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a b s t r a c t

The processes for deploying systems in cloud environments can be the basis for studying strategies for detect-

ing and correcting errors committed during complex process execution. These cloud-based processes encom-

pass diverse activities, and entail complex interactions between cloud infrastructure, application software,

tools, and humans. Many of these processes, such as those for making release decisions during continuous

deployment and troubleshooting in system upgrades, are highly error-prone. Unlike the typically well-tested

deployed software systems, these deployment processes are usually neither well understood nor well tested.

Errors that occur during such processes may require time-consuming troubleshooting, undoing and redoing

steps, and problem fixing. Consequently, these processes should ideally be guided by strategies for detect-

ing errors that consider trade-offs between efficiency and reliability. This paper presents a framework for

systematically exploring such trade-offs. To evaluate the framework and illustrate our approach, we use two

representative cloud deployment processes: a continuous deployment process and a rolling upgrade process.

We augment an existing process modeling language to represent these processes and model errors that may

occur during process execution. We use a process-aware discrete-event simulator to evaluate strategies and

empirically validate simulation results by comparing them to experiences in a production environment. Our

evaluation demonstrates that our approach supports the study of how error-handling strategies affect how

much time is taken for task-completion and error-fixing.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

Understanding and evaluating complex real-world processes are

ade more difficult by the challenges in understanding how strate-

ies for diagnosing and repairing errors affect the results produced by

hese processes. For example, domain experts intuitively know that

uman-executed process steps are relatively slower and more error-

rone than automated steps, but might be more amenable to interac-

ive error diagnosis and the prevention of overreaction by automated
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rror recovery systems. Intuition also suggest that scripts can reduce

rrors and perform steps much faster than humans can, but that the

se of scripts can propagate errors much more quickly and make er-

or diagnosis more difficult. Similarly, common sense suggests that

eticulously verifying the outcome of each step at a lower-level of

ranularity in an operational process helps to prevent downstream

ailures, but that doing so is expensive and can slow down the over-

ll process. Informal guidelines are widely used in some application

omains to decide which steps should be performed by humans and

hich by scripts, but such guidelines are often weakly justified. Such

eakly justified guidelines are also often used to decide how fre-

uently step outcomes should be verified and validated. Experts in

ther process domains similarly use other weakly justified guidelines.

These guidelines, and common knowledge should be justified, or

eplaced, by careful studies that provide clear, carefully reasoned

ustifications for specific approaches and practices. It is particu-

arly important to provide justifications for practices relating to the
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1 http://aws.amazon.com/.
detection and correction of errors in complex processes. This pa-

per presents one approach for providing justifications to such guide-

lines and knowledge. This approach uses error-seeding and discrete-

event simulation to evaluate the effectiveness of error-detection and

correction strategies. We illustrate and evaluate our approach using

real-world error-prone processes employed in the domain of cloud

computing.

Cloud computing processes (such as those related to the deploy-

ment, upgrade, failover, and reconfiguration of cloud-based appli-

cations) are particularly appropriate as evaluation vehicles because

they are complex and error-prone. These processes are often orches-

trations of intricate interactions among cloud infrastructure entities,

application software, tools, and human activities. This complexity

and the reliance on humans to make key decisions in time-critical

situations make these processes particularly error-prone. Moreover,

pressures for evolution of the underlying applications, and the emer-

gence of continuous deployment practices are resulting in the need to

exercise these processes as frequently as tens of times a day. The chal-

lenges of orchestrating these interactions at such high frequency and

under uncertainties that are inherent to cloud environments can be

considerable, increasing still further the propensity of such processes

to error (Zhu et al., 2015). Errors can necessitate additional operations

such as time-consuming troubleshooting, undoing steps, and prob-

lem fixing and redoing the undone steps. These operations can be

expensive and error-prone themselves. To deal with this propensity

for errors, these processes typically incorporate strategies for detect-

ing, diagnosing, recovering from, and preventing errors. But the per-

formance characteristics of these strategies can be subtle and hard

to fully understand. For example, automated error detection and tol-

erance may reduce error rates and detect errors earlier but can also

mask accumulative subtle errors leading to major outages and mak-

ing error diagnosis more difficult. And fully automated overreaction

to an initial small error is often the cause of major failures (Yuan

et al., 2014). Humans, on the other hand, may spot errors that com-

puters may miss, but are often slow, which can impede system

progress. Therefore strategies for synthesizing these two approaches

should be considered carefully as they yield trade-offs between ef-

ficiency and reliability. Choosing the wrong strategy may result in

wasted resources or errors that propagate unnoticed. There is a need

for research on approaches for effectively deciding on appropriate

and effective strategies.

These challenges become particularly acute when dealing with

large-scale applications that run in distributed cloud environments.

The execution platform for a modern large-scale cloud-based system

might consist of thousands of nodes, and the maintenance of such a

system may require dozens of changes (e.g., the incorporation of new

versions of software utilities) a day (Etsy, 2013), each of which may

require the execution of a complex process of collaboration between

automated tools and a busy operations team. As a consequence, er-

rors are frequent. According to Gartner, “Through 2015, 80% of out-

ages impacting mission-critical services will be caused by people and

process issues” (Colville et al., 2010). Some errors arise from faulty

system executions, which then trigger operator reactions, such as ex-

ecuting a complex remediation process that itself might be flawed.

Errors of this kind, and their cascading effects, may have a significant

impact on overall operational costs.

The deployment of cloud-based applications relies on the smooth

performance of such key processes as preparing the environment,

loading pre-baked virtual machine images into the environment, ap-

plying and propagating the necessary configurations, activating and

deactivating the new and old versions, conducting small-scale ca-

nary testing, and rolling execution images out to perhaps thousands

of nodes. All of these processes are complex, error-prone collabora-

tions between human operators and automated systems. They are

difficult to test using traditional testing approaches, despite attempts

to treat them like regular applications by the Infrastructure-as-Code
ovement. It is important that errors be identified and handled

ithin minutes or seconds, especially in the case of high-speed, high-

apacity systems in domains such as finance, healthcare, and trans-

ortation, all critical components of key societal infrastructure. Al-

hough humans and automated tools collaborate in performing these

rocesses and in dealing with errors, strategies for this collaboration

re presently only guessed at.

We address these challenges by creating a general framework for

valuating error-detection and correction strategies, and then apply-

ng the framework to the domain of cloud computing. Specifically we

• created a framework to integrate approaches for error detection and

repair into complex processes. These approaches have characteristics

that are demonstrably superior to current best practices, which are

often simply weakly justified guidelines based on anecdotal observa-

tion and experience.

And then, we

• used this framework for sample complex cloud-computing processes,

which, unlike the (presumably) well-tested software systems whose

deployment they manage, are neither well understood nor well

tested.

In this paper, we model some example deployment operations as

rocesses, each consisting of a collection of steps. Each step is ex-

cuted by an agent, who is either an automated script, an assistive

ool, or a human. Each step requires different amounts of time and

arious resources, such as computing power, a readied environment,

r cloud computing nodes. We focus on two complex and representa-

ive processes, deployment and rolling upgrade, to illustrate our ap-

roach. We augment an existing process modeling language to de-

ne these error-prone processes, and use it to model precisely when

rrors can occur, the types and distributions of those errors, and the

rocesses involved in checking for and correcting these errors. Recog-

izing that the error-checking and correcting processes themselves

an both miss some errors and themselves actually create other er-

ors, our framework supports modeling these situations as well.

We use a process-aware discrete-event simulator to show the

verall effects that strategies can have on the final outcomes of pro-

ess execution, and to suggest improvements to the processes. We

arry out our simulations within a framework that incorporates de-

ailed and precise models of these processes, populated with em-

irical data and measures obtained by observing real-world process

xecutions. Our simulations are designed to represent realistic error-

etection and repair scenarios that take place in the real world, and

o support accurate comparisons of different approaches for dealing

ith these scenarios. For example, we use our framework to answer

uestions such as “How frequently should an error-checking action be

erformed, and at what level of granularity?” and “How much does

ncreasing error-checking frequency reduce the risk of system fail-

re?” Our view is that answers to such questions lead to cost-benefit

rade-off analysis that could help developers and operators select

olicies that positively affect system operational costs and product

uality.

Finally, we validate our framework and approach by comparing

he models and results obtained from simulation studies to observed

easurements of multiple large-scale executions of the processes in

eal cloud computing settings on the Amazon Web Service (AWS)1

latform. Our results demonstrate that the simulations make reason-

ble predictions that can help actual operations personnel to conduct

hat-if analyses to support making better decisions. This, in turn,

upports our view of the effectiveness of our overall framework and

pproach.

The rest of the paper is structured as follows. Section 2 intro-

uces our modeling approach and Section 3 describes our simulation

http://aws.amazon.com/
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Fig. 1. A Little-JIL step.
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pproach. Section 4 evaluates our approaches using two case stud-

es. Section 5 places our work in the context of related research, and

ection 6 summarizes our contributions and future work.

. Modeling approach

A key foundation of this work is the ability to define precisely

nd in detail the kinds of complex cloud computing deployment and

aintenance processes described above. These processes are intri-

ate collaborations between humans and software, where there is

he clear possibility that either or both may perform incorrectly, re-

uiring periodic checking and repair, both of which may vary in their

ffectiveness.

We modeled these processes using Little-JIL (Wise et al., 2006),

language having a number of features that proved to be particu-

arly useful in supporting the specification of some difficult features

f these processes. A particularly important feature is the ease with

hich Little-JIL can be used to specify how and where a process ex-

cution may deviate from the desired or expected, perhaps due to

he commission of an error, or the occurrence of an adverse event

n the execution environment. We characterize such a process execu-

ion as ‘non-normative, in contrast to a ‘normative’ execution, namely

ne in which the performance of the process proceeds as expected

nd produces expected results. In some literatures such a normative

erformance is sometimes referred to as a ‘happy path’. In contrast,

‘non-normative’ performance is one in which something unusual,

ntoward, or undesired takes place. Often, as is the case in this paper,

he non-normative performance is not desired, but as it may not be

nexpected, appropriate reactions and responses can be defined so

hat they can be activated as needed to mitigate the negative effects

f the non-normative execution.

In creating one of these models we began by capturing the norma-

ive, or desirable, behavior of the process, and then elaborated it to an

rror-prone behavior model, by specifying the possible errors, error

esponses and error repairs that could take place at every step. Our

odels of non-normative behavior included representing the types

f error occurrences, the conditional probabilities of the different er-

or types, and differences in error detection delay resulting from dif-

erent detection approaches.

We now use the rolling upgrade process as the basis for examples

f how some of the principal features of Little-JIL and our error-prone

ehavior model support the clear representation of the various kinds

f error commission, detection, and repair to be described in more

etail subsequently in this paper.

In these descriptions it will be important to distinguish clearly

mong the following four terms, which we will use often throughout

he rest of this paper:

• Error: an incorrect action performed in a step, which might be at-

tributable to incorrect performance by the performer of the step,

an input to the step that is incorrect, or the occurrence of an event

in the system environment that has an adverse effect on the step

or its performer.
• Defect: an imperfection that exists in an artifact due to an error

that has occurred during the performance of a step.
• Failure: execution of a step that causes the step to fail to accom-

plish its intended purpose.
• Exception: a non-normative outcome of the execution of a step.

.1. Rolling upgrade process

Rolling upgrade is an important process for continuous deploy-

ent and high frequency releases. Assuming a current version of an

pplication is running in the cloud and consists of a large collection

f old version virtual machine (VM) instances, a rolling upgrade pro-

ess then deploys a new version of the application, upgrading a small
umber of VMs at a time. Once this small number of VMs is de-

loyed with the new version, an equivalent number of the old ver-

ion VMs can be removed. Repeating this process many times will

esult in completing the deployment. Rolling upgrade is inexpensive

ompared to spinning up a very large collection of VMs containing

he new version and then switching all of them with all of the nodes

unning the old version all at once. This incremental strategy also en-

bles more careful monitoring of the rollout so a rollback can be done

ooner if problems arise.

In the Amazon Web Services (AWS) public cloud, one application

s often organized into one or more Auto Scaling Groups (ASG) that

onsist of a set of VMs or nodes instantiated from an Amazon Ma-

hine Image (AMI). A given application could be deployed either in a

ingle ASG, or in multiple finer-grained ASGs. To upgrade such an ap-

lication, a small number of nodes within an ASG must be gracefully

eleted and replaced by updated ones until all the nodes in all ASGs

ave been replaced. Close monitoring and checking of intermediate

esults and the final result is needed. Human operators can carry out

he steps and the verification, but automated aids are available to as-

ist much of it. On the other hand, both humans and these automated

ids can commit errors. For example multiple upgrading processes

ay be taking place simultaneously on different parts of the system

unning the risk of creating mixed-version mismatches. This suggests

he need for periodic checking and consequent repair as integral parts

f an appropriately robust rolling upgrade process.

In this example we assume that the application to be updated is

eployed across a number of ASGs, each of which contains a set of

odes. A specifiable number of the nodes within each ASG can be

pgraded concurrently. This two-level hierarchy facilitates manage-

ent of the upgrading of the application by increasing the potential

or parallelization in upgrading (of sibling ASGs and nodes within an

SG). But because an error in the upgrading of any node may cause

he failure of the upgrade of the entirety of its containing ASG, larger

SGs make the process more vulnerable to error, and require more

ork to repair. Thus deciding on the number of ASGs, the number of

oncurrent nodes, and the error checking strategies to be used, are

ecisions of considerable importance.

.2. Process model

In this work we have used Little-JIL, a rigorously-defined graphical

anguage in which processes are defined as hierarchical decomposi-

ions of steps into substeps. A step is essentially a procedure called by

ts parent, where argument artifacts are passed between parent and

hild. A step represents an activity to be done by an assigned agent. As

hown schematically in Fig. 1, a step has a name placed above a black

ectangular step bar, a badge that represents control flow among the

tep’s sub-steps (connected to the step by edges emanating from the

eft of the step bar), an interface badge (representing the step’s in-

ut/output artifacts, the agent that is to perform the step, and the

esources the step requires), badges representing optional pre- and
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Fig. 2. Little-JIL model for an example rolling upgrade process.
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post-requisites, an exception management badge representing facili-

ties for optional scoped exception management, and a message han-

dling badge representing exception handling steps, which are facili-

ties for unscoped exception management. A step with no sub-steps

is called a leaf step and represents an activity to be performed by an

agent in any way the agent chooses.

A step’s scoped exception-handling facilities deal with exceptions

thrown by its descendants using exception handling subprocesses de-

fined as substeps connected by edges emanating from a large X on the

right side of the step’s step bar. Exceptions can be thrown as part of

the execution of any step, and also by a step’s pre/post-condition. Ex-

ceptions are typed, and parameters can be thrown along with the ex-

ception. Four different modes of continuation after the handling of an

exception can be specified. Exceptions have proved to be particularly

useful in supporting the clear and precise representation of how the

normative execution of a process might be departed from in order to

deal with unusual or exceptional situations (Lerner et al., 2010). The

execution of an exception handler may itself raise exceptions, provid-

ing expressive power that is often particularly effective in specifying

particularly intricate process details.

We note that Little-JIL has been used to support the modeling of

a large number of processes in a wide variety of domains, including

software development, healthcare, elections, and dispute resolution.

Little-JIL is a rigorously defined language, and thus the creation of

these models is very much a programming activity, requiring disci-

pline and appreciation of the advantages and challenges of dealing

with rigor. But Little-JIL process models have a visual representation,

which makes them relatively accessible to domain experts who may

not be comfortable or competent with rigorous programming, but

who may still be quite capable of understanding the modeling work

that has been done by others. In short, the writing of Little-JIL process

models is the domain of programmers, but reading of such models

seems quite accessible to others. Anecdotally it has been noted that

nurses, doctors, and election officials all have had success in reading,

understanding, and critiquing Little-JIL models that had been devel-

oped by others. This has led to the iterative development and im-

provements of large numbers of complex process models. For partic-

ularly complex models, these iterations have sometimes continued

for months to assure the accuracy and completeness of the models.

But this amount of effort, and the possibility of these iterations has

typically greatly increased confidence in the accuracy and complete-

ness of the models. Little-JIL and its associated collection of editors,

tools, and analyzers are available for download from the Laboratory

for Advanced Software Engineering Research (LASER). 2

We now present an example that shows a Little-JIL definition of

a process for carrying out a rolling upgrade that incorporates vari-

ous approaches to error detection, response, and repair. The process

is shown in Fig. 2. We do not describe all details of this process in or-

der to save space, and also because many of these details are of tan-

gential importance to the focus of this paper. Thus we address only a

few process features that exemplify our approach to modeling com-

plex processes. In particular, we focus on the kinds of mechanisms we

have used to model how defects can be detected, how this raises ex-

ceptions, how these exceptions can be handled, and how normative

process execution can then be resumed.

2.2.1. Normative process model

We begin by addressing the normative process, namely the way

process execution proceeds when all steps are performed as desired.

The process modeled in Fig. 2 represents the entire Upgrade

Process (including both normative and non-normative executions),

showing that it consists of the sequential execution (denoted by the
2 Laboratory for Advanced Software Engineering Research (LASER) is in the College

of Information and Computer Sciences, University of Massachusetts Amherst, USA web

site, laser.cs.umass.edu.

2

e

ight-arrow on the left of the Upgrade Process step bar) of four sub-

teps, namely prepare AMI for the upgrade, and then doing the Up-

rade of all the nodes in the distributed environment, then activating

he upgraded environment (by executing the Active step), and then

esting the result by performing Test on it.

Because of space limitations we elaborate here only the key step,

pgrade, which consists of the sequential execution of the Config-

re concurrent ASG num step, followed by the iterative execution

f the Update one ASG group step. Configure concurrent ASG num

ecides how to decompose the upgrade into ASGs, with the decision

mbodied in the creation of the ASGSet artifact that the step gener-

tes as an output. Update one ASG group is then executed iteratively

or each of the members of ASGSet (which is indicated by the AS-

Set+ annotation on the edge connecting Update one ASG group to

ts parent, Upgrade). Update one ASG group is defined, in turn, as

he parallel (note the = sign on the left of its step bar) execution of

pdate one ASG, which is iterated ASG+ times, where the elements

f the ASG artifact were also computed by the execution of Configure

he concurrent ASG num. Because this execution is done in parallel,

he speed of the Upgrade process is increased. Update one ASG con-

ists of the sequential execution of Configure concurrent node num

which defines the structure of the ASG), and Rolling upgrade, the

arallel execution of Upgrade one node. The details of Upgrade one

ode are not shown here (denoted by the … ellipsis), and instead we

ocus on the representation of various approaches to error detection

nd repair.

.2.2. Modeling the detection of defects

Real-world processes rarely proceed completely smoothly and any

rror operation will potentially introduce defects into the product
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eing developed. As noted at the beginning of Section 2, we define

defect to be an imperfection in an artifact, perhaps created by the

ncorrect performance of a step. Defective artifacts will eventually be

sed as inputs to subsequently-executed steps, at which time the de-

ect might be noticed. Alternatively, the defect might cause the cre-

tion of additional defects whose number and severity are likely to

ake the existence of the defects increasingly apparent, thereby trig-

ering a search for the initial defect and a trace of its propagation. The

ooner a defect is detected, the easier it is to detect and repair, thereby

imiting the damage from the propagation of its effects. Defects can

ften be detected by executing steps that compare the evaluation of

step postcondition to the postcondition expected from a normative

xecution. Detection of a departure from the normative can cause an

xception to be thrown. Here we describe three common strategies

or interspersing such defect-detecting activities throughout the exe-

ution of a process. In this section, we show how the three common

trategies for defect detection can be modeled as part of a process.

he responses to such detection are discussed in the next section.

1. Proactive defect detection. Most fundamentally it is possible to

epresent the explicit proactive performance of defect detection in a

rocess by inserting specific steps whose sole purpose is to determine

hether the execution state of the process is as desired and expected

rom a normative execution, For example the Test step in Fig. 2 is

o be performed after the entire upgrade process has concluded and

he upgraded system has been in operation. Test will check the con-

istency of the upgraded system with normative behavior, including

oth current and previous performances and will alert operators or

ther systems (by throwing exceptions) if departure from the norma-

ive is found.

It often particularly important to identify defects produced by er-

ors as soon as possible, in which case a more useful approach is

o imbed these kinds of testing activities at close regular intervals

hroughout the process. Typically this is done by making these inter-

ediate testing activities step post-requisites (or pre-requisites). For

xample as in the Configure concurrent node num step, the post-

equisite can be a comparison between the parameter represent-

ng concurrent_node_num and some pre-defined maximum. This ap-

roach can be particularly effective by coupling a specific kind of

hecking with the results produced by a specific corresponding step.

2. Reactive defect detection. Another possible approach to defect

etection is to cause exceptions to be thrown whenever the execution

f a step fails, and cannot be finished normatively, for example due to

ack of resources, lack of needed artifacts, timeouts, etc.

Typically this is done by causing these failures to be noticed, for

xample by looking for, and then propagating upwards, exceptions

hrown by cloud infrastructure or system-level software. For exam-

le, note that if the Upgrade one Node step (whose substeps are not

hown here) attempts to acquire and use a node (actually the exe-

ution of the leaf substeps of the Upgrade one Node makes this at-

empt) that is down, this will cause some kind of system fault. By

utting in place handlers for this system fault, the process can then

rigger its own higher-level exception whose handler can then take

ction to assure that the lack of this single node does not cause wider

roblems.

3. Monitor-based defect detection. Fig. 2 also shows how exception

andlers can be triggered by external events or notifications, in addi-

ion to events arising from executing process steps or process-defined

etection operations.

Thus, for example, the Post check step is carried out syn-

hronously every ten minutes, driven by a timer-generated event.

his step monitors the status of the process periodically by checking

xecution logs. This handler is attached to the middle of the Upgrade

tep bar, indicating that it is responding to an event that may origi-

ate anywhere in the process, or indeed from outside of the process

tself (this is an example of an unscoped handler).
.2.3. Modeling the handling of detected defects

Error analysis and repair activities follow the above defect detec-

ion activities, most often being carried out as exception handlers that

re attached to an ancestor of the step that threw the exception (this

s an example of scoped exception handling). Little-JIL exceptions are

yped and handlers are defined to handle only exceptions of a sin-

le type. Thus, for example, Configuration error handler is in place

o handle Configuration error exceptions, in this case thrown by the

heck Configuration step.

In this paper, generally, an exception handling subprocess is mod-

led as consisting of two parts:

• The diagnosis part that is used to diagnose the cause of the excep-

tion and decide on a handling strategy for it.
• The exception handling part that is used to respond to the excep-

tion by carrying out the identified handling strategy.

There are a number of ways in which exception handlers can be

efined, representing different approaches to diagnosis and repair of

rrors. This section describes different error handling structures used

n this example. The behaviors of these handlers will be described in

he next section.

The Upgrade one node step has three exception handlers, each for

different type of exception, each resulting from detection of a dif-

erent kind of defect that may be detected in the course of executing

pgrade one node. Here, in this example, each of the three exception

andlers for Upgrade one node takes a different approach.

Specifically, the Instance down handler is triggered when a node

eeded by the upgrading process is determined to be down. To deal

ith this exception, the handler first executes the Diagnosis step to

ecide which node is down, and therefore which step instance will

eed to be redone using a different node, which is presumed to be up

nd available. This step then communicates this information to the

edo failed step, which will repeat the exact step that failed using

he different node.

In contrast, the AMI missing handler in Fig. 2, responds to a time-

ut exception thrown when execution of the Little-JIL step requires

particular AMI that is missing or unavailable (due, for example,

o misconfiguration, superseding releases, or storage problems). The

iagnosis step is performed first and is followed by a recursive rein-

ocation of Upgrade one node, its grandparent step. Note that this

ecursive reinvocation supports the possibility that the response to

he detection of a defect may itself be erroneous, effectively model-

ng the possibility of a potentially limitless chain of recursive excep-

ion handling. Presumably a real-world version of this process should

imit the depth of this recursion, executing a step that invokes human

ntervention when the specified recursive depth has been reached.

Finally, the ELB missing handler shown in Fig. 2, models how a

rocess may attempt to show some flexibility in trying to fix a prob-

em by itself. In our example, the handler contains a “try” step, which

llows its agent to try alternative sub-steps in left to right order until

ne of them succeeds. When a substep succeeds, the try step is com-

lete and the failure has been addressed. In Fig. 2 the handler will try

o redo a failed attempt to access the ELB at most 6 times. Then, if

ccess still cannot be obtained, the last step under the “try” step will

hrow an ELB failed exception, which will then be handled by the

LB Failed handler, found at the next higher step in the execution

ierarchy.

.3. Error-prone behavior model

Process modeling can provide support for the analysis and im-

rovement of processes that coordinate multiple people and tools

orking together to carry out a task. Steps in a process specify ac-

ivities to be performed in order to support the overall goals and ob-

ectives of the process. In Little-JIL, each step specification includes a
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Fig. 3. Relationship among the defect, exception and response.

d

r

e

a

d

t

f

e

o

o

f

f

2

w

t

S

P

w

m

f

r

t

c

b

a

o

n

s

a

n

i

n

n

o

e

d

r

t

e

o

i

i

specification of the types of entities that are required as resources or-

der to perform the step. One of these resources is distinguished as the

step’s agent, which is an autonomous entity that is expected to be an

expert in some part or parts of the process. In the processes modeled

in this work, the step agent might, for example, be a human operator,

an automated deployment tool, or a script. In addition, each Little-

JIL step may specify the need for input artifacts such as installation

packages and configuration files.

To understand and analyze a process fully, it is important for a

process model to include descriptions of the behavior of a process un-

der all possible circumstances, both normative and non-normative.

This behavior is modeled by defining how the performance of the

step transforms its input data into output data through the actions

of the step’s agents with the support of the step’s other resources.

In this work we are particularly focused on the fact that the perfor-

mance of a step (by either a human or a non-human agent) may be

erroneous, thereby introducing defects into the step’s output artifacts,

or by incorrectly either throwing, or failing to throw, exceptions. Thus,

for example, a common misspelling of a word in the configure file

during the deployment process could well be characterized as a non-

normative performance. Such non-normative behavior may occur

either because the incorrect performance of a previous step in

the process has created defective artifacts that have propagated to

the current step, or because of errors committed during the perfor-

mance of the current step (e.g., because of the incorrect performance

of the step’s agent). The error may cause immediately identifiable

problems (such as causing the incorrect throwing of an exception),

or problems that may become manifest only later (perhaps even

much later) in the execution of the process. Moreover, a single

defect created by non-normative step execution may cause many

exceptions to be thrown (perhaps even at different times), while, on

the other hand the throwing of some exceptions may result from the

erroneous performance of any one of many different steps.

To facilitate our work we designed a characterization of some

principal kinds of behaviors, based on characterizations of the tech-

niques that seem applicable to the effective diagnosis and repair of

different kinds of error behaviors. We characterize step execution be-

havior as being:

1. Normative when everything goes as planned and desired, with

all output data being correctly created and exceptions being

thrown only when they are supposed to be thrown.

2. Non-normative when the step is executed erroneously and gen-

erates one or more output artifacts that are defective.

3. Exceptional when execution of the step results in throwing one

or more exceptions, indicating that some kind of defect has

been detected (either correctly or incorrectly).

4. Responsive when the step is specifying a way that has been de-

signed to address the need to handle a thrown exception.

The output artifacts generated by non-normative behavior may be

the basis for throwing exceptions, thereby causing the execution of

exceptional behavior and responsive behavior.

As noted above, an error in the performance of one step generally

generates defective artifacts that may cause multiple exceptions to

be thrown in the subsequent execution of the process. However, any

given exception might be thrown by the erroneous performance of

any one of potentially many different steps. Thus, for example, in the

domain of management of cloud-based applications, when preparing

an AMI, using the wrong version of Java one error may cause as many

as three exceptions to be thrown (e.g., an inaccessible node exception,

a system crash, or an incomplete component integration exception).

On the other hand, throwing the corresponding node inaccessible ex-

ception may result from erroneous mapping of an IP address to a host

name, or from any number of different version incompatibility errors.

We define an impact to be one (defect-detection, defect–repair)

pair. We note that for each different impact, there may be many
ifferent approaches both to defect-detection and to defect–repair

esponse. Each corresponding detection (exceptional behavior) and

ach repair (responsive behavior) may have a different profile of cost

nd effectiveness. Moreover, the cost and the effectiveness of both

etection and of repair may vary depending on the contexts in which

hey are to be performed, where these contexts may incorporate such

actors as the nature of the defective artifacts, the identity of step ex-

cution agents, and the proximity (in execution time) of the detection

f the error to the time of its creation Fig. 3 depicts some examples

f impacts and indicates their relationships to one another. We now

ormalize the specification of these different behavior models in the

ollowing sections.

.3.1. Modeling normative and non-normative behaviors

The term behavior, as used in this paper, describes the way in

hich a step in a process transforms inputs into outputs. We define

his more precisely as follows:

Let P be a set of parameters that are used as input artifacts to a step,

, and let bA,S be the behavior of the agent A performing step S. Then, if
′ is the set of output parameters created when agent A performs S, we

rite this as bA,S (P) = P′.
Throughout this paper, unless otherwise noted, we assume nor-

ative behavior in describing the way a given step execution trans-

orms input parameters into desired output parameters. These pa-

ameters are part of the artifacts that may be generated or passed

hrough the step or may describe the status of an action (such as suc-

ess or failure of an activity). Each input/output parameter in P/P′ can

e formally defined as a 2-tuple, < Name, Value > where:

• Name: is the specific name of the parameter.
• Value: is the value of the parameter, perhaps in the form of a list,

a number, or a string.

In our example, the step Configure concurrent ASG num will take

s input a set of nodes in the current configuration, and produce as

utput the number of concurrent ASG nodes.

Once the normative behavior has been modeled, it is important

ext to think about what might go wrong. In a process, the needed re-

ources might be unavailable when they are needed, the actions that

gents take might be incorrect or inappropriate, or deadlines might

ot be met. Steps carried out by automated scripts may also perform

ncorrectly due to errors in the scripts or miscalculations about the

ature of the execution environment. In each of these cases, the ab-

ormal operation will translate the input parameters into undesired

nes, P′′ (where P′′ is usually not the same as P′, the output set gen-

rated by normative execution).

Thus, to describe the non-normative behavior, we augment the

efinition of the normative behavior of a step by defining a set of er-

ors that might be committed during execution of the step as part of

he Little-JIL step definition. For each error we define a set of param-

ters that describe the conditions that must be met for the error to

ccur, the probability of this error, and the set of defects that will be

njected into the process by this error. We assume that the probabil-

ty of commission of this error will change over time at a learn rate,
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hich may be 0.0. The error definition contains a set of results that

lter one or more of the output parameter values from the normative

alues. It is possible that every output parameter might be altered by

ny error. The output parameter values may be the basis for throwing

xceptions in the Little-JIL process, thereby causing the execution of

xception handling.

We define an error as follows:

Error = (Step, CPT_Err, Imps, LearnRate)

• Step: is the step in which the error may arise.
• CPT_Err: is the set of different conditions under which the error

occurs, along with a specification of the frequency with which the

defect is created under each condition. CPT_Err = {pj | Conditionj},

where pj is the probability that the error is created when the

Conditionj is satisfied. The condition is a judgment statement with

Boolean values used in determining whether the error should oc-

cur. For example, we can represent the fact that more experienced

performers make errors less often by defining CPT_Err to be {(0.01,

R.skillLevel > 3), (0.05, R.skillLevel ≤ 3)}.
• Imps: is a function that specifies the way output parameters are

impacted by the error. The function takes an error condition and

the desired output parameters as input and returns a specifica-

tion of the defective values of the step output parameters that are

created by the commission of the error. For example, if the rolling

upgrade process upgrades 12 nodes concurrently, then Configure

concurrent ASG num in Fig. 2 should output the value of the con-

current node number output parameter to be 12. To model an er-

ror in performing this step, Imps might specify that, under the

conditions that are specified, Configure concurrent ASG num is

specified to return some number other than 12.
• LearnRate: is a specification of the rate at which error occurrence

changes with each execution of this step.

.3.2. Modeling exception and response

It is of considerable importance not only to specify precisely the

on-normative behaviors of a step, but also to provide a precise defi-

ition of how these non-normative behaviors could be handled if de-

ects are detected. We specify the handling of the consequences of de-

ecting non-normative behavior as exception handling. This requires,

t the least, identifying the steps in which exceptions may possibly

ccur, identifying exactly what each exception is, identifying what

he cause of the exception is, which steps and subprocesses are used

o handle each exception, and then specifying how to proceed once

ach exception has been handled.

For the steps that may be performed incorrectly, a set of excep-

ions that might be raised by the execution of the step is defined as

upplement to the step specification. The exceptions are defined sim-

larly to errors, comprising a set of exceptional conditions that may

rise, called the possible conditions, and the probability of the occur-

ence of each.

An exception is defined as follows:

Exception = (Step, Des, CPT_Exp)

• Step: is the step in which the exception may be thrown.
• Des: is a description of the exception (e.g., Node down, AMI miss-

ing).
• CPT_Exp: is the set of probabilities that the exception is thrown

under different conditions, CPT_Exp = {(pj, Conditionj)}, where pj

is the probability that the exception is thrown when the predicate

Conditionj is true.

The exception may be thrown when the state created by the ex-

cution of the corresponding step satisfies the conditions in its de-

cription. When an exception event occurs it triggers a response by

n exception handler that has been positioned in the Little-JIL pro-

ess structure and designed to provide an appropriate response.

Although any exception may be triggered by more than one condi-

ion, any given exception can be trigged by only one condition at any
iven time. Therefore, our exception model defines the impact of each

eparate cause-effect pair, representing each of the different ways in

hich an exception can be triggered by one cause (under one condi-

ion). Accordingly, the specification of each different cause requires

he specification of a different cost for diagnosis. But each cause may

ave more than one repair approach, each of which may cost a differ-

nt amount of effort as described in Fig. 3.

We define an ExceptionResponse as follows:

ExceptionResponse = (Exception, Source, DiagnosisCost, Re-

ponses).

• Exception: is the definition of the exception.
• Source: is the set of errors for which a variable in Imps is also

used to define a Condition in the CPT_Exp of an exception that is

thrown as a result of the error:

error ∈ Source ⇔ ∃x (x ∈ error.Imps ∧ x ∈ CPT_Exp)

• DiagnosisCost: quantifies the amount of effort required to find the

cause of the exception. In our work, this is quantified as a time-

valued function whose inputs represent the context in which the

diagnosis is being made.
• Responses: is a set, {responsei}, each of which is a subprocess that

can be used to recover from the effects of the occurrence of the

error. It is used to guide the execution of the steps modeled in

a specific subprocess defined as a handler of the exception. For

example, the redo failed step is a choice step containing all the

possible failed steps. After diagnosis, it will choose one specific

step to be redone as the response to detected error.

.4. Calibration of the process model

The process model we used as the basis of our work was initially

efined and calibrated using observations and data from a real-world

rivacy analysis project (Li et al., 2013), a Log-based monitoring sys-

em, empirical study of Amazon Cloud API calls (Lu et al., 2013a)

nd the literature review (Nagaraja et al., 2004). For example, we

ook measurement data from observation of executions of processes

or deploying Hadoop/HBase clusters in a real-world privacy analysis

roject, and we used these data to calibrate the error diagnosis and

rror repair times used in our deployment process simulation. We

easured timing profiles of VM start time, monitoring related Ama-

on APIs for small scale rolling upgrades. We used them to calibrate

xecution timings and error detection timings for key steps in the

olling upgrade process. These calibrations were done before we ran

imulations of large-scale executions of these cloud-based processes.

. Simulation approach

Our work uses process-model-based discrete event simulation to

valuate different strategies for doing error diagnosis and repair in

rocesses where fallible humans and execution of potentially defec-

ive scripts play key roles. Our approach combines the strengths of

iscrete event simulation, conditional probabilistic modeling, and er-

or injection, exploiting detailed historical information about system

xecutions that we derived from the observation of actual step exe-

utions and estimates of the effects of as-yet-undetected defects.

Our simulations were driven by a rigorously defined Little-JIL pro-

ess definition and its extension as described in Section 2. These

imulations take into account the possibility that some of the de-

ned process steps will be performed incorrectly as human oper-

tors inevitably make mistakes, even when they are given explicit

tep-by-step directions. Errors vary in subtlety with some causing

mmediately-detectable problems and others creating problems that

ay be difficult or impossible to detect until much later in a process

xecution. Moreover, some errors may be easy to detect, while others

ay require considerable amounts of diagnostic effort. In addition,
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Fig. 4. System architecture.

Fig. 5. An example of DDG. (For interpretation of the references to color in this figure,

the reader is referred to the web version of this article).
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some errors may cause multiple problems and defects, each of which

may have a different profile of severity, detection difficulty, and repair

effort.

To support the accurate simulation of these kinds of challenging

execution scenarios, we have extended JSim (Raunak et al., 2011), an

existing discrete-event simulator of Little-JIL process definitions, to

allow for the possibility that some steps may be performed incor-

rectly, and that repair may occur at different places. The architecture

of the system to support this is shown in Fig. 4, which we now de-

scribe in more detail in the following sections.

3.1. The JSim-based simulator

JSim is a previously developed system that simulates the execu-

tion of processes defined in Little-JIL. JSim builds on the capabilities

of the Juliette process execution environment, which executes Little-

JIL steps in the order dictated by Little-JIL semantics, assigning them

to step execution agents as defined by the process and simulating

the actions of the agents. Agent actions are simulated according to

behavior specifications that are specified in the JSim resource man-

ager described in detail in Raunak et al. (2013), which specifies how

to transform input artifacts into desired output artifacts, how much

time and effort are required to do so, and conditional probabilities

that the agent will commit any number of specified errors. The re-

sults of a process simulation are recorded in the form of a DDG (Data

Derivation Graph) (Lerner et al., 2011) that is used as the basis for de-

termining the course of future process execution and agent behavior.

More specifically, JSim works as follows:

To begin, JSim initializes the simulation clock to zero and consults

its event arrival stream for the first event to be simulated. JSim’s Step

Sequencer picks up each step to be simulated in the order specified

by the process, and for each step consults the Resource Manager to

obtain the needed agent and other resources and the Parameter Man-

ager to obtain the step’s input artifacts. The Step Sequencer packages

all of this into an agenda item, which the Agenda Manager places on

the agenda of the step’s selected agent. The agenda manager moni-

tors the status of all agenda items, detecting whether exceptions are

thrown by a step execution, and whether any error has been injected

by the system in the form of a defective output artifact. The duration

of a step’s execution is computed based on the agent’s behavior spec-

ification, the difficulty of the step, and execution conditions, and is

used to update the simulation clock.

While it is certainly necessary to specify in precise detail the

normative execution of a process in order to support discrete-event
imulation, our work requires going farther. In our work we are at-

empting to evaluate alternative approaches to error detection and

orrection. Therefore our work also requires the precise and detailed

pecification of how errors arise, creating defects, and how these er-

ors and defects can be detected and repaired. Based on these speci-

cations, different error detection and correction approaches can be

ompared.

For this project, we extended the JSim by augmenting it with the

se of an Injection Manager and a Response Manager. In addition, an

rror-Exception Repository was defined to store the descriptions of

he errors, exceptions and the responses that may happen for each

tep in our models (as described in Section 2). The Injection Manager

nspects the simulation status and, in collaboration with the Error-

xception Repository, decides whether or not to inject an error into

he simulation of the step’s execution. It injects these errors by ad-

usting the outcomes impacted by the generated errors (how these

mpacts are modeled is described in Section 2.3), thus causing faulty

rtifacts to be incorporated into the process simulation. Thus, the ex-

cution of a step may throw an exception either because of an in-

orrect result of a previous step, or because of some internal errors

uring the performance of a step. To handle an exception, a request is

ent to the Response Manager component to identify all of the possi-

le causes of the exception, all of the possible responses to each, and

o decide what response is to be simulated.

Execution history information is stored in the Data Dependency

raph (DDG), which is generated automatically during process ex-

cution. In the simplified example DDG shown in Fig. 5 there are

wo types of nodes: ovals and rectangles. Ovals represent step execu-

ion instances and rectangles represent data instances. Red rectangles

epresent exception objects. Each instance is labeled with a name,

nd some of the names are also indexed to represent the different

nstances of the named entity instantiated at different points during

rocess execution. There are two different kinds of edges in the di-

gram: data flow edges, which are used to connect data instances

hat are used and created to the step instances using and creating

hem, and control-flow edges, which represent the step execution se-

uencing. Fig. 5 also contains boxes that indicate possible errors and

teps that may cause them. As an example, in Fig. 5, the step Create

aunch Configuration initializes the TotalNodeNum[1] to 2 and con-

guration[1] to i5, which means that two nodes need upgrading with

PU i5. (In this example, we omit other related configuration context

ata such as memory size, software version, etc.). Then, Configure

oncurrent ASG num performs the actual upgrade with one ASG by

odifying the parameter configuration[2] with concurrent ASG num-

er 1. Configure concurrent node num takes configuration[2] as in-

ut and uses the value 2 for the concurrent node in the configuration
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Fig. 6. Flowchart summary of the error injection process.
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le marked as configuration[3]. This DDG might be generated, for ex-

mple if a low-skilled operator erroneously tries to do a setup with

oncurrency larger than the allowed maximum (in which case we in-

ect an error with probability 0.05—because the operator’s skillLevel

s less than 3). But before upgrade starts, another operator changes

he configuration to CPU i3 for some reason. This modification will be

riggered by an exception that causes the handler Modify Configura-

ion to set the value of CPU to i3 in configuration[4].

.2. Injection manager

The actual injection of errors into a simulation is performed by an

njection Manager. In a normative (error-free) execution, the agent

esponsible for executing a step performs it as defined in the JSim

gent Behavior specification, creating the desired outcomes by trans-

orming input artifacts into output artifacts. To simulate the creation

f defects that require detection and repair, it is necessary to simu-

ate non-normative execution of steps that inject errors in the form

f defective outputs. These may, in turn, cause exceptional condition

andling, depending on whether or not the generated defects are

etected.

For every step that is simulated, the Injection Manager is invoked

o decide whether an error is to be injected, and if so, what the error

hall be, as shown in Fig. 6. For a given step simulation, the injection

rocess starts with the Error Generator gathering step execution sta-

us information from the agenda of the agent performing the step,

here the step’s execution status is defined as:

StepStatus = (Step, Inputs, Outputs, Res); where

• Step is the step specified by the agenda item.
• Inputs is the set of artifacts received as input to the step, In-

puts = {inp1, inp2, … inpn}.
• Outputs is a set of artifacts generated or propagated by the step.

Outputs = {outp1, outp2, … , outpn}.
• Res is the set of resources assigned to perform the step.
Then, the Injection Manager consults the Candidate Manager to

earch the Error-Exception Repository to identify all possible ways in

hich the execution can be erroneous. This is done to determine a

et of candidate errors that may occur in the execution of that step.

or each candidate error the Condition Checker is invoked to filter out

rrors that are deemed to be of too low probability, based on current

onditions as determined using current status and error information.

he Condition Checker uses the condition part of the CPT_Err defini-

ion of each Error to make this determination. Thus, for example, the

PT_ Err specification may specify that an error can only be gener-

ted when the agent performing the step is a human. In that case, the

ondition Checker will examine the type of the agent performing the

tep to determine if the error can be generated. Other execution sta-

us information, such as the phase of process execution, time limits

hat have been placed on step execution, or prior attempts to execute

his step (perhaps by other agents) might also be used by the Condi-

ion Checker and compared to CPT_ Err specifications.

Once the Condition Checker determines that it is possible for an

rror to be generated, the Error Generator then evaluates the prob-

bility of the occurrence of each feasible error under current condi-

ions and uses probabilistic distributions to determine which of the

easible errors to generate. It generates one or more errors comparing

randomly-generated number to the probability distribution for each

rror, under the current execution circumstances, as specified in CPT_

rr. Finally, the Error Injector will inject the error into the process by

ltering one or more parameters in its output artifacts accordingly, as

pecified by the Imps component of the defined Error.

.3. Response manager

It is the job of the Response Manager to decide how to respond

nce an exception needs to be handled during the execution of a sim-

lation. As noted above, defects caused by a non-normative process

xecution may be detected either by an agent in the process of exe-

uting a step or by an explicit checking step such as a post-requisite

as shown in Section 2.2.2). In either case the detection of the defect

auses an exception to be thrown. Section 2.2.3 suggested a variety of

verall approaches to handling such an exception. In this section we

iscuss this in more detail.

The response to a detected error depends on an analysis of the na-

ure of the defect. This may be difficult because the defect may be de-

ected long after it was created by a non-normative execution, during

hich time the effects of the error may have propagated widely. The

esponse Manager is designed to support careful analysis of symp-

oms to find the cause of the exception and select one possible solu-

ion. In our simulations the Response Manager is triggered explicitly

y the execution of a Diagnosis step (e.g. see Fig. 2), which receives a

equest formatted as:

equest = (Exception, FailedCondition)

where Exception is the exception instance thrown by the process

nd FailedCondition is the unsatisfied predicate that triggered the ex-

eption.

For each diagnosis request, the Response Manager is executed in

hree phases, as follows:

1. The Diagnoser uses the FailedCondtion to query for all pos-

sible causes. To find the cause, the Cause Manager consults

the Error-Exception repository to obtain all errors that might

have possibly caused the exception. An error will be selected

as a possible cause if its Imps contains the defect and satisfies

the FailedCondtion. Thus PossibleCause, the set of errors that

might possibly cause the exception is:

error ∈ PossibleCause ⇔
∀ x (x ∈ FailedCondition → x ∈ error.Imps)
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3 http://redis.io/.
4 http://logstash.net/.
5 http://www.elasticsearch.org/.
6 http://kibana.org/.
7 https://github.com/Netflix/asgard.
For example, in Fig. 5, execution of the process may throw

the launch fail exception if the CPU version in the configura-

tion file is < i5. In that case, PossibleCause includes error0 and

error2, which would alter the CPU configuration version to i3.

2. Next, the Cause Analysis component analyzes the related exe-

cution history data in the DDG to infer the possible causes of

the exception. Cause Analysis traces backwards iteratively and

recursively through the DDG to find the modification history

for all of the parameters used in FailedCondition. For each re-

viewed step, Cause Analysis determines whether any of the pa-

rameters have been impacted by errors in PossibleCause. This

trace back iteration stops when an error is identified as a cause.

Cause Analysis identifies an error in SourceCause as the cause

if the impact of the cause is reflected in the outputs of the step

instances:

error ∈ SourceCause ⇔
∀x (x ∈ error.Imps → x ∈ step.Out puts)

As an example, the failed parameter in Fig. 5 is the config-

uration, which is changed in previous steps in the process.

Cause Analysis backtracks through the process. First, Upgrade

one Node will be reviewed and analysis will show that that

step does not change the value of configuration. But review

will show that execution of Modify Configuration may cre-

ate error2, which is one of the errors in PossibleCause. So, if

the output configuration file has CPU = i3, then it will be iden-

tified as a source cause of the exception. If not, then checking

will continue backwards through the DDG.

3. Finally, after the identification of a source cause, the Diagnoser

uses Cause Analysis results to obtain a response from the So-

lution Manager. The Solution Manager queries the repository

to find all possible ways to repair the error, based on the in-

ferred cause (which may indeed be incorrect) and the defined

ExceptionResponse model in the Error-Exception repository. At

present each cause has only one response, which is then se-

lected. In future work we will address the problem of how best

to select the response that is most appropriate to the current

process execution state. It should be noted that the repair ac-

tions themselves could be flawed requiring further fixing that

will extend the process duration and workload. The execution

time for the diagnosis step in the handler is modified taking

into account the defined diagnosis cost. And the frequency of

the error is updated using the LearnRate. After that, the pro-

cess continues by seeking prior causes for the exception that

has been repaired. In this way we address the need to repair

ripple effects of defects whose detection was delayed, thus let-

ting defects propagate.

4. Case study

This section describes initial evaluation of our approach through

the simulation of two common deployment processes in a distributed

cloud-based execution environment — rolling upgrade and continu-

ous deployment. For both cases, we modeled the deployment pro-

cess, possible errors, exceptions, and repair operations using our

modeling approach. We then simulated both processes for large-scale

operations and compared the simulation results and recommenda-

tions with the data we collected from corresponding process execu-

tions in real-world settings.

A Personal Computer with Intel Core CPU (2.9 GHz) and 8GB RAM

was used to perform the simulations. Each simulation consisted of

500 executions of the Little-JIL model of the process. For each case

study, 5 simulations were performed in order to ensure that 95% con-

fidence intervals were attained for all performance measures.

Each execution of the Little-JIL model of the process consisted

of a discrete event simulation performed using the JSim simulation
ngine. As described in the paper, each execution entailed the simu-

ated performance of steps, some of which were error-prone, result-

ng in different executions of some steps, causing each execution of

he process to potentially be different from any of the others. Thus, by

unning 500 executions we expected to cause a range of different exe-

ution behaviors. The decision to run 500 executions for each simula-

ion was dictated by consideration of the running-time for each sim-

lation. Then, to make sure the simulation results were sufficiently

epresentative to support a thorough case study, we performed five

imulation runs and checked to see that those five simulation runs

roduced sufficiently comparable results. We used statistical hypoth-

sis testing to evaluate the hypothesis: the five data sets originate

rom the same distribution. We used the Kruskal–Wallis test to make

ure these results from different simulations did not show significant

ifferences at the p = 0.05 level. The mean p-Value for our case stud-

es averaged 0.676, which means that our simulations produced rep-

esentative results.

We populated the models of these processes with empirical data

athered from small-scale experiments and from the literature, and

hen used simulations of the processes to:

(1) Suggest the optimal number of concurrent groups and nodes

to be processed in parallel, given various early error-checking

strategies in the rolling upgrade process.

(2) Suggest the effectiveness of using humans, scripts, and pre-

baked images to perform various steps during the deployment

process and identify those steps in these two processes that are

the most sensitive, and therefore the most important to study.

.1. Rolling upgrade simulation and validation

This section describes our simulations of a process for doing

olling upgrade of a distributed log monitoring application that con-

ists of Redis,3 Logstash, 4 ElasticSearch5 and Kibana6 running on the

buntu operating system. Each deployed instance of this process can

e used to aggregate distributed logs produced by the customer’s

wn applications. We have based our work on the study of 72 in-

tances of this process, all deployed in AWS and all using Netflix’s

sgard tool7 to assist the rolling upgrade.

Of all the potential rolling upgrade process errors, one of the most

hallenging is the ASG mixed version error, which can be caused, for

xample, by changing a launch configuration during an ongoing up-

rade. In executing this process, there are situations in which mul-

iple operators may be allowed to manipulate the same ASG. Under

uch circumstances, the launch configuration used by an ASG could

ossibly be changed unexpectedly after the rolling upgrade starts. A

hanged launch configuration would not block the upgrade process,

ut could cause the ASG to end up with instances using two differ-

nt launch configurations. A simple lockdown of the configuration by

ndependent teams is not advisable in high frequency deployments

ecause of resulting loss of efficiency and need for additional com-

unication among teams. So it is important to find an optimal strat-

gy for error-checking and repairing mixed version defects during the

pgrade process.

.1.1. Scenario 1: rolling upgrade without error

Before evaluating different error checking strategies, we did initial

imulation and validation of the model of our process definition. In

his experiment, the process is executed without any error but with

ifferent configurations.

http://redis.io/
http://logstash.net/
http://www.elasticsearch.org/
http://kibana.org/
https://github.com/Netflix/asgard
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Fig. 7. Simulation: completion times with different concurrent node settings.

Table 1

Experiment: completion times of different rolling upgrade concurrent node

settings (3 runs each).

6 nodes (min) 12 nodes (min) 18 nodes (min)

Sim Exp Sim Exp Sim Exp

Avg: 82.19 75.02 Avg: 46.36 40.23 Avg: 33.40 30.70

Min: 73.06 73.10 Min: 40.6 45.07 Min: 29.28 29.80

Max: 96.1 74.85 Max: 52.58 44.30 Max: 38.36 30.82

n

t

r

o

e

S

v

t

i

6

p

a

u

p

t

f

v

u

s

p

s

4

d

c

b

a

i

t

a

m

o

t

t

c

Fig. 8. Simulation: completion times with configuration change faults injected at dif-

ferent times.

Fig. 9. Simulation: impact of the execution time with post check.
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• Simulation

We ran the rolling upgrade simulation with different concurrent

ode settings. The results in Fig. 7 show that the upgrade completion

imes vary with the number of concurrent nodes (number of concur-

ent nodes with an interval of 3) in expected ways where small groups

f concurrent nodes will lead to longer upgrade times. And the differ-

nce narrows with an increase in the number of concurrent nodes.

pecifically, we found that the completion time has a larger range of

ariation when the number of concurrent nodes is smaller than 21.
• Validation

We then conducted upgrade experiments with three configura-

ions that modeled our real 72-node deployment, including upgrad-

ng 6 nodes, then 12 nodes, then 18 nodes at a time. We chose only

, 12, and 18 in the experiment because upgrading only 3 nodes in

arallel would have be too slow and upgrading more than 18 in par-

llel violated our rule that not more than 25% of all nodes should be

pgraded at any given time. The results in Table 1 compare the com-

letion times observed in actual practice in a real-world setting with

he average and median completion times of simulation (calculated

rom the data shown in Fig. 7).

The observed completion times and the simulation results are

ery close to each other (the difference in average time between sim-

lation and experiments is 8.4% on an average). These results also

how that the more concurrent nodes, the shorter the rolling upgrade

rocess is and the 18-node concurrency indeed yields the fastest re-

ults as expected.

.1.2. Scenario 2: rolling upgrade with errors

To further understand the impact of ASG configuration change

uring an upgrade, we ran our simulation while also injecting one

onfiguration change fault into the process at a random point of time

etween 0 and 150 simulation minutes. All the instances launched

fter the launch configuration were then changed and were then us-

ng the wrong launch configuration and thus needed to be replaced

o fix this error. The resulting mixed version defect does not cause

ny immediately observed failure and thus does not cause any im-

ediate exception. Thus, this defect cannot be detected until the end

f the process through testing, as is represented by the Test step in

he process shown in Fig. 2. Once the defect has been detected, all of

he nodes with the wrong configuration can then be replaced by the

orrect versions.
The results of simulating this error scenario are shown in Fig. 8.

he results give a good picture of the completion time impact of the

efect under different conditions. Generally, the smaller the number

f concurrent nodes the longer the amount of time to complete the

rocess. However, the relationship between the completion time and

rror injection time is different for different configurations. The pro-

ess with less concurrent nodes is less sensitive to the error injection

ime, which is shown by the smaller slope of the graph of timing re-

ults shown in Fig. 8. And, conversely, the larger the number of con-

urrent nodes the more sensitive is the overall execution time of the

rocess to the injection time, as the defect resulting from this error

ropagates more rapidly under these circumstances.

Various early error-checking strategies can be used in this process.

herefore, we then used simulation to explore two such strategies. As

hown in the previous simulation, different error injection times will

mpact the completion times of processes having the same configu-

ation. Thus, in this study, we injected an error within the first 10 min

f the simulated process execution to limit the impact of the error

njection time.

(1) Periodic checking

The first strategy introduced periodic error checking during pro-

ess execution. To be able to detect changing the launch configuration

arlier, we introduced an evaluator, which periodically checked the

aunch configuration used by ASG. In our experiments we checked

his every 10 min. Once the defect was detected, we associated the

SG with the correct launch configuration. After the upgrade was

ompleted, we terminated the instances with the wrong launch con-

guration, and created the same number of new instances with the

orrect launch configuration.
• Simulation

The simulation results are presented in Fig. 9, which shows that

eriodical checking significantly reduces process completion time.
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Table 2

Experiment: 1-ASG without early error checking.

Detection (min) Wrong node Fix (min) Completion (min)

Exp Sim

6 74.10 66 293 367.10 Avg: 379.19 STD: 0.168

9 51.73 63 253.26 304.99 Avg: 350.03 STD: 0.138

12 39.73 60 245.5 285.23 Avg: 316.36 STD: 0.115

18 29.37 57 238.61 267.98 Avg: 282.70 STD: 0.08

Table 3

Experiment: 1-ASG with early error checking.

Detection (min) Wrong node Fix (min) Completion (min)

Exp Sim

6 10.23 12 49.05 123.11 Avg: 137.01 STD: 0.385

9 10.19 17 69.18 120.91 Avg: 134.65 STD: 0.327

12 10.18 21 82.38 122.22 Avg: 147.63 STD: 0.336

18 10.21 30 120.5 149.87 Avg: 163.34 STD: 0.275

Fig. 10. Simulation: repair time with different numbers of ASG and concurrent node.

Table 4

Experiment: multi-ASG with configuration change fault.

2-ASG, 36 nodes each 4-ASG, 18 nodes each

3 Exp 76.15 35.98

Sim Avg: 78.12 STD: 0.303 Avg: 42.5 STD: 0.189

6 Exp 36.63 20.62

Sim Avg: 43.04 STD: 0.212 Avg: 25.57 STD: 0.127

9 Exp 27.72 19.55

Sim Avg: 33.04 STD: 0.137 Avg: 19.49 STD: 0.09
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However, with this strategy, the ASG with the largest number of con-

current nodes caused the largest number of nodes to have the wrong

launch configuration, and required the longest time to fix the er-

ror. For larger numbers of concurrent nodes the differences between

completion times with and without post checking are closer to each

other, presumably because a group with a defect can be detected and

repaired more quickly. Thus, doing post checking every 10 min did not

detect faults until nearly the end of execution of the process. These

results hold even when larger numbers of nodes are upgraded con-

currently thereby causing more defective instances leading to longer

repair times. Fig. 9 shows that 9-node concurrency leads to the fastest

completion time.
• Validation

We executed these processes in our real-world distributed de-

ployment environment to validate the simulation results. Tables 2

and 3 show the number of defective nodes at the time of detection,

the repair time, and the total completion time respectively. The dif-

ference between the average completion times obtained from simula-

tion and experiments is 9.6% on an average. These observation results

confirm that the number of defective nodes depends on the number

of concurrent nodes. The more concurrent nodes, the more correct

new nodes in the ASG were launched within the previous detection

interval, and the less time was spent doing repair. The result shows

that upgrading 9 nodes concurrently resulted in the fastest comple-

tion time.

(2) Concurrent upgrade with fine-grained ASGs

We also used our approach to study the strategy of improving the

performance of the rolling upgrade process by introducing more fine-

grained ASGs rather using a single ASG, and allowing multiple ASGs to

perform upgrades simultaneously. We conducted experiments with

two configuration settings: 2 ASGs with 36 nodes in each, and 4 ASGs

with 18 nodes in each. In this study, we injected the fault of changing

the launch configuration for one of the ASGs. During rolling upgrade,

the multiple ASGs were executed simultaneously. Error checking was

done after each ASG was completed.
• Simulation

As above, we simulated the deployment of one, two and four ASGs

with 3,6,9,12,15 and 18-node concurrency. Fig. 10 shows the average

repair time after configuration faults were introduced. The simula-

tion shows that under some circumstances, using multiple ASGs with

less concurrency within each can outperform a single ASG with more

concurrency. The experimental results show that both detection time

and repair time are proportional to the number of concurrent nodes.

Once the defect was detected, after the rolling upgrade completed,

the defect was fixed by using the correct launch configuration to do

an extra rolling upgrade on the faulty ASG.

T

• Validation

The actual results observed in our real-world deployment en-

ironment again validated these simulation results. The results in

able 4 are consistent with simulation results where the difference

n average fixing time between simulation and experiments is 11.3%

n an average. The results indicate that using multiple ASGs has the

ame effect on reducing overall execution time as early error check-

ng with a single ASG.

.2. Continuous deployment simulation and validation

Our second case study explored different continuous deployment

rocesses for a Hadoop/Hbase cluster used in a privacy analysis

roject. We first modeled the deployment of a Hadoop/HBase clus-

er as a set of processes where the agents for key process steps might

e either humans, automated deployment scripts on top of a lightly-

aked AMI, or a heavily-baked AMI.

Each of these three kinds of agents have some advantages and

ome disadvantages. The characteristics of each are described in

able 5. We note that:
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Table 5

Characteristics of the three types of agents.

Heavily-baked AMI Automated script Operator

Need for checking results Do not need Need Need

Speed Longest preparation time. Less preparation time than pre-baked AMI, and runs faster than human operator Runs the slowest.

Fault rate No fault Has much lower fault rate. Highest fault rate.

Difficulty of error diagnosis – Hard to diagnose Easier to diagnose.

Fig. 11. Simulation: distribution of execution times.
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Fig. 12. Simulation: sensitivity analysis showing impact of fault rate on overall time,

defect and exception.
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(1) A human operator is relatively slower and inevitably makes

human errors, such as typos and semantic mistakes (Keller

et al., 2008) during this kind of deployment. However, man-

ual installation is more amenable to interactive error diagnosis

than installation performed by either of the other two kinds of

agents.

(2) Automated script/deployment tools perform steps much faster

than humans, and they avoid human errors. But the use of

scripts may make error diagnosis difficult and the speed at

which errors propagate complicates error detection and can

necessitate more extensive repair actions.

(3) Deployment using heavily-baked AMI (so no more software is

required to be installed by either humans or scripts after a VM

is launched) is fastest of the three, and it is reasonable to as-

sume that it is more reliable because it has presumably been

carefully tested through extensive prior use. But preparing a

heavily-baked AMI can be a time-consuming activity and im-

plies terminating existing nodes for even small updates. The

result typically offers far less flexibility than the other two ap-

proaches.

The first simulation was based on the basic description of the

hree resources. We ran simulations for the installation of a 4-node

adoop/Hbase cluster using each of the three types of agent. Fig. 11

hows the distribution of completion times for the installations. On

n average, the manual installation took longer than the other two,

nd in most cases, the script took the least time to complete. How-

ver, repairing errors introduced by a faulty script took longer than

he time required to repair the errors introduced by the manual in-

tallation. Heavily-baked AMI execution time showed the least varia-

ion, and did not cause any installation failures.

We were also particularly interested in identifying bottleneck

teps, because a bottleneck step in a multistage process can impede

rocess performance most strongly. Generally, improving the perfor-

ance of bottleneck steps can result in significantly higher through-

ut. So, besides the basic simulation, we also conducted sensitivity

nalysis to determine those actions whose improvement can be ex-

ected to have the greatest effect on completion time and overall

ailure rate. We adjusted the error rate of steps first by increasing

t by 50% and then decreasing it by 50%, and recorded the percent-

ge changes in execution time, fault and failure rates. As shown in
ig. 12, the installation of Hadoop is the most sensitive part of the

eployment process. The installation of Hadoop requires more con-

guration than the other steps. Moreover, Zookeeper and HBase are

nstalled on top of Hadoop. Thus, the correctness of Hadoop impacts

oth Zookeeper and HBase installation correctness.

We ran simulations to compare the results obtained using each of

he three, and to demonstrate the tradeoffs among them under dif-

erent configurations.
• Simulation

To illustrate the impact of cluster size on the deployment process,

e simulated clusters with 2, 4, 10 and 100 nodes (execution of a

00 node cluster by a human operator was not done as the time re-

uired was considered to be excessive) and the results are as shown

n Fig. 13. These results show that the completion time for manual in-

tallation largely depends on the total number of nodes because it is

sequential operation (on an average, 171 min for 2 nodes, 309 min

or 4 nodes and 723 min for 10 nodes). The overall fault and failure

ates for installations using a script are not affected much by the clus-

er size, because the same script is used to install all the nodes in

he cluster. Thus, execution times increase slowly when the sizes of

he clusters increase (on average, 123 min for 2 nodes, 135 min for 4

odes, 199 min for 10 nodes and 1007 min for 100 nodes). The sim-

lation results suggest that AMI is the most stable option for differ-

nt sizes of clusters (on average, 169 min for 2 and 4 nodes, 176 min

or 10 nodes and 268 min for 100 nodes). In general, the results also

how that the use of the three different kinds of agents does not cause

ignificant differences in the results obtained when there are only a

mall number of nodes (such as when there are only 2 nodes). And

he difference increases as the number of nodes increases. The use of

eavily-baked AMIs is advantageous only for large scale installations

such as when there are more than 100 nodes) where the long time
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Fig. 13. Simulation: impact of different cluster sizes on execution times.

Table 6

Experiment: completion time of Hadoop deployment.

Script (min) AMI (min)

10 nodes 100 nodes 10 nodes 100 nodes

26 288 4.43 6.2

27 287 4.48 5.93

27 286 4.85 6.15
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required to prepare the heavily-baked AMI is justified by its use on a

large number of nodes.
• Validation

We then conducted experiments to compare different options for

deploying a Hadoop Cluster. In our experiment, we use scripts and

AMI respectively. We used Chef 8 to create our script. We deployed

our own Chef server on AWS to host the cookbooks, the policies ap-

plied to nodes, and metadata about the node being manipulated by

the chef-client. For pre-baked AMI, we used the Elastic Map Reduce

(EMR) service provided by AWS. EMR helps deploy Hadoop on EC2 in-

stances, and uses Amazon Simple Store Service (Amazon S3) to store

input and output data.

We collected data for the deployment of a Hadoop cluster with

two different settings, namely, 1 master plus 9 slaves and 1 mas-

ter plus 99 slaves. The clusters were based on EC2 small instances

with the Ubuntu operating system. For each cluster, we used both a

script and AMI 3 times to do the deployment. As shown in Table 6, the

script deployment completion time depends on the size of the cluster

(The results in Table 6 do not include the time used for preparing the

script/AMI).

4.3. Threats to validity

The main goal of this research is to present an innovative approach

for gaining understandings of how error checking and repair should
8 http://www.opscode.com/.

s

c

b

e done for complex human–computer processes such as continu-

us deployment and rolling upgrade processes, where humans and

cripts often have to interact and neither has a definitive edge over

he other. Although quantitative results have been obtained and pre-

ented, it is the overall approach, rather than these quantitative re-

ults, that is the main contribution of this research. Indeed the nature

f our evaluations does seem to suggest that our approach can indeed

e effective in gaining understandings, but also suggests that there is

oom to questions the validity of the specific quantitative results.

In particular, we note that we evaluated our approach only on two

ase studies, continuous deployment and rolling upgrade. We chose

hese two processes because they are both complex and representa-

ive. They are also relatively highly automated, and can be sufficiently

ell-defined to be the subjects of analysis. Moreover, that fact that

oth of them can entail contributions of both human and various non-

uman agents, they presented an opportunity to explore the relative

erits of each. In addition, there remains some question about the

ccuracy and completeness of the various parameters that we used

o characterize the performance and error-behaviors for each type of

gent. There is also some doubt that we carried out a sufficient num-

er of simulations to reduce the variability of the results that we have

btained.

On the other hand, our approach does appear to be promising as

way to support analysis of error detection approaches for other

lasses of processes. Our approach applies to processes where the

erformance of each individual step may be erroneous, and seems

uitable for studying appropriate strategies for identifying these er-

ors early and addressing the remediation of their effects. We believe

hat this approach should be applicable to any processes where errors

an perturb the normal/desired action of a step and create output ar-

ifacts that can propagate that error more broadly. Our approach re-

uires a specification of the structure of the process as a collection

f steps, a specification of the behaviors of the agents performing the

teps, a specification of how certain errors can occur during the exe-

ution of the steps, and how the defects created by these errors can

e detected and addressed. Our approach seems to have limited ap-

licability to processes for which the errors and defects cannot be

escribed clearly or the process cannot be described precisely.

It should also be noted that the validity of our quantitative results

lso depends on how precisely, and to what level of detail, we have

odeled the processes in the two example domains. While we have

alidated these processes through interviews with domain experts,

he possibility of errors in the process models themselves remains,

nd could potentially reduce the accuracy and validity of our quanti-

ative results.

Finally, although the experience data we used were taken from

eal-world systems and real-world projects, these projects were not

arried out as a part of the regular daily operation of production sys-

ems. Thus, for example, there is a certain amount of concurrency

n the actual rolling upgrade process that was not represented com-

letely accurately in our simulations. Future simulations will need to

e more accurate.

Consequently, we caution the reader to view our quantitative re-

ults with some skepticism, but do strongly encourage the reader to

onsider the value of the simulation and analysis framework that has

een presented.

http://www.opscode.com/
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. Related work

Simulation models are generally employed as the basis for

nalyses of various kinds in various domains. In very early work

uthors such as Forrester et al. (1961) demonstrated the use of con-

inuous simulation for specification and analysis of processes. The

ell-known System Dynamics framework for continuous simulation

odels is described in great detail by Madachy (2007). It has been

sed to model and analyze a number of engineering project man-

gement applications (Wolstenholme et al., 2003; Stavredes, 2001).

ince the work of Abdel-Hamid et al. (1991), research and practice on

oftware development have successfully adopted and continuously

elied heavily on System Dynamics (Tvedt et al., 1996; Pfahl, 2001).

ore recently discrete event simulation (Fishman, 2001) seems to

e a more prevalent approach. Authors such as Raffo (1996), Huo et

l. (2006), and Al-Emran (Al-Emran et al., 2008) have applied this

pproach to the analysis and improvement of software development.

uch models have also been particularly useful in supporting analysis

f healthcare processes (Clarke et al., 2008; Lenz et al., 2013), web

ervice processes (Estublier et al., 2005), and election processes

Raunak et al., 2006; Phan et al., 2012), as well.

But these earlier approaches have generally assumed that all pro-

ess activities were carried out correctly, which undermines the real-

sm of these models, and the relevance and accuracy of their results.

epresenting the possibility of incorrect performance and the propa-

ation of its effects are fundamental problem for many process defi-

ition approaches. Thus, for example, models such as Markov Chains

Norris, 1998) and Petri Nets (Murata, 1989) have been used to specify

nd analyze processes. But the accurate representation of the ripple

ffects of incorrect performance and the use of conditional proba-

ilities to accurately quantify these effects requires a proliferation of

tates in Markov Chains and places in Petri Nets. As this prolifera-

ion can be quite considerable, the use of these notations can be quite

roblematic.

Error injection is a well-known approach in the program testing

ommunity having been pioneered with the suggestion of Mutation

nalysis (Budd et al., 1978), and followed by a considerable volume of

ork on various approaches to inserting errors into code and tracing

heir effects. But there has been a little work on using error injec-

ion to study processes. Little-JIL (Wise, 2006) is proving to provide

better basis for the precise and accurate representation of process

ctivity errors and the propagation of their effects.

In cloud computing, analyzing operation-error troubleshooting

rom an artifact and provenance point of view can link issues back

o source code, and improve configuration and log analysis (Xu et al.,

009; Tucek et al., 2007). However, these types of analyses do not

iew operations as processes that incorporate exception handling and

re not aimed, as is our work, at improving these processes them-

elves. This previous work considered the processes as black boxes

nd analyzed their impact on overall availability using SRN (Stochas-

ic Reward Nets) models (Lu et al., 2013b). Treating them as black-box

ctions and assuming that they perform correctly has severe limita-

ions on the real world applicability of the analysis results. Fault in-

ection frameworks, such as ConfErr (Keller et al., 2008), were used

o investigate a system’s reaction to various errors but they were not

sed to inject process-related operation errors. Other major work in-

ludes the use of simulation for cloud environment resource provi-

ion (Calheiros et al., 2011) but such work is difficult to be used for

imulating operations processes such as upgrade.

. Conclusions and future work

Human intensive processes, such as deployment processes entail-

ng intricate interactions among cloud infrastructure, tools, and ad-

inistrators are prone to errors. Various strategies for preventing the

roliferation of these errors exist. But it can be difficult to decide
hen, where, and how to check for errors, diagnose them and redo

ertain steps in view of the fact that different strategies have different

osts and efficacies. The structures of these processes and their arti-

act collections also have important impacts on the strategies to be

sed for detecting and correcting errors. The strategies can be com-

lex and their implications are not immediately clear. Our framework

acilitates experimentation with how different strategies affect pro-

ess performance, reliability, and resource use.

In this paper, we extend the process-modeling language Little-

IL and provide a process-aware simulator. We describe the use of

iscrete event simulation to study the tradeoffs between different

pproaches to error detection and repair to configure and maintain

he deployment process. The evaluation of our approach through

iscrete-event simulation was done for two common deployment

rocesses in a distributed cloud-based environment—rolling upgrade

nd continuous deployment. These case studies suggested that our

ramework is reasonably easy to use and provides useful insights into

he costs and benefits of the strategies we explored. Thus, we sug-

est that this framework can support analysts who are attempting

o make decisions about trading off human effort for various types

f automation, despite uncertainties introduced by the possibility of

any types and distributions of possible errors.

We applied our approach only to the deployment process in dis-

ributed cloud-based environments. Thus, more work remains:

First, the approach should be applied to processes in other error-

rone domains, to determine how well it can be generalized. This will

equire more empirical studies that will hopefully also validate our

ndings more firmly.

Second, the process oriented modeling and simulation approach

hould be extended to handle more types of errors that are likely to

ccur in this and other domains, and to extend the generality of our

rror and repair definitions. For example, we currently allow for only

ne repair for a single detected error, which is an inadequate reflec-

ion of real-world realities.

Third, we should complement the dynamic simulation approach

aken in this work with complementary static analysis. In other work

e have found that large, detailed processes such as those described

ere often have errors that compromise the validity of simulation re-

ults. Preliminary scans of our processes have not revealed such er-

ors, but formal approaches such as model-checking of our process

efinitions are desirable to increase confidence in our results. In addi-

ion, we should apply Fault Tree Analysis, as was done in other work

Lenz et al., 2013) to identify how undesirable outcomes can result

rom erroneous performance of single steps, or pairs of steps. This

ould augment the simulation approach to identifying the most crit-

cal process steps, which we described in Section 3.
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