of a specific type are.

Since today’s MDE platforms only generate a custom model
editor (and not other tools), the metatype properties provided
are intentionally limited to definition of visualization, presenta-
tion, and editing semantics. In the next section, we discuss how
analysis and code generation semantics could also be defined
through metatype properties, leading to some limitations in the
semantic options available to end-users, but also completely
avoiding the painful interpreter development and maintenance
required by existing MDE platforms.

III. ISOMORPHISM IN TOOLS AND EDITORS

Existing MDE platforms automatically synthesize only one
of the tools needed for an end-to-end toolset — the domain-
specific model editor. This paper proposes that the same mech-
anism used by current MDE platforms to synthesize domain-
specific model editors can be used to synthesize the other
tools needed for an end-to-end toolset — the domain-specific
analysis tools and code generators. Current MDE platforms
cannot provide built-in model interpreters for analysis and
code generation because their metatypes lack sufficient seman-
tics for their instances to be automatically mapped to other
forms, such as executable code. Rather, the metatypes only
contain sufficient semantics to automatically map metatypes
to graphical display elements.

Recall that existing MDE platforms synthesize domain-
specific model editors by (1) incorporating into metamodels
information about how model objects should be presented in
the synthesized domain-specific editor, (2) implementing a
highly flexible, configurable model editor that allows model
objects to be presented in a variety of ways, and (3) imple-
menting a metainterpreter that generates configuration files or
plug-ins for the configurable model editor that specify how
each object should be presented, according to the information
in the metamodel. We propose synthesizing domain-specific
model interpreters in an analogous way:

1) Define metatypes and metatype properties that capture
the semantics of domain-specific types for a particular

Model

Repository
Metamodel Editor

Metamodel

Configurable

Model Editor

Model

Editor

Config

Files

Configurable
Code Generator

Code

Generator

Config

Files

Configurable

Analysis Tool

Analysis

Tool

Config

Files

Editor

Metainterpreter

Presentation

Semantics

Generator

Metainterpreter

Code

Generation

Semantics

Analysis

Metainterpreter

Analysis

Semantics

Type Definitions

Analysis

Definitions

Code Generation

Definitions

Presentation

Definitions
Application

Model

P
resentation

Interpretation

Synthesis

Interpretation

A
nal

ys
is

In
te

rp
re

ta
tio

n

MDE Platform

Component
Model

Key

Metatype

Properties

Semantics Framework

Extension

Model Interpreter

Framework

Fig. 4. Using Domain-specific models for system analysis, code generation,
and model editing.

semantic domain. The semantic options need to be
defined a priori by the MDE platform developers, and
properties that allow metamodelers to select from among
those options need to be included in the MDE platform’s
metalanguage.

2) Implement a configurable model interpreter that allows
model objects to adopt a variety of semantics. Concep-
tually, the configurable model interpreter can be viewed
as a library of model transformation operations that can
be flexibly applied to model elements in multiple ways
to account for semantic variability.

3) Implement a corresponding metainterpreter that gener-
ates configuration files or plug-ins for the configurable
model interpreter that specify the semantics of each
domain-specific type, according to the metatype property
values assigned to the object’s type definition in the
metamodel.

Figure 4 depicts the similarity of the ways tools and editors
use models and illustrates their isomorphism.

In this approach, the primary functions of a metainterpreter
are (1) deriving the semantics of each domain-specific type,
and (2) realizing the semantics of each type in a set of
transformation rules. The semantics of each domain-specific
type are selected from the set of possible semantics permitted
by the MDE platform. Each possible semantics corresponds
to a different usage of the configurable interpreter’s model
transformation functionality. Therefore, a metainterpreter in-
cludes (1) a function that takes as parameters the property
values of a metatype instance and returns a semantic definition
from the set of possible semantics, and (2) a function that
takes a semantic definition as a parameter and returns a set of

460

operations to invoke in the configurable interpreter.
Notionally, the configurable intepreter can be thought of as a

virtual machine whose instruction set is the set of implemented
transformation operations. In this analogy, the metainterpreter
is akin to a compiler whose function is to generate programs to
be executed by the virtual machine. Transformation steps that
depend on built-in semantic assumptions (i.e., not metatype
properties) are “hard-coded” into the configurable interpreter
and are protected from modification. Transformation steps that
vary based on metatype properties are “programmable” via the
metamodel.

Alternatively, the combination of the metainterpreter and
configurable interpreter can be viewed as a compiler-compiler
that generates compilers for DSLs. Both our approach and
compiler-compilers generate programs for translating input
models or programs specified in one language to a different tar-
get language. However, we propose a very different approach
to semantic specification, which is less powerful in theory
(arbitrary semantics cannot be captured), but is also much
more practical. By utilizing a pre-decided set of properties
to define semantics, metamodelers do not have to develop
complex semantic definitions using denotational semantics,
structural operational semantics, or some other formalism.
This makes semantic specification much simpler and easier.

IV. RELATED WORK

Other research efforts in the area of domain-specific mod-
eling, such as Cadena and PACC, are also developing meta-
configurable toolchains (although different names are used,
such as “reasoning framework” or “analysis framework”).
These related projects have developed toolchains with pow-
erful capabilities and useful features, but have not fully rec-
ognized the broad applicability and significant ramifications
of this approach, and therefore they have not created nor
implemented a generalized architecture for creating meta-
configurable toolchains, as we do in this paper.

Cadena [3] is a model-driven toolchain for component-
based systems that uses CALM as its metamodeling language.
CALM is based on a three-tiered typing system: a style tier, a
module tier, and a scenario tier. Bogor is a highly extensible
model checking framework that can be applied to Cadena
models. Bogor allows engineers to reuse the analysis infras-
tructure while customizing selected constructs and behaviors.
Bogor allows engineers to extend the input language to the
model checking framework with domain-specific abstractions.
Cadena and Bogor elegantly integrate metamodeling facilities
with model checking. However, some of the mechanisms that
enable extension and reuse in Bogor are specific to model
checking, making them difficult to generalize and apply to
other types of analysis and code generation.

The DUALLY framework [5] supports interoperability
among architecture DSLs. DUALLY leverages engineer-
defined mappings between DSL metamodels and a core set
of architectural concepts codified in a metamodel, called A0.
Thus, the analysis and code generation tools available for any
DSL with a defined mapping can be applied to architectural

models specified in other DSLs. Although DUALLY elimi-
nates the need to manually program model transformations,
it still requires defining the mappings between languages.
Therefore, DUALLY automates some MDE activities as the
expense of others.

The ALFAMA workbench [7] automates the construction
of DSLs for application frameworks. ALFAMA leverages
an aspect-oriented domain-specific modeling layer that de-
fines specialization aspects that modularize framework hot-
spots (extension points) and associates those aspects with
DSL concepts. The DSM layer allows engineers to bypass
metamodel development, resulting in an approach that is,
in some ways, the reverse of ours: rather than enhancing
metamodels to eliminate interpreter development, ALFAMA
enhances interpreters to eliminate metamodel development.
This has many merits but also some drawbacks. First, high-
level metamodels are more maintainable than low-level source
code. Therefore, it may be advantageous to expend some
additional effort on metamodel development rather than DSM
layer development. Second, inferring DSLs from framework
hot-spots tightly couples the DSL to a particular framework.

Model-driven development tools produced by the Pre-
dictable Assembly from Certifiable Components (PACC) Ini-
tiative, such as the PACC Starter Kit, include limited forms of
meta-configurability. The Construction and Composition Lan-
guage (CCL) is used within PACC for specifying component
behaviors and assemblies. CCL also includes constructs for
specifying connectors as services of a component execution
environment. CCL has a strong emphasis on precise behavioral
semantics for rigorous analysis, and is less concerned with
domain-specific extensibility. The PACC Starter Kit (PSK) is a
model-driven development environment that includes a perfor-
mance analysis framework and a model-checking framework.
The performance analysis framework transforms component-
based architectural models into a form that supports rate mono-
tonic analysis for prediction of worst-case response times. The
model-checking framework transforms architectural models
into the input language of a software model checker that
verifies safety and security properties.

REFERENCES

[1] “The Generic Modeling Environment,” www.isis.vanderbilt.edu/Projects/
gme/.

[2] “The Eclipse Graphical Modeling Framework,” www.eclipse.org/
modeling/gmf/.

[3] G. Jung et al., “A Type-centric Framework for Specifying Heterogeneous,
Large-scale, Component-oriented, Architectures,” in Generative Program-
ming and Component Engineering. ACM, 2007, p. 42.

[4] G. Karsai et al., “On the Use of Graph Transformation in the Formal
Specification of Model Interpreters,” J. Universal Computer Science,
vol. 9, no. 11, pp. 1296–1321, 2003.

[5] I. Malavolta et al., “Providing Architectural Languages and Tools Inter-
operability through Model Transformation Technologies,” IEEE Transac-
tions on Software Engineering, 2009.

[6] P. Mohagheghi et al., “Where Is the Proof? - A Review of Experiences
from Applying MDE in Industry,” in 4th European Conf. on MDA
Foundations and Applications, Berlin, Germany, June 2008, pp. 432–443.

[7] A. L. Santos et al., “Automating the Construction of Domain-Specific
Modeling Languages for Object-Oriented Frameworks,” Journal of Soft-
ware and Systems, 2010.

461

