764

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

Self-Adapting Reliability
in Distributed Software Systems

Yuriy Brun, Member, IEEE, Jae young Bang, Member, IEEE,
George Edwards, and Nenad Medvidovic, Senior Member, IEEE

Abstract—Developing modern distributed software systems is difficult in part because they have little control over the environments in
which they execute. For example, hardware and software resources on which these systems rely may fail or become compromised and
malicious. Redundancy can help manage such failures and compromises, but when faced with dynamic, unpredictable resources and
attackers, the system reliability can still fluctuate greatly. Empowering the system with self-adaptive and self-managing reliability
facilities can significantly improve the quality of the software system and reduce reliance on the developer predicting all possible failure
conditions. We present iterative redundancy, a novel approach to improving software system reliability by automatically injecting
redundancy into the system’s deployment. Iterative redundancy self-adapts in three ways: (1) by automatically detecting when the
resource reliability drops, (2) by identifying unlucky parts of the computation that happen to deploy on disproportionately many
compromised resources, and (3) by not relying on a priori estimates of resource reliability. Further, iterative redundancy is theoretically
optimal in its resource use: Given a set of resources, iterative redundancy guarantees to use those resources to produce the most
reliable version of that software system possible; likewise, given a desired increase in the system’s reliability, iterative redundancy
guarantees achieving that reliability using the least resources possible. Iterative redundancy handles even the Byzantine threat model,
in which compromised resources collude to attack the system. We evaluate iterative redundancy in three ways. First, we formally prove
its self-adaptation, efficiency, and optimality properties. Second, we simulate it at scale using discrete event simulation. Finally, we
modify the existing, open-source, volunteer-computing BOINC software system and deploy it on the globally-distributed PlanetLab

NO.8, AUGUST 2015

testbed network to empirically evaluate that iterative redundancy is self-adaptive and more efficient than existing techniques.

Index Terms—Redundancy, reliability, fault-tolerance, iterative redundancy, self-adaptation, optimal redundancy

1 INTRODUCTION

EVELOPING reliable software systems is becoming more

difficult as software becomes ubiquitous and is
deployed on many diverse, unpredictable platforms. For
example, mobiles applications need to be able to run on
hundreds of different platforms. At the same time, neither
cloud application developers nor users have direct access to
the hardware on which the applications execute, which
makes predicting possible failures harder. Finally, compro-
mised and malicious hardware may attack the software
system in unpredictable ways. This creates a software engi-
neering challenge of building robust, reliable software
systems that adapt at runtime, and on their own, to failures
that are not known a priori.

Today, many distributed software systems, such as
distributed data stores (e.g., Freenet [22]) and peer-to-peer
A/V streaming applications (e.g., Skype [9]), use non-
adaptive or weakly-adaptive redundancy to improve
reliability. Such systems’ reliability suffers when they are
deployed in highly unpredictable environments, in which

e Y. Brun is with the School of Computer Science, University of
Massachusetts, Amherst, MA 01003-9264. E-mail: brun@cs.umass.edu.

e].Y. Bang, G. Edwards, and N. Medvidovic are with the Computer Science
Department, University of Southern California, Los Angeles, CA
90089-0781. E-mail: {jaeyounb, gedwards, nenoj@usc.edu.

Manuscript received 22 Mar. 2014; revised 18 Dec. 2014; accepted 1 Mar.
2015. Date of publication 10 Mar. 2015; date of current version 26 Aug. 2015.
Recommended for acceptance by G. P. Picco.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSE.2015.2412134

the identity and fraction of faulty resources are unknown,
resources may join and leave at any time, and malicious
nodes may unexpectedly compromise groups of agents and
induce them into collusion. This resource landscape
requires redundancy-based reliability techniques that are
self-adaptive and are able to navigate the inherent unpredict-
ability of the resources.

Iterative redundancy [14] is an efficient reliability
technique applicable to a large class of distributed software
systems. In this paper, we demonstrate that iterative redun-
dancy is self-adaptive, and addresses system deployment in
environments with unpredictable and unreliable reso-
urces. Iterative redundancy embodies a technique software
engineers can use to improve the reliability of their systems,
much like the traditional concept of redundancy suggests,
using replicated, independent components to perform the
same tasks. Unlike the traditional concept, however, itera-
tive redundancy outperforms state-of-the-art techniques by
autonomously self-adapting to environmental changes and
not requiring a priori measurements of the hardware and
software components’ reliability. Thus, iterative redun-
dancy simplifies the process of developing reliable software
systems by ensuring reliability in an uncertain, untrusted
deployment environment. Iterative redundancy has its roots
in information theory and guarantees optimal use of the
resources: No alternate use of the given resources can yield
higher reliability. Much like the way information theory
relates communication-channel entropy to the maximal
information that can be transmitted over that channel,
iterative redundancy relates the entropy of a computing

0098-5589 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

BRUN ET AL.: SELF-ADAPTING RELIABILITY IN DISTRIBUTED SOFTWARE SYSTEMS 765

channel to the maximal reliability that can be achieved over
that channel, even when faced with Byzantine attacks.

The goal of iterative redundancy is to simplify the task
of engineering reliable, distributed software systems by
providing an easy-to-implement, general approach to reli-
ability. The key to iterative redundancy is that software
systems that employ it make their decisions about resource
use at the last possible moment at runtime, as opposed to
at design time. This allows access to information about the
reliability of various parts of the software that is not avail-
able during design, which, in turn, allows routing extra
resources toward the more risky parts, and fewer resources
toward the less risky parts. This ability makes iterative
redundancy self-adaptive in three ways:

1) By deploying more resources when the reliability of
those resources drops, the software system adapts to
volatile environments and maintains high overall
reliability.

2) By injecting extra redundancy into “unlucky” parts
of the computation that happen to deploy on dispro-
portionately many compromised resources, the
software system ensures that these parts cannot sig-
nificantly affect the overall reliability.

3) By making runtime resource allocation decisions
based on the amount of agreement between the
resources, the software system does not rely on often
inaccurate and static a priori estimates of resource
reliability.

We have previously shown that iterative redundancy
can improve the reliability of distributed systems deployed
on stable but unreliable resources [14]. Here, we focus on
iterative redundancy’s self-adaptation properties, defining
iterative redundancy’s two kinds of self-adaptation in
Sections 4.2 and 4.3, and evaluating iterative redundancy in
four ways in Section 7. Additionally, this paper formalizes
iterative redundancy’s optimality and formally proves the
optimality claims in Section 5.

Iterative redundancy’s self-adaptation allows systems
that employ iterative redundancy to handle a wide range of
powerful threats. Our threat model assumes that a fraction
of the resources are Byzantine: they are malicious and collab-
orating to impede the computation. Resources may fail, or
become compromised (become Byzantine) at any time.
Previously unreliable resources may also suddenly become
reliable. Being Byzantine, the resources may choose to pre-
tend to be reliable for some time, and then attempt to thwart
the software system whenever they decide. Further, the
fraction of resources that are compromised may change at
any time. Finally, the identity and fraction of the compro-
mised resources are unknown. Iterative redundancy can
adapt to all these conditions, using the available resources to
optimally increase the software system reliability. That is,
iterative redundancy can provide two guarantees:

1) Given a fixed increase in the number of the resources
a software system may use, iterative redundancy
guarantees to use those resources to produce the
most reliable version of that system possible.

2) Given a fixed desired increase in the software system’s
reliability, iterative redundancy guarantees achieving

that reliability increase with the least resources
possible.

While iterative redundancy can, in principle, apply to
most software systems that rely on redundancy for reliabil-
ity, in this paper, we focus on a particular kind of system:
distributed computation architectures (DCAs). DCAs solve
massive problems by deploying highly parallelizable com-
putations (i.e., sets of independent software components)
on dynamic networks of potentially faulty and untrusted
computing nodes. Widely known and successful DCAs
include grid systems (e.g., Globus [30]), volunteer-comput-
ing systems (e.g., BOINC [11]), MapReduce systems (e.g.,
Hadoop [31]), and crowdsourcing applications [7], [10],
[25], [28]. In the crowdsourcing domain, resources are often
particularly unreliable, and reducing resource use—human
time—is a critical goal. DCAs are used extensively for
diverse applications, including cryptanalysis [51], web ana-
lytics [24], and scientific simulations in fields such as
physics [40], astrophysics [42], bioinformatics [6], economics
[36], and neuroscience [20]. Our empirical evaluation
deploys one such DCA, BOINC, on the globally distributed
PlanetLab testbed [47].

It is imperative for DCAs to withstand frequent failures
since the entities in their networks are not subjected to any
significant dependability checking and malicious entities
can easily join the network and become part of the software
system deployment, or compromise other participants
deploying the software. Today’s DCAs aim to ensure the
correct execution of each task through voting: multiple inde-
pendent worker machines perform the same computation
and their results are checked for agreement. However, this
technique is costly because taking a vote among n workers
requires expending a factor of n resources or suffering a
factor of n slowdown in performance, regardless of the cir-
cumstances, such as most of the resources being reliable or
unreliable. In contrast, iterative redundancy uses those
resources as efficiently as possible.

We describe iterative redundancy, formally analyze its
cost and performance impact, and perform a rigorous
empirical evaluation on a real-world, volunteer-computing,
distributed software system. We compare iterative redun-
dancy to two alternatives:

o Traditional redundancy, also called k-modular redun-
dancy [38], which performs k € {3,5,7,...} indepen-
dent executions of the same task in parallel and then
takes a vote on the correctness of the result.

e Progressive redundancy, which is an adaptation of a
related technique from the area of self-configuring
optimistic programming research [12], [13].

We demonstrate two key characteristics of resulting soft-
ware systems that make iterative redundancy superior to
both traditional and progressive redundancy: self-adaptivity
and efficiency. Iterative redundancy is self-adaptive because
(1) it recognizes when a computation is at a high risk of fail-
ure and injects additional redundancy to mitigate that risk,
and (2) it adapts to changes in the resources’ reliability.
Further, iterative redundancy is more efficient than the two
alternative methods because it produces the same level
of software system reliability at a lower cost in term of
employed resources (or, equivalently, higher reliability at

766 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

the same cost). In fact, iterative redundancy is optimal with
respect to the cost: It is guaranteed to use the minimum
amount of computation needed to achieve the desired soft-
ware system reliability.

Finally, we discuss the relationship between iterative
redundancy and several other types of redundancy techni-
ques, including active replication [50], primary backup [19],
checkpointing [48], and credibility-based fault tolerance
[49]. In some cases, (e.g., active replication), iterative redun-
dancy can be used in conjunction with these techniques. In
other cases, (e.g., credibility-based fault tolerance), iterative
redundancy can be used when these techniques cannot.

The remainder of this paper is organized as follows.
Section 2 defines DCAs, the threat model, and the assump-
tions underlying our work. Section 3 describes the states of
the practice and art in using redundancy for improving soft-
ware system reliability. Section 4 describes iterative redun-
dancy, our self-adaptive redundancy technique. Section 5
formally defines and proves iterative redundancy’s optimal-
ity. Section 6 presents our empirical evaluation test beds,
and Sections 7 and 8 detail empirical evaluations of self-
adaptation and performance, respectively. Section 9 shows
the effects of relaxing our assumptions. Section 10 places
our work in the context of related research and Section 11
summarizes our contributions.

2 ScoPE, THREAT MODEL, AND ASSUMPTIONS

This section defines our model of a DCA (the software sys-
tem on which we focus our work), states the threat model
we use, and enumerates the assumptions we make to aid
the explanation and analysis of iterative redundancy.

2.1 System Model

In this paper, we use the following nomenclature. A compu-
tation is the typically large problem being solved by a DCA.
A task is a part of the computation that can be performed
independently of the others. A job is an instance of a task
that a particular node performs. With redundancy, each
task will be executed as several identical jobs on distinct
nodes. In our model of a DCA, a task server breaks up a com-
putation into a large number of tasks. The task server then
assigns jobs to nodes in a node pool, ensuring that each node
is chosen at random. After returning a response to a job to
the task server, each node rejoins the node pool and can
again be selected and assigned a new job. New volunteer
nodes may join the pool while other nodes may leave.

Fig. 1 depicts the DCA software system model. The
model accurately describes a number of DCAs, including
the BOINC family of volunteer-computing systems [4], [11].
Section 10 discusses other distributed systems to which our
techniques apply.

2.2 Threat Model

In this paper, we employ the Byzantine failure model,
which is the most general and widely accepted threat model
[29], [33], [38], [41] and has been applied to numerous dis-
tributed software systems [1], [3], [33]. The model includes
Byzantine failures and allows for malicious nodes that col-
lude and form cartels to try to mislead and break computa-
tions. Nodes may become or stop being Byzantine at any

NO.8, AUGUST 2015

task server

° °
%bdivide computation into tas@ nodes
quit

pool

computation

generate jobs for tasks ° node pOOl L

Queue
get next job from queue

randomly select node

deploy jobon node

- perform
7\ ij/

< compare result§ and

L generate new jobs

Fig. 1. A model of a DCA.

time. Byzantine nodes may try to report incorrect results or
not report a result at all. For the purposes of this paper, we
assume a node that does not report a result in a timely fash-
ion to have failed. While at first, we will assume the fraction
of nodes that are Byzantine is known, we will later show
(theoretically in Section 4 and empirically in Section 7.4)
that iterative redundancy does not require this information.

Our threat model is at least as strong as those used by
redundancy techniques currently deployed in DCAs [4],
[21], [24]. On the one hand, our threat model is certainly
not bulletproof. For example, if failures are perfectly corre-
lated (meaning if one node fails on a task, all nodes will
fail on that task), all redundancy techniques fail to increase
software system reliability. On the other hand, we make
no assumptions about failures that existing implementa-
tions of DCAs do not make. In particular, we assume
nodes’ failures depend on the nodes, and not on the com-
putation they perform.

Given that faults occur, our model assumes the worst
possible case scenario: all faults are Byzantine faults. That
is, malicious nodes may collude to return results that most
hurt the reliability of the software system. For example, col-
luding nodes might not only return a wrong result, but the
same wrong result, making it hard to identify malicious
nodes. Similarly, malicious nodes are aware of other nodes
that failed and how they failed, and consequently are able
to return the same wrong result as those failing nodes.

In voting, the Byzantine failure model can be applied by
assuming that the result of every job is one of two possible
values. Although perhaps counterintuitive, this assumption
creates a worst-case scenario because all failing and mali-
cious nodes report not only a wrong result but the same
wrong result, making it difficult to differentiate wrong
results from correct results.

2.3 Assumptions

This section states five assumptions about the network
nodes on which a DCA is deployed. These assumptions
simplify the description and analysis of the three redun-
dancy techniques, and help to define the class of distributed
software systems to which the techniques apply. However,

BRUN ET AL.: SELF-ADAPTING RELIABILITY IN DISTRIBUTED SOFTWARE SYSTEMS 767

System Reliability
1-

095 |
09|
085
1 1 1
o‘gk'/{/t56789101112131415
PET! Cost Factor

(a) r=0.7

Fig. 2. The reliability of a system approaches 1 exponentially, as a func-
tion of cost, for traditional (TR), progressive (PR), and iterative (IR)
redundancy techniques (here, r = 0.7).

our proposed technique is not limited by these assump-
tions (although some of the analysis in this paper is).
Section 9 will discuss relaxing these assumptions and will
demonstrate that iterative redundancy still applies and, in
some cases, performs even better when the assumptions

do not hold.

1) Every job sent to the node pool has the same proba-
bility of failure because, even if some nodes are more
reliable than others, the jobs are assigned to the
nodes randomly.

2) The reliability of nodes is unknown. This assumption
creates a constraint on the redundancy technique,
but expands the class of software systems to which
the technique applies.

3) Node failures are independent of each other. How-
ever, once nodes fail, they are allowed to collude, fol-
lowing the Byzantine failure model.

4) The result of every job is one of two possible values
(e.g., “yes” or “no”), and the result cannot be easily
verified (for example, decision NP-complete prob-
lems [52]). This assumption is derived from the
Byzantine failure model, as described above.

5) The reliability of the client that receives the final
result of the computation is excluded from the sys-
tem’s reliability.

3 EXISTING REDUNDANCY-BASED RELIABILITY
TECHNIQUES

This section defines two redundancy techniques: Tradi-
tional redundancy is the state of the practice for using
redundancy for improving the reliability of distributed
software systems. Progressive redundancy is our own
adaptation of a self-configuring optimistic programming
technique [12] to apply to DCA, and represents the state of
the art.

To characterize the behavior of each technique, we derive
formulae for two measures of their effect on software sys-
tems: the system reliability R(r) achieved by and the cost fac-
tor C(r) of applying the redundancy technique. The system
reliability is the probability that a task is completed

properly. The cost factor is a ratio of the number of resour-
ces needed when using the technique to the number of
resources needed without it. Both of these measures are
functions of the average reliability r € [0,1] of the node
pool, the fraction of time a job returns the correct response.
While these formulae are at times complex, Fig. 2 provides
a graphical depiction of the costs and reliabilities for
r = 0.7. The benefits of the redundancy techniques depend
on the relative improvement in reliability, rather than the
absolute node reliability. Section 6 will verify the formulae’s
correctness experimentally.

In different domains that employ DCAs, the reliability of
the nodes varies vastly. For example, in RFID networks,
nodes are often 60-70 percent reliable [34]. In crowdsourc-
ing, node reliability can vary from 70 [10] to 95 percent
[8]. Internet hosts are 88 percent available [44]. Our
own experimental evaluation described in Section 8.1
found that computation on distributed PlanetLab [47]
nodes is 94-97 percent reliable. The redundancy techniques
described here and in Section 4 are applicable to all these
domains, and their benefits are similar, regardless of the
underlying node reliabilities. The costs of these redundancy
techniques, as we demonstrate next, are related to the rela-
tive reliability improvement, as opposed to the underlying
reliability of the nodes. For example, the cost of improving
from 70 to 90 percent in one domain is similar to the cost of
improving from 97 to 99.9 percent in another domain.
While we use, as examples, nodes with 70 percent reliabil-
ity, the results generalize to more (and less) reliable nodes.
Fig. 4 will show how the redundancy techniques similarly
affect the relative reliability improvement under different
node reliability conditions.

3.1 State of the Practice: Traditional Redundancy
The Fk-vote traditional redundancy technique (sometimes
called k-modular redundancy [38]) performs k € {3,5,7,...}
independent executions of the same task in parallel, and
then takes a vote on the correctness of the result. If at least
some minimum number of executions agree on a result, a
consensus exists, and that result is taken to be the solution.
To simplify the subsequent discussion, we use 2L (ie., a
majority) as the minimum number of matching results
required for a consensus. Modern implementations of
DCAs, including BOINC [4], [11] and Hadoop [31], rely on
traditional redundancy.

Example. Suppose each node’s reliability is » = 0.7 and
k =1 (i.e., there is no redundancy). Then the system distrib-
utes just a single job for each task and has the system reli-
ability of 0.7. Using, instead, k=19 results in a system
reliability of 1— the chance that at least 10 of the jobs fail:

1- 32, (1)0.370.79 = 0.97, but the cost for this proce-
dure is using 19 times as many resources.

Analysis. Recall the two measures of a redundancy tech-
nique: system reliability and cost factor. For k-vote traditional
redundancy, we refer to the system reliability as R}, (r) and
the cost factor as Ckp(r). Traditional k-vote redundancy

repeats every task k times, independently of r. Thus,

Chp(r) = k. (1

768 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

The reliability of k-vote traditional redundancy is the

probability that at least a consensus of jobs (%) does not
fail: The sum of the probabilities that only 0, 1,..., and &3

jobs fail. Thus,

k=1

Rly() =3 (1)) @

=0

Fig. 2 graphs the system reliability vs. the cost factor of
redundancy techniques for a node pools with node reliabil-
ity = 0.7 The reliability of a system employing traditional
redundancy (labeled “TR”) approaches 1 exponentially in
the cost factor.

3.2 State of the Art: Progressive Redundancy

As part of our research into redundancy techniques, we dis-
covered a self-configuring optimistic programming tech-
nique [12] that can be redesigned to apply to DCAs. We
have leveraged this scheme to develop progressive redun-
dancy. To our knowledge, progressive redundancy is not
used today in any deployed distributed software systems,
although a related technique has been used in service-based
computing [53]. We include progressive redundancy in our
comparison as the state of the art because the technique on
which it is based has been shown to be an improvement
over traditional redundancy in other domains.

The key to progressive redundancy is the observation that
traditional redundancy sometimes reaches a consensus
quickly but still continues to distribute jobs that do not affect
the task’s outcome. Progressive redundancy minimizes the
number of jobs needed to produce a consensus: The k-vote
progressive redundancy task server distributes only £ jobs.
If all jobs return the same result, there will be a consensus
and the results produced by any subsequent jobs of the same
task become irrelevant. If some nodes agree, but not enough
to produce a consensus, the task server automatically distrib-
utes the minimum number of additional copies of the job
necessary to produce a consensus, assuming that all these
additional executions were to produce the same result. The
task server repeats this process until a consensus is reached.

Example: As before, suppose k=19 and r = 0.7. Using
progressive redundancy, the system reliability is the proba-
bility that fewer than 10 (fewer than half) of the jobs fail, or
0.97, which is the same as traditional redundancy. As we
will show in Equation (3), the cost of this procedure is using
14.2 times as many resources as a system without redun-
dancy. This number is 1.3 times smaller than the cost of tradi-
tional redundancy: while sometimes a task is distributed to
as many as 19 nodes, many tasks reach the consensus earlier.

Analysis. For k-vote progressive redundancy, we use
R%.(r) and Chy(r) to denote the system reliability and the
cost factor, respectively. The cost factor of progressive
redundancy is at least the consensus (since at least that
many jobs must be distributed), plus the sum, for every inte-
ger 4 larger than the consensus up to k, of the probability
that ¢ jobs have not produced a consensus. Thus,

k=1

2

(i B 1>7'i717j(1 N ©))
i3y kil J

=gt =i

, k+1
Chatr) =114

M=

o~

NO.8, AUGUST 2015

The reliability of a system with k-vote progressive
redundancy is the probability that at least a consensus of
jobs (“5%) do not fail, exactly the same as with traditional
redundancy:

k—

y <’?)r’f*i(1fr)'ﬂ 4)
i—0 \!

Fig. 2 shows that for a given cost factor, progressive
redundancy (labeled “PR”) always achieves a higher system
reliability than traditional redundancy.

—

RI;’R(T) =

4 SELF-ADAPTIVE, ITERATIVE REDUNDANCY

DCAs typically execute jobs asynchronously and have (1)
access to runtime information about system reliability and
(2) the ability to alter task deployment based on that infor-
mation. We have used this observation to develop iterative
redundancy.

4.1 Iterative Redundancy Definition and Analysis
Iterative redundancy distributes the minimum number of
jobs required to achieve a desired confidence level in the
result, assuming that all the jobs” results agree. Then, if all
jobs agree, the task is completed. However, if some results
disagree, the confidence level associated with the majority
result is diminished. The algorithm then reevaluates the sit-
uation and distributes the minimum number of additional
jobs that would achieve the desired level of confidence,
given the prior results. This process iterates until the major-
ity agreeing results sufficiently outnumber the minority dis-
agreeing results to reach the confidence threshold.

Example. Suppose r = 0.7 and the desired system reliabil-
ity is R = 0.97. Iterative redundancy uses R as the confi-
dence threshold and calculates how many jobs’ results must
unanimously agree to be R confident in result’s correctness.
For example, if the task server distributes only one job, there
is a % = 0.7 chance that the result is correct, but if the
task server distributes five jobs and they all return the same

0'7212_35 > 0.97 chance that the result is
correct. Five is the minimum number of jobs that can
achieve the confidence threshold in this example, so the
task server distributes five jobs. If all five jobs return the
same result, the task is finished. However, if some jobs
return a result that disagrees with the majority, the task
server determines the minimum number of additional jobs
that must be distributed to achieve the confidence threshold
and produce the desired system reliability. For example, if
four jobs return agreeing results and one returns a disagree-
ing result, the task server determines that at least two more
jobs must return the majority result (with no additional jobs
returning the minority result) to achieve R. The task server
then automatically distributes two more jobs. As we will
show in Equation (5), the cost of iterative redundancy, for
this particular example, is the use of 9.4 times as many
resources as a system without redundancy. Note that this
cost is 1.5 times less than the cost of progressive redundancy
and 2.0 times less than the cost of traditional redundancy.
However, iterative redundancy also increases the latency of
the computation, as described in Section 8.2.

result, there is a

BRUN ET AL.: SELF-ADAPTING RELIABILITY IN DISTRIBUTED SOFTWARE SYSTEMS

COMPUTE (Task task, int d)

1 a<+0

2 b0

3 while a—b<d

4 deploy d—(a—b) task jobs on

5 independent, randomly chosen nodes
6 a<—a + number of a results returned
7 b< b + number of b results returned
8 if a<b
9 a<b
10 return result a

Fig. 3. The iterative redundancy algorithm.

Intuitively, progressive redundancy is guaranteed to
distribute the fewest jobs to achieve a consensus. In con-
trast, iterative redundancy is guaranteed to distribute the
fewest jobs needed to achieve a desired system reliability.
Thus far, we have avoided specifying how the technique
determines this minimum number of jobs. The basic intui-
tion described above leads to an algorithm that requires (1)
numerous relatively complex probability computations and
(2) node reliability as an input parameter. Requiring the
availability of node reliabilities violates one of the assump-
tions we stated in Section 2.3. We made this assumption
because, for many systems, it is not practical to obtain this
information. For example, in a volunteer-computing sys-
tem, the system has no information about new volunteers.
If the system collects information about the reliability of
nodes over time, malicious nodes that have developed a
bad reputation can change their identity. For iterative
redundancy, we have devised an algorithm that does not
require knowledge of node reliability and can thus be
applied to a wider class of systems than credibility-based
fault tolerance and blacklisting [49].

Algorithm. Iterative redundancy takes an argument d,
which corresponds to a measure of how much reliability
improvement is desired. This situation is parallel to the pro-
gressive and traditional redundancy techniques, in which
the user specified a parameter k. (If the node reliability r
and the desired system reliability R are known, d is the min-
imum number of jobs that have to agree unanimously to
achieve the desired confidence level. The system reliability
is the certainty that all d jobs succeeded, as opposed to all d

! R.)

jobs failed, thus d must be minimal, such that m >

Iterative redundancy deploys d jobs, waits for the responses,
computes the distribution of those responses, and then
deploys the minimum number of jobs such that, if all the
jobs respond with the most-frequent answer, there will be d
more such answers than other answers. Fig. 3 specifies the
iterative redundancy algorithm in pseudocode. We have

Task Failure Probability (log scale) Task Failure Probability (log scale)

3 0.1024 [PRT:

0.16 B I
0.0256
0.0064

R 0.0016

0.0004

769

previously, formally proven that this algorithm results in
the optimal number of job distributions, and that the answer
confidence is sufficiently high, whenever the number of
most-frequent answers is at least d larger than the other
answers [14]. We omit this proof here.

Analysis. For iterative redundancy with d as defined
above, we use RY,(r) and C}(r) to denote the system reli-
ability and the cost factor, respectively. The cost factor of
iterative redundancy is the sum, for every b, of the probabil-
ity that the system distributes (d + 2b) jobs and receives
d + b of one result and b of the other, weighted by the cost
(d+2b). Thus,

d N d + 2b jobs produce _ d
Clr(r) = bzzoj(d +20)P {d + b identical results | ~ 2r — 1° ®)

Finally, the reliability of a system with iterative redun-
dancy is the probability that d more jobs return the right
result than the wrong result. Thus,

Trl

= 6
rd—|—(1—r)d ©

R?R(T)

Note that R%,(r) depends only on the difference d
between the majority and minority counts of the responses.
This result, proven in [14], follows from Bayes’s Theorem.

Fig. 2 shows that for a given cost factor, iterative redun-
dancy (Iabeled “IR”) always achieves a higher system reli-
ability than both traditional and progressive redundancy.

Fig. 2 compares the three redundancy techniques for a
single node reliability of » = 0.7, which is realistic in some
domains [10], [34]. However, iterative redundancy’s bene-
fits extend to other domains with different underlying node
reliabilities. Fig. 4 demonstrates these benefits for four
domains with node reliabilities of » = 0.7, 0.8, 0.9, and 0.97
(the latter is the highest empirically measured reliability we
observed on the PlanetLab [47] nodes, as described in
Section 8.1). While the probability scale shifts in these log
plots, the relative benefits of iterative redundancy translate
across domains: Iterative redundancy saves as many resour-
ces when a 99.9 percent-reliable computation needs to
be composed of 97 percent-reliable nodes, as when a
90 percent-reliable computation needs to be composed of
70 percent-reliable nodes. Of course, if the underlying
resources are as reliable as the desired reliability of the com-
putation, there is no need for redundancy techniques of any
kind. If, however, the computation needs to be more reliable
than the resources, redundancy techniques can help, and

Task Failure Probability (log scale) Task Failure Probability (log scale)

103

10-3 1073

104 1077

1075 107?

0.0001

2 3 4 5 6 7 8 9 1011 12 13 1415 2
Cost Factor

(a) r=0.7

3 4 5 6 7 8 9 1011 12 13 14 15
Cost Factor

(b) r=0.8

6 11
WPy 345 67 8 o011 12131415 10

Cost Factor

(©)r=09

2 3 4 5 6 7 8 9 1011 1213 14 15
Cost Factor

(d) r=0.97

Fig. 4. lterative redundancy (IR) produces lower probability of task failure for the same cost than progressive (PR) and iterative (TR) redundancy.
This reduction holds for domains of varying underlying node reliability; Fig. 10c summarizes the benefits of iterative redundancy over a wide range of

node reliabilities.

770 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

Node Reliability

095+

0.85F

075+

Time

Cost Factor
10 -

2L

Time

System Reliability
1.

0.98 -

0.96 -

094 -

0.92 Time

Fig. 5. Traditional, progressive, and iterative redundancy techniques
react differently to the changing node reliability . As r changes (top),
traditional redundancy keeps a constant cost while progressive and
iterative redundancy adapt by executing more jobs (middle). When r
drops, however, traditional redundancy allows system reliability to drop
significantly, progressive redundancy allows system reliability to drop
slightly, while iterative redundancy keeps system reliability fairly
constant (bottom).

iterative redundancy’s benefits over other redundancy tech-
niques increase as the need for reliability increases.

4.2 Self-Adaptation to Changing Resource
Reliability

Iterative redundancy is self-adaptive because it automati-
cally adjusts to changes in its environment. When the reliabil-
ity of the underlying nodes drops, the disagreement between
the nodes automatically triggers the addition of extra resour-
ces to the computation. Similarly, when the underlying node
reliability increases, the decrease in disagreement automati-
cally withholds extra resources, ensuring efficiency. Unlike
other redundancy techniques, iterative redundancy can be
used to enforce a consistent system reliability, even when the
reliability of the underlying resources varies.

Because DCA task servers assign jobs to nodes randomly
(recall Section 2.1), even if the reliability of the nodes
remains a constant throughout the execution, some tasks
may be unlucky and receive disproportionally many faulty
resources. Iterative redundancy automatically adjusts to
these situations as well, again, with the increased disagree-
ment triggering the deployment of extra resources for these

NO. 8, AUGUST 2015
Node Reliability

0.95
0.75

Cost Factor
10~

Time

2L

Time

System Reliability
1.

098 -

0.96 -

092 -

TR TR W

Fig. 6. The self-adaptive behavior of iterative redundancy is even more
evident when the node reliability (top) changes rapidly. When the node
reliability drops, iterative redundancy cost spikes up (middle), but keeps
the system reliability (bottom) high.

Time

unlucky situations, guaranteeing not only that the overall
system reliability remains high on average, but also that the
variance between the reliability of different tasks remains
low. Iterative redundancy remains efficient by withholding
extra resources from tasks that by luck are assigned to few
failing resources.

Section 7 will empirically evaluate the self-adaptive
properties of iterative redundancy, demonstrating what
happens when resource reliability changes both gradually
and rapidly, and how iterative redundancy handles lucky
and unlucky situations. Figs. 5 and 6 will show that itera-
tive redundancy’s self-adaptation can maintain a near-
constant system reliability even when faced with unreli-
able resources and resources whose reliability changes
over time; traditional and progressive redundancy techni-
ques cannot accomplish the same.

4.3 Self-Adaptation to Unknown Resource
Reliability

Even if the reliability of the resources does not change
during the execution, the reliability may not be known at
runtime. In such situations, redundancy techniques can
struggle with computing how much redundancy is needed,
and may yield systems that are not reliable enough, or are
more reliable than required and thus inefficient.

BRUN ET AL.: SELF-ADAPTING RELIABILITY IN DISTRIBUTED SOFTWARE SYSTEMS 771

Software systems employing iterative redundancy use
the agreement between the resources to automatically mea-
sure and handle the resource unreliability. This enables
using the fewest possible resources to produce a system at
the desired level of reliability without using inaccurate a pri-
ori estimates of resource reliability. Section 7 will empiri-
cally evaluate this claim, and Fig. 9 will demonstrate that
systems employing iterative redundancy act identically
when given under- and overestimates of resource reliability:
They use the resources optimally to get as reliable a system
as is possible.

5 ITERATIVE REDUNDANCY OPTIMALITY

Under the model and the assumptions from Section 2, itera-
tive redundancy is optimal in two ways: First, given a
desired increase the system reliability, iterative redundancy
deploys the fewest possible jobs to achieve that increase.
Second, given a set of resources that can perform a fixed
number of jobs, iterative redundancy uses them to produce
the highest possible overall system reliability. We now for-
mally state and prove these two claims.

Theorem 1. Let R be a desired system reliability and let r be the
average node reliability. Let t be a task and J = (ji, jo,
J3s- -+ Jn) be the set of n jobs iterative redundancy deploys in
computing t with reliability R. Then all possible deployments
of n' < n jobs would result in a system reliability R" < R.

Proof (by contradiction) . Let us assume that there exists a
deployment of n' < n jobs that results in a system reli-
ability of R or higher. Consider the execution of the itera-
tive redundancy algorithm from Fig. 3, focusing on the
last iteration of the while loop on lines 3-9. If the iterative
redundancy algorithm were executing, the final iteration
would deploy d — (a — b) jobs on line 4 and bring the
total number of deployed jobs to n. So, regardless of
what happens on the first n — (d — (a — b)) jobs in all
deployments, to only deploy n’ jobs total, the algorithm
would have to finish by deploying at most d — (a — b) — 1
jobs. But then, even if all the jobs returned the same
result, the largest value |a — b| could be is d — 1. But by

definition, d is minimal such that (1’)7‘;”, > R. Therefore,
-T T

since n’ < n implies |a —b| < d and |a —b| < d implies
R’ < R, then the deployment of n' < n jobs results in a
system reliability R" < R. Contradiction. O

Theorem 2. Let T = (ty,t2,t3,...,t,) be a set of m tasks that
need to be computed for a computation, and let - be the cost
factor iterative redundancy may use for the computation (i.e.,
iterative redundancy may deploy a total of n jobs). And let the
minimum reliability of the k tasks that iterative redundancy
produces be R. Then no other assignment of the n jobs to the k
tasks can result in a larger minimum R’.

Proof. Let us consider the assignment of jobs to tasks that
iterative redundancy produces, focusing on the task ¢
that produces the lowest overall reliability R. By defini-
tion, R = R. All possible reassignments of jobs to tasks
can be classified into three categories, ones that do not
affect 's reliability, ones that reduce #'s reliability, and
ones that increase #'s reliability.

1) All reassignments that do not affect ¢ cannot
increase the minimum reliability R’ because
increasing other tasks’ reliability will keep R’ = R,
and reducing other tasks’ reliability can only
reduce or keep the same the overall minimum.

2) All reassignments that reduce the reliability of ¢
reduce R’ because at least one task, , will have a
lower reliability than R.

3) Finally, all reassignments that increase the reliabil-
ity of i, by Theorem 1, must increase the number of
jobs assigned to #, and therefore reduce the num-
ber of jobs assigned to the other tasks, and there-
fore at least one task must have at least one less job
assigned to it. Let us consider that task . By Theo-
rem 1, iterative redundancy used the minimum
number of jobs possible to achieve a reliability of £
that is at least R, and reducing the number of jobs
is guaranteed to produce a reliability R’ < R, thus
reducing the overall minimum R’ below R. O

The implications of Theorems 1 and 2 are that as long as
every deployed job has the same probability of failing (or
rather, as long as the system employing iterative redundancy
does not have sufficient information to distinguish deployed
jobs” reliability differences), iterative redundancy is optimal.
In DCAs, and under the Byzantine threat model, this assump-
tion holds. However, as Section 9.1 will discuss, weaker threat
models and known dependences between job deployments
can lead to more efficient techniques. For example, if the
knowledge that a node recently returned a job result that dis-
agreed with other nodes’ results can be used to predict that
that node’s next job’s result will likely also disagree, this
information can be used to further reduce the resource use.
However, Byzantine nodes that can pretend to be reliable,
only to fail at the most inopportune moment, can thwart this
attempted efficiency improvement.

6 EVALUATION PLATFORMS

We evaluated traditional, progressive, and iterative redun-
dancy theoretically, based on Equations (1) through (6), and
empirically, using a discrete event simulation of a DCA,
and a deployment of the BOINC volunteer-computing soft-
ware system [4], [11] on the distributed PlanetLab platform
[47]. Further, we used off-the-shelf distributed systems to
evaluate the redundancy techniques: XDEVS [27] and
BOINC [11].

6.1 XDEVS Simulation Environment

The XDEVS simulation framework [27] is a highly extensi-
ble discrete event simulator specialized for simulating soft-
ware systems. Unlike other discrete event simulators,
XDEVS provides a software-oriented programming model
by supporting abstractions commonly used in software
design models (e.g., components, interfaces, and resources)
as first-class modeling entities. We modeled the task server
as an XDEVS component and the node pool as an XDEVS
resource. The jobs distributed to nodes in our XDEVS simu-
lations do not solve any specific problem; rather, they per-
form simulated work for a simulated period of time. The
XDEVS simulation engine, which is designed to enforce

772 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

constraints on system behavior, ensures that our system
model described in Section 2 is accurately represented.

Using XDEVS allowed us to rapidly implement each
redundancy technique, flexibly experiment with system
parameters, such as the job reliability and amount of redun-
dancy employed, and observe dynamic behavior not
exposed by formal static analysis. To allow for comparison,
all the data in Sections 7 and 8 were generated from XDEVS
simulation runs with (1) at least 1,000,000 tasks and 10,000
nodes, (2) job completion times that varied stochastically
between 0.5 and 1.5 time units, according to a uniform dis-
tribution, and (3) an average node reliability of 0.7 (except
where explicitly noted otherwise).

Each simulation run recorded the simulated time units
required to complete the computation, the total number of
jobs generated, the average number of jobs per task gener-
ated, the maximum number of jobs generated for any single
task, the number of tasks that achieved a correct result, the
average response time per task, and the maximum response
time for any task.

6.2 BOINC Deployment

Our second empirical evaluation utilized the BOINC
volunteer-computing system [4], [11]. BOINC is a popular
DCA currently deployed on over a million machines.
Examples of BOINC applications include SETI@home, Fol-
ding@home, Malariacontrol.net, and Climateprediction.net.
The BOINC server software [11] allows distribution of a
custom problem to volunteering computers. To compare
the three redundancy techniques, we (1) developed a cus-
tom task server that decomposes 3-SAT [52] problems into
individual tasks that test if particular Boolean assignments
satisfy a Boolean formula, and (2) modified the job-assign-
ment and result-validation procedures to employ iterative
and progressive redundancy. We have made all our source
code and BOINC modifications publicly available and
open-source at http://softarch.usc.edu/~ronia/sr/.

One aspect of the iterative and progressive redundancy
algorithms that make them attractive for use in software
systems is that they are simple to understand and to imple-
ment. For example, extending BOINC to enable it to use
different redundancy schemes required modifying only
153 lines of code. Adding the iterative redundancy mecha-
nism required modifying an additional 39 lines of code,
while adding the progressive redundancy mechanism
required modifying an additional 41 lines of code. These
modifications are all available at http://softarch.usc.edu/
~ronia/sr/. This anecdotal evidence suggests that legacy
software systems can be extended with relative ease to use
other redundancy schemes, and iterative redundancy in
particular. We believe implementing iterative redundancy
into newly developed systems is similarly easy.

We deployed BOINC on a 200-node subset of PlanetLab
[47]. The PlanetLab testbed consists of ~ 1,000 machines of
varying speed and resources, distributed at ~ 500 locations
around the world. Despite some well-known issues with
PlanetLab, such as unresponsive nodes and heavy utiliza-
tion [26], it served us as a reasonable testbed.

In deploying BOINC on PlanetLab, we uncovered that
BOINC employs two levels of redundancy: every task is
deployed as k jobs, but also, every job is deployed several

NO.8, AUGUST 2015

times in case some nodes executing the job crash or fail to
return a result. BOINC is thus forced to waste considerable
resources in order to avoid failures. Iterative redundancy can
handle nodes returning incorrect results as well as nodes not
returning results (with proper time-out mechanisms), reduc-
ing the use of resources even further.

To allow for comparison, all the data in Sections 7 and 8
were generated from BOINC executions on 200 nodes that
solved 22-variable 3-SAT problems. Each problem was
decomposed into 140 tasks. Three types of failures were
present in the BOINC system:

1) seeded failures that caused the wrong result to be
returned 30 percent of the time,

2) PlanetLab nodes becoming unresponsive, and

3) all other unanticipated failures that PlanetLab nodes
might experience.

Each execution recorded the time to complete the compu-
tation, the total number of jobs generated, the average number
of jobs per task generated, the maximum number of jobs gen-
erated for any single task, and the number of tasks that
achieved a correct result.

7 SELF-ADAPTATION EVALUATION

Two of the ways in which iterative redundancy adapts to a
changing environment are: (1) automatically increasing the
number of jobs per task when node reliability drops and
decreasing the number of jobs per task when node reliabil-
ity rises, and (2) injecting extra redundancy into “unlucky”
situations with disproportionately many failures.

While progressive redundancy also exhibits this prop-
erty to a limited extent, progressive redundancy bounds
both the minimum and maximum number of jobs per task.
For example, when node reliability is close to 0.5, progres-
sive redundancy tends to use about k jobs for each task,
while when node reliability approaches 1, it uses about £
jobs per task. Iterative redundancy does not bound the max-
imum number of jobs deployed per task; however, as the
number of tasks increases, the cost factor—the average
number of jobs deployed per task—approaches C{p ().

To illustrate how iterative redundancy automatically
adjusts the number of jobs per task to changes in node reli-
ability, we conducted XDEVS-based experiments, varying
the reliability of the nodes over time. Sections 7.1 and 7.2
describe experiments in which the node reliability varies
gradually and rapidly, respectively.

7.1 Gradually Varying Reliability

Fig. 5 shows how a gradually changing node reliability
affects the cost factor and the system reliability, using each
of the three redundancy techniques. Node reliability (top),
varies between 0.75 and 0.95 gradually, and is the same for
all executions. However, the average jobs per task (mid-
dle), and the percentage of tasks that return a correct result
(bottom), are quite different for each technique. Traditional
redundancy keeps a constant number of jobs per task, but
as the reliability = of the underlying nodes drops, the per-
centage of tasks yielding a correct result drops signifi-
cantly. Progressive redundancy allows the jobs per task to
vary within a predefined range to adjust to changes in

BRUN ET AL.: SELF-ADAPTING RELIABILITY IN DISTRIBUTED SOFTWARE SYSTEMS 773

Number of Jobs
700

600 -

500 -

400 +

300

200 +

100 +

0 Time

Fig. 7. Despite injecting extra redundancy when the node reliability
drops, iterative redundancy saves significant effort by reducing the effort
when extra redundancy is not needed. For the reliability scenario from
Fig. 6 (the time scale follows that figure), iterative redundancy requires
2.5 and 1.3 times fewer jobs than traditional and progressive redun-
dancy, respectively.

node reliability; however, it is still not immune to drops in
r, as the system reliability dips a fair amount. Iterative
redundancy has the largest variations in jobs per task but
keeps the overall reliability fairly constant.

Fig. 5 illustrates how iterative redundancy outperforms
progressive redundancy in terms of cost factor. When node
reliability peaks, progressive redundancy maxes out system
reliability and produces 100 percent correct results, but it
cannot reduce the jobs per task below . Here, progressive
redundancy is wasting effort by asking more nodes than are
needed. Iterative redundancy, on the other hand, is able to
reduce the jobs per task to as low as 2.

7.2 Rapidly Varying Reliability
Fig. 6 shows how a rapidly changing node reliability
affects the cost factor and the system reliability, using each
of the three redundancy techniques. The rapid drop in
node reliability (top) makes iterative redundancy’s self-
adaptation even more evident. The cost (middle) increases
quickly in response to the node reliability drop, and the
overall system reliability (bottom) remains high. Mean-
while, progressive redundancy and traditional redundancy
force the system reliability to drop significantly because
they impose a limit on the amount of redundancy that can
be injected into the system, even when more is needed.
Fig. 7 shows the aggregate amount of computation
required by the three redundancy techniques in the sce-
nario from Fig. 6. Despite requiring more computation and
producing higher system reliability than the other techni-
ques when the node reliability drops, iterative redundancy
requires 2.5 and 1.3 times less overall computational effort
than traditional and progressive redundancy, respectively.

7.3 Advantages of Reliability via Self-Adaptation

Fig. 2 showed theoretically (and Fig. 10 will verify empiri-
cally) that iterative redundancy reduces the number of
resources needed to achieve a given system reliability. Itera-
tive redundancy accomplishes this by being smart about
deploying resources. Low-risk situations represent opportu-
nities for savings, whereas high-risk situations may require
extra resources to ensure reliability. Iterative redundancy’s

Jobs Deployed

k T TR TR TR
k
25
2
d I
1 1 1
kel k=d =]
2 2 2

Number of Failing Jobs

Fig. 8. lterative redundancy (IR) injects more resources than progressive
(PR) and traditional (TR) redundancy into the tasks with the most failing
jobs. However, overall, IR uses fewer resources than PR and TR
because IR saves resources on jobs with few failures.

ability to adapt to each situation’s risk allows it to be opti-
mal in its resource use.

We further illustrate the advantages of iterative redun-
dancy through an example. While traditional redundancy
injects the same amount of redundancy regardless of the
scenario, iterative redundancy automatically determines
which situations require more or less redundancy. For
example, suppose we employed 15-vote traditional redun-
dancy to execute two tasks: A and B. We would then exe-
cute 15 A jobs and 15 B jobs, even if all A jobs returned the
same result while only 8 B jobs returned one result and 7
returned the other. In the end, we would be very confident
in the A result, but much less confident in the B result. Had
we used iterative redundancy instead, the software system
would have automatically determined, after executing just a
few jobs, that the A jobs are achieving a higher reliability
and would have spent more resources on the B jobs. In
the end, we would have been equally confident in the A and
Bresults.

To illustrate how iterative redundancy injects extra
redundancy into “unlucky” situations with disproportion-
ately many failures, consider how the behavior of each
technique differs in a “lucky” (low-risk) situation in which
nearly all jobs return agreeing results versus an “unlucky”
(high-risk) situation in which some jobs return results that
disagree with the majority. Fig. 8 shows, for each tech-
nique, the relationship between the amount of redundancy
employed (i.e., the total number of jobs distributed) and
the number of jobs that have returned a minority disagree-
ing result. While we have duplicated this graph using
empirical experiments, Fig. 8 uses the most exact theoreti-
cal data and symbolic labels on the axes to make it more
instructive. For traditional redundancy, the amount of
redundancy is constant regardless of how many nodes dis-
agree with the majority. For progressive redundancy, the
total number of jobs distributed is equal to the number of
disagreeing, minority nodes plus *3! (the number of nodes
in the majority). Finally, the iterative redundancy tech-
nique distributes a total number of jobs equal to twice the
number of the disagreeing, minority nodes plus d. While

774 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

both iterative and progressive redundancy adapt by apply-
ing additional resources in situations with some failing
jobs, iterative redundancy uses more runtime information
to make better decisions and to guarantee optimal resource
allocation. Further, this adaptation allows iterative redun-
dancy to automatically keep the software system reliability
nearly constant.

One interesting side effect of progressive redundancy
being less adaptive than iterative redundancy is that in cer-
tain situations, progressive redundancy is more predictable
in terms of bounds on the response time. Section 8.2 dis-
cusses scenarios that may make progressive redundancy
preferable to iterative redundancy.

7.4 Predicting Node Reliability

Predicting the reliability of nodes is difficult and comes at
a cost. We have already shown that it is not necessary to
estimate r to use iterative redundancy. The user only needs
to specify how much improvement is needed (or how high
a cost in execution time is acceptable) and the algorithm
uses the available resources to achieve the highest possible
system reliability. However, in some circumstances, it may
be possible to estimate the reliability of the node pool as a
whole or the distinct reliability of different classes of nodes
and jobs.

Numerous techniques, such as spot-checking of results,
blacklisting, and computing node credibility [49], have been
proposed as mechanisms to determine the reliability of
nodes and utilize that information to improve software
system reliability. For example, in an attempt to use node
reliability knowledge, BOINC has recently added adaptive
replication, which prevents replication of a task if a trusted
node returns its result. However, these techniques have var-
ious shortcomings. For example, Byzantine faults cannot be
reliably spot-checked, and malicious nodes can earn credi-
bility and mislead schemes for rating credibility. Moreover,
these techniques incur performance penalties of varying
severity. For example, spot-checking requires distributing
jobs to which the result is already known, while estimating
node credibility requires storing and updating the past
behavior of every node. In a large software system, these
performance costs are non-trivial, meanwhile iterative
redundancy has no such costs.

Although knowing r is not necessary to use iterative
redundancy, knowing r can help calculate the reliability of
the software systems employing the technique. An
improved estimate of » will result in a more accurate calcu-
lation of system reliability. Fig. 9 demonstrates that iterative
redundancy’s performance is virtually identical whether it
has correct estimates of r or over- or underestimates it sig-
nificantly. Here, » = 0.7, but is overestimated as 0.8 and
underestimated as 0.6. Because iterative redundancy uses
the resources given to it optimally, the estimate of r is irrele-
vant: iterative redundancy produces as reliable a system as
is possible given the available resources.

In some environments, it may be possible to get domain-
specific resource reliability information. For example, some
nodes may perform only one kind of job reliably, or some
tasks’ failures may be correlated with one another. It may
be possible to leverage that information to both better com-
pute the overall system reliability, and to further improve

NO.8, AUGUST 2015

System Reliability

1.

—C— Correct Estimate of r
09
—O— Overestimate of r

—U— Underestimate of r

0.8 I I I I
5 10 15 20

Cost Factor

Fig. 9. The iterative redundancy algorithm is robust to poor estimates of
r. Here, r = 0.7, but is overestimated as 0.8 and underestimated as 0.6.

identifying risky situations that require more resources. We
discuss some of these approaches in Sections 9.1 and 10.
Note, however, that such techniques cannot deal with the
Byzantine threat model we have assumed in our work.

8 PERFORMANCE EVALUATION

This section empirically compares the throughput and
latency of traditional, progressive, and iterative redundancy.

8.1 Throughput

The throughput of a system employing a redundancy tech-
nique is inversely proportional to the number of jobs it has
to deploy to compute each task, and therefore to the cost
factor. Fig. 2 shows the theoretical predictions for the
performance of the redundancy techniques. This section
verifies those predictions with empirical data from, first,
simulated systems executed in XDEVS and, then, from
BOINC systems deployed on PlanetLab.

Fig. 10a shows empirical data from the XDEVS simula-
tions that supports the claim that iterative redundancy out-
performs traditional and progressive redundancy in the
number of jobs and time to execute the computation. Each
data point is the mean of 10,000 task executions. The data
(for r = 0.7) closely agrees with our analytical predictions.
The exact cost factor improvement of iterative redundancy
depends on r. Fig. 10c demonstrates the improvement of
iterative and progressive redundancy, as a function of r,
over traditional redundancy. Progressive redundancy is
most helpful for high r. If r is close to 0.5, the cost factor of
k-vote progressive redundancy is close to k because, most
likely, the nodes just barely reach the consensus. If, how-
ever, r is close to 1, progressive redundancy reaches the con-
sensus quickly and shows greatest benefit over traditional
redundancy. For r approaching 1, progressive redundancy
uses 2.0 times fewer resources than traditional redundancy.

Iterative redundancy follows a similar trend. It is more
efficient for larger r, but it is at least 1.6 times as efficient
even for r close to 0.5. Iterative redundancy’s efficiency
peaks at 2.8 times that of traditional redundancy for
r = 0.86. As r approaches 1, the efficiency of iterative redun-
dancy decreases slightly, to ~ 2.4 times that of traditional
redundancy. We hypothesize that this decrease exists
because, when almost all nodes are reporting correct results,

BRUN ET AL.: SELF-ADAPTING RELIABILITY IN DISTRIBUTED SOFTWARE SYSTEMS 775

System Reliability System Reliability

09}

Improvement Over
Traditional Redundancy
28}
26f
241
22f
20t
18}
16}
14}
12}

10F

T S S S S S ST
5 6 7 8 9 10 11 12 13 14 15

Cost Factor

(a) XDEVS simulations

n s L n L n
‘31{4 5 6 7

(b) BOINC deployments

L
08»;5/‘
P

Cost Factor

- " L L L L
4 15 0.6 07 08 09 1
Node Reliability

n L L n n
9 10 11 12 13

(c) Improvement

Fig. 10. Experimental results from the (a) XDEVS simulations and (b) BOINC deployments, for » = 0.7. (c) The ratio improvement in cost factor for
progressive (PR) and iterative (IR) redundancy over traditional redundancy varies with r.

utilizing runtime information to make redundancy deci-
sions is somewhat less beneficial than when the nodes’
behavior is highly variable. More precisely, as r increases,
the cost Ck(r) to produce a constant increase in R%(r)
decreases linearly for traditional redundancy, but app-
roaches a constant for iterative redundancy. We intend to
conduct further experiments to test this hypothesis.

In our next set of experiments, we deployed the redun-
dancy techniques on a BOINC system running on Planet-
Lab. Since we seeded some faults, we knew the reliability of
the nodes would be no higher than r = 0.7. However, due
to the other PlanetLab failures, we were unaware of the
actual value of 7. This scenario accurately represents typical
real-world deployments. Fig. 10b depicts the system reli-
ability as a function of the cost factor of each technique. Iter-
ative redundancy, as we predicted, outperformed the other
redundancy techniques, delivering the highest system reli-
ability at the lowest cost in resources. Progressive redun-
dancy also outperformed traditional redundancy.

The measurements in Fig. 10b allowed us to estimate the
reliability of PlanetLab nodes. The executions consistently
reported costs and system reliabilities consistent with
0.64 < r < 0.67. Seeded faults lowered r to 0.7 and naturally
occurring PlanetLab faults were responsible for the differ-
ence. The consistency of the derived node reliabilities,
among multiple trials with different parameters and across
all techniques, provides strong evidence for the validity of
the experiments.

8.2 Latency

We have focused on minimizing the jobs needed to com-
plete computations reliably. However, we have thus far
ignored one aspect of iterative redundancy that may be
important in some domains. Using traditional redundancy,
a task server can deploy all & jobs at once. Meanwhile, using
progressive or iterative redundancy, the task server must
deploy several jobs and wait for the responses before possi-
bly choosing to deploy more. Therefore, these techniques
can increase the latency for a particular task. In the realm of
DCAs, the number of tasks is far larger than the number of
nodes, so the increased latency does not present a problem
because the nodes can always execute jobs related to other
tasks [4], [24]. In other words, no node will ever be idle and
all nodes processing capability will be fully utilized. How-
ever, some applications may pose requirements on the
latency for particular tasks.

A task server employing traditional redundancy attempts
to start all the jobs related to a single task at once, in a single
wave. In contrast, a task server employing progressive
redundancy may wait for several waves of jobs to finish
before deploying more; however, it guarantees that there
will be no more than ! such waves. Iterative redundancy
makes no such guarantees, and while it is very unlikely, any
one task may require arbitrarily many waves of jobs.

Fig. 11 shows the average latency for tasks using the
three redundancy techniques, as measured in XDEVS simu-
lations. The response time depends on the cost factor. For
the instances measured, progressive redundancy took
between 1.4 and 2.5 times longer and iterative redundancy
between 1.4 and 2.8 times longer to respond than traditional
redundancy. Thus, progressive redundancy offers a lower
average latency and a lower upper bound on latency than
iterative redundancy, making progressive redundancy
more predictable and better suited for some types of
software systems.

In addition to response time, some domains concerned
with privacy may want a hard limit on the number of times
a task may be replicated and deployed. Traditional and pro-
gressive redundancy can provide such limits, while iterative
redundancy cannot. However, it is possible to impose an
artificial limit on the number of replicas. While we have not
yet fully investigated this option, our intuition is that such a
limit would reduce both the system reliability and the cost
factor. However, these effects would be minor because they

Latency
3L
251
2L
15 L
1L TR TR TR TR TR
1 1 1 1 1
0 5 10 15 20 25

Cost Factor

Fig. 11. The average latency for tasks using traditional (TR), progressive
(PR), and iterative (IR) redundancy.

776 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

only affect the low-probability cases that use a large number
of replicas.

The idea of artificially limiting the number of replicas
highlights an interesting research direction. In this paper, we
have identified a new dimension along which redundancy
techniques can vary: the degree to which runtime informa-
tion about the reliability of individual tasks is leveraged to
increase or decrease replication of those tasks on-the-fly.
This dimension captures a trade-off between the response
time for each individual task and the performance of the
software system as a whole. Viewed from this dimension,
traditional redundancy techniques represent the extreme of
this spectrum where individual task response time is mini-
mized but performance of the system as a whole is subopti-
mal. Iterative redundancy represents the other extreme of
the spectrum and progressive redundancy lies within the
spectrum. Iterative redundancy optimizes the performance
of the system as a whole while increasing the response time
of individual tasks. Other techniques along this spectrum
(such as iterative redundancy with an artificial limit on the
number of replicas) may provide interesting insights into the
trade-off and remain the focus of our future work.

9 RELAXING ASSUMPTIONS

We made several assumptions, listed in Section 2.3, that
helped to clarify how and why iterative redundancy works.
We assumed that every job sent to the node pool had the
same probability of failure, that those failures were indepen-
dent, and that the result of every job was one of two possible
values. This section explains how redundancy can apply to
DCAs deployed on networks without these assumptions,
and, in some cases, can even benefit from their relaxation.
Note that our final assumption, that the reliability of the cli-
ent that receives the final result is beyond the scope of our
analysis, does not make sense to relax because the software
system can never be more reliable than the node submitting
the original computation. It is feasible to replicate the client,
but we leave this possibility for future work.

9.1 Probability Distribution

Equations (1) through (6), as well as the analysis in Section 6,
reflect the assumption that each job has an equal, and inde-
pendent probability of failure. We made this assumption
based on the fact that many DCAs (e.g., BOINC [4] and
Hadoop [31]) assign jobs to nodes from the node pool at ran-
dom; therefore, from the node reliability perspective, every
job submitted to the job queue has the same probability of
failure. However, for some other types of software systems,
this assumption might not hold. Most notably, when inde-
pendent groups of software developers write software for
the same specifications, their products’ errors are often corre-
lated [37]. In these cases, and if the correlation is known, the
only necessary change to Equations (1) through (6) is the
replacement of » with appropriate reliabilities of the relevant
nodes. For example, if r. denoted the reliability of a particu-
lar job ¢, Equation (3) becomes

okl N & i1 £ l
ch="37+ > > (U I
. k:fi; ,-_k,‘+l c=1 c=j+1

NO.8, AUGUST 2015

The final cost and probability of failure would then depend
on the probability distribution.

We have so far assumed that job failures are indepen-
dent. However, in some cases, probabilities of job failures
may depend on each other: e.g., if a node in one part of the
world fails because of a natural disaster, others near it are
more likely to fail as well. If the dependencies among job
failure probabilities are known, job schedulers can use the
additional information to decrease the probability of failure,
using a scheme based on the complex form of the iterative
redundancy algorithm or credibility-based fault tolerance
[49]. However, if the dependencies are unknown, iterative
redundancy can still be used. The analysis of the algorithm
would again change as above, with r being replaced with
the specific reliabilities of the relevant nodes.

This statement opens a number of questions, such as
whether there exists an optimal distribution algorithm to
minimize both the cost and probability of failure. We
foresee, however, a balance between cost and reliability.
One example that leads us to this hypothesis is that
following the naive algorithm of asking the most reliable
nodes first would likely minimize the probability of fail-
ure, but increase the cost because the reliable nodes
would be overworked.

9.2 Local Information

We had assumed that every node on the network has the
same knowledge about the reliability of the network. In
real-world software systems, it is more likely that every
node has intimate knowledge about its local neighbors and
relatively little knowledge about distant portions of the net-
work. Further, during the course of computation, each node
may collect information about other nodes it uses for sub-
computations, such as the frequency of disagreement with
others, thus generating information that is not available
globally. Since in our approach, every distribution decision
is made locally, each node can use the most accurate infor-
mation available. Depending on the kind and amount of
information that nodes can collect at runtime, it may be pos-
sible to reduce the probability of failure and expected cost
of progressive redundancy, though it remains future work
to explore both the information-collection algorithms and
the most effective uses of that information.

9.3 Non-Binary Results
The assumption that the result of every task is a single bit, as
in decision NP-complete problems, has simplified our anal-
ysis thus far, but it actually turns out to be the worst-case
scenario. Compare two types of tasks: the first asks whether
22 = 4 and the second asks for the result of 2%. For the first
task, all nodes that fail and report the wrong result will
report “no”, possibly making it difficult to distinguish
between the correct and incorrect result. For the second
task, nodes may report distinct integers, and it may be pos-
sible to determine that the correct result is 4 even if more
than half of the nodes fail, because the plurality (though not
the majority) will report the correct result.

Iterative redundancy is naturally applicable to software
systems that perform tasks with non-binary results. The
probabilities of failure and costs of execution we have

BRUN ET AL.: SELF-ADAPTING RELIABILITY IN DISTRIBUTED SOFTWARE SYSTEMS 777

presented are upper bounds for non-binary systems, and all
our analysis applies as is. For all (binary and non-binary)
systems with malicious nodes that collude to try to cause
failures, our analysis gives tight bounds on the failure prob-
abilities and execution costs. It is possible to develop a
threat model that is weaker than ours and analyze non-
binary systems that disallow cooperation between malicious
nodes; however, such an analysis is unlikely to produce
meaningful improvements on the bounds we present.

Another important aspect of non-binary results is that
two non-identical results may actually represent the same
information (e.g., evaluations of V2 may return slight differ-
ences in the least significant bits). In such cases, the compar-
ison of jobs’ results is problem-specific, and the distributing
nodes must be equipped with the proper comparison
algorithms. BOINC uses homogeneous redundancy, an
approach that sorts nodes into equivalence classes that
report identical answers, to resolve this issue.

10 RELATED WORK

While our analysis of iterative redundancy assumed an inde-
pendence of failures, the technique also benefits software sys-
tems for correlated failures, such as those typically produced
by independent groups of developers writing software to the
same specifications, known as n-version programming [37].
In the limit, if all software components always fail in identical
ways, redundancy cannot help improve reliability. Section 9.1
discussed how iterative redundancy analysis would change if
the correlation between faults were known.

We based progressive redundancy on a self-configuring
optimistic programming technique [12], [13] aimed at com-
ponent-based systems. Such systems allow for asynchro-
nous job scheduling; however, they focus on minimizing
response time and typically allocate finite resources to
each task. DCAs relax these limits, which allows deploying
jobs without a priori knowledge of node reliability or a
bound on the number of jobs. As part of our experimental
evaluation described in Section 8, we have adapted self-
configuring optimistic programming to apply to DCAs,
implemented these ideas as progressive redundancy, and
deployed progressive redundancy both in simulation and
on BOINC deployments.

Primary backup [19] and active replication [50] are two
popular redundancy architectures. Primary backup uses
multiple servers to improve the reliability of a service—one
server designated as primary, while the others act as back-
ups. The primary-backup architecture handles on-the-fly
updates of the backups to ensure limits on losses from
primary-server failures, while keeping the cost of updates
among the servers low. Primary backup is widely used in
commercial fault-tolerant systems [19]. Iterative redun-
dancy complements primary backup by specifying, at run-
time, how many backups should exist to guarantee the
maximum reliability for a given cost.

Active replication removes the centralized control of pri-
mary backup and minimizes losses that occur when some
replicas fail. Active replication incurs a high cost associated
with keeping all replicas synchronized [50]. Again, iterative
redundancy complements active replication by specifying,
at runtime, how many replicas should exist to guarantee a

particular level or reliability. While primary backup and
active replication propose mechanisms for implementing
redundancy in distributed systems, iterative redundancy
improves the efficiency of those mechanisms.

Z7 [53] applies the idea of using runtime information to
improve system reliability when faced with Byzantine fault
in service-based computing. ZZ deploys component repli-
cas based on a runtime-reactive algorithm to reduce the
number of necessary replicas to tolerate f failures to fewer
than 2f 4+ 1. Some of the underlying ideas in ZZ are similar
to progressive redundancy, though the goal is somewhat
different.

Credibility-based fault tolerance [49] uses probability
estimates to efficiently detect erroneous results submitted
by malicious volunteers in volunteer-computing systems.
The probability calculations used by credibility-based
fault tolerance resemble the complex form of the iterative
redundancy algorithm. However, credibility-based fault
tolerance does not incorporate our simplifying insight
that allows the algorithm to function without any esti-
mates of node reliability. As a result, credibility-based
fault tolerance is forced to rely on spot-checking with
blacklisting. However, Byzantine faults cannot be reliably
spot-checked, and malicious nodes can earn credibility
and fool schemes for rating credibility.

Hwang and Kesselman [32] proposed a method for
injecting fault tolerance into grids that handles a wide vari-
ety of faults within distributed systems. This work uses a
service to detect crash failures (and an extension to allow
the system designer to specify how to detect other failures)
and a failure-handling framework that enforces designer-
defined policies [32].

Traditional checkpoint techniques can also be applied to
DCAs to log partially completed work and prevent data
and computation loss in cases of crash failures. Checkpoints
can be effective when individual subcomputations take a
long time to complete [48]. Further, using checkpoints and
replication together can reduce the number of replicas
needed to detect Byzantine failures [2] over what the stan-
dard Byzantine agreement protocols [50] require.

Autonomous agents capable of detecting failing compo-
nents and initiating on-demand replication allow autonomic
fault tolerance, although the developer has to implement
fault-specific detection mechanisms into these agents [23].
Nevertheless, this work is a step in the right direction,
as Internet-sized systems’ complexity does not allow for
centralized managers, and thus these systems must manage
themselves.

Runtime information has been used to reduce the
resource requirements in crowdsourcing systems, such as
AutoMan [7]. In several ways, this technique is similar to
iterative redundancy, though it requires a random attack
model and does not apply to the Byzantine threat model
iterative redundancy handles. AutoMan uses the null
hypothesis test as a measure of reliability, which makes it
more efficient than iterative redundancy. If applied to envi-
ronments with random (and not Byzantine) failures, itera-
tive redundancy can be made similarly efficient.

Iterative redundancy is applicable to a wide variety
of DCAs, such as the Globus grid middleware [30],
MapReduce [24], the organic grid [21], sTile [16], [17],

778 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

distributed robotics systems (e.g., [18], [45]), and @home
and BOINC systems [4], [5], [11], [39], [43].

The Globus grid middleware [30] is a widely used DCA.
Globus includes a fault-detecting service that can handle
node and network-link crashes. This service allows the detec-
tion of component failures and component replication to
restore functionality. However, this detection is typically
expensive and is applicable to heavyweight components [35].
Similarly, in systems with components capable of reporting
their own failures, or with easily detectable failures, compo-
nent replication can ensure sustainability and other qualities
of service [46].

MapReduce [24] is another well-known DCA that is
applicable to certain problems that manipulate massive
datasets. In MapReduce systems, the engineer designs two
functions: Map and Reduce. The Map function takes a com-
putation and divides it into a small number of tasks that can
be solved in parallel. The Reduce function takes the solu-
tions to several tasks and combines them into a solution to
the original problem. The MapReduce infrastructure han-
dles taking a single computation, distributing it, and com-
bining the solutions into the final result. The best known
use of MapReduce is computing Google’s PageRank [24]. At
its core, that MapReduce infrastructure does not use redun-
dancy; however, Hadoop [31], a popular implementation of
MapReduce, uses traditional redundancy in its file system
to reliably store data. While Hadoop can redeploy failed
jobs, its support for redundancy is rudimentary at best.

The organic grid [21] is a DCA that is used to solve easily
parallelizable problems, such as NP-complete problems, and
problems susceptible to dynamic programming, such as
nucleotide-nucleotide alignment and matrix multiplication.
The organic grid decomposes computational tasks into sub-
tasks and assigns each subtask to a mobile agent, whose job is
to autonomously locate a node with adequate resources to
perform the subcomputation. The organic grid can tolerate
nodes in the middle of the tree becoming unresponsive, but
currently, the organic grid offers no fault-tolerance mecha-
nism for incorrect subcomputation results, or even corrupted
or lost results due to network communication failures, which
we believe is a significant reason for its lack of adoption
in industry. However, since the organic grid deals with
predominantly nonblocking subcomputations and employs a
decentralized scheduler, it is susceptible to our iterative
redundancy technique.

sTile [16], [17] solves NP-complete problems, such as 3-
SAT, determining the structure of proteins, and optimally
allocating resources. sTile decomposes NP-complete prob-
lems into the smallest possible subcomputations (on the
order of complexity of simple two-input binary gates) and
distributes those subcomputations onto a network. The sub-
computations are iterative, so the result of each subcomputa-
tion is one or more subcomputations that are then distributed
onto other nodes. As the nodes perform and distribute the
subcomputations, they provide an autonomic decentralized
distribution service. Note that the nature of the problems
sTile tackles, NP-complete problems, is integral to the decom-
position into iterative subcomputations. Current implemen-
tations of sTile rely on trustworthy nodes and do not employ
fault tolerance. Proposals for making sTile fault and adver-
sary tolerant have argued that sTile is susceptible to both

NO.8, AUGUST 2015

traditional redundancy and biologically-inspired fault-toler-
ance techniques [15]. The redundancy technique we defined
in this paper build on the existing proposed ideas and are
more efficient than the technique proposed in [15].

11 CONTRIBUTIONS

We presented iterative redundancy, a novel method for
designing and implementing distributed software systems
with an automated, self-adaptive, efficient technique for
improving system reliability. Iterative redundancy is more
efficient than existing methods in its use of resources; in
fact, it guarantees optimal resource use. Iterative redun-
dancy is self-adaptive because it (1) automatically detects
when resource reliability drops and injects extra redun-
dancy to counter that drop, (2) automatically identifies
“unlucky” parts of the computation that happen to deploy
on disproportionately many compromised resources and
expends more resources to increase the reliability of those
parts, and (3) does not rely on a priori estimates of resource
reliability. In addition to a rigorous theoretical analysis, we
verified iterative redundancy’s self-adaptivity and effi-
ciency with an empirical evaluation based on two deploy-
ments: the XDEVS discrete event simulator and the BOINC
volunteer-computing system. Our empirical results support
our theoretical findings and the deployment of our tech-
nique on a real-world software system.

Iterative redundancy serves as one extreme on a spec-
trum of redundancy techniques with different trade-offs
and benefits. While providing a concrete improvement on
the state-of-the-art, our work also serves as a starting point
toward a further exploration of how runtime information
can be used to improve software system reliability.

ACKNOWLEDGMENTS

This work has been supported by the US Defense Advanced
Research Projects Agency (DARPA) under Contract No.
N66001-11-C-4021, IARPA under Contract No. N66001-13-
1-2006, and the National Science Foundation under award
numbers CCF-1117593, CCF-1218115, and CCF-1321141.
The work has also been supported in part by Infosys Ltd.
Yuriy Brun is the corresponding author.

REFERENCES

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and
J. J. Wylie, “Fault-scalable Byzantine fault-tolerant services,” in
Proc. ACM Symp. Oper. Syst. Principles, Brighton, U.K., 2005,
pp- 59-74.

[2] A. Agbaria and R. Friedman, “A replication- and checkpoint-
based approach for anomaly-based intrusion detection and recov-
ery,” in Proc. Int. Workshop Secur. Distrib. Comput. Syst., 2005,
pp. 137-143.

[3] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg,
“Consensus with Byzantine failures and little system synchrony,”
in Proc. Int. Conf. Dependable Syst. Netw., Philadelphia, PA, USA,
2006, pp. 147-155.

[4] D. P. Anderson, “BOINC: A system for public-resource comput-
ing and storage,” in Proc. IEEE[ACM Int. Workshop Grid Comput.,
Pittsburgh, PA, USA, 2004, pp. 4-10.

[5] D.P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer, “SETI@home: An experiment in public-resource
computing,” Commun. ACM, vol. 45, no. 11, pp. 56-61, 2002.

[6]]. Andrade, L. Berglund, M. Uhlén, and J. Odeberg, “Using grid
technology for computationally intensive applied bioinformatics
analyses,” In Silico Biol., vol. 6, no. 6, pp. 495-504, 2006.

BRUN ET AL.: SELF-ADAPTING RELIABILITY IN DISTRIBUTED SOFTWARE SYSTEMS

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor,
“AutoMan: A platform for integrating human-based and digital
computation,” in Proc. ACM Int. Conf. Object Oriented Program.
Syst. Language Appl., Tucson, AZ, USA, 2012, pp. 639-654.
D. W. Barowy, D. Gochev, and E. D. Berger, “Data debugging,” in
Proc. ACM Int. Conf. Object Oriented Program. Syst. Language Appl.,
Portland, OR, USA, 2014, pp. 507-523.
S. A. Baset and H. Schulzrinne, “An analysis of the skype peer-to-
peer Internet telephony protocol,” in Proc. IEEE Conf. Comput.
Commun., Barcelona, Spain, Apr. 2006, pp. 1-11.
M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S.
Ackerman, D. R. Karger, D. Crowell, and K. Panovich,
“Soylent: A word processor with a crowd inside,” in Proc. ACM
Symp. User Interface Softw. Technol., New York, NY, USA, 2010,
pp- 313-322.
BOINC. (2009). The Berkeley open infrastructure for network
computing [Online]. Available: http:/ /boinc.berkeley.edu
A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and J. Xu,
“An adaptive approach to achieving hardware and software fault
tolerance in a distributed computing environment,” J. Syst. Archit.,
vol. 47, no. 9, pp. 763-781, 2002.
A. Bondavalli, F. Di Giandomenico, and Jie Xu, “A cost-effective
and flexible scheme for software fault tolerance,” J. Comput. Syst.
Sci. Eng., vol. 8, no. 4, pp. 234-244, 1993.
Y. Brun, G. Edwards, J. young Bang, and N. Medvidovic, “Smart
redundancy for distributed computation,” in Proc. 31st Int. Conf.
Distributed Comput. Syst., Minneapolis, MN, USA, Jun. 2011,
pp. 665-676.
Y. Brun and N. Medvidovic, “Fault and adversary tolerance as an
emergent property of distributed systems’ software
architectures,” in Proc. 2nd Int. Workshop Eng. Fault Tolerant Syst.,
Dubrovnik, Croatia, Sep. 2007, pp. 38-43.
Y. Brun and N. Medvidovic, “Keeping data private while comput-
ing in the cloud,” in Proc. 5th Int. Conf. Cloud Comput., Honolulu,
HI, USA, Jun. 2012, pp. 285-294.
Y. Brun and N. Medvidovic, “Entrusting private computation and
data to untrusted networks,” IEEE Trans. Dependable Secure Com-
put., vol. 10, no. 4, pp. 225-238, Jul./ Aug. 2013.
Y. Brun and D. Reishus, “Path finding in the tile
assembly model,” Theoretical Comput. Sci., vol. 410, no. 15,
pp- 1461-1472, Apr. 2009.
N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “The
primary-backup approach,” in Distributed Systems, 2 ed. New
York, NY, USA: ACM Press/Addison-Wesley, 1993, pp. 199-216.
R. Buyya, S. Date, Y. M.-Matsumoto, S. Venugopal, and D.
Abramson, “Neuroscience instrumentation and distributed
analysis of brain activity data: A case for eScience on global
rids,” Concurrency Comput.: Practice Exp., vol. 17, no. 15,
pp- 1783-1798, 2005.
A.]. Chakravarti and G. Baumgartner, “The organic grid: Self-
organizing computation on a peer-to-peer network,” in Proc.
Int. Conf. Autonomic Comput., New York, NY, USA, 2004,
pp- 96-103.
I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A dis-
tributed anonymous information storage and retrieval system,” in
Proc. Int. Workshop Design Issues Anonymity Unobservability, 2001,
pp. 46-66.
A. D. L. Almeida, J.-P. Briot, S. Aknine, Z. Guessoum, and O.
Marin, “Towards autonomic fault-tolerant multi-agent systems,”
presented at the Latin American Autonomic Computing Symp.,
Petropolis, R], Brazil, 2007.
J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” presented at the Symp. Operating System
Design Implementation, San Francisco, CA, USA, Dec. 2004.
J. Deng, O. Russakovsky, J. Krause, M. S. Bernstein, A. Berg, and
L. Fei-Fei, “Scalable multi-label annotation,” in Proc. SIGCHI Conf.
Human Factors Comput. Syst.,, Toronto, ON, Canada, 2014,
pp- 3099-3102.
J. Duerig, R. Ricci, J. Zhang, D. Gebhardt, S. Kasera, and]J.
Lepreau, “Flexlab: A realistic, controlled, and friendly environ-
ment for evaluating networked systems,” in Proc. Workshop Hot
Topics Netw., Irvine, CA, USA, Nov. 2006, pp. 103-108.
G. Edwards and N. Medvidovic, “A highly extensible simulation
framework for domain-specific architectures,” Center for Soft-
ware Engineering, Univ. Southern California, Los Angeles, CA,
USA, Tech. Rep. USC-CSSE-2009-511, 2009.

[28]

[29]
[30]
[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

779

M. D. Ernst, R. Just, S. Millstein, W. M. Dietl, S. Pernsteiner, F.
Roesner, K. Koscher, P. Barros, R. Bhoraskar, S. Han, P. Vines, and
E. X. Wu, “Collaborative verification of information flow for a
high-assurance app store,” in Proc. ACM Conf. Comput. Commun.
Secur., Scottsdale, AZ, USA, Nov. 2014, pp. 1092-1104.

A. D. Friedman and P. R. Menon, Fault Detection Digital Circuits.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1971.

The Globus alliance. (2005) [Online]. Available: http://www.
globus.org

Hadoop. (2009) [Online]. Available: http://hadoop.apache.org

S. Hwang and C. Kesselman, “A flexible framework for fault toler-
ance in the grid,” J. Grid Comput., vol. 1, no. 3, pp. 251-272, Sep.
2003.

P. Jalote, Fault Tolerance in Distributed Systems. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1994.

S. R. Jeffery, M. J. Franklin, and M. Garofalakis, “An
adaptive RFID middleware for supporting metaphysical data
independence,” VLDB J., vol. 17, no. 2, pp. 265-289, Mar. 2008.
H. Jin, D. Zou, H. Chen, J. Sun, and S. Wu, “Fault-tolerant grid
architecture and practice,” J. Comput. Sci. Technol., vol. 18, no. 4,
pp- 423-433, 2003.

T. Kimoto, K. Asakawa, M. Yoda, and M. Takeoka, “Stock market
prediction system with modular neural networks,” in Proc. Int.
Joint Conf. Neural Netw., Jun. 1990, pp. 1-6.

J. C. Knight and N. G. Leveson, “An experimental evaluation
of the assumption of independence in multiversion pro-
gramming,” IEEE Trans. Softw. Eng., vol. 12, no. 1, pp. 96-109,
Jan. 1986.

I. Koren and C. Mani Krishna, Fault-Tolerant Systems. Amsterdam,
The Netherlands: Elsvier, 2007.

E. Korpela, D. Werthimer, D. Anderson, J. f. Cobb, and M.
Lebofsky, “SETI@home—Massively distributed computing for
SETI,” IEEE MultiMedia, vol. 3, no. 1, pp. 78-83, Jan. 1996.

M. Lamanna, “The LHC computing grid project at CERN,”
Nuclear Instrum. Methods Phys. Res. Section A: Accelerators, Spec-
trometers, Detectors Assoc. Equip., vol. 534, no. 1/2, pp. 1-6, 2004.

L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Trans. Program. Languages Syst., vol. 4, no. 3,
pp- 382-401, Jul. 1982.

C. B. Laney, Computational Gasdynamics. Cambridge, UK.
Cambridge Univ. Press, 1998.

S. M. Larson, C. D. Snow, M. R. Shirts, and V. S. Pande, Folding@-
Home and Genome@Home: Using Distributed Computing to Tackle
Previously Intractable Problems in Computational Biology. New York,
NY, USA: Horizon, 2002.

D. Long, A. Muir, and R. Golding, “A longitudinal survey of
Internet host reliability,” in Proc. Symp. Reliable Distrib. Syst., Bad
Neuenahr, Germany, 1995, pp. 2-9.

N. Medvidovic, H. Tajalli, J. Garcia, Y. Brun, I. Krka, and G.
Edwards, “Engineering heterogeneous robotics systems: A soft-
ware architecture-based approach,” IEEE Comput., vol. 44, no. 5,
pp- 61-71, May 2011.

A. Nguyen-Tuong, “Integrating fault-tolerance techniques in
grid applications,” Ph.D. dissertation, Dept. Comput. Sci., Univ.
Virginia, Charlottesville, VA, USA, 2000.

L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A blue-
print for introducing disruptive technology into the Internet,”
ACM SIGCOMM Comput. Commun. Rev., vol. 33, no. 1,
pp. 59-64, 2003.

S. B. Priya, M. Prakash, and K. K. Dhawan, “Fault tolerance-
genetic algorithm for grid task scheduling using check point,” in
Proc. Int. Conf. Grid Cooperative Comput., 2007, pp. 676-680.

L. F. G. Sarmenta, “Sabotage-tolerance mechanisms for volunteer
computing systems,” Future Gener. Comput. Syst., vol. 18, no. 4,
pp. 561-572, 2002.

F. B. Schneider, “Implementing fault-tolerant services using the
state machine approach: A tutorial,” ACM Comput. Surv., vol. 22,
no. 4, pp- 299-319, Dec. 1990.

A. Setiawan, D. Adiutama, J. Liman, A. Luther, and R. Buyya,
“GridCrypt: High performance symmetric key using enterprise
grids,” in Proc. Int. Conf. Parallel Distributed Comput., Appl. Tech-
nol., Singapore, 2004, pp. 872-877.

M. Sipser, Introduction to the Theory of Computation. Boston, MA,
USA: PWS Publishing Company, 1997.

T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet,
“ZZ and the art of practical BFT execution,” in Proc. Eur. Conf.
Comput. Syst., Salzburg, Austria, 2011, pp. 123-138.

780 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

Yuriy Brun received the MEng degree from the
Massachusetts Institute of Technology in 2003
and the PhD degree from the University of South-
ern California in 2008. He is an assistant professor
in the School of Computer Science, University of
Massachusetts, Amherst. He completed his post-
doctoral work in 2012 at the University of Wash-
ington, as a CI fellow. His research focuses on
software engineering, distributed systems, and
self-adaptation. He received the US National Sci-
ence Foundation (NSF) CAREER Award in 2015,
a Microsoft Research Software Engineering Innovation Foundation
Award in 2014, and an IEEE TCSC Young Achiever in Scalable Comput-
ing Award in 2013. He is a member of the IEEE, the ACM, and the ACM
SIGSOFT. More information is available on his homepage: http://www.
cs.umass.edu/ brun/.

Jae young Bang received the MS degree
from the University of Southern California. He
is currently working toward the PhD degree in
the Computer Science Department, University
of Southern California. He joined the PhD pro-
gram as a USC Annenberg graduate fellow in
2010. His research interest spans from collab-
orative software design and development to
large and distributed software systems. He is
a member of the IEEE, ACM, and ACM
SIGSOFT. More information is available on his
homepage: http://ronia.net/.

NO.8, AUGUST 2015

George Edwards received the BS degree from
Vanderbilt University, and the MS and PhD
degrees from USC, all in computer science. He is a
part-time lecturer in the Computer Science Depart-
ment, University of Southern California, where he
teaches undergraduate-level programming and
graduate-level software engineering classes. He
also provides consulting and expert witness
services to companies involved in software-related
litigation. More information is available on his
homepage: http://softarch.usc.edu/~gedwards/.

Nenad Medvidovic received the PhD degree in
1999 from the University of California, Irvine. He
is a professor in the Computer Science Depart-
ment, University of Southern California. His
research focuses on the software architectures of
large, distributed, mobile, and embedded sys-
tems. He is a senior member of the IEEE, and a
member of the ACM, and ACM SIGSOFT. More
information is available on his homepage: http://
sunset.usc.edu/ neno/.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

