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ABSTRACT
Machine learning has radically changed what computing can ac-

complish, including the limits of what software engineering can

do. I will discuss recent software engineering advances machine

learning has enabled, from automatically repairing software bugs

to data-driven software systems that automatically learn to make

decisions. Unfortunately, with the promises of these new technolo-

gies come serious perils. For example, automatically generated

program patches can break as much functionality as they repair.

And self-learning, data-driven software can make decisions that re-

sult in unintended consequences, including unsafe, racist, or sexist

behavior. But to build solutions to these shortcomings we may need

to look no further than machine learning itself. I will introduce

multiple ways machine learning can help verify software properties,

leading to higher-quality systems.
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1 INTRODUCTION
Machine learning has significantly affected the software engineer-

ing process. For example, machine learning has been used for

localizing faults [30, 55], automatically repairing bugs [32], require-

ment ambiguity detection and traceability [53], test generation [54],

and bias enforcement [49], just to name a few applications. The

promise of machine learning applications in software engineering

is significant.

This keynote, however, examines some of the perils of using ma-

chine learning in the process of engineering software systems, and

in the software systems themselves, and, then, discusses machine-

learning-driven solutions to these perils. In particular, Section 2
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examines pitfalls that can occur when automatically repairing pro-

grams, but Section 3 demonstrates how some of the same automated

approaches can be applied to formal verification to avoid those ex-

act pitfalls; and Section 4 illustrates how data-driven software that

uses machine learning can result in unsafe or unfair behavior, but

Section 5 summarizes how machine learning can help probabilis-

tically verify safety and fairness properties to ensure systems are

well-behaved.

2 PROGRAM REPAIR
Automated program repair attempts to reduce the cost of fixing

bugs by automatically producing patches [17, 20] for software. The

central idea is, when one or more tests fail because of a bug, fixing

the bug often consists of editing the source code slightly to make all

tests pass. This, in its essence, is a search problem, and computers

are great at performing this kind of search. This search can be

bounded by (1) using fault localization to identify the code locations

most likely to be responsible for the bug, and (2) determining which

code changes are worth attempting. Both of those processes can be

supported by machine learning [30, 32, 55]. APR tools’ success is

best exemplified by their recent use in industry [7, 26, 33, 41].

Unfortunately, repair tools patch only a small fraction of defects

correctly [38, 41, 43] and industrial deployments require significant

manual oversight. For example, for Java, evaluated on the Defects4J

benchmark [24], we have found that automated program repair

techniques produce patches for 10–19% of the defects, and only

14–46% of those patches pass an independent set of tests [38]. This

suggests that, while more than 80% of the time, automated program

repair simply fails to produce a patch, worse, more than half of the

time it does produce a patch it claims is correct, that patch either

fails to repair the buggy functionality, or breaks other functionality

in a way that existing test suites do not detect. So, while automated

program repair exhibits significant promise, it can be overshadowed

by the perils of producing patches that do more harm than good.

The fundamental cause of producing low-quality patches in pro-

gram repair, known as overfitting, is that the function for deciding

if a patch is correct — typically a test suite— is nearly always partial.

And, therefore, as test suites necessarily undertest certain behavior,

they allow for incorrect patches to appear correct. Increasing the

granularity of the code changes has a marginal effect on improving

the quality of repair [1, 25]. Similarly, attempts to improve fault

localization have led to slight improvements in repair quality [37].

Applying program repair in some domains, such as build scripts, can

lead to better quality [51] but is not a general solution. Recent work

on generating oracles to improve test-suite quality [9, 13, 19, 36, 46]

may potentially improve repair quality as well, though, today, it is

limited in the kinds of behavior it can capture. The end result is,
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unless we develop better methods for evaluating patch correctness,

automated program repair is attempting to solve an underspecified

problem and is doomed to never fully succeed.

3 AUTOMATED FORMAL VERIFICATION
Formal verification using interactive theorem provers, such as

Coq [48] and Isabelle/HOL [40], is a promising method for building

correct software. It has been used in industry, including by Airbus

France, which uses the Coq-verified CompCert C compiler [28] to

ensure safety and improve performance of its aircraft [44]. And

Amazon successfully applies formal verification to cloud security

problems in Amazon Web Services, providing tools for users to de-

tect entire classes of misconfigurations that can potentially expose

vulnerable data [6]. However, the manual effort involved in such

formal verification is often prohibitive. For example, the Coq proof

of the C compiler is more than three times that of the compiler code

itself and took three person years of work [28]. Meanwhile, it took

11 person years to write the proof script to verify a microkernel [39].

As a general rule, because of the expense of verification, nearly all

software companies ship is unverified.

But, unlike most programming languages, by their very nature,

programs written in ones used for formal verification exhibit a

special property— if a theorem prover says they are correct, they

are guaranteed to be correct. This creates an ideal application of

program repair and synthesis: formal verification program proofs

are extremely effort intensive to write, but automatically generated

ones, if a theorem prover agrees, are guaranteed to be correct.

Applying automated-program-repair technology to Coq proof

script generation has been fairly successful. ASTactic can success-

fully, fully automatically prove 12.3% of the theorems in a large

benchmark [52], while TacTok can prove 12.9% [15], and Diva can

prove 21.7% [14]. These tools use machine-learning-based language

modeling to learn a predictive model of a proof script, and then

search through the space of possible proof scripts, guided by feed-

back from the theorem prover, to synthesize, from scratch, proof

scripts. Recent advances, such as increasing the depth of informa-

tion encoded in the models, shows even more promise [42].

4 DATA-DRIVEN SOFTWARE
Today, software that makes decisions is increasingly driven by ma-

chine learning, from online recommendation engines, to hiring

decisions, to financial instrument availability, to decisions within

our justice system. Machine learning has nothing short of revo-

lutionized countless fields and applications, improving decision

quality.

Unfortunately, there is amble evidence that the machine learning

models can extract, and even exacerbate biases from its training

data. These biases can show up in language modeling [12] and pro-

cessing [10], automated transcription [47], facial recognition [27],

ads [45], product and service availability [29], discount offers avail-

ability [21, 35], and criminal sentencing [5].

Thus, as the use of machine learning has enabled new appli-

cations and improved performance of data-driven systems, it has

simultaneously created a new kind of software defect [11, 16], en-

dangering the success of and creating a potential for harm software

systems can cause.

5 PROBABILISTIC VERIFICATION OF
MACHINE-LEARNING-BASED SOFTWARE

However, with the emergence of these new kinds of bugs that

can result in unsafe or discriminatory behavior, new research has

led to improvements in machine learning technology to provide

guarantees of safety and fairness [49].

For example, FairSquare is able to provide probabilistic fair-

ness guarantees for certain definitions of fairness for binary clas-

sifiers [3]. Meanwhile, machine learning models trained using

the Seldonian framework [49] come with probabilistic guarantees

that the model will not violate the user-specified safety or fairness

properties, with high probability, on unseen data. For example,

Seldonian algorithms can ensure that an update to an insulin pump

causes no more instances of hypoglycemia than without the update,

or that a model that recommends which candidates one should

interview does not discriminate against gender and race [49].

Seldonian algorithms can be extended to work with contextual

bandits to learn safe and fair policies [34]. The approach can also

provide high-probability guarantees in settings when the training

data and the data to which the model is applied in the field come

from different distributions (even when only partial information

about the in-field distribution is known) [18]. Finally, these ideas

can be extended to definitions of delayed impact [31], that aim to

enforce fairness in the long-term, rather thanmaking seemingly fair

decisions that are only fair in the short term but cause long-term

harm [50].

Coupled with an emergence of tools that support fairness-aware

decision-making in data-driven systems [2, 4, 8, 16, 22, 23], these

verification methods can help produce not only machine learning

models that are safe and fair, but also enable a better understanding

of the safety and fairness requirements of software systems, and

that better satisfy the needs of the users, both in the short term,

and in the long-term future.

6 CONCLUSION
Machine learning is rapidly changing both software and the process

of engineering that software. With these changes, many pitfalls

emerge that may lead software to act in unexpected and undesirable

ways. However, machine learning can enable not only methods to

overcome these pitfalls, but also technology that will lead to higher

quality software and engineering processes than ever before.
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