
76

Blindspots in Python and Java APIs Result in Vulnerable
Code

YURIY BRUN, University of Massachusetts Amherst

TIAN LIN and JESSIE ELISE SOMERVILLE, University of Florida

ELISHA M. MYERS, Florida Atlantic University, University of Florida

NATALIE EBNER, University of Florida

Blindspots in APIs can cause software engineers to introduce vulnerabilities, but such blindspots are, unfortu-

nately, common. We study the effect APIs with blindspots have on developers in two languages by replicating

a 109-developer, 24-Java-API controlled experiment. Our replication applies to Python and involves 129 new

developers and 22 new APIs. We find that using APIs with blindspots statistically significantly reduces the

developers’ ability to correctly reason about the APIs in both languages, but that the effect is more pro-

nounced for Python. Interestingly, for Java, the effect increased with complexity of the code relying on the

API, whereas for Python, the opposite was true. This suggests that Python developers are less likely to notice

potential for vulnerabilities in complex code than in simple code, whereas Java developers are more likely to

recognize the extra complexity and apply more care, but are more careless with simple code. Whether the

developers considered API uses to be more difficult, less clear, and less familiar did not have an effect on their

ability to correctly reason about them. Developers with better long-term memory recall were more likely

to correctly reason about APIs with blindspots, but short-term memory, processing speed, episodic memory,

and memory span had no effect. Surprisingly, professional experience and expertise did not improve the de-

velopers’ ability to reason about APIs with blindspots across both languages, with long-term professionals

with many years of experience making mistakes as often as relative novices. Finally, personality traits did not

significantly affect the Python developers’ ability to reason about APIs with blindspots, but less extroverted

and more open developers were better at reasoning about Java APIs with blindspots. Overall, our findings

suggest that blindspots in APIs are a serious problem across languages, and that experience and education

alone do not overcome that problem, suggesting that tools are needed to help developers recognize blindspots

in APIs as they write code that uses those APIs.

CCS Concepts: • Software and its engineering; • Human-centered computing→ User studies; • Hu-

man computer interaction→ Software security engineering;

Additional Key Words and Phrases: Software vulnerabilities, Java, Python, APIs, API blindspots

This work is supported by the National Science Foundation under grants CCF-1453474, CNS-1513055, CNS-1513457, CNS-

1513572, and CCF-1564162.

Authors’ addresses: Y. Brun, University of Massachusetts Amherst, 140 Governors Drive, Amherst, MA, 01003-9264; email:

brun@cs.umass.edu; T. Lin, J. E. Somerville, and N. Ebner, University of Florida, Gainesville, FL, 32611-2250; emails:

lintian0527@ufl.edu, JSomerville@dental.ufl.edu, natalie.ebner@ufl.edu; E. M. Myers, Charles E. Schmidt College of

Medicine, Florida Atlantic University, Boca Raton, FL, 33431 and University of Florida, Gainesville, FL, 32611-2250; email:

myerse2020@health.fau.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/04-ART76 $15.00

https://doi.org/10.1145/3571850

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

https://orcid.org/0000-0003-3027-7986
https://orcid.org/0000-0003-2615-3577
https://orcid.org/0000-0001-9721-1004
https://orcid.org/0000-0002-9749-8671
https://orcid.org/0000-0002-2705-7520
mailto:permissions@acm.org
https://doi.org/10.1145/3571850
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571850&domain=pdf&date_stamp=2023-04-26

76:2 Y. Brun et al.

ACM Reference format:

Yuriy Brun, Tian Lin, Jessie Elise Somerville, Elisha M. Myers, and Natalie Ebner. 2023. Blindspots in Python

and Java APIs Result in Vulnerable Code. ACM Trans. Softw. Eng. Methodol. 32, 3, Article 76 (April 2023),

31 pages.

https://doi.org/10.1145/3571850

1 INTRODUCTION

Vulnerabilities are, unfortunately, ubiquitous in modern software [94]. For example, in 2006,
Mozilla had 300 bugs reported per day [7], and per bugzilla.mozilla.org, the situation has not im-
proved since. In 2013, the global cost of debugging was $312 billion [18]. In 2020, the global cost
of poor quality in legacy systems was $520 billion, and the cost of operational software failures
$1.56 trillion [58]. The fact that programs ship with both known and unknown bugs is a well-
known and accepted fact [61]. Web-based software, in particular, suffers from quality problems,
with 76% of all websites containing software vulnerabilities; 9% of them critical [94].

It is important to note that most vulnerabilities are not from new causes. New applications often
contain instances of vulnerabilities that have been known for years: 61% of all web applications
contain one of the vulnerabilities captured by the OWASP Top 10 2013 vulnerability categories
list [73], such as information leakage, flawed cryptographic implementations, and carriage-return-
line-feed (CRLF) injection [91]. And 66% of the vulnerabilities represent programming practices
that fail to avoid the top 25 most dangerous programming errors [31]. New instances of existing,
well-known vulnerabilities, such as SQL injections and buffer overflows, are frequently reported
in new software [48, 88].

One way in which vulnerabilities find their way into systems is when developers use application
programming interfaces (APIs) in unsafe or unintended ways. The problem lies, in part, in that
APIs can be counterintuitive. For example, use of strcpy()—known for nearly three decades [74] to
lead to a buffer overflow vulnerability if developers do not check and match sizes of the destination
and source arrays—can often cause blindspots in a developer’s mind. As a developer put it, “It’s not
straightforward that misusing strcpy() can lead to very serious problems. Since it’s part of the stan-
dard library, developers will assume it’s OK to use. It’s not called unsafe_strcpy() or anything, so it’s
not immediately clear that that problem is there” [70]. Using APIs can be difficult. Mapping require-
ments to proper API usage protocols, understanding API side effects, and even deciding between
differing expert opinions on API use all pose challenges [47, 79, 80]. Developers misunderstanding
APIs is frequently the cause of security vulnerabilities [28, 33, 78].

So, why do developers continue to use APIs that are known to cause vulnerabilities? Devel-
opers often blindly trust APIs, which can lead to blindspots: misconceptions, misunderstandings,
or oversights in how APIs are expected to be used [28]. Developers can even feel that they’re
outsourcing the responsibility for ensuring security when using APIs, not feeling themselves re-
sponsible for ensuring the API does the right thing with respect to security [70]. These blindspots
can lead to violations of the recommended API usage protocols and to the introduction of security
vulnerabilities, if, for example, API functions invocations have security implications that are not
readily apparent to the developer.

To study how blindspots affect developers, we recently designed and executed a Java-based con-
trolled study with 109 developers working on programming tasks called puzzles, which involve
answering questions about the expected behavior of small programs that use APIs [71]. Unlike
many studies, more than 70% of our participants were professional developers (and less than 30%
students); the average developer had more than six years of programming experience. We found
that (1) the presence of APIs with known blindspots reduced developers’ accuracy in answering

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

https://doi.org/10.1145/3571850
bugzilla.mozilla.org

Blindspots in Python and Java APIs Result in Vulnerable Code 76:3

security questions and their ability to identify potential security concerns in the code; (2) more
complex code puzzles, as measured by cyclomatic complexity, led to more developer confusion;
(3) surprisingly, developers’ cognitive function and expertise and experience did not predict their
ability to detect API blindspots, but (4) developers exhibiting greater openness and lower extraver-
sion were more likely to detect API blindspots. These findings have allowed research into under-
standing why developers make security mistakes [75, 101], gaining insight into the developers’
rationale in making API-use decisions [100], and evaluating the usability of security APIs [105]
including their application to smart contracts [103]. Unfortunately, our prior study had several lim-
itations. Most notably, it was limited to Java development. As such, while the findings shed some
light on challenges that arise in using APIs, the study could not determine which findings gener-
alize across languages and which are specific to Java, or, in fact, only to the API blindspots tested.

To address this shortcoming, in this article, we replicate that study with 129 new developers,
and 22 new puzzles incorporating all new APIs, 16 of which contain known blindspots. Most im-
portantly, our replication study is entirely in Python, allowing us to identify observations that
are language-specific versus those that generalize to broader development practices. Our study’s
129 developers include professional developers and senior undergraduate and graduate students
(91 professionals, 38 students, 28.6 years old on average, 89.9% male). We designed each puzzle to
contain a short code snippet simulating a real-world programming scenario. Of these puzzles, 16
contained one API function known to cause developers to experience blindspots; we developed
these puzzles based on API functions commonly reported in vulnerability databases [68, 87] or fre-
quently discussed in developer fora [90]. The other 6 puzzles involved an innocuous API function.
The API functions could each be classified into three categories: input/output (I/O), cryptography,
and string manipulation. Following the completion of each puzzle, developers responded to one
open-ended question about the functionality of the code and one multiple-choice question that
captured developers’ understanding of (or lack thereof) the security implication of using the spe-
cific API function. After completing all puzzles, each developer provided demographic information
and reported their experience and skills levels in programming languages and technical concepts.
Developers then indicated endorsement of personality statements based on the Five Factor Person-
ality Traits model [32] and completed a set of cognitive tasks from the NIH Cognition Toolbox [44]
and the Brief Test of Adult Cognition by Telephone (BTACT; modified auditory version for remote
use) [98].

Our study, together with the data from our prior, Java-based study [71], supports the following
conclusions:

• Developers are statistically significantly less likely to solve puzzles with APIs with blindspots
than those without blindspots. The effect is more pronounced for Python than Java.
• The complexity of the puzzle had a different effect on the Python and Java developers. For

Python, developers were far more often correct when solving low-complexity puzzles with
APIs without blindspots than with blindspots, but there was virtually no difference for high-
complexity puzzles. For Java, the opposite was true, with developers far more often correct
when solving high-complexity puzzles with APIs without blindspots than with blindspots.
• Whether the developers considered the puzzles more difficult, less clear, and less familiar

did not affect their ability to solve the puzzles.
• Developers with better long-term memory recall were more likely to correctly solve puzzles

with blindspots, but short-term memory, processing speed, episodic memory, and memory
span had no effect.
• Surprisingly, professional experience and expertise did not improve the developers’ ability

to solve puzzles with APIs with blindspots across both languages.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

76:4 Y. Brun et al.

• Developers with lower extraversion and higher openness as personality traits were more
accurate in solving Java puzzles with APIs with blindspots, but for Python, developers’ per-
sonality traits were not associated with their ability to solve such puzzles.

We make public all Java and Python puzzles for use in future research as well as the surveys, data,
and analysis code here: https://osf.io/ahpfv/?view_only=37978cb1e67941d5b1e572f2fba982c9.

As our study improves the understanding of how blindspots affect developers, we aim to in-
form subsequent research for improving software quality, e.g., via the design of tools that help
alert the developers to potential vulnerabilities in their code when using APIs with blindspots, via
managerial decisions such as who is assigned to write or review certain code, or via improved
educational methods to reduce the negative effects of blindspots in APIs on software quality. For
example, our study finds that professional experience and expertice did not, alone, improve the
developers’ ability to reason about APIs, suggesting that simply ensuring at least one experienced
developer reviews all production code is an insufficient mitigation strategy. Our observation that
Python developers made frequent mistakes in low-complexity puzzles with blindspots suggests
that the developers may apply less care to seemingly simple coding scenarios, and that tools that
warn developers of potential dangers and refocus their attention may help. Our results can inform
future creation of such tools and methods for improving software quality.

The remainder of this article is organized as follows: Section 2 describes the API puzzles.
Section 3 presents our study’s methodology. Section 4 presents our experimental design and as-
sesses the results, and Section 5 discusses some of the implications of these findings. Section 6
places this study in the context of related work, and Section 7 summarizes our contributions.

2 API PUZZLES

Our study is focused around puzzles, snippets of code that simulate a real-world programming
scenario. The snippets of code use APIs, some of which are known to contain blindspots.

The goal of a puzzle is to simulate a clear, concise, and unambiguous programming task rep-
resentative of a real-world programming task. Users solving puzzles would necessarily interact
with the contained APIs. As some of the APIs contain known blindspots, while others do not, we
aim to use the users’ attempts to solve the puzzles to understand the impact of blindspots on their
behavior. Our study counterbalanced puzzle selection so each participant received 6 randomly se-
lected puzzles out of a pool of 22, with 4 of those puzzles containing a blindspot (details described
in Section 3).

Figure 1 shows a sample Python puzzle. This code in the puzzle uses the input API, which has
a known blindspot. The fact that print on lines 2, 6, and 8 are statements (not functions), implies
that this code is written in Python version 2.x. The input function executes the input typed by the
user. If the input the user types is a Python expression, then Python will execute that expression.
This means that the user can type arbitrary code and the program will execute it, potentially
corrupting data or giving up control of the machine—a serious, known vulnerability called a code
injection attack.1

Each puzzle, as the one in Figure 1, consists of three elements: the scenario description, the code,
and two questions.

We collected API functions commonly reported in vulnerability databases [68, 87] or frequently
discussed in developer fora [90] and used these APIs to create puzzles, small programs that exercise
the APIs. Each program aimed to miminize its size and cyclomatic complexity while exercising
the behavior of the API necessary to expose the potentially unexpected behavior of the blindspot

1https://www.cvedetails.com/cve/CVE-2018-1000802/.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

https://osf.io/ahpfv/?view_only=37978cb1e67941d5b1e572f2fba982c9
https://www.cvedetails.com/cve/CVE-2018-1000802/

Blindspots in Python and Java APIs Result in Vulnerable Code 76:5

Fig. 1. A sample Python puzzle (Puzzle 1 in Figure 3). The input API, in Python 2.7, contains a known blindspot:
The user’s unfiltered input can be executed directly by the program using the os package. The correct answer
to question 1 is that the program first reads a line from the standard input and evaluates it as a Python
expression, and then prints the result of that evaluation to the screen, followed by either “pathname exists.”
or “pathname does not exist.” depending on whether a file with the evaluated expression’s name exists in the
current path. Because of the blindspot in the input API, the user can use the os package to execute arbitrary
Python code. So, the correct answer to question 2 is “a.”

or the innocuous API. We created a total of 22 Python puzzles; 16 contained APIs with blindspots
and 6 contained APIs without blindspots using innocuous API functions not known to cause vul-
nerabilities. Figure 2 shows an example puzzle that uses an API without a known blindspot.

Figure 3 summarizes the 22 puzzles we developed for our study. These puzzles are all available
in our data package: https://osf.io/ahpfv/?view_only=37978cb1e67941d5b1e572f2fba982c9.

The APIs used in the puzzles come from three categories: input/output (I/O), cryptography, and
string manipulation. I/O APIs involve operations such as networking activity, and reading and
writing from and to streams, files, and internal memory buffers. Cryptography APIs include en-
cryption, decryption, and key agreement. String manipulation APIs include editing and processing
strings, such as queries and user input.

We designed the puzzles aiming to keep each puzzle’s complexity to the minimum necessary to
properly capture the API’s use. As a result, the complexity of the puzzles varied. We measured the
puzzles complexity using cyclomatic complexity, a quantitative measure of the number of linearly
independent paths in the source code [62]. We classified the puzzles as low complexity (cyclomatic
complexity of 1–2), medium complexity (3–4), and high complexity (≥5). Of the 22 puzzles, 12 were
low complexity, 7 medium complexity, and 3 high complexity.

Our earlier, Java-based study [71] used a total of 24 puzzles, written in Java (16 of which used
APIs with blindspots and 8 used innocuous APIs). Figure 4 shows a sample Java puzzle with an
API with a blindspot. This puzzle uses the Runtime.exec API, which executes code passed to it via its
argument, also exposing the setDate method to a code injection attack.

All Java and Python puzzles, as well as the surveys, data, and analysis code, are available here:
https://osf.io/ahpfv/?view_only=37978cb1e67941d5b1e572f2fba982c9.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

https://osf.io/ahpfv/?view_only=37978cb1e67941d5b1e572f2fba982c9
https://osf.io/ahpfv/?view_only=37978cb1e67941d5b1e572f2fba982c9

76:6 Y. Brun et al.

Fig. 2. A sample Python puzzle (Puzzle 20 in Figure 3) that uses the cursor.execute API that does not contain a
known blindspot. The correct answer to question 1 is that the function will return records from the database
that match the specified genre. The correct answer to question 2 is “d.”

3 DATA-COLLECTION METHODOLOGY

We first describe our study’s participants (Section 3.1) and then our data-collection procedure
(Section 3.2). Our study protocol involved human subjects and was approved by the University
of Florida Institutional Review Board (protocol #IRB201701817). Once the data were collected
and anonymized, researchers performed secondary analysis at both the University of Florida and
the University of Massachusetts Amherst, following both institutions’ Institutional Review Board
recommendations.

3.1 Participants

Our study targeted developers who actively use the Python programming language. We recruited
129 experienced Python developers. We considered individuals with more than one year of expe-
rience in a professional setting to be professionals; we considered all others to be students. Collec-
tively, we refer to all participants as developers in this study. Recruitment methods included flyers
and handouts, social media advertisements, advertisements through companies and their human
resources departments, university listservs, and contacts via the authors’ personal networks, as
well as word-of-mouth. Professionals were compensated $50 and students $20 for study comple-
tion. These different compensation amounts were based on level of programming experience and
were approved by the Institutional Review Board; they were justified given a larger financial incen-
tive necessary to recruit professional developers, in consideration of their relatively high-paying
jobs and a more limited availability.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

Blindspots in Python and Java APIs Result in Vulnerable Code 76:7

Fig. 3. The 22 Python puzzles used in our study.

Initially, we received a total of 423 emails from interested developers. Out of the 423, 13 (3.1%)
participants explicitly dropped out, and 184 (43.5%) participants implicitly dropped out by
becoming unresponsive at some point in the data-collection process. The remaining 226 develop-
ers (53.4%) completed the study. Of those 226 developers, 84 (37.2%) developers’ data was incom-
plete, e.g., they did not answer some of their puzzles’ questions, did not complete the audio task
for cognitive assessment (described in Section 4.4), or had technical difficulties, such as browser

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

76:8 Y. Brun et al.

Fig. 4. A sample Java puzzle. This puzzle uses the Runtime.exec API, which executes code passed to it via its
argument. Because the run method, called by the setDate method, simply passes setDate’s arbitrary String

argument to Runtime.exec, this method may end up executing arbitrary code. The correct answer to question
2 is “c.”

incompatibility issues, that prevented audio recording. We discarded these 84 developers’
data. During the enrollment process, we detected that 13 (5.6%) of the developers were repeat
participants; that is, they participated multiple times despite instructions not to do so. For those
individuals, we accepted their first data submission as a valid entry and discarded all subsequent
submissions. That resulted in 129 valid developer sessions. Unless otherwise stated, we report
our results based on that sample of 129 developers who proceeded through all study procedures
as instructed and completed all tasks.

Figure 5 summarizes the participant demographics and their professional expertise and expe-
rience. The 129 developers consisted of 91 (70.5%) professional developers and 38 (29.5%) stu-
dents. The vast majority of developers (125, 96.9%) had 2 or more years of Python programming
experience. Student participants self-reported a relatively high programming experience (mean of
5.3 years, standard deviation of 2.9 years), likely a result of programming prior to entering the
university or being students for more than six years (e.g., PhD students). Participants ranged
between the ages of 18 and 71 years (mean of 28.4 years, standard deviation of 7.8 years), with
the large majority of participants being male (116, 89.9%). Participants were recruited across the
globe with concentrations in North and South America (74, 57.4%), Asia (43, 33.3%), and Europe
(11, 8.7%). Overall, participants came from the United States, Brazil, India, Bangladesh, Pakistan,
Greece, Poland, France, United Kingdom, Germany, and so on.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

Blindspots in Python and Java APIs Result in Vulnerable Code 76:9

Fig. 5. Demographics and professional expertise and experience of the study participants.

3.2 Data Collection Procedure

Data collection started in August 2017 and ended in August 2018. After initial contact with
interested developers, we used an online screening questionnaire to determine study eligibility
and compensation (e.g., sufficient knowledge of Python, fluency in the English language, age
over 18 years). Exclusion criteria included previous participation in a similar study using Java
programming language [71] or previous participation in the current study, no knowledge of
Python, under 18 years of age, lack of proficiency in English, and unwillingness to install and use
the latest version of Mozilla Firefox, as our survey was tested on and compatible with this browser.

Eligible developers received a digital informed consent form, which disclosed study procedures,
the minimal risk from study participation, and data privacy and anonymity. Each developer was
assigned a unique, anonymized identifier to assure confidentiality. After providing their digital
signature, developers received an audio test link. This test was implemented to ensure that proper
data quality was captured for the audio recording during the cognitive testing. It was instituted

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

76:10 Y. Brun et al.

following the failure to collect audio data from a large fraction of the participants in the earlier
Java study [71]. Participants were instructed to read three sentences into their microphone. The
resulting test audio was reviewed by research staff, and if the audio quality was good, participants
received a personalized link to the online assessment. If the audio was not captured or of poor qual-
ity, then research staff worked with the participant to address audio issues. This revision of the data
collection methodology was successful in addressing the shortcomings of the earlier study [71].

After completing the puzzles, the participants were sent an additional survey on software secu-
rity. This survey aimed to gather information regarding the participants’ respective organizations’
focus, organization size, organization software products developed, and also asked security-related
questions.

Developers were strongly encouraged to complete the study in two separate sittings to coun-
teract possible fatigue effects (one sitting to work on the puzzles and complete the demographic
questionnaire, and the other sitting to complete the psychological and cognitive assessment). All
data collection took place in a location of the participants’ choosing. To increase ecological va-
lidity (the likelihood that the study’s results can generalize to the real world), participants were
informed they could use outside resources as assistance and were asked to report the resources
used throughout the survey. The participants were not explicitly given access to an environment
to execute the code, though as they had access to outside resources, they could have elected to do
this. No participant reported doing this. The participants were not informed that the study was
about code security.

The study procedure comprised five parts. The first part, programming puzzles (recall Section 2)
involved responding to the programming puzzles and related questions. Participants were told
that the puzzles were designed to examine how developers interpret and reason about code; they
were not informed about the nature or presence of blindspots in the code. Identical to our prior,
Java-based study [71], the second part of the study assessed participant demographics; the third
part professional experience and expertise; the fourth part was a personality assessment that uti-
lized the Big Five Inventory (BFI) questionnaire [52]; and the final part consisted of a cognitive
assessment, comprising the Oral Symbol Digit Test from the NIH Toolbox [44] and the Brief Test
of Adult Cognition by Telephone (BTACT) [98]. The average time to complete the entire study
ranged between 30 to 90 minutes.

4 EXPERIMENTAL DESIGN AND RESULTS

Our analysis aims to answer six research questions:

RQ1: Are developers less likely to correctly solve puzzles with API functions containing
blindspots than puzzles with innocuous functions? Does the underlying programming
language have an effect?

RQ2: Do developers perceive puzzles with API functions containing blindspots as more
difficult, as less clear, and as less familiar than non-blindspot puzzles? Does the underlying
programming language have an effect?

RQ3: Are developers less confident about their puzzle solution when working on puzzles
with API functions containing blindspots than non-blindspot puzzles? Does the underlying
programming language have an effect?

RQ4: Are developers with higher cognitive functions (e.g., reasoning, working memory,
and processing speed) better at solving puzzles with API functions containing blindspots?
Does the underlying programming language have an effect?

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

Blindspots in Python and Java APIs Result in Vulnerable Code 76:11

RQ5: Are developers with more professional experience and expertise better at solving
puzzles with API functions containing blindspots? Does the underlying programming lan-
guage have an effect?

RQ6: Are developers with higher levels of conscientiousness and openness and lower lev-
els of neuroticism, extraversion, and agreeableness better at solving puzzles with API func-
tions containing blindspots? Does the underlying programming language have an effect?

4.1 Analysis Methodology

In answering RQ1, RQ2, and RQ3, we used multilevel modeling. In answering RQ4, RQ5, and RQ6,
we used ordinal logistic regression. We conducted all analyses using Stata 15.0 and applied the
Wald test to determine statistical significance of main and interaction effects.

Unlike our prior, Java-based study [71], for all non-significant effects, we further conducted
Bayesian statistic analyses to determine whether a given non-significant effect was more likely
due to insensitivity of the data or reflected a preference to accept the null hypothesis [36]. In other
words, for situations in which the p-value of the Wald test was too high for us to reject the null
hypothesis, this analysis allowed us to estimate the likelihood that the p-value is high because of
insufficient data versus because there is no underlying difference between the distributions being
compared. A non-significant effect with a Bayes Factor between 0.33 and 1 indicates data insensi-
tivity (that is, our data is insufficient to draw a conclusion); a non-significant effect with a Bayes
factor lower than 0.33 indicates preference to accept the null hypothesis (that is, that the two distri-
butions being compared actually come from the same underlying distribution). As a hypothetical
example, consider the situation in which we have two groups of developers participating in our
study: one wearing red hats and one wearing green hats. The Wald test determines whether the
difference in the number of puzzles the two groups solve correctly is statistically significant—that
is, the p-value is the probability that the two distributions actually come from the same underlying
distribution of developers. If the p-value is sufficiently low, then we can conclude that there exists
a statistically significant difference between red-hat and green-hat developers, with respect to the
number of puzzles solved correctly. But if the p-value is too high, then the Bayes statistic analysis
allows us to determine the likelihood that the two distributions of developers are actually coming
from the same underlying distribution, versus the possibility that our data is simply insufficient
to tell if the distributions are, in fact, different. This extension of the methodology used in the
original Java-based study we are replicating allows for a more thorough analysis of our results.

We now answer each of the six research questions. For each question, we present the data
and analysis for the Python puzzles, recap and compare to the findings with respect to the Java
puzzles [71], and analyze the languages’ effect. For the direct comparison between the two pro-
gramming languages, we applied the same analytic approach as just described, but added program-
ming language (Python versus Java) as a moderator in the models. For these analyses, we were
particularly interested in the interaction of programming language in each model.

4.2 Do Blindspots Make Programming Tasks More Difficult?

To answer whether developers are less likely to correctly solve puzzles with API functions contain-
ing blindspots than puzzles without blindspots (RQ1), we used multilevel logistic regression. The
underlying data were hierarchical: each set of six puzzles (level 1 data), nested within each devel-
oper (level 2 data). The independent variable was the presence of a blindspot (0 for no blindspot,
1 for blindspot), and the dependent variable was whether the developer solved the puzzle (0 for

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

76:12 Y. Brun et al.

Fig. 6. Interaction effect of the programming language and the presence of a blindspot on puzzle accuracy.
The x-axis shows the two programming languages, Java and Python. The y-axis shows the puzzle accuracy
(the probability of the participant solving the puzzle correctly). Error bars represent 95% confidence intervals.

incorrect, 1 for correct). In this model, we also considered the random effect of the intercept to ac-
commodate for inter-individual differences in overall puzzle accuracy. That is, our model accounts
for the variability in each participant’s overall puzzle solving accuracy.

For Python, the 129 participants correctly solved 74% of the puzzles without blindspots, but
only 36% of the puzzles with blindspots. The effect of the presence of blindspot was significant
(Wald χ 2 (1) = 80.61, p < 0.001), rejecting the null hypothesis that the puzzle solving accuracy
for puzzles with blindspots and without came from the same distribution. Thus, participants were
more than twice as likely to solve a Python puzzle correctly if that puzzle used an API without a
blindspot than if it used one with a blindspot.

These results are similar to the observations for Java API puzzles [71]: The 109 participants
correctly solved 46% of the puzzles without blindspots, but only 29% of the puzzles with blindspots,
which was similarly a significant difference (Wald χ 2 (1) = 20.60, p < 0.001). Thus, participants
were about 1.6 times as likely to solve a Java puzzle correctly if that puzzle used an API without a
blindspot than if it used one with a blindspot.

We combined the Java and Python datasets and treated the programming language (Python
versus Java) as a moderator in the models. Expectedly, we again found a statistically significant
difference in puzzle accuracy for puzzles with and without APIs with blindspots (Wald χ 2 (1) =
94.84, p < 0.001). The interaction between programming language and presence of blindspot
(Wald χ 2 (1) = 13.93, p < 0.001) was significant. Figure 6 depicts this interaction and shows that,
overall, developers were less likely to accurately solve puzzles with blindspots than ones without
blindspots, with this effect more pronounced for Python (B = −1.78 (the slope of the line between
the predictor variable and the dependent variable), z = −8.98 (z-score describes the deviation from
the mean in number of standard deviations), p < 0.001, odds ratio = 0.17) than for Java (B = −0.81,
z = −4.54, p < 0.001, odds ratio = 0.44).

(RQ1) Overall, our statistical analysis supports that developers were significantly more suc-
cessful in correctly solving puzzles that used APIs without blindspots than with blindspots,
for both programming languages, with this effect more pronounced for Python than Java.

We next looked at the three kinds of APIs used in our puzzles (I/O, cryptography, and string
manipulation) and the cyclomatic complexity of the puzzles and how these variables affected the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

Blindspots in Python and Java APIs Result in Vulnerable Code 76:13

Fig. 7. Interaction effect of the API type and the presence of a blindspot on puzzle accuracy. The x-axis shows
the three types of API usage: I/O, crypto, and string manipulation. The y-axis shows the puzzle accuracy
(the probability of the participant solving the puzzle correctly). Error bars represent 95% confidence intervals
after Bonferroni correction of the p-value.

developers’ ability to solve puzzles. To control for family-wise type-I error inflation due to testing
of multiple dependent models (i.e., models that share the same dependent variable), we applied
Bonferroni correction for the p-value threshold to determine statistical significance (p < 0.025).

For Python, adding the categorical variable API usage type, we measured its interaction with the
presence of an API with a blindspot in a puzzle as a predictor for whether the developer correctly
solved the puzzle. The main effect of API usage type was not significant (Wald χ 2 (2) = 6.55,p =
0.04). However, its interaction with the presence of a blindspot was significant (Wald χ 2 (2) =
21.06,p < 0.001). Figure 7 shows that while developers were always less likely to accurately
solve puzzles with APIs containing blindspots than puzzles without blindspots, this difference
in accuracy was more pronounced for puzzles using API functions that involved I/O and string
manipulation than those that involved crypto.

In the Java-puzzle study [71], the main effect of the presence of blindspot was not significant
(Wald χ 2 (2) = 0.91,p = 0.34), but the main effect of API usage type (Wald χ 2 (2) = 10.64,p = 0.005)
and its interaction with the presence of blindspot (Wald χ 2 (2) = 24.81, p < 0.001) were significant.
Accuracy was higher for puzzles without blindspots than for ones with blindspots with an API
function that involved I/O. Accuracy was comparable in both puzzles with and without blindspots
with API functions that involved Crypto, String manipulation.

We then, again, treated the language as a moderator to explore the extent to which API usage
type moderated accuracy for puzzles with blindspots versus ones without blindspots for Python
and Java. Again, we applied Bonferroni correction for thep-value threshold to determine statistical
significance (p < 0.025). The three-way interaction between presence of blindspot, API usage type,
and programming language was significant (Wald χ 2 (2) = 12.38, p = 0.002). Figure 8 shows that,
while in Python, developers were less likely to correctly solve puzzles with blindspots than without
blindspots for all three API usage types; in Java, this accuracy difference only held in puzzles with
I/O API functions, but not puzzles with Crypto and String API functions.

(RQ1, for different API types) Our statistical analysis supports that for Python, developers
were overall more accurate solving puzzles without blindspots than puzzles with blindspots
for all three API usage types, but for Java, that was only the case for puzzles with I/O API
functions, not puzzles with Crypto and String API functions.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

76:14 Y. Brun et al.

Fig. 8. Interaction effect of the programming language, API usage type, and the presence of a blindspot on
puzzle accuracy. The x-axis shows the three types of API usage: I/O, Crypto, and String, and differentiates
between Java (left) and Python (right) puzzles. The y-axis shows the puzzle accuracy (the probability of
the participant solving the puzzle correctly). Error bars represent 95% confidence intervals after Bonferroni
correction of the p-value.

Fig. 9. Interaction effect of cyclomatic complexity and presence of a blindspot on puzzle accuracy. The x-axis
shows the puzzle’s level of cyclomatic complexity. The y-axis shows the puzzle accuracy (the probability of
the participant solving the puzzle correctly). Error bars represent 95% confidence intervals after Bonferroni
correction of the p-value.

Next, adding the categorical variable cyclomatic complexity (1 for low, 2 for medium, 3 for high),
we measured its interaction with the presence of an API with a blindspot in a puzzle as a predictor
for whether the developer correctly solved the puzzle. Again, while the main effect of cyclomatic
complexity was not significant (Wald χ 2 (2) = 0.97,p = 0.62), its interaction with the presence of
a blindspot was significant (Wald χ 2 (2) = 37.34,p < 0.001). Figure 9 shows that for puzzles of low
cyclomatic complexity, the difference in accuracy was very large, whereas for puzzles of medium
complexity, the difference in accuracy was small. For puzzles with high cyclomatic complexity,
there was no measured difference. We speculate that a possible explanation for this behavior is
that developers may be more careless with seemingly simpler tasks, as we describe in Section 5.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

Blindspots in Python and Java APIs Result in Vulnerable Code 76:15

Fig. 10. Interaction effect of the programming language, cyclomatic complexity, and presence of a blindspot
on puzzle accuracy. The x-axis shows the puzzle’s level of cyclomatic complexity and differentiates between
Java (left) and Python (right) programmers. The y-axis shows the puzzle accuracy (the probability of the
participant solving the puzzle correctly). Error bars represent 95% confidence intervals after Bonferroni cor-
rection of the p value.

In the Java-puzzle study [71], the main effect of cyclomatic complexity was not significant (Wald
χ 2 (2) = 0.74, p = 0.69), but the main effect of the presence of a blindspot (Wald χ 2 (2) = 23.95,
p < 0.001) and its interaction with cyclomatic complexity (Wald χ 2 (2) = 30.1, p < 0.001) were
significant. Accuracy was higher for puzzles without blindspots than those with blindspots at
medium cyclomatic complexity, and, even more pronounced at high cyclomatic complexity. That
is, the higher the cyclomatic complexity of the code in a puzzle containing APIs with blindspots,
the less likely developers were to correctly solve the puzzle.

Again, we then explored the extent to which cyclomatic complexity moderated accuracy for
puzzles with blindspots versus ones without blindspots for Python and Java. Again, we applied
Bonferroni correction for the p-value threshold to determine statistical significance (p < 0.025).
The three-way interaction between presence of blindspot, cyclomatic complexity, and program-
ming language was significant (Wald χ 2 (2) = 64.40, p < 0.001). Figure 10 shows that, while in
Java, the difference in accuracy for puzzles with and without blindspots increased with the cy-
clomatic complexity, in Python, this accuracy difference decreased with cyclomatic complexity.
This significant difference in effect of cyclomatic complexity on the developers accuracy is sur-
prising. Possible explanations include differences in the underlying languages, e.g., Python may
instill additional false confidence in the developers, whereas Java’s verbosity has the effect of dis-
couraging developers from making rash decisions. This hypothesis is supported by our finding
that developers rated Java puzzles as more complex than Python puzzles (see Section 4.3). Overall,
these results suggest further study is warranted to understand the different ways in which code
of differing cyclomatic complexity may affect programs in different languages and whether such
differences can be used to reduce the pitfalls of developers creating security vulnerabilities as a
result of API blindspots.

(RQ1, based on cyclomatic complexity) For Python, developers were more likely to cor-
rectly solve puzzles without blindspots than puzzles with blindspots for low-complexity
(but not medium- and high-complexity) puzzles. For Java, the opposite was true, with
developers more likely to correctly solve puzzles without blindspots than puzzles with
blindspots for high-complexity (but not medium- or low-complexity) puzzles.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

76:16 Y. Brun et al.

4.3 Blindspots’ Effect on Difficulty, Clarity, Familiarity, and Confidence

Next, we were interested in learning if the way developers perceive the puzzles correlates with
the developers’ ability to solve the puzzles correctly. For RQ2, we considered the developers’ self-
reported perception of the puzzles as more difficult, less clear, and less familiar. For RQ3, we
considered the developers’ self-reported confidence in their solutions. Self-reporting is a common
way to measure participants’ perception, including confidence when seeking to understand the
relationship between confidence and accuracy in performing tasks [51].

We used a set of multilevel regression models to accommodate for the hierarchical data structure
(recall that each set of six puzzles (level 1 data) is nested within each developer (level 2 data)). We
considered four models, each with a different dependent variable: numerical ratings of difficulty,
clarity, familiarity, and confidence. In each model, we considered the random effect of the intercept
to accommodate for inter-individual differences in overall ratings of the respective dimension.

For Python, we found no significant effects of presence of a blindspot in a puzzle on the four
dependent variables (all p > 0.05), suggesting that developers’ perception of the puzzles did not
differ as a function of presence of a blindspot in the puzzle. The Bayesian statistical analyses
showed that all non-significant effects supported the acceptance of the null hypothesis (all Bayes
factors < 0.0007).

In the Java-puzzle study [71], the developers’ perceptions did not differ as a function of the
presence of blindspot in puzzles (all p > 0.05).

We then, again, combined the Java and Python datasets and treated the language as a moderator
in the models. We found a significant effect of programming language on difficulty (Wald χ 2 (1) =
22.11, p < 0.001). That is, developers rated Java puzzles overall as more difficult than Python
puzzles, providing some support for our earlier hypothesis that some Python puzzles may seem so
simple to the developers that they are even more likely to overlook blindspots in APIs than they
are in more complex puzzles. All other main and interaction effects in these models (one for each
of difficulty, clarity, familiarity, and confidence) were not significant (all p > 0.10). The Bayesian
statistical analyses showed that the Bayes Factor of the non-significant effect for confidence was
0.94, suggesting insensitivity of the present data to detect this effect, meaning that we cannot draw
a conclusion for these factors. In contrast, the Bayes factors of the non-significant effects for clarity
and familiarity supported the acceptance of the null hypothesis (all Bayes factors < 0.01).

(RQ2 and RQ3) We find that whether the developers considered puzzles to be more diffi-
cult, less clear, and less familiar did not have an effect on their ability to correctly solve
the puzzles. Our statistical analysis supports that developers rated Java puzzles as more
difficult than Python puzzles. We find that puzzle clarity and familiarity had no effect on
the developers’ ability to solve the puzzles, whereas our data was insufficient to draw a
conclusion with respect to the developers’ confidence in their answer.

4.4 Developers’ Traits Effect on Ability to Solve Puzzles

We next set out to determine if developers’ traits affected their ability to correctly solve puzzles
that use APIs with blindspots. For RQ4, we considered the developers’ higher cognitive functions,
such as reasoning, working memory, and processing speed. For RQ5, we considered the devel-
opers’ professional experience and expertise. For RQ6, we considered the developers’ levels of
conscientiousness and openness and levels of neuroticism and agreeableness.

For this analysis, we constructed an ordinal outcome variable with a range of 0 to 4 consisting of
the number of puzzles with blindpots that a developer solved correctly. (Recall that each developer
attempted to solve 6 puzzles, 4 of which used APIs with blindspots.) We conducted ordinal logistic

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

Blindspots in Python and Java APIs Result in Vulnerable Code 76:17

regressions using this ordinal outcome variable to test the effect of each trait a developer possesses
on their ability to solve puzzles with blindspots.

We conducted a separate model for each of the three research questions. For RQ4, measuring
cognitive functions, the independent variables consisted of the Oral Symbol Digit Test from the
NIH toolbox and the backward counting, backward digit span, category fluency, immediate word
list recall, delayed word list recall, and number series from the Brief Test of Adult Cognition by
Telephone (BTACT) [98]. Immediate word list recall is a measure of short-term memory, while
delayed word recall is a measure of one’s long-term memory. The Oral Symbol Digit Test is a
measure of one’s processing speed. The backward counting is a measure of immediate and delayed
episodic memory, the backward digit span is a measure of working memory span, and the category
fluency test measures verbal fluency, executive functioning, and speed of processing [60]. We
measured inductive reasoning using a number series completion task [81, 85].

Among all cognitive measures, only the delayed word list recall task showed a significant effect
(B = 0.20, z = 2.37, p = 0.02, odds ratio = 1.23). Developers with better long-term memory were
more likely to correctly solve puzzles with blindspots (see Figure 11). None of the other predictors
showed a significant effect (for each, p > 0.10). The Bayesian statistical analyses showed that all
non-significant effects supported the acceptance of the null hypothesis (all Bayes factors < 0.002),
meaning that the data support the conclusion that these factors do not affect developers’ ability to
correctly solve puzzles.

In the Java-puzzle study [71], the dataset was limited for cognitive measures due to missing data,
and there were no significant effects observed for any of the three cognitive measures on blindspot
puzzle accuracy (all p > 0.05).

When comparing the two programming languages directly regarding the impact of cognitive
measures on the programmers’ ability to solving puzzles, we examined each cognitive measure in-
dividually (i.e., in a separate model). In the prior study [70], a technical error led 35 Java developers
to have missing data on some of the cognitive measures (an error our study avoids). For this anal-
ysis, none of the cognitive measures showed a significant interaction with programming language
(all p > 0.10), suggesting that the null effect of cognitive abilities on solving blindspot puzzles
did not vary as a function of programming language. The Bayesian statistical analyses showed
that all non-significant interactions supported the acceptance of null hypothesis (all Bayes factors
< 5 × 10−6), meaning that findings are consistent across Java and Python, and the programming
language of the puzzles is unlikely to have an effect on which cognitive functions affect developers’
ability to solve puzzles.

(RQ4) We conclude that developers with better long-term memory recall are more likely
to correctly solve puzzles with blindspots. Short-term memory, processing speed, episodic
memory, and memory span do not affect developer’s ability to correctly solve puzzles with
blindspots. The programming language of the puzzles did not affect which cognitive mea-
sures have an effect on the developers ability to solve puzzles correctly.

For RQ5, measuring professional experience and expertise, the independent variables consisted
of years of programming, technical proficiency score, and Python and Java skills. Four developers
had missing data on (some of) the technical expertise or experience measures, so we excluded
them from our analysis in this model, so this model was based on 125 samples. The Java analysis
was based on the full 109 developers’ samples [71].

For Python, none of the three predictors of technical expertise and experience predicted
blindspot puzzle accuracy (for each, p > 0.10). The Bayesian statistical analyses showed that

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

76:18 Y. Brun et al.

all non-significant interactions supported the acceptance of the null hypothesis (all Bayes factors
< 0.0001).

In the Java-puzzle study [71], none of the three predictors of experience and expertise predicted
blindspot puzzle accuracy (all p > 0.05).

When directly comparing the two programming languages regarding the impact of technical
expertise and experience on the programmers’ ability to solve puzzles, none of the technical ex-
pertise and experience showed a significant interaction with programming language (all p ≥ 0.10),
suggesting that the null effect of technical expertise and experience on solving blindspot puzzles
did not vary as a function of programming language. The Bayesian statistical analyses showed that
all these non-significant effects supported the acceptance of the null hypothesis (all Bayes factors
< 0.002), suggesting that there is no relationship between professional experience and expertise
and the developers’ ability to correctly solve puzzles.

(RQ5) We conclude that, surprisingly, professional experience and expertise do not improve
the developers’ ability to solve puzzles with blindspots correctly. This result was consistent
across the two languages.

For RQ6, the independent variables consisted of five personality traits: agreeableness, consci-
entiousness, extraversion, neuroticism, and openness. We measured these personality traits use
the Big Five Inventory (BFI) questionnaire [52]. The questionnaire is composed of 44 personality
statements used to assess the five personality traits by having the participant rate the level they
feel they endorse the given personality statement using a Likert scale. For this research question
(unlike RQ5), our dataset covered all 129 participants.

For Python, none of the personality traites showed a significant effect (all p > 0.18). The
Bayesian statistical analyses showed that all these non-significant effects supported the accep-
tance of the null hypothesis (all Bayes factors < 1× 10−10), suggesting that there is no relationship
between the personality traits and the developers’ ability to correctly solve puzzles.

In the Java-puzzle study [71], the effect of openness on blindspot puzzle accuracy was significant
(p < 0.001). That is, greater openness as a personality trait in developers was associated with
greater accuracy in solving blindspot puzzles. None of the other personality dimensions showed
significant effects (all p > 0.05).

When directly comparing the two programming languages regarding the impact of personality
traits on the programmers’ ability to solve blindspot puzzles, the interaction between extraversion
and programming language (Wald χ 2 (1) = 5.95, p = 0.01) as well as the interaction between
openness and programming language (Wald χ 2 (1) = 13.50, p < 0.001) were significant. That is,
developers with lower extraversion (see Figure 12) and higher openness (see Figure 13) were more
accurate in solving Java blindspot puzzles, while these effects did not hold for Python puzzles. The
interactions between agreeableness, conscientiousness, as well as neuroticism and programming
language, however, were not significant (all p > 0.09). The Bayesian statistical analyses showed
that all these non-significant interactions supported the acceptance of the null hypothesis (all
Bayes factors < 10−5).

(RQ6) We conclude that developers with lower extraversion and higher openness as per-
sonality traits were more accurate in solving Java puzzles with blindspots. In contrast,
developers’ personality traits were not associated with their accuracy to solve Python puz-
zles with blindspots.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

Blindspots in Python and Java APIs Result in Vulnerable Code 76:19

Fig. 11. Effect of long-term memory on puzzle solution accuracy for Python puzzles with blindspots. The
x-axis represents the delayed word list recall task score (a measure of long-term memory), with higher scores
reflecting better long-term memory. The y-axis shows the probability of correctly solving a given number
(from 0 to 4) of blindspot puzzles; higher accuracy in solving blindspot puzzles is associated with darker
colors.

5 DISCUSSION

Next, Section 5.1 discusses our findings and their implications, and Section 5.2 details the threats
to the validity of our study.

5.1 Discussion of Findings and Implications

Most importantly, our study confirms that developers are less likely to correctly understand code
that uses APIs with blindspots, even those that cause well-known vulnerabilities. This effect was
most pronounced for APIs that dealt with I/O for Java; for Python, the effect was seen for all three
API types. While our study’s design does not determine why API blindspots make it more difficult
for developers to understand code, the most likely reasons are either that the developers miss the
potential vulnerability caused by the blindspot and assume the API will behave differently than it
really does, or the developers are aware of the blindspot but the added complexity of the potentially
unexpected behavior makes understanding it more difficult. Future research could work toward
isolating the reasons blindspots cause developers to make mistakes.

Importantly, developers’ expertise and experience did not help mitigate the risks associated
with blindspots. Nor did the developers’ perception of puzzle difficulty, clarity, and their familiar-
ity with the involved concepts affect their success. Unfortunately, our data were insufficient for us
to determine whether developers’ confidence in their solution indicated a higher chance that their
solution was correct. Given the large size of our user study, the fact that this result was incon-
clusive suggests that the effect of confidence may, at least, not be as strong as one might expect.
One possible explanation for these observations is that, perhaps, expertise, experience, and per-
ceptions about the puzzles may give developers false confidence in their solutions. For example,
inexperienced developers perhaps make mistakes because of their inexperience; but experienced
developers perhaps make similar mistakes because they are overconfident due to their experience
and spend less care on examining the code. Similarly, developers who, for example, are unfamiliar
with the involved concepts or who think the concepts are difficult may expand more care thinking
about the code than those who are very familiar with the concepts or who find them easy.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

76:20 Y. Brun et al.

Fig. 12. Association between extraversion and accuracy for Java (top) and Python (bottom) puzzles with
blindspots. The x-axis represents the level of extraversion, with higher scores reflecting more extraversion.
The y-axis shows the probability of correctly solving a given number (from 0 to 4) of blindspot puzzles; higher
accuracy in solving blindspot puzzles is associated with darker colors.

The only factor about the developers that had a consistent effect on their ability to correctly
solve puzzles was their long-term memory. Developers with better long-term memory were more
likely to correctly solve puzzles. We speculate that perhaps long-term memory allows developers
to recall past experiences with the involved APIs with blindspots and apply that knowledge to
more often solve the puzzles correctly.

Interestingly, we observed opposite results for Python and Java with respect to puzzle complex-
ity. For Python, developers were far more often correct when solving low-complexity puzzles
with APIs without blindspots than with blindspots, but there was virtually no difference for high-
complexity. For Java, the opposite was true, with developers far more often correct when solving
high-complexity puzzles with APIs without blindspots than with blindspots. We speculate that a

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

Blindspots in Python and Java APIs Result in Vulnerable Code 76:21

Fig. 13. Association between openness and accuracy for Java (top) and Python (bottom) puzzles with
blindspots. The x-axis represents the level of openness, with higher scores reflecting more openness. The
y-axis shows the probability of correctly solving a given number (from 0 to 4) of blindspot puzzles; higher
accuracy in solving blindspot puzzles is associated with darker colors.

possible explanation for this behavior is that Python developers may be more careless with seem-
ingly simpler tasks. Developers may perhaps have a false sense of security for low-complexity
Python puzzles, which causes them more often to be blind to the blindspots. If our hypothesis is
true, then it may suggest that the effects of at least some blindspots can be overcome by tools that
simply remind developers to pay extra attention when dealing with potentially unsafe APIs, as
opposed to requiring significant education or expertise with that particular API. The developers
rated the Java puzzles to be more complex than the Python puzzles, so it is possible that the false
sense of security does not surface for Java puzzles; instead, the more expected lower accuracy
rate for more complex puzzles dominates. A related interesting observation is that for Java, the
accuracy for puzzles without blindspots increased with complexity.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

76:22 Y. Brun et al.

5.2 Threats to Validity

This article presents a replication study. Replication’s central goal is to improve the external va-
lidity of research by replicating it in a different context. We focus here on replicating a study
performed on puzzles involving Java APIs by developing puzzles for Python APIs and recruiting
192 developers as study subjects. To improve our study’s internal validity, we reuse the method-
ology from the prior study [71] except in places where that prior study explicitly pointed out
shortcomings that prevented desirable analyses, e.g., our study verifies that the user can properly
record audio before engaging with the puzzles. To improve our study’s ecological validity, we (as
well as the Java study) use real-world APIs commonly reported in vulnerability databases [68, 87]
or frequently discussed in developer fora [90]. The study’s subjects were allowed to use outside
resources, as they would in the real world.

The participants self-reported whether they were professionals or students. While it is possible
that some students elected to lie to increase their payment, we believe this unlikely, as we asked the
participants for their years of professional experience with Python, and if they lied, they may have
feared being caught as inexperienced when solving the puzzles. It is possible to measure expertise
more explicitly, e.g., via a test, but the study’s length would either have become prohibitively long
or we would have had to reduce the portion of the study in which developers solved the puzzles,
and we elected to make the tradeoff to rely on self-reported expertise.

Our study’s design considers APIs with and without blindspots, but it is possible that some APIs’
blindspots are more severe than others. While we did not quantify the severity of a blindspot and
measure the effects of that severity, future research could pursue this direction.

The results of our study draw conclusions about differences in effects of blindspots in Python
and Java APIs. These differences can be caused by fundamental differences in the languages, dif-
ferences in developers who use these languages, differences in relative puzzle difficulties across
languages, and so on. As such, our claims do not differentiate between whether the language or
the types of developers who use each language are the underlying reasons for our observations.
It is fundamentally not possible to design a fully controlled experiment in the two languages that
uses the same APIs with the same blindspots for both Python and Java, as the two languages use
different APIs and different APIs have different blindspots. Out study varies the difficulty and API
types across the puzzles across both languages and uses a large number of participants to mitigate
this threat. A future study could consider more extensive ways of measuring API and puzzle com-
plexity to account for some of the potentially confounding factors. The observed differences could
even be accounted for by differences between the two specific sets of Python and Java developers
who participated in our studies, but our use of a large number of participants (129 for Python and
109 for Java) mitigates this risk.

Python v3 uses somewhat different syntax from Python v2, and is not backward compatible, by
design. Users who are proficient in one version are typically also proficient in the other. While
our study did not explicitly check for the possibility that a participant is an expert with Python
v3 but is inexperienced with v2, we believe this to be unlikely. All but one of our puzzles work
with either version. Only Puzzle 1 from Figure 3 relies on the specific implementation of the input

function in Python v2.7 and earlier, and the puzzle’s syntax establishes the code as being written
in Python v2.7.

6 RELATED WORK

Our study builds on our earlier work [71] that focused on how developers reason about Java APIs
that have blindspots. This article develops 22 new puzzles that use Python APIs, 16 of which have
known blindspots, and replicates our earlier study. This replication improves the data collection

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

Blindspots in Python and Java APIs Result in Vulnerable Code 76:23

methodology that allows for new analyses, allows us to generalize our findings across languages
and explore differences between Python and Java, and uses Bayesian statistic analysis to make
stronger claims than the prior study. The Java-based study has led to research into understanding
why developers make security mistakes [75, 101], gaining insight into the developers’ rationale in
making API-use decisions [100] and evaluating the usability of security APIs [105]. Our replication
study provides further support for that work.

Cappos et al. [28] proposed that software vulnerabilities are caused by blindspots in developers’
heuristic-based decision-making mental models. Oliveira et al. [70] further showed that security
is not a priority in the developers’ mindsets while coding; however, that developers do adopt
a security mindset once primed about the topic. Our work complements and extends previous
investigations on the effect of API blindspots on writing secure code and in determining the extent
to which developers’ characteristics (perceptions, expertise, experience, cognitive function, and
personality) influence such capabilities. The rest of this section places our work in the context of
API usability (Section 6.1), programming language design (Section 6.2), and the state of the practice
of software development for security and privacy (Section 6.3).

6.1 API Usability

The study of API usability focuses on how to design APIs in a manner that reduces the likelihood of
developer errors that can create software vulnerabilities [66]. Such research identifies common pit-
falls in API design. For example, a study showed that the very popular factory design pattern [43]
is detrimental to API usability, because when incorporated into an API it was difficult to use [38].

Most studies of API usability have focused on non-security considerations, such as examining
how well programmers can use the functionality that an API intends to provide. Our work is,
thus, a significant departure from this research direction, although it shares many of the same
methodologies.

Stylos and Clarke [93] had concluded that the immutability feature of a programming language
(i.e., complete restriction on an object to change its state once it is created) was detrimental to API
usability. Since this perspective contradicted the standard security guidance (“Mutability, whilst
appearing innocuous, can cause a surprising variety of security problems” [63, 86]), Coblenz et al.
investigated the impact of immutability on API usability and security. From a series of empirical
studies, they concluded that immutability had positive effects on both security and usability [30].
Based on these findings they designed and implemented a Java language extension to realize these
benefits [29]. However, to have a positive effect on usability and security, immutability needs to
be carefully designed, with usability as a first-class requirement [104].

Recent work has investigated the usability of cryptographic APIs. Nadi et al. [67] identified
challenges developers face when using Java Crypto APIs, namely, poor documentation, lack of
cryptography knowledge by the developers, and poor API design. Acar et al. [1] conducted an
online study with open-source Python developers about the usability of the Python Crypto API.
In this study, developers reported the need for simpler interfaces and easier-to-consult documen-
tation with secure, easy-to-use code examples.

In contrast to previous work, our study focuses on understanding blindspots that developers
experience while working with general classes of API functions.

A significant body work has focused on automatically inferring models of API use or of APIs
themselves to document API use practice. This work has spanned serial systems [10–12, 15, 34,
45, 59], distributed systems [13, 14], and resource-constrained systems [69]. Such work typically
uses execution traces to capture API use patterns, which can also be used to find the location of
a defect [35, 57] and the root cause of a defect [55]. Visualizing executions of models of groups
of executions can further help locate bugs [57] and understand software behavior [16, 17]. In con-

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

76:24 Y. Brun et al.

trast, our work focuses on understanding how developers act when faced with APIs that contain
blindspots and is complementary to these techniques that analyze APIs themselves or patterns of
how developers use them.

6.2 Programming Language Design

Usability in programming language design has been a long-standing concern. Stefik and
Siebert [92] showed that syntax used in a programming language was a significant barrier for
novices. Research has also empirically compared programming languages, in particular, for
whether some languages cause developers to create more bugs than others [9]. Some languages
are designed to make it impossible to make certain kinds of errors, e.g., Java makes certain
memory-use errors impossible by automatically managing memory use. Other languages, e.g.,
Coq [95] and HOL4 [89], are designed to enable formal verification, mathematically proving
program correctness using proof assistants and theorem provers. While this is a highly manual
and arduous process, recent advances in fully automating proof generation [39, 40, 82, 111] show
promise. Our work has the potential to contribute to programming language design, since our
focus is on understanding security blindspots in API function usage, and the function traits that
exacerbate the problem.

It is common for systems to exhibit emerging properties. Such properties are not explicitly coded
by the developers into the system, but emerge either by design from the language, deployment
frameworks, or APIs used by the system [19, 23–26], or without intention from interactions of
the system’s components. These emerging properties, particularly the latter kind, may surprise
developers and could result in blindspots. We have addressed blindspots focusing on a single API,
but future work should similarly explore blindspots caused by potential component interactions.

6.3 Developer Practices and Perceptions of Security and Privacy

Balebako et al. discussed the relationship between the security and privacy mindsets of mobile app
developers and company characteristics (e.g., company size, having a Chief Privacy Officer). They
found that developers tend to prioritize security tools over privacy policies, mostly because the
language of privacy policies is so obscure [8].

Xie et al. [110] conducted interviews with professional developers to understand secure coding
practices. They reported a disconnect between developers’ conceptual understanding of security
and their attitudes regarding personal responsibility and practices for software security. Devel-
opers also often hold a “not-my-problem” attitude when it comes to securing the software they
are developing; that is, they appear to rely on other processes, people, or organizations to handle
software security.

Witschey et al. [107] conducted a survey with professional developers to understand factors
contributing to the adoption of security tools. They found that peer effects and the frequency
of interaction with security experts were more important than security education, office policy,
easy-to-use tools, personal inquisitiveness, and better job performance to promote security tool
adoption.

Acar et al. [4] and Green and Smith [49] suggest a research agenda to achieve usable security
for developers. They proposed several research questions to elicit developers’ attitudes, needs, and
priorities in the area of security. Oltrogge et al. [72] asked for developers’ feedback on TLS certifi-
cate pinning strategy in non-browser-based mobile applications. They found a wide conceptual
gap about pinning and its proper implementation in software due to API complexity.

A survey conducted by Acar et al. [2] with 295 app developers concluded that developers learned
security through web search and peers. The authors also conducted an experiment with over 50
Android developers to evaluate the effectiveness of different strategies to learn about app security.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

Blindspots in Python and Java APIs Result in Vulnerable Code 76:25

Programmers who used digital books achieved better security than those who used web searches.
Recent research corroborates this finding by showing that the use of code-snippets from online
developer fora (e.g., Stack Overflow) can lead to software vulnerabilities [3, 41, 99].

Certain aspects of software systems, such as security or fairness [27, 37, 42], are not only difficult
for developers to reason about, it can be difficult for end-users to understand and describe the
relevant requirements [50]. Recent work has aimed to develop APIs for components that can
provide guarantees, e.g., that the component will not exhibit racist or sexist behavior when applied
to future inputs [5, 46, 64, 96]. While early work has looked at whether such APIs help or hurt
developers’ and data scientists’ work on improving system fairness [53, 54], fully understanding
the implications of such APIs remains an open problem. Systems that automatically [6, 42] and
manually [97] test systems for these properties are likely to help developers reason about their
uses of these APIs.

Recent studies have investigated the need and type of interventions required for developers to
adopt secure software development practices. Xie et al. [109] found that developers needed to be
motivated to fix software bugs. There has also been some work on how to create this motivation
and encourage use of security tools. Several surveys identified the importance of social proof for
developers’ adoption of security tools [65, 106, 108]. Meanwhile the way that tools communicate
with developers has been shown to be a critical aspect of successful adoption [56].

Research on the effects of external software security consultancy suggests [76] that a single
time-limited involvement of developers with security awareness programs is generally ineffective
in the long-term. Poller et al. [77] explored the effect of organizational practices and priorities on
the adoption of developers’ secure programming. They found that security vulnerability patching
is done as a stand-alone procedure, rather than being part of product feature development. In an
interview-based study by Votipka et al. [102] with a group of 25 white-hat hackers and software
testers on bug-finding-related issues, hackers were more adept and efficient in finding software
vulnerabilities than testers, but they had more difficulty in communicating such issues to develop-
ers because of a lack of shared vocabulary.

Most industrial and open-source development happens collaboratively, which can lead to other
pitfalls, such as collaborative conflicts. Tools that improve developer-awareness can help avoid
such pitfalls [20–22, 83, 84]. We envision similar tools can be built to warn developers of blindspots
in the APIs they are using, helping them avoid introducing vulnerabilities into their code.

Our work on studying how developers use APIs and how blindspots affect them, and their code,
complements these studies that have not focused on blindspots. Together, this work is building
a better understanding of the developers’ processes and how the tools and APIs at their disposal
improve, or stand in their way, of writing high-quality, secure programs.

7 CONTRIBUTIONS

We have replicated our earlier, Java-based controlled experiment studying the effect of APIs with
blindspots on developers [71]. Our replication applies to Python and involves 129 new develop-
ers and 22 new APIs. We found that APIs with blindspots statistically significantly reduce the
developers’ ability to correctly reason about the APIs in both languages, but that the effect is more
pronounced for Python. Professional experience and expertise failed to mitigate this reduction,
with long-term professionals with many years of experience making mistakes as often as relative
novices. These findings suggest that blindspots in APIs are a serious problem across languages and
that experience and education alone are insufficient to overcome it. Tools are needed to help devel-
opers recognize blindspots in APIs as they write code that uses those APIs, warning the developers
and reducing the risk of the introduction of vulnerabilities.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

76:26 Y. Brun et al.

Interestingly, for Java, the ability to correctly reason about APIs with blindspots improved with
complexity of the code, whereas for Python, the opposite was true. We hypothesize that Python
developers are less likely to notice potential for vulnerabilities in complex code than in simple code,
whereas Java developers are more likely to recognize the extra complexity and apply more care,
but are more careless with simple code. This finding suggests that, while blindspots likely have
negative effects across programming languages, there are important differences among languages,
warranting both further studies of more languages with respect to blindspots and deeper studies
into whether the blindspots’ unique effects on each language can be used to reduce the potentially
resulting vulnerabilities.

ACKNOWLEDGMENTS

We wish to thank Daniela Oliveira, Muhammad Sajidur Rahman, Rad Akefirad, Donovan Ellis,
Eliany Perez, Rahul Bobhate, Lois A. DeLong, and Justin Cappos for their contributions to data
collection, puzzle creation, and the Java-based study.

REFERENCES

[1] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and C. Stransky. 2017. Comparing the usability

of cryptographic APIs. In IEEE Symposium on Security and Privacy (SP’17). 154–171. DOI:https://doi.org/10.1109/SP.

2017.52

[2] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky. 2016. You get where you’re looking for:

The impact of information sources on code security. In IEEE Symposium on Security and Privacy (SP’16). 289–305.

DOI:https://doi.org/10.1109/SP.2016.25

[3] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky. 2017. How internet resources might be helping

you develop faster but less securely. IEEE Secur. Priv. 15, 2 (Mar. 2017), 50–60. DOI:https://doi.org/10.1109/MSP.2017.

24

[4] Y. Acar, S. Fahl, and M. L. Mazurek. 2016. You are not your developer, either: A research agenda for usable security

and privacy research beyond end users. In IEEE Cybersecurity Development (SecDev’16). 3–8. DOI:https://doi.org/10.

1109/SecDev.2016.013

[5] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. 2018. A reductions approach

to fair classification. In International Conference on Machine Learning (ICML’18), Vol. PMLR 80. 60–69.

[6] Rico Angell, Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2018. Themis: Automatically testing software

for discrimination. In Demonstrations Track at the 26th ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE’18). 871–875. DOI:https://doi.org/10.1145/3236024.

3264590

[7] John Anvik, Lyndon Hiew, and Gail C. Murphy. 2006. Who should fix this bug? In International Conference on

Software Engineering (ICSE’06). 361–370. DOI:https://doi.org/10.1145/1134285.1134336

[8] Rebecca Balebako, Abigail Marsh, Jialiu Lin, Jason I Hong, and Lorrie Faith Cranor. 2014. The privacy and security

behaviors of smartphone app developers. In Workshop on Usable Security. Internet Society.

[9] Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek. 2019. On the impact of programming

languages on code quality: A reproduction study. ACM Trans. Program. Lang. Syst. 41, 4 (Oct. 2019). DOI:https://

doi.org/10.1145/3340571

[10] Ivan Beschastnikh, Jenny Abrahamson, Yuriy Brun, and Michael D. Ernst. 2011. Synoptic: Studying logged behavior

with inferred models. In Joint Meeting of the European Software Engineering Conference and ACM SIGSOFT Symposium

on the Foundations of Software Engineering Tool Demonstration Track (ESEC/FSE’11). 448–451. DOI:https://doi.org/10.

1145/2025113.2025188

[11] Ivan Beschastnikh, Yuriy Brun, Jenny Abrahamson, Michael D. Ernst, and Arvind Krishnamurthy. 2013. Unifying

FSM-inference algorithms through declarative specification. In International Conference on Software Engineering

(ICSE’13). 252–261. DOI:https://doi.org/10.1109/ICSE.2013.6606571

[12] Ivan Beschastnikh, Yuriy Brun, Jenny Abrahamson, Michael D. Ernst, and Arvind Krishnamurthy. 2015. Using declar-

ative specification to improve the understanding, extensibility, and comparison of model-inference algorithms. IEEE

Trans. Softw. Eng. 41, 4 (Ap. 2015), 408–428. DOI:https://doi.org/10.1109/TSE.2014.2369047

[13] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, and Arvind Krishnamurthy. 2014. Inferring models of concur-

rent systems from logs of their behavior with CSight. In International Conference on Software Engineering (ICSE’14).

468–479. DOI:https://doi.org/10.1145/2568225.2568246

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

https://doi.org/10.1109/SP.2017.52
https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1109/MSP.2017.24
https://doi.org/10.1109/SecDev.2016.013
https://doi.org/10.1145/3236024.3264590
https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1145/3340571
https://doi.org/10.1145/2025113.2025188
https://doi.org/10.1109/ICSE.2013.6606571
https://doi.org/10.1109/TSE.2014.2369047
https://doi.org/10.1145/2568225.2568246

Blindspots in Python and Java APIs Result in Vulnerable Code 76:27

[14] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, Arvind Krishnamurthy, and Thomas E. Anderson. 2011. Mining

temporal invariants from partially ordered logs. ACM SIGOPS Oper. Syst. Rev. 45, 3 (Dec. 2011), 39–46. DOI:https://

doi.org/10.1145/2094091.2094101

[15] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D. Ernst. 2011. Leveraging existing

instrumentation to automatically infer invariant-constrained models. In Joint Meeting of the European Software Engi-

neering Conference and ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE’11). 267–277.

DOI:https://doi.org/10.1145/2025113.2025151

[16] Ivan Beschastnikh, Perry Liu, Albert Xing, Patty Wang, Yuriy Brun, and Michael D. Ernst. 2020. Visualizing dis-

tributed system executions. ACM Trans. Softw. Eng. Methodol. 29, 2 (Mar. 2020), 9:1–9:38. DOI:https://doi.org/10.

1145/3375633

[17] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D. Ernst. 2016. Debugging distributed systems. Commun.

ACM 59, 8 (Aug. 2016), 32–37. DOI:https://doi.org/10.1145/2909480

[18] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer Katzenellenbogen. 2013. Reversible Debugging Soft-

ware. Technical Report. University of Cambridge, Judge Business School.

[19] Yuriy Brun, George Edwards, Jae young Bang, and Nenad Medvidovic. 2011. Smart redundancy for distributed com-

putation. In International Conference on Distributed Computing Systems (ICDCS’11). 665–676. DOI:https://doi.org/10.

1109/ICDCS.2011.25

[20] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2011. Crystal: Precise and unobtrusive conflict warn-

ings. In Joint Meeting of the European Software Engineering Conference and ACM SIGSOFT Symposium on the Founda-

tions of Software Engineering Tool Demonstration Track (ESEC/FSE’11). 444–447. DOI:https://doi.org/10.1145/2025113.

2025187

[21] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2011. Proactive detection of collaboration conflicts.

In Joint Meeting of the European Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations

of Software Engineering (ESEC/FSE’11). 168–178. DOI:https://doi.org/10.1145/2025113.2025139

[22] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2013. Early detection of collaboration conflicts and

risks. IEEE Trans. Softw. Eng. 39, 10 (Oct. 2013), 1358–1375. DOI:https://doi.org/10.1109/TSE.2013.28

[23] Yuriy Brun and Nenad Medvidovic. 2007. An architectural style for solving computationally intensive problems on

large networks. In Software Engineering for Adaptive and Self-Managing Systems (SEAMS’07). DOI:https://doi.org/10.

1109/SEAMS.2007.4

[24] Yuriy Brun and Nenad Medvidovic. 2007. Fault and adversary tolerance as an emergent property of distributed

systems’ software architectures. In 2nd International Workshop on Engineering Fault Tolerant Systems (EFTS’07).

38–43. DOI:https://doi.org/10.1145/1316550.1316557

[25] Yuriy Brun and Nenad Medvidovic. 2012. Keeping data private while computing in the cloud. In 5th International

Conference on Cloud Computing (CLOUD’12). 285–294. DOI:https://doi.org/10.1109/CLOUD.2012.126

[26] Yuriy Brun and Nenad Medvidovic. 2013. Entrusting private computation and data to untrusted networks. IEEE Trans.

Depend. Secure Comput. 10, 4 (July/Aug. 2013), 225–238. DOI:https://doi.org/10.1109/TDSC.2013.13

[27] Yuriy Brun and Alexandra Meliou. 2018. Software fairness. In New Ideas and Emerging Results Track at the 26th

ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE’18). 754–759. DOI:https://doi.org/10.1145/3236024.3264838

[28] Justin Cappos, Yanyan Zhuang, Daniela Oliveira, Marissa Rosenthal, and Kuo-Chuan Yeh. 2014. Vulnerabilities

as blind spots in developer’s heuristic-based decision-making processes. In New Security Paradigms Workshop

(NSPW’14). 53–62. DOI:https://doi.org/10.1145/2683467.2683472

[29] Michael Coblenz, Whitney Nelson, Jonathan Aldrich, Brad Myers, and Joshua Sunshine. 2017. Glacier: Transitive

class immutability for Java. In International Conference on Software Engineering (ICSE’17). 496–506. DOI:https://doi.

org/10.1109/ICSE.2017.52

[30] Michael Coblenz, Joshua Sunshine, Jonathan Aldrich, Brad Myers, Sam Weber, and Forrest Shull. 2016. Exploring lan-

guage support for immutability. In International Conference on Software Engineering (ICSE’16). 736–747. DOI:https://

doi.org/10.1145/2884781.2884798

[31] Common Weakness Enumeration 2011. Common Weakness Enumeration (CWE)/SANS Top 25 Most Dangerous

Software Errors. Retrieved from http://cwe.mitre.org/top25/.

[32] Paul T. Costa and Robert R. MacCrae. 1992. Revised NEO Personality Inventory (NEO PI-R) and NEO Five-Factor Inven-

tory (NEO-FFI): Professional Manual. Psychological Assessment Resources, Incorporated.

[33] Barthélémy Dagenais and Martin P. Robillard. 2010. Creating and evolving developer documentation: Understanding

the decisions of open source contributors. In ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE’10). 127–136. DOI:https://doi.org/10.1145/1882291.1882312

[34] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack, and Andreas Zeller. 2010. Generating test

cases for specification mining. In International Symposium on Software Testing and Analysis (ISSTA’10). 85–96.

DOI:https://doi.org/10.1145/1831708.1831719

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

https://doi.org/10.1145/2094091.2094101
https://doi.org/10.1145/2025113.2025151
https://doi.org/10.1145/3375633
https://doi.org/10.1145/2909480
https://doi.org/10.1109/ICDCS.2011.25
https://doi.org/10.1145/2025113.2025187
https://doi.org/10.1145/2025113.2025139
https://doi.org/10.1109/TSE.2013.28
https://doi.org/10.1109/SEAMS.2007.4
https://doi.org/10.1145/1316550.1316557
https://doi.org/10.1109/CLOUD.2012.126
https://doi.org/10.1109/TDSC.2013.13
https://doi.org/10.1145/3236024.3264838
https://doi.org/10.1145/2683467.2683472
https://doi.org/10.1109/ICSE.2017.52
https://doi.org/10.1145/2884781.2884798
http://cwe.mitre.org/top25/
https://doi.org/10.1145/1882291.1882312
https://doi.org/10.1145/1831708.1831719

76:28 Y. Brun et al.

[35] Valentin Dallmeier, Christian Lindig, and Andreas Zeller. 2005. Lightweight defect localization for Java. In European

Conference on Object Oriented Programming (ECOOP’05). 528–550. DOI:https://doi.org/10.1007/11531142_23

[36] Zoltan Dienes. 2014. Using Bayes to get the most out of non-significant results. Front. Psychol. 5 (2014), 781:1–781:17.

DOI:https://doi.org/10.3389/fpsyg.2014.00781

[37] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. 2012. Fairness through aware-

ness. In Innovations in Theoretical Computer Science Conference (ITCS’12). 214–226.

[38] Brian Ellis, Jeffrey Stylos, and Brad Myers. 2007. The factory pattern in API design: A usability evaluation. In Inter-

national Conference on Software Engineering (ICSE’07). 302–312. DOI:https://doi.org/10.1109/ICSE.2007.85

[39] Emily First and Yuriy Brun. 2022. Diversity-driven Automated Formal Verification. In 44th International Conference

on Software Engineering (ICSE’22). 749–761. DOI:https://doi.org/10.1145/3510003.3510138

[40] Emily First, Yuriy Brun, and Arjun Guha. 2020. TacTok: Semantics-aware proof synthesis. Proc. ACM. Program. Lang.

Object-Orient. Program. Syst. Lang. Applic. 4 (Nov. 2020), 231:1–231:31. DOI:https://doi.org/10.1145/3428299

[41] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and S. Fahl. 2017. Stack overflow considered harm-

ful? The impact of copy paste on Android application security. In IEEE Symposium on Security and Privacy (SP’17).

121–136. DOI:https://doi.org/10.1109/SP.2017.31

[42] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness testing: Testing software for discrimination. In

Joint Meeting of the European Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations of

Software Engineering (ESEC/FSE’17). 498–510. DOI:https://doi.org/10.1145/3106237.3106277

[43] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of Reusable Object-

oriented Software. Addison-Wesley Longman Publishing Co., Inc.

[44] Richard C. Gershon, Molly V. Wagster, Hugh C. Hendrie, Nathan A. Fox, Karon F. Cook, and Cindy J. Nowinski. 2013.

NIH toolbox for assessment of neurological and behavioral function. Neurology 80, 11 Supplement 3 (2013), S2–S6.

[45] Carlo Ghezzi, Mauro Pezzè, Michele Sama, and Giordano Tamburrelli. 2014. Mining behavior models from user-

intensive web applications. In ACM/IEEE International Conference on Software Engineering (ICSE’14). 277–287.

DOI:https://doi.org/10.1145/2568225.2568234

[46] Stephen Giguere, Blossom Metevier, Yuriy Brun, Bruno Castro da Silva, Philip S. Thomas, and Scott Niekum. 2022.

Fairness guarantees under demographic shift. In 10th International Conference on Learning Representations (ICLR’22).

Retrieved from https://openreview.net/forum?id=wbPObLm6ueA.

[47] Dan Gopstein, Jake Iannacone, Yu Yan, Lois DeLong, Yanyan Zhuang, Martin K.-C. Yeh, and Justin Cappos. 2017.

Understanding misunderstandings in source code. In Joint Meeting of the European Software Engineering Conference

and ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE’17). 129–139. DOI:https://doi.

org/10.1145/3106237.3106264

[48] GraphicsMagick 2017. GraphicsMagick 1.4 Heap-based Buffer Overflow Vulnerability. Retrieved from https://nvd.

nist.gov/vuln/detail/CVE-2017-17915.

[49] M. Green and M. Smith. 2016. Developers are not the enemy!: The need for usable security APIs. IEEE Secur. Priv. 14,

5 (Sept. 2016), 40–46. DOI:https://doi.org/10.1109/MSP.2016.111

[50] Nina Grgic-Hlaca, Elissa M. Redmiles, Krishna P. Gummadi, and Adrian Weller. 2018. Human perceptions of fairness

in algorithmic decision making: A case study of criminal risk prediction. In World Wide Web Conference (WWW’18).

903–912. DOI:https://doi.org/10.1145/3178876.3186138

[51] Henry L. Roediger III and K. Andrew DeSoto. 2014. Confidence and memory: Assessing positive and negative corre-

lations. Memory 22, 1 (2014), 76–91. DOI:https://doi.org/10.1080/09658211.2013.795974

[52] Oliver P. John and Sanjay Srivastava. 1999. The big five trait taxonomy: History, measurement, and theoretical

perspectives. Handb. Personal.: Theor. Res. 2, 1999 (1999), 102–138.

[53] Brittany Johnson, Jesse Bartola, Rico Angell, Katherine Keith, Sam Witty, Stephen J. Giguere, and Yuriy Brun. 2020.

Fairkit, fairkit, on the wall, who’s the fairest of them all? Supporting data scientists in training fair models. CoRR

abs/2012.09951 (2020).

[54] Brittany Johnson and Yuriy Brun. 2022. Fairkit-learn: A fairness evaluation and comparison toolkit. In Demonstra-

tions Track at the 44th International Conference on Software Engineering (ICSE’22). 70–74. DOI:https://doi.org/10.1145/

3510454.3516830

[55] Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2020. Causal Testing: Understanding Defects’ Root Causes. In

International Conference on Software Engineering (ICSE’20). 87–99. DOI:https://doi.org/10.1145/3377811.3380377

[56] Brittany Johnson, Rahul Pandita, Justin Smith, Denae Ford, Sarah Elder, Emerson Murphy-Hill, Sarah Heckman,

and Caitlin Sadowski. 2016. A cross-tool communication study on program analysis tool notifications. In ACM SIG-

SOFT International Symposium on Foundations of Software Engineering (FSE’16). 73–84. DOI:https://doi.org/10.1145/

2950290.2950304

[57] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test information to assist fault localization.

In International Conference on Software Engineering (ICSE’02). 467–477. DOI:https://doi.org/10.1145/581339.581397

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

https://doi.org/10.1007/11531142_23
https://doi.org/10.3389/fpsyg.2014.00781
https://doi.org/10.1109/ICSE.2007.85
https://doi.org/10.1145/3510003.3510138
https://doi.org/10.1145/3428299
https://doi.org/10.1109/SP.2017.31
https://doi.org/10.1145/3106237.3106277
https://doi.org/10.1145/2568225.2568234
http://people.cs.umass.edu/brun/pubs/pubs/Giguere22iclr.pdf
https://openreview.net/forum?id=wbPObLm6ueA
https://doi.org/10.1145/3106237.3106264
https://nvd.nist.gov/vuln/detail/CVE-2017-17915
https://doi.org/10.1109/MSP.2016.111
https://doi.org/10.1145/3178876.3186138
https://doi.org/10.1080/09658211.2013.795974
https://doi.org/10.1145/3510454.3516830
https://doi.org/10.1145/3377811.3380377
https://doi.org/10.1145/2950290.2950304
https://doi.org/10.1145/581339.581397

Blindspots in Python and Java APIs Result in Vulnerable Code 76:29

[58] Herb Krasner. 2020. The Cost of Poor Software Quality in the US: A 2020 Report. Retrieved from https://www.it-

cisq.org/pdf/CPSQ-2020-report.pdf.

[59] Ivo Krka, Yuriy Brun, and Nenad Medvidovic. 2014. Automatic mining of specifications from invocation traces

and method invariants. In ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE’14). 178–189.

DOI:https://doi.org/10.1145/2635868.2635890

[60] Margie E. Lachman, Stefan Agrigoroaei, Patricia A. Tun, and Suzanne L. Weaver. 2014. Monitoring cognitive

functioning: Psychometric properties of the brief test of adult cognition by telephone. Assessment 21, 4 (2014).

DOI:https://doi.org/10.1177/1073191113508807

[61] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan. 2005. Scalable statistical bug isolation.

In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’05). 15–26. DOI:https://

doi.org/10.1145/1065010.1065014

[62] Thomas J. McCabe. 1976. A complexity measure. IEEE Trans. Softw. Eng. 2, 4 (July 1976), 308–320. DOI:https://doi.

org/10.1109/TSE.1976.233837

[63] Joe McManus and Sandy Shrum. 2015. SEI CERT Oracle Coding Standard for Java. Retrieved from https://wiki.sei.

cmu.edu/confluence/display/java/JavaCodingGuidelines.

[64] Blossom Metevier, Stephen Giguere, Sarah Brockman, Ari Kobren, Yuriy Brun, Emma Brunskill, and Philip Thomas.

2019. Offline contextual bandits with high probability fairness guarantees. In Annual Conference on Neural Informa-

tion Processing Systems (NeurIPS), Advances in Neural Information Processing Systems 32. 14893–14904.

[65] Emerson Murphy-Hill, Da Young Lee, Gail C. Murphy, and Joanna McGrenere. 2015. How do users discover new

tools in software development and beyond? Comput. Supp. Coop. Work 24, 5 (01 Oct. 2015), 389–422. DOI:https://

doi.org/10.1007/s10606-015-9230-9

[66] Brad A. Myers and Jeffrey Stylos. 2016. Improving API usability. Commun. ACM 59, 6 (May 2016), 62–69. DOI:https://

doi.org/10.1145/2896587

[67] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jumping through hoops: Why do Java develop-

ers struggle with cryptography APIs? In International Conference on Software Engineering (ICSE’16). 935–946. DOI:
https://doi.org/10.1145/2884781.2884790

[68] National Vulnerability Database 1999. National Vulnerability Database. Retrieved from https://nvd.nist.gov/.

[69] Tony Ohmann, Michael Herzberg, Sebastian Fiss, Armand Halbert, Marc Palyart, Ivan Beschastnikh, and Yuriy Brun.

2014. Behavioral resource-aware model inference. In IEEE/ACM International Conference on Automated Software En-

gineering (ASE’14). 19–30. DOI:https://doi.org/10.1145/2642937.2642988

[70] Daniela Oliveira, Marissa Rosenthal, Nicole Morin, Kuo-Chuan Yeh, Justin Cappos, and Yanyan Zhuang. 2014. It’s

the psychology stupid: How heuristics explain software vulnerabilities and how priming can illuminate developer’s

blind spots. In Annual Computer Security Applications Conference (ACSAC’14). 296–305. DOI:https://doi.org/10.1145/

2664243.2664254

[71] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad Akefirad, Donovan Ellis, Eliany Perez, Rahul

Bobhate, Lois A. DeLong, Justin Cappos, Yuriy Brun, and Natalie C. Ebner. 2018. API blindspots: Why experienced de-

velopers write vulnerable code. In USENIX Symposium on Usable Privacy and Security (SOUPS’18). 315–328. Retrieved

from https://www.usenix.org/system/files/conference/soups2018/soups2018-oliveira.pdf.

[72] Marten Oltrogge, Yasemin Acar, Sergej Dechand, Matthew Smith, and Sascha Fahl. 2015. To pin or not to pin helping

app developers bullet proof their TLS connections. In USENIX Conference on Security Symposium (SEC’15). USENIX

Association, 239–254.

[73] Open Web Application Security Project 2013. The Open Web Application Security Project (OWASP) Top 10 Most Crit-

ical Web Application Security Risks. Retrieved from https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.

pdf.

[74] H. Orman. 2003. The Morris worm: A fifteen-year perspective. IEEE Secur. Priv. 1, 5 (Sept. 2003), 35–43. DOI:https://

doi.org/10.1109/MSECP.2003.1236233

[75] James Parker, Michael Hicks, Andrew Ruef, Michelle L. Mazurek, Dave Levin, Daniel Votipka, Piotr Mardziel, and

Kelsey R. Fulton. 2020. Build it, break it, fix it: Contesting secure development. ACM Trans. Priv. Secur. 23, 2 (Apr.

2020), 10:1–10:36. DOI:https://doi.org/10.1145/3383773

[76] Andreas Poller, Laura Kocksch, Katharina Kinder-Kurlanda, and Felix Anand Epp. 2016. First-time security audits as

a turning point?: Challenges for security practices in an industry software development team. In SIGCHI Conference

Extended Abstracts on Human Factors in Computing Systems (CHI AE’16). 1288–1294. DOI:https://doi.org/10.1145/

2851581.2892392

[77] Andreas Poller, Laura Kocksch, Sven Türpe, Felix Anand Epp, and Katharina Kinder-Kurlanda. 2017. Can security

become a routine?: A study of organizational change in an agile software development group. In ACM Conference

on Computer Supported Cooperative Work and Social Computing (CSCW’17). 2489–2503. DOI:https://doi.org/10.1145/

2998181.2998191

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf
https://doi.org/10.1145/2635868.2635890
https://doi.org/10.1177/1073191113508807
https://doi.org/10.1145/1065010.1065014
https://doi.org/10.1109/TSE.1976.233837
https://wiki.sei.cmu.edu/confluence/display/java/Java Coding Guidelines
https://doi.org/10.1007/s10606-015-9230-9
https://doi.org/10.1145/2896587
https://doi.org/10.1145/2884781.2884790
https://nvd.nist.gov/
https://doi.org/10.1145/2642937.2642988
https://doi.org/10.1145/2664243.2664254
https://www.usenix.org/system/files/conference/soups2018/soups2018-oliveira.pdf
https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf
https://doi.org/10.1109/MSECP.2003.1236233
https://doi.org/10.1145/3383773
https://doi.org/10.1145/2851581.2892392
https://doi.org/10.1145/2998181.2998191

76:30 Y. Brun et al.

[78] Muhammad Sajidur Rahman. 2016. An Empirical Case Study on Stack Overflow to Explore Developers’ Security

Challenges. Masters Report. Retrieved from http://krex.k-state.edu/dspace/handle/2097/34563.

[79] M. P. Robillard. 2009. What makes APIs hard to learn? Answers from developers. IEEE Softw. 26, 6 (Nov. 2009), 27–34.

DOI:https://doi.org/10.1109/MS.2009.193

[80] Martin P. Robillard and Robert Deline. 2011. A field study of API learning obstacles. Empir. Softw. Eng. 16, 6 (Dec.

2011), 703–732. DOI:https://doi.org/10.1007/s10664-010-9150-8

[81] Timothy A. Salthouse and Kenneth A. Prill. 1987. Inferences about age impairments in inferential reasoning. Psychol.

Aging 2, 1 (1987). DOI:https://doi.org/10.1037/0882-7974.2.1.43

[82] Alex Sanchez-Stern, Emily First, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer. 2022. Passport:

Improving automated formal verification using identifiers. CoRR abs/2204.10370 (2022).

[83] Anita Sarma, Zahra Noroozi, and André van der Hoek. 2003. Palantír: Raising awareness among configuration

management workspaces. In International Conference on Software Engineering (ICSE’03). 444–454. DOI:https://doi.

org/10.1109/ICSE.2003.1201222

[84] Anita Sarma, David F. Redmiles, and André van der Hoek. 2012. Palantír: Early detection of development conflicts

arising from parallel code changes. IEEE Trans. Softw. Eng. 38, 4 (2012), 889–908. DOI:https://doi.org/10.1109/TSE.

2011.64

[85] K. Warner Schaie. 1996. Intellectual Development in Adulthood: The Seattle Longitudinal Study. Cambridge University

Press, New York, NY.

[86] Secure Coding Guidelines 2022. Secure Coding Guidelines for Java SE, Oracle. Retrieved from http://www.oracle.

com/technetwork/java/seccodeguide-139067.html#6.

[87] Security Focus Vulnerability Database 2021. Security Focus Vulnerability Database, Accenture. Retrieved from https:

//www.securityfocus.com/.

[88] Security Vulnerabilities. 2017. Security Vulnerabilities (SQL Injection), MITRE Corporation. Retrieved from https:

//www.cvedetails.com/vulnerability-list/opsqli-1/sql-injection.html.

[89] Konrad Slind and Michael Norrish. 2008. A brief overview of HOL4. In International Conference on Theorem Proving

in Higher Order Logics (TPHOLs’08). 28–32. DOI:https://doi.org/10.1007/978-3-540-71067-7_6

[90] Stack Overflow 2008. Stack Overflow: A Q/A Site for Professional and Enthusiast Programmers, Stack Overflow.

Retrieved from https://www.stackoverflow.com/.

[91] State of Software Security. 2016. State of Software Security, Veracode. Retrieved from https://www.veracode.com/

sites/default/files/Resources/Reports/state-of-software-security-volume-7-veracode-report.pdf.

[92] Andreas Stefik and Susanna Siebert. 2013. An empirical investigation into programming language syntax. Trans.

Comput. Educ. 13, 4 19 (Nov. 2013). DOI:https://doi.org/10.1145/2534973

[93] Jeffrey Stylos and Steven Clarke. 2007. Usability implications of requiring parameters in objects’ constructors. In

International Conference on Software Engineering (ICSE’07). 529–539. DOI:https://doi.org/10.1109/ICSE.2007.92

[94] Symantec. 2017. Symantec Internet Security Threat Report. Retrieved from https://www.symantec.com/content/

dam/symantec/docs/reports/istr-22-2017-en.pdf.

[95] The Coq Development Team. 2017. Coq, v.8.7. Retrieved from https://coq.inria.fr.

[96] Philip S. Thomas, Bruno Castro da Silva, Andrew G. Barto, Stephen Giguere, Yuriy Brun, and Emma Brunskill. 2019.

Preventing undesirable behavior of intelligent machines. Science 366, 6468 (22 Nov. 2019), 999–1004. DOI:https://

doi.org/10.1126/science.aag3311

[97] Florian Tramer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, Jean-Pierre Hubaux, Mathias Humbert, Ari Juels,

and Huang Lin. 2017. FairTest: Discovering unwarranted associations in data-driven applications. In IEEE European

Symposium on Security and Privacy (EuroS&P’17).

[98] Patricia A. Tun and Margie E. Lachman. 2006. Telephone assessment of cognitive function in adulthood: The brief

test of adult cognition by telephone. Age Ageing 35, 6 (2006), 629–632.

[99] Tommi Unruh, Bhargava Shastry, Malte Skoruppa, Federico Maggi, Konrad Rieck, Jean-Pierre Seifert, and Fabian Ya-

maguchi. 2017. Leveraging flawed tutorials for seeding large-scale web vulnerability discovery. In 11th USENIX Work-

shop on Offensive Technologies (WOOT’17). USENIX Association. Retrieved from https://www.usenix.org/conference/

woot17/workshop-program/presentation/unruh.

[100] Dirk van der Linden, Pauline Anthonysamy, Bashar Nuseibeh, Thein T. Tun, Marian Petre, Mark Levine, John Towse,

and Awais Rashid. 2020. Schrödinger’s security: Opening the box on app developers’ security rationale. In Interna-

tional Conference on Software Engineering (ICSE’20). DOI:https://doi.org/10.1145/3377811.3380394

[101] Daniel Votipka, Kelsey R. Fulton, James Parker, Matthew Hou, Michelle L. Mazurek, and Michael Hicks.

2020. Understanding security mistakes developers make: Qualitative analysis from Build It, Break It, Fix

It. In 29th USENIX Security Symposium (USENIX Security). Retrieved from https://www.usenix.org/conference/

usenixsecurity20/presentation/votipka-understanding.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

http://krex.k-state.edu/dspace/handle/2097/34563
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1037/0882-7974.2.1.43
https://doi.org/10.1109/ICSE.2003.1201222
https://doi.org/10.1109/TSE.2011.64
http://www.oracle.com/technetwork/java/seccodeguide-139067.html#6
https://www.securityfocus.com/
https://www.cvedetails.com/vulnerability-list/opsqli-1/sql-injection.html
https://doi.org/10.1007/978-3-540-71067-7_6
https://www.stackoverflow.com/
https://www.veracode.com/sites/default/files/Resources/Reports/state-of-software-security-volume-7-veracode-report.pdf
https://doi.org/10.1145/2534973
https://doi.org/10.1109/ICSE.2007.92
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://coq.inria.fr
https://doi.org/10.1126/science.aag3311
https://www.usenix.org/conference/woot17/workshop-program/presentation/unruh
https://doi.org/10.1145/3377811.3380394
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-understanding

Blindspots in Python and Java APIs Result in Vulnerable Code 76:31

[102] D. Votipka, R. Stevens, E. Redmiles, J. Hu, and M. Mazurek. 2018. Hackers vs. testers: A comparison of software

vulnerability discovery processes. In IEEE Symposium on Security and Privacy (SP’18). 134–151. DOI:https://doi.org/

10.1109/SP.2018.00003

[103] Zhiyuan Wan, Xin Xia, David Lo, Jiachi Chen, Xiapu Luo, and Xiaohu Yang. 2021. Smart contract security: A practi-

tioners’ perspective. In International Conference on Software Engineering (ICSE’21).

[104] Sam Weber, Michael Coblenz, Brad Myers, Jonathan Aldrich, and Joshua Sunshine. 2017. Empirical studies on the

security and usability impact of immutability. In IEEE Cybersecurity Development (SecDev’17). 50–53. DOI:https://doi.

org/10.1109/SecDev.2017.21

[105] Chamila Wijayarathna and Nalin Asanka Gamagedara Arachchilage. 2019. Using cognitive dimensions to evaluate

the usability of security APIs: An empirical investigation. Inf. Softw. Technol. 115 (2019), 5–19. DOI:https://doi.org/

10.1016/j.infsof.2019.07.007

[106] Jim Witschey, Shundan Xiao, and Emerson Murphy-Hill. 2014. Technical and personal factors influencing developers’

adoption of security tools. In ACM Workshop on Security Information Workers (SIW’14). 23–26. DOI:https://doi.org/

10.1145/2663887.2663898

[107] Jim Witschey, Olga Zielinska, Allaire Welk, Emerson Murphy-Hill, Chris Mayhorn, and Thomas Zimmermann. 2015.

Quantifying developers’ adoption of security tools. In Joint Meeting of the European Software Engineering Conference

and ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE’15). 260–271. DOI:https://doi.

org/10.1145/2786805.2786816

[108] Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill. 2014. Social influences on secure development tool adop-

tion: Why security tools spread. In ACM Conference on Computer Supported Cooperative Work & Social Computing

(CSCW’14). 1095–1106. DOI:https://doi.org/10.1145/2531602.2531722

[109] Jing Xie, Heather Lipford, and Bei-Tseng Chu. 2012. Evaluating interactive support for secure programming.

In SIGCHI Conference on Human Factors in Computing Systems (CHI’12). 2707–2716. DOI:https://doi.org/10.1145/

2207676.2208665

[110] Jing Xie, Heather Richter Lipford, and Bill Chu. 2011. Why do programmers make security errors? In IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 161–164.

[111] Kaiyu Yang and Jia Deng. 2019. Learning to prove theorems via interacting with proof assistants. In International

Conference on Machine Learning (ICML’19). Retrieved from http://proceedings.mlr.press/v97/yang19a/yang19a.pdf.

Received 1 December 2021; revised 29 June 2022; accepted 18 October 2022

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 76. Pub. date: April 2023.

https://doi.org/10.1109/SP.2018.00003
https://doi.org/10.1109/SecDev.2017.21
https://doi.org/10.1016/j.infsof.2019.07.007
https://doi.org/10.1145/2663887.2663898
https://doi.org/10.1145/2786805.2786816
https://doi.org/10.1145/2531602.2531722
https://doi.org/10.1145/2207676.2208665
http://proceedings.mlr.press/v97/yang19a/yang19a.pdf

