
The Promise and Perils of Using Machine Learning
When Engineering Software (Keynote Paper)

Yuriy Brun

brun@cs.umass.edu

University of Massachusetts Amherst

USA

ABSTRACT
Machine learning has radically changed what computing can ac-

complish, including the limits of what software engineering can

do. I will discuss recent software engineering advances machine

learning has enabled, from automatically repairing software bugs

to data-driven software systems that automatically learn to make

decisions. Unfortunately, with the promises of these new technolo-

gies come serious perils. For example, automatically generated

program patches can break as much functionality as they repair.

And self-learning, data-driven software can make decisions that re-

sult in unintended consequences, including unsafe, racist, or sexist

behavior. But to build solutions to these shortcomings we may need

to look no further than machine learning itself. I will introduce

multiple ways machine learning can help verify software properties,

leading to higher-quality systems.

CCS CONCEPTS
• Software and its engineering;

KEYWORDS
Machine learning and software engineering

ACM Reference Format:
Yuriy Brun. 2022. The Promise and Perils of Using Machine Learning When

Engineering Software (Keynote Paper). In Proceedings of the 6th International
Workshop on Machine Learning Techniques for Software Quality Evaluation
(MaLTeSQuE ’22), November 18, 2022, Singapore, Singapore. ACM, New York,

NY, USA, 4 pages. https://doi.org/10.1145/3549034.3570200

1 INTRODUCTION
Machine learning has significantly affected the software engineer-

ing process. For example, machine learning has been used for

localizing faults [30, 55], automatically repairing bugs [32], require-

ment ambiguity detection and traceability [53], test generation [54],

and bias enforcement [49], just to name a few applications. The

promise of machine learning applications in software engineering

is significant.

This keynote, however, examines some of the perils of using ma-

chine learning in the process of engineering software systems, and

in the software systems themselves, and, then, discusses machine-

learning-driven solutions to these perils. In particular, Section 2

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

MaLTeSQuE ’22, November 18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9456-7/22/11.

https://doi.org/10.1145/3549034.3570200

examines pitfalls that can occur when automatically repairing pro-

grams, but Section 3 demonstrates how some of the same automated

approaches can be applied to formal verification to avoid those ex-

act pitfalls; and Section 4 illustrates how data-driven software that

uses machine learning can result in unsafe or unfair behavior, but

Section 5 summarizes how machine learning can help probabilis-

tically verify safety and fairness properties to ensure systems are

well-behaved.

2 PROGRAM REPAIR
Automated program repair attempts to reduce the cost of fixing

bugs by automatically producing patches [17, 20] for software. The

central idea is, when one or more tests fail because of a bug, fixing

the bug often consists of editing the source code slightly to make all

tests pass. This, in its essence, is a search problem, and computers

are great at performing this kind of search. This search can be

bounded by (1) using fault localization to identify the code locations

most likely to be responsible for the bug, and (2) determining which

code changes are worth attempting. Both of those processes can be

supported by machine learning [30, 32, 55]. APR tools’ success is

best exemplified by their recent use in industry [7, 26, 33, 41].

Unfortunately, repair tools patch only a small fraction of defects

correctly [38, 41, 43] and industrial deployments require significant

manual oversight. For example, for Java, evaluated on the Defects4J

benchmark [24], we have found that automated program repair

techniques produce patches for 10–19% of the defects, and only

14–46% of those patches pass an independent set of tests [38]. This

suggests that, while more than 80% of the time, automated program

repair simply fails to produce a patch, worse, more than half of the

time it does produce a patch it claims is correct, that patch either

fails to repair the buggy functionality, or breaks other functionality

in a way that existing test suites do not detect. So, while automated

program repair exhibits significant promise, it can be overshadowed

by the perils of producing patches that do more harm than good.

The fundamental cause of producing low-quality patches in pro-

gram repair, known as overfitting, is that the function for deciding

if a patch is correct — typically a test suite— is nearly always partial.

And, therefore, as test suites necessarily undertest certain behavior,

they allow for incorrect patches to appear correct. Increasing the

granularity of the code changes has a marginal effect on improving

the quality of repair [1, 25]. Similarly, attempts to improve fault

localization have led to slight improvements in repair quality [37].

Applying program repair in some domains, such as build scripts, can

lead to better quality [51] but is not a general solution. Recent work

on generating oracles to improve test-suite quality [9, 13, 19, 36, 46]

may potentially improve repair quality as well, though, today, it is

limited in the kinds of behavior it can capture. The end result is,

1

https://doi.org/10.1145/3549034.3570200
https://doi.org/10.1145/3549034.3570200


MaLTeSQuE ’22, November 18, 2022, Singapore, Singapore Yuriy Brun

unless we develop better methods for evaluating patch correctness,

automated program repair is attempting to solve an underspecified

problem and is doomed to never fully succeed.

3 AUTOMATED FORMAL VERIFICATION
Formal verification using interactive theorem provers, such as

Coq [48] and Isabelle/HOL [40], is a promising method for building

correct software. It has been used in industry, including by Airbus

France, which uses the Coq-verified CompCert C compiler [28] to

ensure safety and improve performance of its aircraft [44]. And

Amazon successfully applies formal verification to cloud security

problems in Amazon Web Services, providing tools for users to de-

tect entire classes of misconfigurations that can potentially expose

vulnerable data [6]. However, the manual effort involved in such

formal verification is often prohibitive. For example, the Coq proof

of the C compiler is more than three times that of the compiler code

itself and took three person years of work [28]. Meanwhile, it took

11 person years to write the proof script to verify a microkernel [39].

As a general rule, because of the expense of verification, nearly all

software companies ship is unverified.

But, unlike most programming languages, by their very nature,

programs written in ones used for formal verification exhibit a

special property— if a theorem prover says they are correct, they

are guaranteed to be correct. This creates an ideal application of

program repair and synthesis: formal verification program proofs

are extremely effort intensive to write, but automatically generated

ones, if a theorem prover agrees, are guaranteed to be correct.

Applying automated-program-repair technology to Coq proof

script generation has been fairly successful. ASTactic can success-

fully, fully automatically prove 12.3% of the theorems in a large

benchmark [52], while TacTok can prove 12.9% [15], and Diva can

prove 21.7% [14]. These tools use machine-learning-based language

modeling to learn a predictive model of a proof script, and then

search through the space of possible proof scripts, guided by feed-

back from the theorem prover, to synthesize, from scratch, proof

scripts. Recent advances, such as increasing the depth of informa-

tion encoded in the models, shows even more promise [42].

4 DATA-DRIVEN SOFTWARE
Today, software that makes decisions is increasingly driven by ma-

chine learning, from online recommendation engines, to hiring

decisions, to financial instrument availability, to decisions within

our justice system. Machine learning has nothing short of revo-

lutionized countless fields and applications, improving decision

quality.

Unfortunately, there is amble evidence that the machine learning

models can extract, and even exacerbate biases from its training

data. These biases can show up in language modeling [12] and pro-

cessing [10], automated transcription [47], facial recognition [27],

ads [45], product and service availability [29], discount offers avail-

ability [21, 35], and criminal sentencing [5].

Thus, as the use of machine learning has enabled new appli-

cations and improved performance of data-driven systems, it has

simultaneously created a new kind of software defect [11, 16], en-

dangering the success of and creating a potential for harm software

systems can cause.

5 PROBABILISTIC VERIFICATION OF
MACHINE-LEARNING-BASED SOFTWARE

However, with the emergence of these new kinds of bugs that

can result in unsafe or discriminatory behavior, new research has

led to improvements in machine learning technology to provide

guarantees of safety and fairness [49].

For example, FairSquare is able to provide probabilistic fair-

ness guarantees for certain definitions of fairness for binary clas-

sifiers [3]. Meanwhile, machine learning models trained using

the Seldonian framework [49] come with probabilistic guarantees

that the model will not violate the user-specified safety or fairness

properties, with high probability, on unseen data. For example,

Seldonian algorithms can ensure that an update to an insulin pump

causes no more instances of hypoglycemia than without the update,

or that a model that recommends which candidates one should

interview does not discriminate against gender and race [49].

Seldonian algorithms can be extended to work with contextual

bandits to learn safe and fair policies [34]. The approach can also

provide high-probability guarantees in settings when the training

data and the data to which the model is applied in the field come

from different distributions (even when only partial information

about the in-field distribution is known) [18]. Finally, these ideas

can be extended to definitions of delayed impact [31], that aim to

enforce fairness in the long-term, rather thanmaking seemingly fair

decisions that are only fair in the short term but cause long-term

harm [50].

Coupled with an emergence of tools that support fairness-aware

decision-making in data-driven systems [2, 4, 8, 16, 22, 23], these

verification methods can help produce not only machine learning

models that are safe and fair, but also enable a better understanding

of the safety and fairness requirements of software systems, and

that better satisfy the needs of the users, both in the short term,

and in the long-term future.

6 CONCLUSION
Machine learning is rapidly changing both software and the process

of engineering that software. With these changes, many pitfalls

emerge that may lead software to act in unexpected and undesirable

ways. However, machine learning can enable not only methods to

overcome these pitfalls, but also technology that will lead to higher

quality software and engineering processes than ever before.

ACKNOWLEDGEMENT
This work is supported by the U.S. National Science Foundation

under grants no. CCF-1763423 and CCF-2210243, and by the De-

fense Advanced Research Projects Agency (DARPA) under grant

no. grant HR0011-22-9-0063.

REFERENCES
[1] Afsoon Afzal, Manish Motwani, Kathryn T. Stolee, Yuriy Brun, and Claire Le

Goues. 2021. SOSRepair: Expressive Semantic Search for Real-World Program

Repair. IEEE Transactions on Software Engineering (TSE) 47, 10 (October 2021),
2162–2181. https://doi.org/10.1109/TSE.2019.2944914

[2] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna

Wallach. 2018. A reductions approach to fair classification. In International
Conference on Machine Learning (ICML), Vol. PMLR 80. Stockholm, Sweden,

60–69.

2

https://doi.org/10.1109/TSE.2019.2944914


The Promise and Perils of Using Machine Learning When Engineering Software (Keynote Paper) MaLTeSQuE ’22, November 18, 2022, Singapore, Singapore

[3] Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya Nori. 2017.

FairSquare: Probabilistic Verification for Program Fairness. In ACM International
Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA). Vancouver, BC, Canada.

[4] Rico Angell, Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2018. Themis:

Automatically Testing Software for Discrimination. In Proceedings of the Demon-
strations Track at the 26th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE) (6–9). Lake
Buena Vista, FL, USA, 871–875. https://doi.org/10.1145/3236024.3264590

[5] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. Machine

Bias. ProPublica May 23 (2016). https://www.propublica.org/article/machine-

bias-risk-assessments-in-criminal-sentencing.

[6] AWS 2022. AWS Provable Security. https://aws.amazon.com/security/provable-

security.

[7] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:

Learning to fix bugs automatically. Proceedings of the ACM on Programming
Languages (PACMPL) Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) issue 3 (October 2019).

[8] Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman, Stephanie

Houde, Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta,

Aleksandra Mojsilovic, Seema Nagar, Karthikeyan Natesan Ramamurthy, John

Richards, Diptikalyan Saha, Prasanna Sattigeri, Moninder Singh, Kush R. Varsh-

ney, and Yunfeng Zhang. 2018. AI Fairness 360: An Extensible Toolkit for

Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias. CoRR
1810.01943 (2018). https://arxiv.org/abs/1810.01943

[9] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.

Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating code

comments to procedure specifications. In International Symposium on Software
Testing and Analysis (ISSTA). Amsterdam, Netherlands, 242–253. https://doi.org/

10.1145/3213846.3213872

[10] Su Lin Blodgett and Brendan O’Connor. 2017. Racial Disparity in Natural Lan-

guage Processing: A Case Study of Social Media African-American English. In

Fairness, Accountability, and Transparency in Machine Learning (FAT/ML). Halifax,
NS, Canada.

[11] Yuriy Brun and Alexandra Meliou. 2018. Software Fairness. In Proceedings of the
New Ideas and Emerging Results Track at the 26th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE) (6–9). Lake Buena Vista, FL, USA, 754–759. https://doi.org/10.1145/

3236024.3264838

[12] Aylin Caliskan, Joanna J. Bryson, and Arvind Narayanan. 2017. Semantics derived

automatically from language corpora contain human-like biases. Science 356,
6334 (2017), 183–186. https://doi.org/10.1126/science.aal4230

[13] Michael D. Ernst. 2017. Natural Language is a Programming Language: Applying

Natural Language Processing to Software Development. In Summit on Advances
in Programming Languages (SNAPL), Vol. 71. Dagstuhl, Germany, 4:1–4:14. https:

//doi.org/10.4230/LIPIcs.SNAPL.2017.4

[14] Emily First and Yuriy Brun. 2022. Diversity-Driven Automated Formal Verifica-

tion. In Proceedings of the 44th International Conference on Software Engineering
(ICSE) (22–27). Pittsburgh, PA, USA, 749–761.

[15] Emily First, Yuriy Brun, and Arjun Guha. 2020. TacTok: Semantics-Aware Proof

Synthesis. Proceedings of the ACM on Programming Languages (PACMPL) Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA) issue 4
(November 2020), 231:1–231:31. https://doi.org/10.1145/3428299

[16] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness Testing:

Testing Software for Discrimination. In Proceedings of the 11th Joint Meeting of
the European Software Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE) (6–8). Paderborn, Germany,

498–510. https://doi.org/10.1145/3106237.3106277

[17] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software

Repair: A Survey. IEEE Transactions on Software Engineering (TSE) 45, 1 (2019),
34–67. https://doi.org/10.1109/TSE.2017.2755013

[18] Stephen Giguere, Blossom Metevier, Yuriy Brun, Bruno Castro da Silva, Philip S.

Thomas, and Scott Niekum. 2022. Fairness Guarantees under Demographic Shift.

In Proceedings of the 10th International Conference on Learning Representations
(ICLR) (25–29). https://openreview.net/forum?id=wbPObLm6ueA

[19] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Auto-

matic generation of oracles for exceptional behaviors. In International Sympo-
sium on Software Testing and Analysis (ISSTA). Saarbrücken, Genmany, 213–224.

https://doi.org/10.1145/2931037.2931061

[20] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated

Program Repair. Commun. ACM 62, 12 (Nov. 2019), 56–65. https://doi.org/10.

1145/3318162

[21] Devindra Haweawar. 2012. Staples, Home Depot, and other online stores

change prices based on your location. VentureBeat December 24 (2012). https:

//venturebeat.com/2012/12/24/staples-online-stores-price-changes.

[22] Brittany Johnson, Jesse Bartola, Rico Angell, Katherine Keith, Sam Witty,

Stephen J. Giguere, and Yuriy Brun. 2020. Fairkit, Fairkit, on the Wall, Who’s the

Fairest of Them All? Supporting Data Scientists in Training Fair Models. CoRR

abs/2012.09951 (2020). https://arxiv.org/abs/2012.09951.

[23] Brittany Johnson and Yuriy Brun. 2022. Fairkit-learn: A Fairness Evaluation

and Comparison Toolkit. In Proceedings of the Demonstrations Track at the 44th
International Conference on Software Engineering (ICSE) (22–27). Pittsburgh, PA,
USA, 70–74. https://doi.org/10.1145/3510454.3516830

[24] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of

existing faults to enable controlled testing studies for Java programs. In Proceed-
ings of the International Symposium on Software Testing and Analysis (ISSTA). San
Jose, CA, USA, 437–440. https://doi.org/10.1145/2610384.2628055

[25] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing

Programs with Semantic Code Search. In Proceedings of the 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE) (9–13). Lincoln, NE,
USA, 295–306. https://doi.org/10.1109/ASE.2015.60 DOI: 10.1109/ASE.2015.60.

[26] Serkan Kirbas, Etienne Windels, Olayori McBello, Kevin Kells, Matthew Pagano,

Rafal Szalanski, Vesna Nowack, Emily Rowan Winter, Steve Counsell, David

Bowes, Tracy Hall, Saemundur Haraldsson, and John Woodward. 2021. On The

Introduction of Automatic Program Repair in Bloomberg. IEEE Software 38, 4
(2021), 43–51. https://doi.org/10.1109/MS.2021.3071086

[27] Brendan F. Klare, Mark J. Burge, Joshua C. Klontz, Richard W. Vorder Bruegge,

and Anil K. Jain. 2012. Face Recognition Performance: Role of Demographic

Information. IEEE Transactions on Information Forensics and Security (TIFS) 7, 6
(December 2012), 1789–1801. https://doi.org/10.1109/TIFS.2012.2214212

[28] Xavier Leroy. 2009. Formal verification of a realistic compiler. Communications of
the ACM (CACM) 52, 7 (2009), 107–115. https://doi.org/10.1145/1538788.1538814

[29] Rafi Letzter. 2016. Amazon just showed us that ‘unbiased’ algorithms can be

inadvertently racist. TECH Insider April 21 (2016). http://www.techinsider.io/

how-algorithms-can-be-racist-2016-4.

[30] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: Integrating

Multiple Fault Diagnosis Dimensions for Deep Fault Localization. In International
Symposium on Software Testing and Analysis (ISSTA). Beijing, China, 169–180.
https://doi.org/10.1145/3293882.3330574

[31] Lydia T. Liu, Sarah Dean, Esther Rolf, Max Simchowitz, and Moritz Hardt. 2018.

Delayed Impact of Fair Machine Learning. In International Conference on Machine
Learning (ICML), Vol. 80. PMLR 3150–3158.

[32] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning

Correct Code. InACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). St. Petersburg, FL, USA, 298–312. https://doi.org/10.1145/

2837614.2837617

[33] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,

KeMao, Alexander Mols, and Andrew Scott. 2019. SapFix: Automated End-to-End

Repair at Scale. In ACM/IEEE International Conference on Software Engineering
(ICSE) (29–31). Montreal, QC, Canada.

[34] Blossom Metevier, Stephen Giguere, Sarah Brockman, Ari Kobren, Yuriy Brun,

Emma Brunskill, and Philip S. Thomas. 2019. Offline Contextual Bandits with

High Probability Fairness Guarantees. In Proceedings of the 33rd Annual Con-
ference on Neural Information Processing Systems (NeurIPS), Advances in Neu-
ral Information Processing Systems 32 (9–14). Vancouver, BC, Canada, 14893–

14904. http://papers.neurips.cc/paper/9630-offline-contextual-bandits-with-

high-probability-fairness-guarantees

[35] Jakub Mikians, László Gyarmati, Vijay Erramilli, and Nikolaos Laoutaris. 2012.

Detecting Price and Search Discrimination on the Internet. In ACM Workshop on
Hot Topics in Networks (HotNets). Redmond, Washington, 79–84. https://doi.org/

10.1145/2390231.2390245

[36] Manish Motwani and Yuriy Brun. 2019. Automatically Generating Precise Ora-

cles from Structured Natural Language Specifications. In Proceedings of the 41st
International Conference on Software Engineering (ICSE) (29–31). Montreal, QC,

Canada, 188–199. https://doi.org/10.1109/ICSE.2019.00035

[37] Manish Motwani and Yuriy Brun. 2020. Automatically Repairing Programs Using

Both Tests and Bug Reports. CoRR abs/2011.08340 (2020). https://arxiv.org/abs/

2011.08340.

[38] ManishMotwani, Mauricio Soto, Yuriy Brun, René Just, and Claire Le Goues. 2022.

Quality of Automated Program Repair on Real-World Defects. IEEE Transactions
on Software Engineering (TSE) 48, 2 (February 2022), 637–661. https://doi.org/10.

1109/TSE.2020.2998785

[39] TobyMurray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke,

Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. 2013. seL4: From general

purpose to a proof of information flow enforcement. In IEEE Symposium on
Security and Privacy (S&P). San Francisco, CA, USA, 415–429.

[40] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. 2002. Isabelle/HOL:
A proof assistant for higher-order logic. Vol. 2283. Springer Science & Business

Media.

[41] Kunihiro Noda, Yusuke Nemoto, Keisuke Hotta, Hideo Tanida, and Shinji Kikuchi.

2020. Experience Report: How Effective is Automated Program Repair for Indus-

trial Software?. In International Conference on Software Analysis, Evolution, and
Reengineering (SANER). 612–616.

[42] Alex Sanchez-Stern, Emily First, Timothy Zhou, Zhanna Kaufman, Yuriy Brun,

and Talia Ringer. 2022. Passport: Improving Automated Formal Verification

Using Identifiers. CoRR abs/2204.10370 (2022). https://arxiv.org/abs/2204.10370.

3

https://doi.org/10.1145/3236024.3264590
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://aws.amazon.com/security/provable-security
https://aws.amazon.com/security/provable-security
https://arxiv.org/abs/1810.01943
https://doi.org/10.1145/3213846.3213872
https://doi.org/10.1145/3213846.3213872
https://doi.org/10.1145/3236024.3264838
https://doi.org/10.1145/3236024.3264838
https://doi.org/10.1126/science.aal4230
https://doi.org/10.4230/LIPIcs.SNAPL.2017.4
https://doi.org/10.4230/LIPIcs.SNAPL.2017.4
https://doi.org/10.1145/3428299
https://doi.org/10.1145/3106237.3106277
https://doi.org/10.1109/TSE.2017.2755013
http://people.cs.umass.edu/brun/pubs/pubs/Giguere22iclr.pdf
https://openreview.net/forum?id=wbPObLm6ueA
https://doi.org/10.1145/2931037.2931061
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://venturebeat.com/2012/12/24/staples-online-stores-price-changes
https://venturebeat.com/2012/12/24/staples-online-stores-price-changes
https://arxiv.org/abs/2012.09951
https://doi.org/10.1145/3510454.3516830
https://doi.org/10.1145/2610384.2628055
http://people.cs.umass.edu/brun/pubs/pubs/Ke15ase.pdf
http://people.cs.umass.edu/brun/pubs/pubs/Ke15ase.pdf
https://doi.org/10.1109/ASE.2015.60
https://doi.org/10.1109/ASE.2015.60
https://doi.org/10.1109/MS.2021.3071086
https://doi.org/10.1109/TIFS.2012.2214212
https://doi.org/10.1145/1538788.1538814
http://www.techinsider.io/how-algorithms-can-be-racist-2016-4
http://www.techinsider.io/how-algorithms-can-be-racist-2016-4
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/2837614.2837617
http://papers.neurips.cc/paper/9630-offline-contextual-bandits-with-high-probability-fairness-guarantees
http://papers.neurips.cc/paper/9630-offline-contextual-bandits-with-high-probability-fairness-guarantees
https://doi.org/10.1145/2390231.2390245
https://doi.org/10.1145/2390231.2390245
https://doi.org/10.1109/ICSE.2019.00035
https://arxiv.org/abs/2011.08340
https://arxiv.org/abs/2011.08340
https://doi.org/10.1109/TSE.2020.2998785
https://doi.org/10.1109/TSE.2020.2998785
https://arxiv.org/abs/2204.10370


MaLTeSQuE ’22, November 18, 2022, Singapore, Singapore Yuriy Brun

[43] Edward K. Smith, Earl Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the Cure

Worse than the Disease? Overfitting in Automated Program Repair. In Proceedings
of the 10th Joint Meeting of the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE)
(2–4). Bergamo, Italy, 532–543. https://doi.org/10.1145/2786805.2786825 Previous

versions appeared as University of Massachusetts Computer Science technical

report UM-CS-2015-007 and as UC Davis College of Engineering technical report

https://escholarship.org/uc/item/3z8926ks. DOI: 10.1145/2786805.2786825.

[44] Jean Souyris. 2014. Industrial Use of CompCert on a Safety-Critical Software

Product. http://projects.laas.fr/IFSE/FMF/J3/slides/P05_Jean_Souyiris.pdf.

[45] Latanya Sweeney. 2013. Discrimination in Online Ad Delivery. Communications
of the ACM (CACM) 56, 5 (May 2013), 44–54. https://doi.org/10.1145/2447976.

2447990

[46] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tCom-

ment: Testing Javadoc comments to detect comment-code inconsistencies. In

International Conference on Software Testing, Verification, and Validation (ICST).
Montreal, QC, Canada, 260–269. https://doi.org/10.1109/ICST.2012.106

[47] Rachael Tatman. 2017. Gender and Dialect Bias in YouTube’s Automatic Captions.

In Workshop on Ethics in Natural Language Processing. Valencia, Spain. https:

//doi.org/10.18653/v1/W17-1606

[48] The Coq Development Team. 2017. Coq, v.8.7. https://coq.inria.fr.

[49] Philip S. Thomas, Bruno Castro da Silva, Andrew G. Barto, Stephen Giguere,

Yuriy Brun, and Emma Brunskill. 2019. Preventing Undesirable Behavior of

Intelligent Machines. Science 366, 6468 (22 November 2019), 999–1004. https:

//doi.org/10.1126/science.aag3311

[50] Aline Weber, Blossom Metevier, Yuriy Brun, Philip S. Thomas, and Bruno Cas-

tro da Silva. 2022. Enforcing Delayed-Impact Fairness Guarantees. CoRR
abs/2208.11744 (2022). https://arxiv.org/abs/2208.11744.

[51] Aaron Weiss, Arjun Guha, and Yuriy Brun. 2017. Tortoise: Interactive System

Configuration Repair. In Proceedings of the 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE) (31–2). Urbana-Champaign, IL,

USA, 625–636. https://doi.org/10.1109/ASE.2017.8115673

[52] Kaiyu Yang and Jia Deng. 2019. Learning to prove theorems via interacting with

proof assistants. In International Conference on Machine Learning (ICML). Long
Beach, CA, USA. http://proceedings.mlr.press/v97/yang19a/yang19a.pdf

[53] Kareshna Zamani, Didar Zowghi, and Chetan Arora. 2021. Machine Learning

in Requirements Engineering: A Mapping Study. In International Requirements
Engineering Conference Workshops. 116–125. https://doi.org/10.1109/REW53955.

2021.00023

[54] Yixue Zhao, Saghar Talebipour, Kesina Baral, Hyojae Park, Leon Yee, Safwat Ali

Khan, Yuriy Brun, Nenad Medvidovic, and Kevin Moran. 2022. Avgust: Automat-

ing Usage-Based Test Generation from Videos of App Executions. In Proceedings
of the 29th ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE) (14–18). Singapore.
https://doi.org/10.1145/3540250.3549134

[55] Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D Ernst, and Lu Zhang. 2019.

An Empirical Study of Fault Localization Families and Their Combinations. IEEE
Transactions on Software Engineering (TSE) (2019). https://doi.org/10.1109/TSE.

2019.2892102

Received 2022-07-22; accepted 2022-08-22

4

http://people.cs.umass.edu/brun/pubs/pubs/Smith15fse.pdf
http://people.cs.umass.edu/brun/pubs/pubs/Smith15fse.pdf
https://doi.org/10.1145/2786805.2786825
https://escholarship.org/uc/item/3z8926ks
https://doi.org/10.1145/2786805.2786825
http://projects.laas.fr/IFSE/FMF/J3/slides/P05_Jean_Souyiris.pdf
https://doi.org/10.1145/2447976.2447990
https://doi.org/10.1145/2447976.2447990
https://doi.org/10.1109/ICST.2012.106
https://doi.org/10.18653/v1/W17-1606
https://doi.org/10.18653/v1/W17-1606
https://coq.inria.fr
https://doi.org/10.1126/science.aag3311
https://doi.org/10.1126/science.aag3311
https://arxiv.org/abs/2208.11744
https://doi.org/10.1109/ASE.2017.8115673
http://proceedings.mlr.press/v97/yang19a/yang19a.pdf
https://doi.org/10.1109/REW53955.2021.00023
https://doi.org/10.1109/REW53955.2021.00023
https://doi.org/10.1145/3540250.3549134
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/TSE.2019.2892102

	Abstract
	1 Introduction
	2 Program Repair
	3 Automated Formal Verification
	4 Data-Driven Software
	5 Probabilistic Verification of Machine-Learning-Based Software
	6 Conclusion
	References

