
1358 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

Early Detection of
Collaboration Conflicts and Risks

Yuriy Brun, Member, IEEE , Reid Holmes, Michael D. Ernst, and David Notkin, Fellow, IEEE

Abstract—Conflicts among developers’ inconsistent copies of a shared project arise in collaborative development and can slow progress and decrease
quality. Identifying and resolving such conflicts early can help. Identifying situations which may lead to conflicts can prevent some conflicts altogether.
By studying nine open-source systems totaling 3.4 million lines of code, we establish that conflicts are frequent, persistent, and appear not only as
overlapping textual edits but also as subsequent build and test failures. Motivated by this finding, we develop a speculative analysis technique that uses
previously-unexploited information from version control operations to precisely diagnose important classes of conflicts. Then, we design and implement
Crystal, a publicly-available tool that helps developers identify, manage, and prevent conflicts. Crystal uses speculative analysis to make concrete
advice unobtrusively available to developers.

Index Terms—Collaborative development, collaboration conflicts, developer awareness, speculative analysis, version control, Crystal

F

1 INTRODUCTION

E ACH member of a collaborative development project works
on an individual copy of the project files (source code, build

files, etc.). Each developer repeatedly makes changes to his or
her local copy of the files, shares those changes with the team,
and incorporates changes from teammates.

The loose synchronization of these activities permits rapid
development progress, but also allows two developers to make
simultaneous, conflicting changes. Such conflicts [13], [17],
[19], [25], [32], [47] are costly: they delay the project while
the conflict is understood and resolved. Fear of conflicts is also
costly. A developer may choose to postpone the incorporation
of teammates’ work because of a concern that a conflict may
be hard to resolve [13], [19]. Ironically, this fear of potential
conflicts can cause developer copies to diverge even further,
making real conflicts more likely.

Conflicts can be textual or higher-order. A textual conflict
arises when two developers make inconsistent changes to the
same part of the source code. To prevent subsequent changes
from overwriting previous ones, a version control system (VCS)
allows the first developer to publish changes, but prevents the sec-
ond developer from publishing until the conflict is resolved au-
tomatically (by the VCS) or manually (by a developer). Higher-
order conflicts arise when there are no textual conflicts among

• Y. Brun is with the School of Computer Science, University of Massachusetts,
140 Governors Dr., Amherst, MA 01003-9264.
E-mail: brun@cs.umass.edu.

• R. Holmes is with the David R. Cheriton School of Computer Science, Uni-
versity of Waterloo, Waterloo, ON N2L 3G1, Canada.
E-mail: rtholmes@cs.uwaterloo.ca

• M.D. Ernst and D. Notkin are with Computer Science & Engineering,
University of Washington, PO Box 352350, Seattle, WA, 98195, USA.
E-mail: mernst@cs.washington.edu

developers’ changes, but those changes are semantically incom-
patible. Higher-order conflicts cause compilation errors, test
failures, or other problems, and are problematic to detect and
resolve in practice [25].

As with errors in programs, it is generally easier and cheaper
to identify and fix conflicts early, before they propagate in the
code and the relevant changes fade away in the memories of the
developers. Currently, this information is not readily available
to developers [14].

Our approach, speculative analysis, unobtrusively provides
information about the presence or absence of conflicts in a con-
tinuous and accurate way. We intend for this information to
allow developers make better-informed decisions about how and
when to share changes, while simultaneously reducing the need
for human processing and reasoning. This paper makes the
following contributions:

• We analyze nine open-source systems. Conflicts between
developers’ copies of a project (1) are the norm, rather
than the exception, (2) persist, on average, 3 days, and (3)
are higher-order 33% of the time. (We make public and
open-source our analysis tools and data.)

• We introduce a novel technique called speculative analysis
that anticipates actions a developer may wish to perform
and executes them in the background. When applied to col-
laborative development and version control systems, specu-
lative analysis can use previously-unexploited information
to precisely diagnose important classes of conflicts and of-
fer concrete advice about addressing them. Reporting the
consequences of these likely version control operations can
improve the way in which collaborating developers identify
and manage conflicts.

• We design and implement an open-source, publicly-availa-
ble tool called Crystal — http://crystalvc.googlecode.com
— that implements the analyses and unobtrusively presents
advice to developers, to aid them in identifying, managing,
and preventing conflicts. (See Figure 10 in Section 6 for a
detailed Crystal screenshot).

Manuscript received 18 Nov. 2012; revised 30 Apr. 2013; accepted 10 May
2013; published online 24 May 2013.
Recommended for acceptance by A. Zeller.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2012-11-0334.
Digital Object Identifier no. 10.1109/TSE.2013.28.

0098-5589/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

mailto:brun@cs.umass.edu
mailto:rtholmes@cs.uwaterloo.ca
mailto:mernst@cs.washington.edu
http://crystalvc.googlecode.com

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1359

We have previously proposed how speculative analysis may
help developers [7] and shown how it can improve recommen-
dation systems [29]. Here, we extend an earlier version of
this paper [9] in three ways: (1) Expanding our experimental,
retrospective analysis of conflict lifespan (Section 4). (2) Ex-
haustively enumerating the space of collaborative relationships,
actions developers may perform, and guidance regarding those
actions (Sections 5.2 and 10). (3) Augmenting the comparison
of related research to our work (Section 7).

Section 2 provides a brief scenario of two collaborating devel-
opers, sketching how their development activities would differ
with and without the use of a Crystal-like tool. Section 3 presents
VCS terminology. Section 4 details our retrospective analysis of
the frequency and persistence of conflicts in practice. Section 5
describes the information that can help developers better manage
their conflicts. Section 6 introduces the design of Crystal, an
unobtrusive tool that computes and reports this information to
developers. Section 7 surveys related work. Section 8 discusses
threats to validity. Finally, Section 9 summarizes our results and
contributions.

2 SCENARIO

Consider a simple scenario with George and Ringo adding fea-
tures to a project. As part of George’s feature, he makes changes,
in his individual copy. When finished, George and Ringo each
independently run the test suite on their individual copies (the
tests pass for both of them), then publish their changes to the
master repository. When the regression tests run after both have
published, George and Ringo are notified that a test fails. At that
time, they have to recollect their earlier changes and assump-
tions, and their fixes might force them to rework other code they
had written in the meanwhile.

One way to lessen these difficulties is to use an awareness tool,
which reports where in the code base teammates are working,
allowing a developer to be more attentive to conflicts that may
arise in those locations (see Section 7 for more details). For
example, when George edits the library, an awareness tool may
tell Ringo that someone else is editing code he depends on.
However, if George’s change to the library had not actually
affected Ringo, the warning would have been a false positive.
Furthermore, George might have been exploring some ideas and
changes, without ever intended to share the intermediate changes
with his team. Thus, awareness tools have the potential to give
early warnings, but also the potential to give multiple types of
false warnings.

By contrast, suppose George and Ringo were using a specu-
lative analysis tool such as our tool Crystal, which proactively
informs developers of version control conflicts. Crystal informs
them before they publish their changes that integrating those
changes would cause the test suite to fail (Figure 1). The tool
encourages George and Ringo to address the impending conflict
before they forget the relevant changes and assumptions.

Speculative analysis [7] neither guesses at possible conflicts
nor approximate them. Instead, it speculatively performs the
work, including VCS operations, in the background on clones of
the program: It actually merges George’s and Ringo’s committed
code, builds it, and runs its tests. This allows speculative analysis

Fig. 1. A screenshot of the Crystal tool as run by a devel-
oper named George. The green arrow informs George that his
changes can be published (uploaded) without conflict to the mas-
ter repository. The red merge symbol indicates that Ringo’s
changes, if combined with George’s, would cause a test (“T”)
failure.

to deliver precise information about conflicts: Those that can
be merged safely are not reported as potential conflicts, and
textually-clean merges that fail to build or test properly are
reported as conflicts.

The frequency with which speculative analysis executes is
adjustable. For example, merging code between two developers
can happen whenever either of those developers make a change,
at a regular time period, or a combination of the two. (By default,
Crystal runs its analysis after checking, every 10 minutes, if new
changes have been made and committed to a developer’s local
repository.) Running the analysis more frequently requires more
computation, but produces conflict information sooner.

To handle exploratory development, our approach assumes
that when a developer commits code to the VCS, the developer
has decided to share that code with other developers at a future
time. This can prevent some false warnings present in aware-
ness systems when developers make exploratory changes that
they never intend to share, such as adding print statements for
debugging purposes. Overall, our approach provides precise and
pertinent information available as soon as conflicts occur in the
VCS.

3 TERMINOLOGY

Our results are applicable in the context of both centralized
version control systems (CVCSes) — such as CVS, Subver-
sion, and Perforce — and distributed version control systems
(DVCSes) — such as Git and Mercurial. This paper focuses on
DVCSes to simplify the presentation (Section 5.4 will discuss
how our approach applies to CVCS). We first briefly present
accepted DVCS terminology. We then introduce additional new
terminology to allow us to precisely characterize seven pertinent
relationships between repositories.

3.1 Version control terminology

Figure 2 shows a common [44] DVCS repository setup. There
is a single master repository and four developers: George, Paul,
Ringo, and John. Each developer makes a local repository clone
from the master. Each local repository contains a complete
and independent history of the master repository at the time it
was cloned. In addition, each repository has a working copy,
in which code is edited. Changing the working copy does not
modify the local repository; to modify the local repository the

1360 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

100
101
103

history
100
102

history
100

history

100
101

c
o
m

m
it 100

101

history

repo

repo repo repo

pull

pus
h

working copy

George’s clone John’s clone

master

Paul’s clone Ringo’s clone

u
p
d
a
te

working copy working copy working copy

repo

history

Fig. 2. A DVCS with four clones of a master repository. The box
labeled “history” lists those changesets currently in the repository.
The commit command creates a new changeset in its reposi-
tory’s history, and the update command incorporates changesets
into the working copy. A developer can incorporate changesets
from other repositories using the pull command and can share
changesets using the push command.

developer commits a changeset to the local repository’s history.
Teammates are not privy to these changesets until the developer
pushes them to the master repository from the local repository.
After a push, another developer can perform a pull from the
master, which updates that developer’s local repository with the
changesets. To refresh a working copy after a pull, the developer
must apply the update operation. It is common for developers in
a DVCS to commit multiple times before publishing through a
push. A merge conflict can arise due to a pull operation, and the
conflict must be resolved before proceeding. It is uncommon for
a developer to pull changesets without immediately resolving
(if necessary) and updating their working copy. The terms used
above are common, or have direct equivalents, across DVCS
systems.

The discussion in this paper makes two simplifying assump-
tions for clarity: (1) it assumes that developers push to and pull
from only the master repository; (2) it assumes that developers
only make a commit when all their tests pass. However, our
approach and the Crystal tool handle arbitrary pushes, pulls, and
commits.

3.2 Repository relationships

We have identified seven relevant relationships that can hold
between two repositories. Figure 2 illustrates these relationships.

SAME:
The repositories have the same changesets. For ex-
ample, George’s repository is the SAME as the master
repository because they both consist of changesets 100
and 101.

AHEAD:
The repository has a proper superset of the other repos-
itory’s changesets. For example, George’s repository
is AHEAD of Paul’s.

BEHIND:
The inverse of AHEAD; for example, George’s reposi-
tory is BEHIND John’s.

The remaining four relationships represent repositories that
share an initial sequence of changesets followed by distinct
sequences of changesets.

TEXTUAL8: (pronounced “textual conflict”)
The distinct changesets necessitate human intervention
as they cannot be automatically merged by the VCS.
For example, if George’s changeset 101 and Ringo’s
changeset 102 modify overlapping lines of code, they
are in TEXTUAL8.

BUILD8:
The repositories can be automatically merged by the
VCS, but the resulting merged code fails to build.

TEST8:
The repositories can be automatically merged by the
VCS and the resulting merged code builds but fails its
test suite.

TESTX:
The repositories can be automatically merged by the
VCS and the resulting merged code builds and passes
its test suite.

Analogously to TESTX, there there are relationships BUILDX
= TESTX ∪ TEST8 and TEXTUALX = BUILDX ∪ BUILD8.
The table header of Figure 4 illustrates the interrelation among
the relationships. When build scripts and test suites are not
available, we distinguish only five relationships: SAME, AHEAD,
BEHIND, TEXTUALX, and TEXTUAL8.

Higher-order conflicts, such as BUILD8 and TEST8, are not
considered by existing VCS systems. Although this paper dis-
cusses only these two higher-order relationships, others naturally
arise for other analyses; for example, consider when a test suite
passes but a performance analysis or code style checker does
not.

4 CONFLICTS IN PRACTICE

This section answers three research questions: First, Sections 4.1
and 4.2 address “How often do the TEXTUAL8, BUILD8,
TEST8, and TESTX relationships of Section 3.2 happen?” (Sec-
tion 4.1 focuses on the TEXTUAL8 relationship, and Section 4.2
focuses on BUILD8, TEST8, and TESTX relationships.) Sec-
ond, Section 4.3 answers “How long do developers experience
the conflict relationship TEXTUAL8?” Third, Section 4.4 an-
swers “How risky is it not to share changes with teammates, if
those changes would currently merge cleanly?”

Anecdotally, conflicts are a serious problem. For example, in
a private communication, an industrial manager expressed the
following concerns to us about his two offshore teams and their
collaboration with his local team:

“The remote guys tend not to commit frequently enough
to get leverage out of our continuous integration builds,
even after prompting. It is a real challenge to know how
far out of sync [the remote teams] are [with the local team]
when their commits are not being merged in regularly.
. . .
I want [my developers] to at least initiate a conversation

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1361

system KNCSL devs changesets days first version last version description

Gallery3 57 24 4,838 437 fff10f8 36702b1 Web-based photo album
Git 267 27 20,785 1,741 e83c516 7e94805 Version control system
Insoshi 173 15 1,316 629 189a6c6 7013235 Social networking platform
jQuery 26 23 2,183 1,393 8a4a1ed 8404ad6 JavaScript library
MaNGOS 643 27 3,511 626 b5bf407 acaaac7 Online game server
Perl5 660 51 34,653 8,061 8d063cd 6e3b7bf Programming language
Rails 141 50 12,342 1,875 db045db dc3cc6c Web application framework
Samba 1,363 59 58,802 5,001 97e3422 0c39fbc File and print services
Voldemort 103 22 1,219 375 fbd0f95 0852fcb Structured storage system

total 3,433 298 138,549 20,138

Fig. 3. Nine subject programs analyzed to address RQ1, RQ2, and RQ3 in collaborative development environments. KNCSL stands
for thousands of non-comment source lines.

with the relevant parties when the system says they have,
or are just about to, walk into a conflicting situation. I
also want the system to give them a certain level of trust
of other developer’s changes so that if [a merge] won’t
cause a problem, they should sync up.”

There is little hard data on conflicts. Zimmermann’s analysis
of CVS repositories for four open source systems is the only
work we could find that directly addresses this issue [47]. He
reported that of all merges, 23% to 47% had textual conflicts
(TEXTUAL8) while the remainder could be merged automati-
cally (TEXTUALX). Answering our first two research questions
requires analyses that significantly augment these data and anec-
dotes.

In answering those research questions, and to augment Zim-
mermann’s data and determine the validity of the anecdotal
evidence, we performed an analysis on a set of open-source soft-
ware projects. As subjects, (Figure 3), we chose Git itself and
the eight most active projects on GitHub (http://github.com) that
satisfy the following three criteria: (1) at least 10 developers, (2)
at least 1000 changesets, and (3) not just a Git copy of a CVCS
repository (which would not contain sufficient information to
answer our research questions). For each of the projects, we
used the version control history up to February 13, 2010.

The tools we created to perform the analyses described
in this section are open-source. These tools and all our
data are publicly available at https://github.com/rtholmes/
crystal-retrospective-analysis/.

4.1 Textual conflicts
RQ1: How frequently do conflicts — textual and
higher-order — arise across developers’ copies of a
project?

The answer to RQ1 is that conflicts are the norm: for each
subject system, there were no times when all pairs of developers
were in consistent relationships (SAME, AHEAD, or BEHIND)
with each other.

Figure 4 shows how often developers merged their changes.
(This is analogous to Zimmermann’s result described above.)
Of all the merges, one in six, or 16%, had textual conflicts as
determined by Git’s built-in merging mechanism, reflecting the
TEXTUAL8 relationship. (This number may be smaller than

Zimmermann’s 23–47% due to better merging algorithms in
DVCSes.) The other 83% of the merges had no textual con-
flicts, meaning the relevant developers were in the TEXTUALX
(including BUILD8 and TEST8) relationship.

The importance of the frequency of the TEXTUAL8 relation-
ship is clear: an unrecognized TEXTUAL8 between the reposito-
ries of two developers may cause problems. The importance of
the frequency of the TEXTUALX relationship is also material: a
developer who is unsure whether others’ changes can be incor-
porated safely might avoid doing so, allowing conflicts to persist
and grow (as suggested in the manager’s quotation above).

Figure 5 considers every commit at which developers who did
eventually merge their changes could have done so earlier. On
average, 19% of the potential merges would have resulted in a
textual conflict. In other words, had the developers been using
Crystal, for 19% of the commits, Crystal would have informed
those developers about TEXTUAL8 relationships. Conversely,
the 81% of clean merges indicate the likely benefit of notifying
developers when a safe textual merge can be performed.

4.2 Higher-order conflicts

In our subject programs, 16% of merge operations required
human assistance to resolve a textual conflict (Figure 4). This
underestimates the human effort, since textually-safe merges are
not always safe: an automatically merged change may suffer a
build or test failure, for example. We computed the relationships
at the time of each of the 5,355 merges that developers performed
during the development of Git, Perl5, and Voldemort. We did
not compute the information for the other six subject program
because of the absence of a non-trivial test suite that we could
run.

Figure 4 shows that during the development of Git, Perl5, and
Voldemort, 76% of merges completed cleanly, 16% of merges
resulted in a textual conflict (TEXTUAL8), 1% of merges re-
sulted in a build failure (BUILD8), and 6% of merges resulted
in a test failure (TEST8). The 266 textual conflicts reported by
the version control system only represent 67% of all conflicts.
That is, 33% of the 399 clean textual merges led to build or test
conflicts.

Few current awareness tools detect higher-order conflicts
(see Section 7). Rather, they generally notify developers of

http://github.com
https://github.com/rtholmes/crystal-retrospective-analysis/
https://github.com/rtholmes/crystal-retrospective-analysis/

1362 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

system
TEXTUAL8 TEXTUALX

merges BUILD8 BUILDX
TEST8 TESTX

Git 1,362 227 17% 2 0.1% 53 4% 1,080 79%
Perl5 185 14 8% 7 4% 51 28% 113 61%
Voldemort 147 25 17% 15 10% 5 3% 102 69%
Gallery3 506 47 9% 459 91%
Insoshi 93 23 25% 70 75%
jQuery 18 1 6% 17 94%
MaNGOS 194 81 42% 113 58%
Rails 362 51 14% 311 86%
Samba 748 100 13% 648 87%
total 3,635 572 16% 3,065 84%

Fig. 4. Historical merges. Frequencies with which developers
experienced TEXTUAL8, BUILD8, TEST8, and TESTX rela-
tionships when they integrated their code. For three systems
with non-trivial test suites in the repository, we measured the
frequencies of all four relationships; for the other six (which had
no non-trivial test suite that we could run), we measured only
TEXTUAL8 and TEXTUALX.

all changes to the repository (e.g., FASTDash [4]) or of concur-
rent changes to ASTs (e.g., Syde [23]). In contrast, we adopt the
project’s tool chain to dynamically and precisely detect BUILD8
relationships (via the build system) and TEST8 relationships
(via the test suite).

4.3 Persistence of conflicts

RQ2: How long do textual conflicts persist?

RQ2 asks how long developers experience the TEXTUAL8
relationship. As we argue in Section 4.4, the longer a relation-
ship persists, the more opportunities it has to change into a more
severe relationship.

To measure the lifespan of a conflict, we traced backwards
in time through the history from the two changesets that were
eventually merged to find the earliest point in time when the
two branches came into conflict with each other. To do this, we
created a time-ordered list of the changesets from each of the
two branches and compared all distinct pairs of changesets that
co-existed at each point in time to see if they were in conflict,
stopping when we found a non-conflicting pair. This approach
flattened all other sub-branches and merges that existed on the
branches that contributed to the merge under analysis. (We
omitted all conflicts between changesets that were never actually
merged in the history, such as those on dead-end branches.)

On average, the TEXTUAL8 relationship persisted for 3.2
days and involved 18.3 changesets (with median values of 0.7
days and 6 changesets) before being resolved (left side of Fig-
ure 6). A tool could have let developers know about these
TEXTUAL8 relationships immediately upon their creation. In
the worst case, one TEXTUAL8 relationship in MaNGOS per-
sisted for 334 days and included 676 changesets by one of its
developers before it was resolved.

If developers know that they can merge others’ changes safely,
they may choose to do so quickly and thus prevent a future

system merges TEXTUAL8 TEXTUALX
Git 179,249 15,965 9% 163,284 91%
Perl5 7,352 1,290 18% 6,052 82%
Voldemort 4,512 1,534 34% 2,978 66%
Gallery3 6,924 1,262 18% 5,662 82%
Insoshi 1,742 736 42% 1,006 58%
jQuery 74 13 18% 61 82%
MaNGOS 4,967 1,092 22% 3,875 78%
Rails 10,418 2,971 29% 7,447 71%
Samba 77,683 30,635 39% 47,048 61%
total 292,921 55,498 19% 237,423 81%

Fig. 5. Potential early merges. The frequency with which de-
velopers would be informed of TEXTUAL8 and TEXTUALX
relationships, if they had used Crystal throughout their develop-
ment of nine open-source systems.

conflict. The longer a TEXTUALX relationship persists, the
more opportunities it has to change into a conflict. Accordingly,
we asked “How long do developers experience the TEXTUALX
relationship?” We measured the lifespan of a TEXTUALX rela-
tionship for each conflict-free merge in the history (again starting
with the changeset that introduced the relationship and ending
with the one that resolved it).

On average, the TEXTUALX relationship persisted for 2.4
days and involved 12.7 changesets (with median values of 0.8
days and 7 changesets) before incorporation (right side of Fig-
ure 6). A tool could have helped developers learn immediately
about the TEXTUALX relationship, encouraging earlier, smooth
incorporation. In the worst case, in terms of time, one TEX-
TUALX relationship in Voldemort persisted for 138 days; in
terms of changesets, one TEXTUALX relationship in Gallery3
persisted for 232 changesets without a merge, while each of the
possible merges along the way would have been textually clean
and fully automated. Neither of these two long-lived TEXTU-
ALX relationships evolved into a conflict.

4.4 Escalation of clean merges into conflicts

RQ3: Do clean merges devolve into conflicts?

Parallel work enables faster progress, but also the creation of
conflicts. We, and others, argue that developers should perform
safe merges as frequently as possible. Every conflict relationship
develops from a situation in which a second developer makes
a change without having incorporated and understood a first
developer’s work. How often does parallel editing escalate into
a conflict, in practice?

Using a methodology similar to that of Section 4.3, we found
that 93% of the TEXTUAL8 relationships developed from a
TEXTUALX relationship; the other 7% of developed from a
BEHIND relationship. In other words, in almost every case,
both developers had already committed (but not shared) changes
before the conflict developed. Every TEXTUAL8 relationship
between repository commits can be prevented by incorporating
others’ changes earlier. (In some cases, a developer may have to
change his or her plans based on edits by others, and may need

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1363

TEXTUAL8 relationships TEXTUALX relationships
system # length (days) length (changesets) # length (days) length (changesets)

mean stddev median mean stddev median mean stddev median mean stddev median
Voldemort 28 7.5 9.9 2.1 23.2 33.1 6 139 6.0 13.6 2.7 16.0 35.4 7
Gallery3 47 1.8 6.9 0.1 20.8 70.0 4 459 1.1 6.9 0.6 11.2 36.3 6
Insoshi 23 7.3 14.7 1.9 24.3 44.4 6 70 4.9 13.4 1.1 10.8 13.1 6.5
jQuery 1 5.4 0 5.4 13.0 0 13 17 1.1 2.1 0.4 4.9 3.7 4
MaNGOS 81 1.4 1.5 0.8 13.5 14.0 9 113 2.4 2.8 1.5 16.7 19.6 11
total 180 3.2 8.0 0.7 18.3 42.6 6 797 2.4 7.7 0.8 12.7 32.5 7

Fig. 6. Persistence of the TEXTUAL8 (left) and TEXTUALX (right) relationships in historical data.

to make edits to resolve conflicts, but at least the conflicts would
never be committed to the VCS.)

We also found that 20% of TEXTUALX relationships devolved
into a conflict. The remaining 80% of TEXTUALX relationships
were merged successfully, preventing a conflict from developing.
This suggests that what we call “safe merges” are actually at
risk of devolving into conflicts that require human effort to
resolve. Being aware of these merges early may prevent some
such conflicts from arising.

While DVCSes record sufficient information to let us recon-
struct how often a conflict arose from a BEHIND relationship,
they do not record information that would allow us to determine
how often a BEHIND relationship devolves into a conflict. We
suspect that BEHIND relationships are also risky.

5 INFORMATION ABOUT CONFLICTS

RQ4: What information could developers use to reduce
the frequency and duration of conflicts?

Multiple factors can affect the frequency and duration of
conflicts. For example, the order in which developers incorporate
changes may affect whether they encounter a conflict at all.
Further, which developers communicate, and when they do so,
may affect how quickly the developers can resolve a conflict.

Consider a scenario with three developers, George, Jeff, and
Tom, collaborating on a project using a master repository. (These
developers and their work are part of a larger scenario we will
describe in Section 6.1 and Figure 10). Figure 7 shows the
developers’ repository histories. All three create changes, but
only George’s and Tom’s (101 and 103) conflict. Tom shares his
changes with the master and Jeff incorporates that change from
the master. At this point in time, George’s and Jeff’s repositories
conflict. If George and Jeff discover that their repositories con-
flict, they may attempt to resolve the conflict together. However,
that is not the ideal action for them to take because Jeff did not
write any of the responsible code. It would be best for George to
communicate with Tom, who is likely to be more familiar with
the relevant changes than Jeff is.

This section explores and enumerates the space of collabora-
tive relationships, actions developers may perform, and guidance
regarding those actions. First, Section 5.1 enumerates the space.
Then, Section 5.2 describes the exhaustive approach by which
we enumerated the space. Section 5.3 augments the space with
information specific to higher-order, build and test conflicts.

Finally, Section 5.4 describes differences between CVCS and
DVCS that affect the space.

5.1 Available information

This section enumerates the space of collaborative relationships,
actions developers may perform, and guidance regarding those
actions. Section 5.1.1 describes five local states of a developer’s
repository and working copy. Sections 5.1.2 and 5.1.3 aug-
ment our classification of the relationships between developers’
repositories (already described in Section 3.2) with two other
categories of information: the developer’s possible actions and
guidance about those actions.

5.1.1 Local states

A developer’s local state is information that can be obtained
without querying any other repository. The five possible local
states are:

uncommitted
There are uncommitted changes in the working copy.

in conflict
The local repository is in conflict with itself; that is,
it has two heads that are not automatically mergeable.
This happens, for example, when pulled changesets
conflict with local changesets.

build failure
The repository’s version of the code fails to build.

test failure
The repository’s version of the code builds but fails its
test suite.

OK
The repository’s version of the code builds and passes
its test suite.

These states are not mutually incompatible; for example, a
working copy may have uncommitted changes at the same time
that the repository is in conflict with itself and has a different
build status for each head. Furthermore, these states obscure
some information, such as whether the working copy has been
updated to all of the changesets in the local repository. The list
also omits some states, such as when the local repository has
two heads that can be merged automatically. Our approach and
tools can handle such situations. For simplicity of exposition,
however, this paper classifies each developer’s state as the first
one in the list that holds. This is all the information about state
that is needed to provide the generally best advice to the team.

1364 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

100:George
103:Tom

history
100:George
102:Jeff
103:Tom

history
100:George
101:George

history
George’s clone Jeff’s clone Tom’s clone

master

100:George
103:Tom

history

Fig. 7. A DVCS snapshot of three developers working in parallel.
Each changeset in the history is annotated by who created it.
Changesets 101 and 103 conflict textually, so George is in TEX-
TUAL8 with Jeff and with Tom.

5.1.2 Actions

Given two repositories A and B, the possible actions that de-
veloper A can perform depends on both the local state and the
relationship between A and B.

Local states: The local state partially determines which version
control operations can be executed in different situations.

If A’s state is “uncommitted”, then the “update” operation
cannot be applied. If A’s state is not “uncommitted”, then the
“commit” operation is inapplicable.

If A’s state is “in conflict”, then all operations except “merge”
are discouraged. (DVCSes permit most operations at any mo-
ment, but discourage some of them, most commonly by aborting
the operation unless the user supplies an extra confirmation
flag.) If A’s state is not “in conflict”, then the “merge” operation
is inapplicable.

The “build failure” and “test failure” states do not limit the
possible actions — VCSes are as yet unaware of such local states
— although fixing these problems should likely be a priority. The
“OK” state does not limit the possible actions.

Repository relationships: In this section, we assume that the
local state is neither “uncommitted” nor “in conflict”, per DVCS
best practices as discussed immediately above.

SAME: Nothing to do.
AHEAD: May push; the new relationship will be SAME.
BEHIND: May pull; the new relationship will be SAME.
TEXTUAL8: May pull; will result in the “in conflict” state.

May push; B will be in the “in conflict” state.
BUILD8: May pull and merge; will result in the “build

failure” state. May push; B will be in the
“build failure” state.

TEST8: May pull and merge; will result in the “test
failure” state. May push; B will be in the “test
failure” state.

TESTX: May pull and merge; the new relationship will
be AHEAD. May push; B will be able to merge
the changes cleanly.

The consequences of applying available actions can be tricky
to understand and remember. One example is when the available
actions are the same but the consequences differ. For example,
the developer can cleanly pull in both the BEHIND and TESTX

relationships. However, in the BEHIND case, the developer ends
up in the SAME relationship, while in the TESTX case, the de-
veloper ends up in the AHEAD relationship. Another example is
when there are side-effects of performing an operation intended
to change the relationship between A and B. For example, incor-
porating B’s changes into A may put A and another repository
C into a TEXTUAL8 relationship. Using global version con-
trol information to help developers track such situations can be
beneficial.

5.1.3 Guidance

Information about how each action may affect the developer’s
state and relationships can help developers make better-informed
decisions.

This section makes one common, generally realistic assump-
tion: repositories are organized in a tree hierarchy, so developers
only push to and pull from a parent. This aligns with how devel-
opers predominantly interact with VCSes, even DVCSes [44].
Further, we consider only information relevant to two devel-
opers who share a common parent repository (possibly that of
one of the developers themselves), because in all other cases,
the developers’ future relationship is dependent on actions by
others.

We classify the guidance information into five types. One
type of information concerns the relationship: Committer. The
other four concern the possible action: When, Consequences,
Capable, and Ease.

Section 5.2 will enumerate the space of possible collaborative
situations. For these situations, these five types of guidance
information are sufficient for the developers to make the optimal
choice in avoiding and resolving conflicts, given the information
contained in the VCS we considered. Of course, this is not all the
information available in a VCS that might be relevant to collab-
oration and to identifying and resolving conflicts. For example,
each commit contains a descriptive, developer-written, natural-
language message describing the commit’s changes. This mes-
sage may describe side-effects and could theoretically lead to
a better understanding of a conflict. Further, information out-
side of the VCS can also affect conflict resolution, including
the developers’ organization and development policies. This
information can further inform and improve conflict detection
and resolution, but we do not study it here.

Committer: Who made the relevant changes?
Consider George, Jeff, and Tom again, from Figure 7. If George
knows he is in the TEXTUAL8 relationship with Jeff, George
might decide to contact Jeff to discuss the situation. However,
Jeff did not make the conflicting changeset 103, Tom did and
Jeff only incorporated Tom’s change. In this case, George should
likely discuss the conflict with Tom rather than with Jeff. Know-
ing the committer facilitates communication between relevant
parties, which in turn decreases the time required to fix con-
flicts [10].

When: Can an action that affects the relationship be performed
now, or must it wait until later?
Tom can be in the BEHIND relationship with Jeff but may be
unable to incorporate his change (changeset 102) because Jeff
has not yet shared it with the master. Thus, it may be helpful for

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1365

Tom to know that although he will need to incorporate at some
point, he cannot get Jeff’s change until Jeff shares it. As another
example, a developer may have to resolve an “in conflict” state
before being allowed to push.
Consequences: Will an action — perhaps one on a different
repository — affect a relationship?
The situation with Tom BEHIND Jeff illustrates this kind of
guidance as well. Is Tom BEHIND Jeff because Jeff has not yet
shared his change (changeset 102) with the master, or because
Jeff has shared with the master but Tom has not yet incorporated
from the master? In the first case, even if Tom incorporates from
the master, his relationship with Jeff will not change. In the
second case, if Tom incorporates, he will become SAME with
Jeff.
Capable: Who can perform an action that changes the relation-
ship?
Consider a situation in which George is in the TEXTUAL8 rela-
tionship with Tom. Tom has already shared his change (change-
set 103) with the master, so George must be the one who resolves
the conflict when he eventually incorporates from the master.
Conversely, if George had shared his change (changeset 101)
first, he could not resolve the conflict. And if neither had shared,
either of them might be the one to resolve the conflict.
Ease: Has anyone made changes that ease resolving an existing
conflict?
George and Tom have created conflicting changes (changesets
101 and 103) and Tom has shared his with the master. If George
were to incorporate from the master, he would have to resolve
the conflict. What if Tom had made a set of follow-up changes
that he has not yet shared? If these changes resolve the conflict,
then it is likely better for George to wait for Tom to share his
new changes. Tom’s sharing action would be the best way to
resolve George’s TEXTUAL8 relationship with the master.

By performing actions, developers can affect how long a
conflict persists, or even prevent it from ever occurring. The
guidance information can help developers decide which actions
to perform. Knowing of a conflict relationship can encourage
the developer to address it earlier, while the changes are fresh
in the relevant developers’ minds; this may reduce the conflict’s
duration as well as the effort necessary to resolve it. Knowing
about BEHIND and TESTX relationships can reassure developers
that it is safe to incorporate others’ changes, which in turn
keeps the development states closer together. In some cases,
this may also allow the developer to prevent some potential
conflicts altogether, which would also reduce conflict frequency.
At a minimum, these relationships can prompt developers to
communicate, which can reduce conflicts in the developers’
mental models and work plans.

The Committer guidance informs the developers of who else
is relevant to a conflict, reducing the time required to resolve
it [10]. The When and Capable guidance can inform developers
of the right time to perform an action, eliminating the overhead
of manually figuring out if an action can be performed now
and possibly having to undo actions later. The Consequences
guidance can allow the developers a peek into the future, also
limiting undoing and redoing of work. Finally, the Ease guid-
ance can inform a developer if someone else may have an easier

time resolving a conflict, thus helping reduce the effort needed
to resolve it.

5.2 Exhaustively enumerating the space

This section exhaustively enumerates the space described in Sec-
tion 5.1. Section 5.2.1 describes all possible repository topolo-
gies among three developers. Section 5.2.2 describes all possible
situations that can arise during collaborative development in
those topologies.

5.2.1 Repository topologies

A repository topology describes which repositories may share
changes with, and incorporate changes from, which other repos-
itories. For example, centralized VCSes generally restrict each
developer to share with and incorporate from only a single “mas-
ter” repository. In practice, there are many ways to restrict
collaborative development to conform to topologies, including
VCS constraints, corporate guidelines, and developer practices.
Distributed VCSes generally allow unrestricted sharing and in-
corporating. However, in practice, unrestricted topologies are
rare. The centralized use case, with a “master” repository, is the
most common use case even for distributed approaches [44].

We call repository A the child of repository B (and B the
parent of A) if A can share changes with and incorporate changes
from B. Note that A can be B’s child and parent at the same time.

We considered all possible repository relationships (Sec-
tion 3.2) between two developers A and B and applied all per-
mitted operations. We represented all other repositories with
a single repository C. For three repositories A, B, and C, con-
sidering all possible parent / child relationships yields 26 = 64
distinct topologies. After exhaustively considering those 64
topologies (see Figure 12 in Section 10), we found that there are
three classes of topologies that are relevant to consider from A’s
point of view. These are:
• A and B share a common parent (T1 in Figure 12),
• A is B’s child (T7 in Figure 12), and
• A is B’s non-child descendant (T3 in Figure 12).
The other classes are not relevant because they do not allow

A to perform actions, do not allow A and B to collaborate, or are
combinations of other classes (adding no new interesting infor-
mation). See Section 10 and Figure 12 for more information.

Figure 8 shows the three relevant classes of topologies. These
three classes represent all the relevant, distinct topologies, in
term of A’s abilities. This classification focuses on what A can do
independently of asynchronous actions by other repositories. For
example, in a T7 topology, A may be able to share changesets
with B, but if B incorporates them first, A loses that ability.
Figure 8 differs from Figure 12 in that Figure 8 includes all other
possible repositories, whereas Figure 12 included only those via
which information might flow between A and B.

5.2.2 Collaborative situations

The repository topologies restrict what the developers may and
may not do at any given point during development. The rela-
tionships (recall Section 3.2) between the repositories result in
further restrictions.

1366 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

T1 T7 T3

A B A B A B

Fig. 8. The three relevant classes of topologies that are distinct
in term of A’s abilities. An edge from repository X to repository
Y indicates that X is Y ’s child. The solid, black edges must
be present for a topology to belong to a given class, whereas
the dotted, gray edges may or may not be present. The gray
groupings of nodes represent arbitrary, connected structures.

At a moment when new development is not taking place, a
goal of collaborating developers is to incorporate everyone’s
changes together, reaching SAME relationships. Even during
development, reaching a mutually consistent single state is a
goal (to the extent that is possible). Thus, for each topology, we
considered A’s relationships with B and with C, and answered
the following questions to identify what actions the developers
may wish to perform:
A Can A share?1

B Does sharing reduce the number of future actions A will
have to perform to become SAME with B?

C Can A incorporate?
D Does incorporating reduce the number of future actions A

will have to perform to become SAME with B?
E Do new changesets in C increase the number of actions A

has to perform to become SAME with B?
By exhaustively examining all these situations, which actions

A can perform, and which of those help A become closer to B,
we identified the kinds of guidance (recall Section 5.1.3) that
help developers make VC decisions. For example, for T1 and
T3 topologies (see Figure 8), if A is AHEAD of B and SAME
with its parent, A can neither share nor incorporate, which means
A cannot perform an action to become SAME with B, and B must
be the one to act.

Figure 9 answers the above five questions for the T1 topology.
For example, if A, B, and C are all SAME (top row in Figure 9),
then A can neither share (A) nor incorporate (C) changes, and
since A can do neither, it does not make sense to ask whether
sharing (B) and incorporating (D) reduces the number of actions
A has to perform to become SAME with B. Finally, since A and
B are already SAME, new changesets in C do not affect that
relationship (E).

By contrast, if A is BEHIND B and AHEAD of C (9th row in
Figure 9), A can share (A) — the T1 topology only allows A
to share with C — and sharing does not reduce the number of
actions A has to perform to become SAME with B (B), because
B would still need to share changes with C, and then A would still
need to incorporate B’s changes from C. A cannot incorporate
(C) — the T1 topology only allows A to incorporate from C —
and thus it does not make sense to ask whether incorporating
(D) reduces the number of actions A has to perform to become

1In a DVCS, push shares changes and pull incorporates them.

A and B A and C A B C D E

SAME
SAME no — no — no
AHEAD impossible
BEHIND no — yes no no
all others impossible

AHEAD
SAME no — no — yes
AHEAD yes yes no — yes
all others no — yes yes no

BEHIND
SAME no — no — yes
AHEAD yes no no — yes
all others no — yes no no

all others
SAME no — no — yes
AHEAD yes no no — yes
all others no — yes no no

Fig. 9. Answers to the five questions A –E for a T1 topology.

SAME with B. Finally, new changes in C increase the number
of actions A has to perform to become SAME with B because B
would first have to incorporate those new changes before sharing
its changes with C (E).

The information in Figure 9 that describes the T1 topology is
a superset of the actions available to the developers in the other
topologies.

We used these questions to identify the five types of guid-
ance information from Section 5.1.3. Those five types describe
completely the answers to these questions. As a result, making
the developers aware of the guidance informs their decisions in
avoiding and resolving conflicts.

5.3 Examples of higher-order conflicts

Early identification of higher-order conflicts between developers
reduces — or at the least is highly unlikely to increase — the
time to resolve a conflict. We describe two situations from Volde-
mort, one resulting in BUILD8 and one in TEST8, for which
the conflicts could have been detected earlier and, potentially,
never committed to the repository. The information available
to developers for these kinds of conflicts is similar to that for
TEXTUAL8.

5.3.1 BUILD8 conflict due to missing type

On November 9, 2009, a developer successfully merged
branches c77a4 and 7f776. Branch 7f776 was edited 11 times
while the branch was alive; branch c77a4 was edited three times.
Both branches had been modified within four days of the merge.
While the merge had no textual conflicts, the code failed to build:
four compilation errors resulted from referencing a missing
type ProtoBuffAdminClientRequestFormat. Eight minutes
later, the developer merged in another branch (f68e3), which
resolved the compilation problem.

In this case, a tool could have speculatively told the developer
about the compilation error that would arise as a result of the
merge. With this information, the developer may have chosen
to do the merges in an alternate order, or manually, to avoid the
problem.

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1367

5.3.2 TEST8 conflict due to malformed non-code resource

On October 10, 2009, a developer successfully merged two
branches (“tips” in Git), 50b74 and 00c35. Branch 00c35
was edited 17 times while the branch was alive and the last
changeset on this branch occurred only eight minutes before the
merge. Branch 50b74 had not been edited in the previous 48
days. Although the difference between these two branches was
very large (63,413 lines), Git successfully merged these change-
sets. Test voldemort.store.http.HttpStoreTest::test-
BadPort() did not fail in either branch before the merge, but did
in the merged system. Thus, some unintended behavioral inter-
action between the two branches’ changes broke this test. In fact,
the merge invalidated one of the metadata files, cluster.xml.
In this case, if a tool had let the developers know that it was
safe to merge earlier, the problem could have been avoided com-
pletely by sequentializing the changes to cluster.xml and/or
by enabling earlier testing of the merged version.

5.4 Relating CVCS and DVCS

This paper has focused on DVCS. However, proactive detection
of collaboration conflicts is similarly applicable to CVCS. There
are two ways in which this work can be extended to CVCS.

First, from the point of view of collaborative information,
DVCS repositories are equivalent to branches in both DVCS
and CVCS. In CVCS, developers use separate branches where
DVCS developers use either distributed repositories or branches.
In that case, the branches can be classified into exactly the
seven topology classes from Section 5.2.1. In fact, Microsoft
Beacon (a version of Crystal that Microsoft built jointly with
us) proactively detects conflicts in exactly this way. Beacon
works with a CVCS used internally by Microsoft. Case studies
of Beacon are future work.

Second, while the technique we have described considers
changes only once they are committed into changesets, it can be
extended to consider changes as soon as the developer makes
them, or as soon as the developer saves the source files. Consid-
ering such changes may reduce further the time before conflicts
are detected, which in turn may reduce the frequency and dura-
tion of conflicts. On the other hand, considering such changes
could also detect conflicts among temporary changes that the
developer does not intend to share with others.

Fundamentally, the same information is available in collabora-
tive development that uses each of CVCS and DVCS, at the time
of development, and our technique applies to both. (Note, how-
ever, that different information is stored by DVCS and CVCS
histories, so the retrospective analysis from Section 4 we per-
formed on DVCS repositories could not have been performed
on CVCS repositories.)

6 DELIVERING VERSION CONTROL ADVICE

Given that version control conflicts are frequent and serious
(Section 4) and that a global view of the VCS could detect
conflicts and reduce their frequency and severity (Section 5),
how can a tool effectively deliver that information and advice to
developers?

Our tool, Crystal, conveys the key information without over-
whelming or distracting the developer, in three ways.

Fig. 10. A screenshot of George’s view of Crystal. George is
following two projects under development: “Let it be” and “Handle
with care”. The former has four observed collaborators: George,
Paul, Ringo, and John; the latter has five: George, Jeff, Roy, Bob,
Tom. Crystal shows George’s local state and his relationships
with the master repository and the other collaborators, as well as
guidance based on that information.

First, a taskbar icon in the system tray reports the most severe
state for all tracked repositories. A developer who prefers to
receive limited but critical information need never open the main
window. (Crystal never opens any window asynchronously.)

Second, the main window compactly summarizes all projects
and relationships, allowing a developer to instantly scan it to
identify situations that may require attention. The main win-
dow displays icons exploiting color and shape redundantly and
in stable locations (rather than, say, a textual list that a devel-
oper would have to read and interpret). Each icon’s fixed color
represents the severity of the situation.

Third, full, detailed information about each relationship, ac-
tion, and guidance is available but hidden until a developer
shows specific interest in it. When the developer mouses over an
icon, a tooltip displays all the information discussed in Section 5.

Crystal works with the Mercurial and Git DVCSes. Crystal is
an open-source, cross-platform, standalone tool and is available
for download: http://crystalvc.googlecode.com. Our initial qual-
itative evaluation of Crystal is positive, but future work should
evaluate it via both qualitative and quantitative user studies.

6.1 Crystal’s UI

Figure 10 shows a screenshot of Crystal’s main window. In this
example, there are two projects: “Let it be” and “Handle with
care”. The former has four collaborators: George (the developer
running Crystal), Paul, Ringo, and John. The latter has five
collaborators: George, Jeff, Roy, Bob, and Tom.

On the leftmost side of the row, underneath the project name,
Crystal displays the local state. This tells George (in the na-
tive language of the underlying VCS) whether he must commit
changes (hg commit, in Mercurial) or resolve a conflict. Then
Crystal displays the relationship with the master and the collab-
orators’ repositories. The window displays a row of icons (see
Figure 11) for each of a developer’s projects.

http://crystalvc.googlecode.com

1368 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

B T

SAME AHEAD BEHIND TEXTUAL8 BUILD8 TEST8 TESTX

Fig. 11. Crystal associates an icon with each of the seven
relationships. Each icon has a fixed color, which represents
the severity of the relationship (Section 3.2): relationships that
require no merging are green, those that can be merged auto-
matically are yellow, and those that require manual merging are
red. Icons can be shaded to indicate a developer’s capability
to affect this relationship at this time. Solid, unsaturated, and
hollow icons indicate the developer can, might, and cannot affect
this relationship, respectively. Here, the icons are shown solid;
Figure 10 includes examples of unsaturated and hollow icons.

When and Capable guidance is represented by the shading
of the icon. If George has the ability to affect a relationship
now, the icon is solid. If George cannot affect the relationship,
the icon is hollow. For example, consider John, who has made
some changes in “Let it be” but has not yet pushed them to
the master; George is BEHIND John, but the icon is hollow
because George cannot affect this relationship until John pushes.
Similarly, George’s relationship with Ringo is a hollow TESTX
because (1) George has the SAME relationship with the master,
(2) Ringo had not pulled the latest changes from the master,
and (3) Ringo has made some other changes, which he has not
pushed but which can merge without human intervention. If the
relationship is of the might variety — George might or might
not have to perform an operation to affect the relationship — the
icon is solid but slightly unsaturated (see the relationship with
Bob in the “Handle with care” project).

These features allow George to quickly scan the Crystal win-
dow and identify the most urgent issues, the solid red icons,
followed by other, less severe icons. George can also easily
identify quickly whether there is something he can do now to
improve his relationships (in the example, George can perform
actions to improve his relationships in the “Handle with care”
project, but not in “Let it be”), and whether there are unexpected
conflicts George may wish to communicate with others about.

The most urgent relationship is displayed by Crystal as its
system tray icon, which allows a developer to know at all times
whether there is any action that requires attention without even
having the Crystal window open.

Crystal also provides other guidance that is hidden unless a
developer wants to see it. Holding the mouse pointer over an
icon displays the action George can perform and the Commit-
ter, Consequences, and Ease guidance, when applicable. As
shown in Figure 10, when George holds the mouse over Jeff’s
TEXTUAL8 icon, it tells him that he can perform a pull and a
resolve (hg fetch, in Mercurial), that performing this action
will resolve George’s TEXTUAL8 with Jeff, and that Tom and
George committed the conflicting changesets.

Even though George asked for information about the relation-
ship with Jeff, Crystal was able to correctly point George to
Tom as the developer who was responsible for the conflicting
changesets (which Jeff had pulled into his repository). In other
situations, it is possible that George performing a pull and a
resolve operation with his parent would not resolve George’s

TEXTUAL8 with Jeff (e.g., if Jeff and Tom had both created
conflicting changesets but only Tom had pushed his changesets
to the master). This is why the consequences guidance is im-
portant. As a final note, because no one else has merged these
changesets, George must resolve this conflict and there is no
Ease guidance for Crystal to display.

6.2 Initial experience

Crystal consists of 5,200 NCSL of Java and has been tested
on Windows, Mac OS X, and several Linux distributions.
The developer using Crystal must have read access to the
collaborators’ repositories; the Crystal manual (available at
http://crystalvc.googlecode.com) describes several simple ways
to accomplish this.

We deployed the beta-test version of the tool to a small number
of developers and have been using it ourselves, and refining it,
since early July 2010. One co-author uses Crystal to monitor
49 clones of 10 projects belonging to eight actively working
collaborators.

Our initial, anecdotal experience has suggested that Crystal
affects developers’ workflow by (1) prompting communication
between developers who create a conflict, and (2) reminding de-
velopers to incorporate changes before beginning work. Further,
Crystal affects managers’ workflow by increasing their aware-
ness of which developers have made, shared, and incorporated
changes.

Designing and deploying Crystal, along with frequent feed-
back from the handful of users, has helped us to better under-
stand the issues and to improve the tool’s design. Crystal user
feedback enhanced our understanding of the need for guidance
as well as which information is most pertinent to make avail-
able to the developer. For example, showing hollow and solid
icons arose from a user’s need to differentiate between relation-
ships he could and could not affect. The feedback drove us
to systematically explore the complete space, as described in
Section 5.

Here is one example piece of feedback from an external user,
via private communication:

“Keeping a group of developers informed about the state
of a code repository is a problem I have tried solving
myself. My solution was an IRC bot that announced
commits to an IRC channel where all of the developers
on the project idled. This approach has many obvious
problems. [. . .] The Crystal tool does not suffer from
these problems. Crystal handles several projects and users
effortlessly and presents the necessary information in a
simple and understandable way, but it is only a start at
filling this important void the in the world of version
control.”

Prior to developing Crystal, we surveyed 50 DVCS users
about their collaborative development habits. Their use of highly
heterogeneous operating systems, IDEs, VCSes, and languages
informed Crystal’s design. Even among this small group, there
were vast differences in committing, pushing, and pulling styles,
which further encouraged our research. We anticipate that future
user studies will identify additional strengths and weaknesses
that will allow us to further improve Crystal.

http://crystalvc.googlecode.com

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1369

6.3 Precision and timeliness in conflict detection

Crystal precisely reports actual conflicts, determining the rela-
tionship between two developers’ states by actually creating the
merged artifact. In other words, to find out what would happen
if George and Ringo merged their code, Crystal does the merge
in the background: it makes a copy of George’s code and in-
corporates Ringo’s changes. Similarly, once Crystal creates the
merged code artifact, it attempts to compile and to execute the
test suite on that artifact. Again, Crystal only reports a compi-
lation or testing conflict when the build or a test actually fails.
Because the computation happens in the background, the de-
velopers can continue to work without interruption. In certain
situations, we expect the developers to ignore Crystal, much as
they sometimes ignore project bulletin boards and email.

By creating the merged artifact in the background, Crystal
uses speculative analysis [7] to detect conflicts. In contrast,
awareness tools [4], [15], [23] notify developers when they might
have conflicting changes. This approximation is computed dif-
ferently in various tools. Some determine if a co-developer is
working in the same file, some report any change to the reposi-
tory (e.g., FASTDash [4]), others report concurrent changes to
the AST (e.g., Syde [23]), etc. These approaches can lead to
the inclusion of false positives — reporting potential conflicts
that do not evolve into actual conflicts. Furthermore, few current
awareness tools try to automatically detect higher-order merge
conflicts; by contrast, Crystal is precise as it uses the project’s
tool chain to dynamically detect conflicts by execution of the
build system and test suites. We discuss further differences
between Crystal and awareness tools in Section 7.

Crystal can, in rare situations, report conflicts about which
the developers may not wish to know. Changesets that are later
discarded can cause a teammate to see a pending conflict that
later disappears. This can happen when a developer commits
exploratory code, a partial change, or a change that is later
determined to be undesirable.

6.4 Scalability

This section describes how Crystal’s design allows it to scale to
large projects and compute the relevant information efficiently.

6.4.1 Large projects

Crystal scales to large projects that involve many developers
and repositories. A developer explicitly instructs Crystal (via a
GUI or a configuration file) which repositories to observe. For
example, a developer may be interested in only the relationships
with other developers in his collaborative team and the per-team
development repositories of the other teams.

Crystal can provide information about relationships even with
developers who are not using it, easing adoption by avoiding
a requirement that the whole team uses the tool. Each devel-
oper can independently choose whether or not to run Crystal.
In particular, the repositories being monitored need not be us-
ing Crystal— they only have to be accessible to Crystal (see
Section 6.4.2 below).

For detecting test failures, Crystal allows a developer to select
any subset of the tests to execute. Naturally, for large projects
with build scripts and test suites that take a long time to execute,

Crystal will experience that latency. However, it would still
identify relevant information sooner than other existing methods.

While the current implementation of Crystal runs on the de-
veloper’s machine, its architecture can be extended to offload
the computation onto a central server (perhaps an integration
server), a cluster of machines, or the cloud. Projects whose build
and test scripts cannot feasibly run on the developer’s machine
in a reasonable amount of time may require such offloading.

6.4.2 Computation efficiency

Crystal provides a developer with information on his devel-
opment state and the relationships between his repository and
collaborators’ repositories. Thus, Crystal needs access to that
developer’s repository and working copy (if the working copy is
inaccessible or nonexistent, Crystal does not report certain local
states, e.g., uncommitted), and the locations of the other repos-
itories. In some development environments, access to others’
repositories is trivial. For example, many corporate develop-
ment configurations include a common file system. In other
environments, it is possible for developers to have their local
repositories on machines that are often offline. In such an en-
vironment, each developer (even those not using Crystal) must
make his repository available to other developers. One simple
approach is to symbolically link their repository to a Dropbox2

shared folder.
To limit the computation necessary to extract the relationships

between repositories, Crystal follows the following algorithm.
First, Crystal checks the history of the two repositories to iden-
tify the changesets each contains, and only re-computes the
relationship if at least one history has changed. If the sets of
changesets are the same, then the relationship is SAME. If one
repository contains strictly more (respectively fewer) changesets,
it is AHEAD (respectively BEHIND). If both repositories contain
changesets the other does not (and Crystal has not previously
computed their relationship), Crystal makes a local clone of
one repository and uses the VCS to attempt to incorporate the
changesets from the other repository. If the VCS reports a prob-
lem with incorporation, the relationship is TEXTUAL8. If the
integration succeeds, Crystal runs the build script. If that script
fails, the relationship is BUILD8. Finally, if the build script
succeeds, Crystal runs the test suite and determines whether the
relationship is TEST8 or TESTX.

Cloning repositories, especially remote ones, can be costly. To
address this issue (and to enable faster start-up times), Crystal
keeps a cached clone of each project, bringing it up to date
before updating the relevant relationship. This has significantly
increased Crystal’s performance in all common cases. In the
rare and discouraged situation of changing existing VC history
(e.g., rebasing), the cache may contain changesets that no longer
exist in a repository. This can cause problems and require the
developer to clear the cache.

7 RELATED WORK

This section places our research in the context of related work in
evaluating the costs of conflicts, collaborative awareness, mining
software repositories, and continuous development.

2http://www.dropbox.com

http://www.dropbox.com

1370 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

7.1 The cost of conflicts

Efficient coordination is important for effective software devel-
opment. The number of defects rises as the amount of parallel
work increases [32]. Developers eschew parallel work to avoid
having to resolve conflicts when committing changes [19], or
rush their work into the trunk to avoid being the developer who
would have to resolve conflicts [13]. In practice, anti-patterns
for parallel software development emerge that hinder collabora-
tion [2], [6]. Developers can more effectively manage risks to
the consistency of their systems if they are aware of the conse-
quences of their commits on other developers [17].

Several observational and laboratory experiments empirically
demonstrate that collaborative awareness benefits configuration
management by reducing use of shared resources, increasing
project-related communication, and detecting some conflicts
at the time they are created [4], [15], [42]. Augmenting these
results, we performed a retrospective analysis on real projects
to estimate the potential benefit. Our analysis is consistent with
their studies in confirming the potential for better coordination
of individual and team repositories.

In practice, some branches can cause delays in integration,
in part because branches typically have to meet certain criteria
before integration [2], [6]. These delays can, in turn, lead to
conflicts. Classifying branches based on their integration history
can, in theory, reduce delays, and perhaps conflicts [6].

Sarma provides a comprehensive classification of collabora-
tive tools for software development [39]. In this classification,
Crystal could be considered a seamless tool as it provides con-
tinuous awareness about development state and guidance about
the consequences of potential future actions.

7.2 Collaborative awareness

The research most similar in intent to ours studies collaborative
awareness — increasing awareness of the activities among team
members. Such awareness can be a distraction unless a conflict
is imminent, so awareness tools have adopted increasingly so-
phisticated methods for avoiding false positive warnings, as we
now describe.

Palantı́r [41], [40], [1] shows which developers are changing
which artifacts (e.g., files) by how much. Palantı́r has similar
motivations to ours: “providing workspace awareness to users
will enable them to detect potential conflicts earlier, as they occur.
Ideally developers can then proactively coordinate their actions
to avoid those conflicts” [41, p. 444]. FASTDash [4] is similar:
it is an interactive visualization — a spatial representation of
which files each developer is editing — that augments existing
software development tools with a specific focus on helping
developers understand what other team members are doing.

Syde [23] reduces false positives via a fine-grained analysis
of abstract syntax trees (AST) modifications. Two potentially-
conflicting changes to the same file are flagged for a developer
only when they also change the same parts of the underlying
ASTs. For example, if two users have inserted, deleted, or
changed the same method, the changes will be flagged “yellow”;
if one of the users had committed, the changes would instead
be flagged “red”, indicating that there may be a merge conflict.
Syde examines files every time they are saved.

The most detailed analysis is done by tools like CollabVS
and Safe-commit. CollabVS “detects a potential conflict when
a user starts editing a program element [e.g., method, class, or
file] that has a dependency on another program element that has
been edited but not checked-in by another developer” [15]. Safe-
commit [45] does the deepest program dependence analysis,
identifying changes that are guaranteed not to cause tests to fail.
This allows earlier publishing of some of a developer’s changes,
on the theory that increasing the publishing frequency can de-
crease the amount of duplicate development and the likelihood
of merge conflicts.

Instead of considering the conflicts that arise when integrating
the code of two developers, it is possible to consider integrating
the code of all developers working on a project at once. Perform-
ing this analysis continuously can help discover merge problems
early [22].

Our approach suffers fewer false positives and fewer false neg-
atives than previous awareness approaches [8] for four reasons.
First, our approach computes actual pending conflicts rather
than estimating potential ones. By speculatively doing exactly
what a developer will actually do in the future — run a version
control operation, then run the build script, and finally run the
test script — our approach only reports problems that would
actually happen while executing those steps. (A secondary bene-
fit of using the underlying VCS directly is that users of Crystal
can benefit immediately from any improvements to the VCS
merging algorithm.) Second, Crystal does not report conflicts
until they have been committed to some repository. This reduces
false positives resulting from exploratory edits, such as for de-
bugging: developers typically commit code that is consistent
and is a candidate for sharing. This could delay Crystal’s reports
until a commit occurs, but commits tend to be frequent in a
DVCS. Third, unlike most of the previous work, our approach
aids developers in performing safe merges earlier, in addition to
early isolation of conflicts. Fourth, also unlike most of the previ-
ous work, we consider and support multiple levels of conflicts —
textual, build, and test.

7.3 Version Control Systems

Rochkind introduced the first source code control system in
1975 [33]. Since then, numerous similar systems — charac-
terized by a centralized shared repository — have been devel-
oped and deployed, including RCS [43], CVS [20], and Sub-
version [11]. More recently, a set of DVCSes have emerged,
including Bazaar, Mercurial, and Git. These systems do not rely
on a centralized repository, are less dependent on network avail-
ability, and allow more freedom to the collaborators in terms of
branching, merging, and keeping multiple repositories. As we
have discussed in Section 5.4, neither the distinctions between
centralized and distributed version control, nor those among
specific VCSes [12], [28], [31] prevent the technique we have
presented from proactively detecting conflicts. The only excep-
tion to this might be that DVCSes may encourage more frequent
branching and merging [44], which likely provides additional
opportunities for our technique. Perry et al. [32] empirically
document these variations, and consequences of this variations
with respect to quality and schedule, in how software teams
perform work in parallel.

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1371

7.4 Mining software repositories

Ball et al. [3] extracted metrics such as coupling — based on the
probability that two classes are modified together — and used
the metrics to assess the relationship between implementation
decisions and the evolution of the resulting system. Later efforts
mine version histories to determine functions that must likely be
modified as a group [48], to identify common error patterns [27],
to predict component failures [30], etc.

Our effort contrasts with these efforts in at least two dimen-
sions. First, we are assessing a different property: opportunities
to incorporate changes with others on a team. Second, the pur-
pose of our mining was to determine whether building a tool
like Crystal would be worthwhile. Other mining efforts gen-
erally aim to improve a team’s software development process,
such as by informing managers of a pattern so that they will
allocate more quality assurance resources to more error-prone
components.

7.5 Continuous development

Our approach can be characterized as continuous merging. Thus,
it is related to a number of other approaches to continuous com-
putation in the context of software development.

A programming environment, modeled on spreadsheets, can
continuously execute the program as it is being developed [24],
[26]. Modern programming environments focus instead on pro-
viding continuous compilation. The environment maintains the
project in a compiled state as it is edited, speeding software
development in two ways. First, the developer receives rapid
(and usually unobtrusive) feedback about compilation errors,
allowing for quick correction while that code is fresh in the
developer’s mind. Second, the developer is freed from deciding
when to compile, meaning that the developer is not distracted by
the compilation task and that when it is time to run or test the
code, no intervening compilation step is necessary.

Continuous testing [36], [37], [38], [18] applies the same idea
to testing: it uses excess cycles on a developer’s workstation to
continuously run regression tests in the background. It reduces
the time and energy required to keep code well-tested and pre-
vents regression errors from persisting uncaught for long periods
of time. The vision is that after every keystroke, the developer
knows immediately (without taking any extra action) whether
the change has broken the tests. Continuous testing requires
small unit tests that can execute quickly. Test factoring automat-
ically carves large system-wide tests into such unit tests [16],
[35].

Recent work has investigated real-time integration to decrease
developers’ hesitation in committing changes using centralized
version control [21]. Like FASTDash, this approach aims to help
developers avoid conflicts. In contrast to FASTDash (but simi-
larly to Crystal), it computes rather than predicts the presence of
merge conflicts.

Similarly to continuous compilation, execution, testing, and
integration, our approach is reactive to certain developer actions
— committing changes — and proactive with respect to others
— sharing and incorporating those changes. Unlike these other
approaches, our approach focuses on detection of collaboration
conflicts among developers.

8 THREATS TO VALIDITY

This section discusses threats to the validity of our results.
Construct: The version control histories tell us when a TEX-
TUAL8 or TEXTUALX relationship first arose and when the
developers resolved it. However, the histories do not tell us (1)
when or how the developers found out about the relationship,
(2) when the developers began trying to resolve the relationship,
and (3) had the developers known about the relationship earlier,
would they have done anything differently?

DVCS histories only contain information about incorporate
operations from the TEXTUALX and TEXTUAL8 states; nothing
is recorded when a developer incorporates from the BEHIND
state or pushes from the AHEAD state. DVCS histories do not
record when share operations take place in BEHIND and AHEAD
states. (DVCS disallows sharing in TEXTUALX and TEXTU-
AL8 states, although a special flag allows such sharing, which is
then also omitted from the record.)

Our analysis used the projects’ test suites to detect test failures.
A merge might cause other semantic errors that were not detected
by the tests.
Internal: Our experiments (see Section 4) are in the context
of DVCSes, which differ from CVCSes [12], [28], [31]. The
complete effects of the VCS on developer behavior is not es-
tablished [5], [34], [46] If DVCSes encourage more frequent
branching and merging [44], that would provide additional op-
portunities for Crystal.

While our full retrospective analysis cannot be done on the
histories of repositories built using existing CVCSes, we believe
the data we find in DVCS projects is an approximation of what
happens in development with CVCSes. Our largely similar
results to Zimmermann [47] justifies this belief.
External: Another threat is that our retrospective study focused
on nine open-source systems. The systems we selected may
not be characteristic of other systems. Anecdotally, developers
are all-but-universally worried about the problems that can arise
from conflicts. The professional web (blogs, Q&A sites, etc.) is
filled with examples of developers expressing this concern and
suggesting ways to reduce it.
Usability and developer style: While Crystal can answer im-
portant questions about the developers’ relationships in a collab-
orative environment and aid those developers in making better-
informed decisions, Crystal might also harm productivity by
distracting developers or leading them to premature integration.
To mitigate the issues of distraction, we have worked to reduce
Crystal’s intrusiveness. In particular, humans tend to be reason-
ably good at selecting which information to ignore, and we have
designed Crystal to be consistent with that ability. Some devel-
opers may prefer to use the full Crystal view, while others may
prefer the system-tray view most of the time. And a developer
who is “heads-down” can simply quit Crystal for a while, just as
many developers choose to, at times, ignore their email.

One challenge to Crystal’s adoption may be that developers
may fail to see its utility. One developer who attempted to
use Crystal reported that he simply was not interested in
seeing conflicts with unpublished changes and that he rarely
experienced conflicts with others in his development. While
he saw no harm to running Crystal, he anticipated it would

1372 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

Description A’s responsibilities What affects A’s relationships and abilities

T1:

A B

C A and B are C’s children and using C is
the only way for A and B to communicate
changesets.

Sharing changesets
created at A with C.

Only changesets in A and in B affect A’s rela-
tionship with B. Changesets in A, in B, and in C
affect which actions A can perform to affect its
relationship with B.

T2:

A B

C A and B are C’s parents and there is no other
way for changes to be communicated be-
tween A and B.

A cannot perform
any actions.

C is responsible for incorporating and sharing
all new changesets.

T3:

A B

C

A is B’s descendant but not child. Sharing changesets
created at A with C.

Only changesets in A and in B affect A’s rela-
tionship with B. Changesets in A, in B, and in C
affect which actions A can perform to affect its
relationship with B.

T4:

A B

C

A is B’s ancestor but not parent. A cannot perform
any actions.

B and C are responsible for incorporating and
sharing all new changesets.

T5:

A B

C

≥3 edges

Five configurations with either 3 or 4 of the
gray, dotted edges in the diagram.

The edges of each of these topologies can be represented as the union
of the edges of topologies from T1–T4. A has the same responsibilities
and abilities as those topologies the union of whose edges make up this
topology.

T6:

A B

C and
A B

C Seven configurations with 0, 1,
or 2 of the gray, dotted edges
in the diagrams.

A and B are detached and cannot collaborate.

T7:

A B

C

Sixteen configurations with 0 or more of
the gray, dotted edges in the diagram. A is
B’s child. A’s capabilities with regard to its
relationship with B are neither affected by
the edges between A and C nor between B
and C.

Sharing changesets
created at A with B.

Only changesets in A and in B affect A’s rela-
tionship with B. Changesets in A, in B, and in C
affect which actions A can perform to affect its
relationship with B.

T8:

A B

C

Sixteen configurations with 0 or more of
the gray, dotted edges in the diagram. A
is B’s parent. A’s capabilities with regard
to its relationship with B are affected by
neither the edges between A and C nor those
between B and C.

Because A cannot perform any actions directly with B, these topologies
either do not allow A to perform any actions at all or are combinations
of T1–T4.

T9:

A B

C

Sixteen configurations with 0 or more of
the gray, dotted edges in the diagram. A is
B’s child and parent. A’s capabilities with
regard to its relationship with B are neither
affected by the edges between A nor C and
between B and C.

Because A being B’s parent does not allow A to perform any actions,
these topologies are identical to T7, from A’s point of view.

Fig. 12. The 64 topologies over three repositories can be grouped into nine classes. Two topologies within the same class are
identical in terms of the actions A and B can perform.

provide him no benefit either. Crystal, indeed, may well not
be appropriate for all classes of developers. Nonetheless, the
data in Section 4 show that conflicts are common in practice,
suggesting strongly that most developers may well benefit
from Crystal, regardless of their intuitions. We plan to test this
hypothesis as part of a future user study.

Furthermore, conflicts are not the only reason to use Crystal.
The developer who declined to use Crystal ended up doing re-
dundant work. He noticed a problem and fixed it — but another
developer had already made the same fix, and pushed it, six
days earlier. The non-Crystal-user had forgotten to pull changes
before beginning to work on the problem. Crystal would have

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1373

reminded the user that he could pull changes, and had he fol-
lowed Crystal’s advice, he would have avoided the wasted effort
of the duplicated bug fix.

9 CONCLUSIONS

Speculative analysis over version control operations provides
precise information about pending conflicts between collabo-
rating team members. These pending conflicts — including
textual, build, and test — are guaranteed to occur (unless a de-
veloper modifies or abandons a committed change). Learning
about them earlier allows developers to make better-informed
decisions about how to proceed, whether it be to perform a
safe merge, to publish a safe change, to quickly address a new
conflict, to interact with another developer etc.

Our retrospective, quantitative study of over 550,000 develop-
ment versions of nine open-source systems, spanning 3.4 million
distinct (and a total of over 500 billion, over all versions) NCSL,
indicates that (1) conflicts are the norm rather than the exception,
(2) 16% of all merges required human effort to resolve textual
conflicts, (3) 33% of merges that were reported to contain no tex-
tual conflicts by the VCS in fact contained higher-order conflicts,
and (4) conflicts persist, on average, for 3.2 days (with a median
conflict persisting 0.7 days). Although there is a significant
amount of qualitative and anecdotal evidence consistent with
our findings, the only previous quantitative research we could
find was Zimmermann’s [47]. We expand on his work (1) by
comparing actual merges from project histories to merges that
could have taken place successfully earlier than they did, and (2)
by considering not only textual conflicts but also higher-order
conflicts, such as build and test conflicts.

Our speculative analysis tool, Crystal, provides concrete in-
formation and advice about pending conflicts while remaining
largely unobtrusive. Our evaluation of Crystal is preliminary and
qualitative; future work should evaluate it via both qualitative
and quantitative user studies.

Collaborative development is essential but troublesome. Mak-
ing pertinent and precise information available to developers
allows them to identify and fix conflicts before they fester. This
is one useful and practical step in reducing some of the costs
and difficulties of collaborative software development.

10 COLLABORATIVE SITUATIONS

This section exhaustively enumerates (as overviewed in Sec-
tion 5.2) the space described in Section 5.1. It first describes
the space of all possible repository topologies among three de-
velopers and then all possible situations that can arise during
collaborative development in those topologies.

We represent a repository topology by a directed graph. A
node represents a repository. (We use the node’s label to refer to
both to the repository and to the developer who owns that reposi-
tory.) A directed edge from one repository (the child) to another
repository (the parent) represents the ability of (the owner of)
the child to share changes with and incorporate changes from the
parent. Directed paths connect descendants to their ancestors.
For example, a simple topology (T1) with a single master reposi-
tory and two children would be represented by three nodes, with
an edge from each child to the master. Two nodes may be each

other’s parents and children simultaneously, represented by one
directed edge in each direction or by a single two-headed edge.
Such a relationship means that the owner of either repository
may share changes with and incorporate changes from the other
repository.

To determine the information specific to VC operations that
can help make better collaborative decisions, given a topology
between two developers, A and B, we consider all possible repos-
itory relationships (Section 3.2) and apply all operations permit-
ted by the topology. Without loss of generality, we consider only
A’s point of view (because A and B are symmetric). We first
represent all other repositories with which A and B may interact
as single repository C. For three nodes (A, B, and C), there
are six potential directed edges: A→ B, B→ A, A→C, C→ A,
B→C, C→ B. Therefore, there are 26 = 64 potential topologies
with three nodes. Figure 12 enumerates these 64 topologies and
groups them into 9 classes, named T1–T9, that are distinct from
the global point of view of the actions they allow developers
to perform. In Figure 8, we considered how these nine classes
differ from A’s point of view, and further grouped these nine
classes into three classes from that perspective.

Three of these topology classes, T1, T3, and T7, have the
following three properties: each topology (1) allows A to per-
form actions, (2) allows A to collaborate with B, and (3) is not a
combination of other classes (if it were, it would provide no new
information about A’s capabilities). We call these three classes
relevant, from A’s point of view (recall Section 5.2.1).

ACKNOWLEDGMENTS

The Crystal beta users provided valuable feedback. This material
is based upon work supported by the National Science Foun-
dation under Grants CNS-0937060 to the Computing Research
Association for the CIFellows Project and CCF-0963757, by a
National Science and Engineering Research Council Postdoc-
toral Fellowship, and by Microsoft Research through a Software
Engineering Innovation Foundation grant.

REFERENCES

[1] B. Al-Ani, E. Trainer, R. Ripley, A. Sarma, A. van der Hoek, and D.
Redmiles, “Continuous Coordination within the Context of
Cooperative and Human Aspects of Software Engineering,” Proc.
Int’l Workshop Cooperative and Human Aspects of Software Eng.,
pp. 1-4, May 2008.

[2] B. Appleton, S.P. Berczuk, R. Cabrera, and R. Orenstein,
“Streamed Lines: Branching Patterns for Parallel Software Devel-
opment,” Proc. Pattern Languages of Programs Conf., 1998.

[3] T. Ball, J.-M. Kim, A.A. Porter, and H.P. Siy, “If Your Version
Control System Could Talk,” Proc. Workshop Process Modelling and
Empirical Studies of Software Eng., May 1997.

[4] J.T. Biehl, M. Czerwinski, G. Smith, and G.G. Robertson,
“FASTDash: A Visual Dashboard for Fostering Awareness in
Software Teams,” Proc. SIGCHI Conf. Human Factors in Computing
Systems, pp. 1313-1322, Apr. 2007.

[5] C. Bird, P.C. Rigby, E.T. Barr, D.J. Hamilton, D.M. Germán, and
P.T. Devanbu, “The Promises and Perils of Mining Git,” Proc. Sixth
IEEE Int’l Working Conf. Mining Software Repositories, pp. 1-10,
2009.

[6] C. Bird and T. Zimmermann, “Assessing the Value of Branches
with What-If Analysis,” Proc. ACM SIGSOFT 20th Int’l Symp.
Foundations of Software Eng., 2012.

1374 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

[7] Y. Brun, R. Holmes, M.D. Ernst, and D. Notkin, “Speculative
Analysis: Exploring Future States of Software,” Proc. FSE/SDP
Workshop Future of Software Eng. Research, pp. 59-63, Nov. 2010.

[8] Y. Brun, R. Holmes, M.D. Ernst, and D. Notkin, “Crystal: Precise
and Unobtrusive Conflict Warnings,” Proc. 19th ACM SIGSOFT
Symp. and 13th European Conf. Foundations of Software Eng., Sept.
2011.

[9] Y. Brun, R. Holmes, M.D. Ernst, and D. Notkin, “Proactive
Detection of Collaboration Conflicts,” Proc. 19th ACM SIGSOFT
Symp. and 13th European Conf. Foundations of Software Eng., pp. 168-
178, Sept. 2011.

[10] M. Cataldo, P.A. Wagstrom, J.D. Herbsleb, and K.M. Carley,
“Identification of Coordination Requirements: Implications for the
Design of Collaboration and Awareness Tools,” Proc. 20th
Anniversary Conf. Computer Supported Cooperative Work, pp. 353-
362, Nov. 2006.

[11] B. Collins-Sussman, “The Subversion Project: Buiding a Better
CVS,” Linux, vol. 3, no. 94, 2002.

[12] R. Conradi and B. Westfechtel, “Version Models for Software
Configuration Management,” ACM Computing Surveys, vol. 30,
no. 2, pp. 232-282, 1998.

[13] C.R.B. de Souza, D. Redmiles, and P. Dourish, “‘Breaking the
Code,’ Moving between Private and Public Work in Collaborative
Software Development,” Proc. Int’l ACM SIGGROUP Conf.
Supporting Group Work, pp. 105-114, Nov. 2003.

[14] P. Dewan, “Dimensions of Tools for Detecting Software Con-
flicts,” Proc. Int’l Workshop Recommendation Systems for Software
Eng., pp. 21-25, Nov. 2008.

[15] P. Dewan and R. Hegde, “Semi-Synchronous Conflict Detection
and Resolution in Asynchronous Software Development,” Proc.
European Computer Supported Cooperative Workshop, pp. 159-178,
Sept. 2007.

[16] S. Elbaum, H.N. Chin, M.B. Dwyer, and J. Dokulil, “Carving
Differential Unit Test Cases from System Test Cases,” Proc. 14th
ACM SIGSOFT Int’l Symp. Foundations of Software Eng., pp. 253-
264, 2006.

[17] J. Estublier and S. Garcia, “Process Model and Awareness in
SCM,” Proc. 12th Int’l Workshop Software Configuration Management,
pp. 59-74, Sept. 2005.

[18] D.S. Glasser, “Test Factoring with Amock: Generating Readable
Unit Tests from System Tests,” master’s thesis, MIT Dept. of
EECS, Aug. 2007.

[19] R.E. Grinter, “Using a Configuration Management Tool to
Coordinate Software Development,” Proc. Conf. Organizational
Computing Systems, pp. 168-177, Aug. 1995.

[20] D. Grune, “Concurrent Versions System, a Method for Indepen-
dent Cooperation,” Technical Report IR 113, Vrije Universiteit,
1986.

[21] M.L. Guimarães and A. Rito-Silva, “Towards Real-Time Integra-
tion,” Proc. ICSE Workshop Cooperative and Human Aspects of
Software Eng., pp. 56-63, May 2010.

[22] M.L. Guimarães and A.R. Silva, “Improving Early Detection of
Software Merge Conflicts,” Proc. Int’l Conf. Software Eng., 2012.

[23] L. Hattori and M. Lanza, “Syde: A Tool for Collaborative Software
Development,” Proc. ACM/IEEE 32nd Int’l Conf. Software Eng.,
pp. 235-238, May 2010.

[24] P. Henderson and M. Weiser, “Continuous Execution: The
VisiProg Environment,” Proc. Eighth Int’l Conf. Software Eng.,
pp. 68-74, Aug. 1985.

[25] S. Horwitz, J. Prins, and T. Reps, “Integrating Noninterfering
Versions of Programs,” ACM Trans. Programming Languages and
Systems, vol. 11, pp. 345-387, July 1989.

[26] R.R. Karinthi and M. Weiser, “Incremental Re-Execution of
Programs,” Proc. Symp. Interpreters and Interpretive Techniques,
pp. 38-44, June 1987.

[27] B. Livshits and T. Zimmermann, “DynaMine: Finding Common
Error Patterns by Mining Software Revision Histories,” Proc. 10th
European Software Eng. Conf. Held Jointly with 13th ACM SIGSOFT
Int’l Symp. Foundations of Software Eng., pp. 296-305, Sept. 2005.

[28] T. Mens, “A State-of-the-Art Survey on Software Merging,” IEEE
Tran. Software Eng., vol. 28, no. 5, pp. 449-462, May. 2002.

[29] K. Muşlu, Y. Brun, R. Holmes, M.D. Ernst, and D. Notkin,
“Speculative Analysis of Integrated Development Environment
Recommendations,” Proc. ACM Int’l Conf. Object Oriented Pro-
gramming Systems Languages and Applications, Oct. 2012.

[30] N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to Predict
Component Failures,” Proc. 28th Int’l Conf. Software Eng., pp. 452-

[31] B. O’Sullivan, “Making Sense of Revision-Control Systems,”
Queue, vol. 7, no. 7, pp. 30-40, 2009.

[32] D.E. Perry, H.P. Siy, and L.G. Votta, “Parallel Changes in Large-
Scale Software Development: An Observational Case Study,”
ACM Trans Software Eng. and Methodology, vol. 10, pp. 308-337, July
2001.

[33] M.J. Rochkind, “The Source Code Control System,” IEEE Trans.
Software Eng., vol. 1, no. 4, pp. 364-370, Dec. 1975.

[34] C. Rodriguez-Bustos and J. Aponte, “How Distributed Version
Control Systems Impact Open Source Software Projects,” Proc.
Ninth IEEE Working Conf. Mining Software Repositories, pp. 36-39,
2012.

[35] D. Saff, S. Artzi, J.H. Perkins, and M.D. Ernst, “Automatic Test
Factoring for Java,” Proc. IEEE/ACM 20th Int’l Conf. Automated
Software Eng., pp. 114-123, Nov. 2005.

[36] D. Saff and M.D. Ernst, “Reducing Wasted Development Time via
Continuous Testing,” Proc. 14th Int’l Symp. Software Reliability Eng.,
pp. 281-292, Nov. 2003.

[37] D. Saff and M.D. Ernst, “Continuous Testing in Eclipse,” Proc.
Second Eclipse Technology Exchange Workshop, Mar. 2004.

[38] D. Saff and M.D. Ernst, “An Experimental Evaluation of
Continuous Testing during Development,” Proc. ACM SIGSOFT
Int’l Symp. Software Testing and Analysis, pp. 76-85, July 2004.

[39] A. Sarma, “A Survey of Collaborative Tools in Software Devel-
opment,” Technical Report UCI-ISR-05-3, Univ. of California,
Irvine, Inst. of Software Research, 2005.

[40] A. Sarma, G. Bortis, and A. van der Hoek, “Towards Supporting
Awareness of Indirect Conflicts Across Software Configuration
Management Workspaces,” Proc. 22nd IEEE/ACM Int’l Conf.
Automated Software Eng., pp. 94-103, Nov. 2007.

[41] A. Sarma, Z. Noroozi, and A. van der Hoek, “Palantı́r: Raising
Awareness among Configuration Management Workspaces,”
Proc. 25th Int’l Conf. Software Eng., pp. 444-454, May 2003.

[42] A. Sarma, D. Redmiles, and A. van der Hoek, “Empirical Evidence
of the Benefits of Workspace Awareness in Software Configura-
tion Management,” Proc. 16th ACM SIGSOFT Int’l Symp.
Foundations of Software Eng., pp. 113-123, Nov. 2008.

[43] W.F. Tichy and W.F. Tichy, “RCS—A System for Version
Control,” Software: Practice and Experience, vol. 15, pp. 637-654,
1985.

[44] C. Walrad and D. Strom, “The Importance of Branching Models in
SCM,” Computer, vol. 35, no. 9, pp. 31-38, 2002.

[45] J. Wloka, B. Ryder, F. Tip, and X. Ren, “Safe-Commit Analysis to
Facilitate Team Software Development,” Proc. Int’l Conf. Software
Eng., pp. 507-517, May 2009.

[46] J. Wuttke, I. Beschastnikh, and Y. Brun, “Effects of Centralized
and Distributed Version Control on Commit Granularity,” Tiny
Trans. Computer Science, Sept. 2012.

[47] T. Zimmermann, “Mining Workspace Updates in CVS,” Proc.
Fourth Int’l Workshop Mining Software Repositories, May 2007.

[48] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining
Version Histories to Guide Software Changes,” Proc. 26th Int’l
Conf. Software Eng., pp. 563-572, 2004.

461, 2006.

http://alum.mit.edu/www/brun/pubs/pubs/Brun11fse.pdf
http://alum.mit.edu/www/brun/pubs/pubs/Brun11fse.pdf
http://alum.mit.edu/www/brun/pubs/pubs/Muslu12oopsla.pdf
http://alum.mit.edu/www/brun/pubs/pubs/Muslu12oopsla.pdf
http://alum.mit.edu/www/brun/pubs/pubs/Wuttke12tinytocs.pdf
http://alum.mit.edu/www/brun/pubs/pubs/Wuttke12tinytocs.pdf

Yuriy Brun received the MEng degree from the
Massachusetts Institute of Technology in 2003
and the PhD degree from the University of
Southern California in 2008. He completed his
postdoctoral work in 2012 at the University of
Washington as a CI Fellow. He is an assistant
professor in the School of Computer Science at
the University of Massachusetts, Amherst. His
research interests include software engineering,
distributed systems, and self-adaptation. He is a

member of the IEEE, the ACM, and ACM SIGSOFT. More information is
available on his homepage: http://www.cs.umass.edu/brun/.

Reid Holmes completed an NSERC postdoctor-
al fellowship at the University of Washington in
2010 following receiving the PhD degree from the
University of Calgary in 2008. He is an assistant
professor in the Cheriton School of Computer
Science at the University of Waterloo. His
research interests include understanding how
software engineers build and maintain complex
systems; this understanding is generally trans-
lated into tools and techniques that can be

validated in practice. His prior research focused on pragmatic software
reuse and source code recommendation systems. More information is
available on his homepage: https://cs.uwaterloo.ca/rtholmes/.

Michael D. Ernst is an associate professor in
Computer Science & Engineering at the Uni-
versity of Washington. He was previously a
tenured professor at MIT, and before that a
researcher at Microsoft Research. His research
aims to make software more reliable, more
secure, and easier (and more fun!) to produce.
His primary technical interests include software
engineering and related areas, including pro-
gramming languages, type theory, security,

program analysis, bug prediction, testing, and verification. His research
combines strong theoretical foundations with realistic experimentation,
with an eye to changing the way that software developers work. More
information is available on his homepage: http://homes.cs.washington.
edu/mernst/.

David Notkin (1955-2013) received the ScB
degree from Brown University in 1977 and the
PhD degree from Carnegie Mellon University in
1984. He served as a professor and Bradley
chair Computer Science & Engineering at the
University of Washington, which he joined in
1984. His research interests include software
engineering in general and in software evolution
in particular. He received the US National
Science Foundation Presidential Young Investi-

gator Award, served as the program chair of the First ACM SIGSOFT
Symposium on the Foundations of Software Engineering, served as
program cochair of the 1995 International Conference on Software
Engineering, chaired the steering committee of the International
Conference on Software Engineering, served as the general chair of
the 2013 International Conference on Software Engineering, served as a
charter associate editor and later as editor-in-chief of the ACM
Transactions on Software Engineering and Methodology, served as an
associate editor of the IEEE Transactions on Software Engineering,
received the ACM SIGSOFT Distinguished Service Award, the ACM
SIGSOFT Outstanding Research Award, the ACM SIGSOFT Influential
Educator Award, and the A. Nico Habermann Award, served as the chair
of ACM SIGSOFT, served as the department chair of computer science
and engineering, and received the University of Washington Distin-
guished Graduate Mentor Award. He is a fellow of the IEEE and ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1375

http://alum.mit.edu/www/brun/pubs/pubs/Brun11fse.pdf
http://alum.mit.edu/www/brun/pubs/pubs/Brun11fse.pdf
http://alum.mit.edu/www/brun/pubs/pubs/Muslu12oopsla.pdf
http://alum.mit.edu/www/brun/pubs/pubs/Muslu12oopsla.pdf
http://alum.mit.edu/www/brun/pubs/pubs/Wuttke12tinytocs.pdf
http://alum.mit.edu/www/brun/pubs/pubs/Wuttke12tinytocs.pdf

	1 Introduction
	2 Scenario
	3 Terminology
	3.1 Version control terminology
	3.2 Repository relationships

	4 Conflicts in practice
	4.1 Textual conflicts
	4.2 Higher-order conflicts
	4.3 Persistence of conflicts
	4.4 Escalation of clean merges into conflicts

	5 Information about conflicts
	5.1 Available information
	5.1.1 Local states
	5.1.2 Actions
	5.1.3 Guidance

	5.2 Exhaustively enumerating the space
	5.2.1 Repository topologies
	5.2.2 Collaborative situations

	5.3 Examples of higher-order conflicts
	5.3.1 Build56 conflict due to missing type
	5.3.2 Test56 conflict due to malformed non-code resource

	5.4 Relating CVCS and DVCS

	6 Delivering version control advice
	6.1 Crystal's UI
	6.2 Initial experience
	6.3 Precision and timeliness in conflict detection
	6.4 Scalability
	6.4.1 Large projects
	6.4.2 Computation efficiency

	7 Related Work
	7.1 The cost of conflicts
	7.2 Collaborative awareness
	7.3 Version Control Systems
	7.4 Mining software repositories
	7.5 Continuous development

	8 Threats to validity
	9 Conclusions
	10 Collaborative situations
	References
	Biographies
	Yuriy Brun
	Reid Holmes
	Michael D. Ernst
	David Notkin

	Brun13tse copy.pdf
	1 Introduction
	2 Scenario
	3 Terminology
	3.1 Version control terminology
	3.2 Repository relationships

	4 Conflicts in practice
	4.1 Textual conflicts
	4.2 Higher-order conflicts
	4.3 Persistence of conflicts
	4.4 Escalation of clean merges into conflicts

	5 Information about conflicts
	5.1 Available information
	5.1.1 Local states
	5.1.2 Actions
	5.1.3 Guidance

	5.2 Exhaustively enumerating the space
	5.2.1 Repository topologies
	5.2.2 Collaborative situations

	5.3 Examples of higher-order conflicts
	5.3.1 Build56 conflict due to missing type
	5.3.2 Test56 conflict due to malformed non-code resource

	5.4 Relating CVCS and DVCS

	6 Delivering version control advice
	6.1 Crystal's UI
	6.2 Initial experience
	6.3 Precision and timeliness in conflict detection
	6.4 Scalability
	6.4.1 Large projects
	6.4.2 Computation efficiency

	7 Related Work
	7.1 The cost of conflicts
	7.2 Collaborative awareness
	7.3 Version Control Systems
	7.4 Mining software repositories
	7.5 Continuous development

	8 Threats to validity
	9 Conclusions
	10 Collaborative situations
	References
	Biographies
	Yuriy Brun
	Reid Holmes
	Michael D. Ernst
	David Notkin

