
Entrusting Private Computation
and Data to Untrusted Networks
Yuriy Brun, Member, IEEE, and Nenad Medvidovic, Member, IEEE

Abstract—We present sTile, a technique for distributing trust-needing computation onto insecure networks, while providing

probabilistic guarantees that malicious agents that compromise parts of the network cannot learn private data. With sTile, we explore

the fundamental cost of achieving privacy through data distribution and bound how much less efficient a privacy-preserving system is

than a nonprivate one. This paper focuses specifically on NP-complete problems and demonstrates how sTile-based systems can

solve important real-world problems, such as protein folding, image recognition, and resource allocation. We present the algorithms

involved in sTile and formally prove that sTile-based systems preserve privacy. We develop a reference sTile-based implementation

and empirically evaluate it on several physical networks of varying sizes, including the globally distributed PlanetLab testbed. Our

analysis demonstrates sTile’s scalability and ability to handle varying network delay, as well as verifies that problems requiring privacy-

preservation can be solved using sTile orders of magnitude faster than using today’s state-of-the-art alternatives.

Index Terms—Privacy, trusted computing, untrusted networks, distributed computation, PlanetLab, sTile, tile assembly model

Ç

1 INTRODUCTION

THE emergence of cloud computing is evolving the nature
of computation. Instead of using private machines,

users allow the cloud to maintain, manipulate, and safe-
guard their data. This evolution has allowed ubiquitous
access to computation and data with higher availability and
reliability than possible with personal machines and local
servers. Simultaneously, this evolution has affected the
meaning of the term privacy when referring to software
systems. To ensure data remain private, not only must they
be kept confidential from potential intruders, but also from
the machines that execute computation on the data. In other
words, when computing on potentially untrusted machines,
such as cloud nodes, no entity, including those executing
the computation, should gain access to the data. Cloud
providers have not yet embraced these new definitions,
largely due to the intellectual hurdles and costs of
developing systems that conform to these high standards.
Instead, they rely on legal contracts and promises. For
example, many of us rely on Google to deliver, maintain,
and properly replicate, our e-mail, and while Google
promises not to misuse our data, the notion that it may be
possible to use Google’s services without Google having
access to our e-mail seems unreasonable by today’s
practices. Meanwhile, even when we only allow well
respected and trusted companies to have access to our data
and computation, over $50 billion are still lost each year

through identity theft perpetrated by either pretending to
be a reputable company or simply relying on a user’s trust
in an unknown service [29].

This paper addresses the challenge of executing computa-
tions on untrusted machines in a trustworthy manner. Its focus
is on preserving data privacy while solving computation-
ally intensive problems on untrusted machines.

We present sTile, a technique for building software
systems that distribute large computations onto the cloud
while providing guarantees that the cloud nodes cannot
learn the computation’s private data. sTile is based on a
nature-inspired, theoretical model of self-assembly. While
sTile’s computational model is Turing universal [37], in this
paper, we present a prototype implementation that solves
NP-complete problems.

sTile explores the fundamental cost of privacy through
data distribution. Existing approaches to using the Inter-
net’s computational resources either assume reliable and
trustworthy underlying machines [7], [21], [27], only store
data privately and rely on trusted entities to compute [3],
[42], [46], [48], or are theoretical constructs (e.g., quantum
computing [19] and homomorphic encryption [25]) that, to
date, have not produced implementations efficient enough
for practical use [26].

We evaluate sTile in three ways: First, we formally prove
that sTile systems preserve data privacy as long as no
adversary controls more than one-half of the cloud. Second,
we empirically demonstrate sTile’s feasibility by deploying
an open-source, publicly available prototype implementa-
tion [14] on three distinct networks, including the globally
distributed PlanetLab testbed [36]. Third, we formally
analyze the communication and computation costs induced
by sTile, bound them, and empirically verify those bounds.
We have previously discussed sTile’s ability to handle
faults and malicious attacks [13], [15], and do not focus on
that dimension here. This paper extends our earlier work
[16] with sTile’s tile architecture and tile algorithms details

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 4, JULY/AUGUST 2013 225

. Y. Brun is with the School of Computer Science, University of
Massachusetts, 140 Governors Drive, Amherst, MA 01003-9264.
E-mail: brun@cs.umass.edu.

. N. Medvidovic is with the Computer Science Department, University of
Southern California, 941 Bloom Walk, Henry Salvatori Computer Science
Center 338, Los Angeles, CA 90089-0781. E-mail: neno@usc.edu.

Manuscript received 15 July 2012; revised 28 Oct. 2012; accepted 23 Jan.
2013; published online 13 Feb. 2013.
Recommended for acceptance by S. Distefano, A. Puliafito, and K.S. Trivedi.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number
TDSCSI-2012-07-0170.
Digital Object Identifier no. 10.1109/TDSC.2013.13.

1545-5971/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

and an evaluation of sTile’s scalability and efficiency in
solving real-world problems on today’s hardware. sTile
significantly outperforms existing cryptography-based
privacy techniques, such as homomorphic encryption [25].

The rest of this paper is structured as follows: Section 2
explains sTile through an example. Section 3 describes sTile,
its architectural underpinnings, and the associated algo-
rithms. Section 4 discusses our Mahjong-based implementa-
tions and a set of experiments designed to demonstrate
sTile’s feasibility. Section 5 formally analyzes sTile’s privacy
preservation. Section 6 positions our work in terms of
related research. Finally, Section 7 summarizes the paper.

2 MOTIVATING EXAMPLE: ADDITION

sTile preserves privacy by breaking a computation into small
pieces and distributing those pieces onto a large network.
Each piece is so small that it is prohibitively difficult for an
adversary to collect enough pieces to reconstruct the
confidential data. In this section, we describe sTile with an
example of distributing an addition computation.

To describe adding using sTile, we explain three separate
elements of our solution: the addition tile assembly, the
distribution process, and the source of privacy.

2.1 The Addition Tile Assembly

A tile assembly is a theoretical construct, similar to cellular
automata. It consists of square tiles with static labels on
their four sides. Tiles can attach to one another or to a
growing crystal of other tiles when sufficiently many of
their sides match.

Fig. 1a shows eight different types of tiles used for
addition. These tile types are the program—the tile
assembly encoding of the algorithm for adding two
integers, in binary, one bit at a time. (We designed these
tiles through a process similar to programming in
assembly. We do not focus on this process here, but
describe in Section 3.2 an automated compilation procedure
that allows a developer to use our technique without
having to design new tile assemblies.) Fig. 1b shows a seed
crystal that encodes an input: 10 (1010 in binary) in the top
row and 11 (1011 in binary) in the bottom row. When an
instance of a tile from Fig. 1a matches the seed crystal on
three sides, that tile instance attaches to the crystal. Fig. 1c
shows the seed with a single attached tile. Note that this tile
adds the least significant bit of each input: 0þ 1 ¼ 1,
displayed in the center of the newly attached tile. The label
on the west side of the newly attached tile is the carry bit: 0.
The tiles execute full adder logic to add the bits, one at a
time, eventually producing the sum 21 ¼ 101012 in the
middle row of Fig. 1d.

2.2 The Distribution Process

sTile uses the theoretical tile assembly to decompose a
computation into small parts. Each small part represents a
tile. Fig. 1e shows how the 10þ 11 execution might be
deployed on eight network nodes. Each node only deploys
tiles of a single type, designated by the client machine
(described in Section 3.2.1). The client sets up a seed on the
network by asking nodes that can deploy tiles of appro-
priate types to deploy instances of those types (described in
Section 3.2.1). Each node knows only the tile instances it is

226 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 4, JULY/AUGUST 2013

Fig. 1. An adding tile assembly with (a) eight tile types. A seed crystal (b) encodes the inputs, 10 ¼ 10102 and 11 ¼ 10112. The first attaching tile (c)
adds the least significant bit of each input. The middle row of the final crystal (d) encodes the output 21 ¼ 101012. sTile deploys (e) software objects
encoding individual tiles onto nodes. Even if an adversary compromises a significant fraction of the nodes (f), the probability that it can recover the
private data is extremely low.

deploying and maintains references to the geometrically
adjacent tile instances on other nodes. Next, tiles with an
empty adjacent location coordinate with their crystal
neighbors to recruit matching tiles to attach (described in
Section 3.2.3). This process uses a secure multiparty
computation algorithm to ensure crystal neighbors do not
learn each other’s data [47]. (While a single seed is sufficient
for addition, for NP-complete problems, sTile employs
distributed seed replication, described in Section 3.2.4.)
Each of these steps replies on an algorithm that ensures the
tiles are deployed uniformly randomly on the available
nodes (described in Section 3.2.2). Once the execution
finishes, the tiles in the middle row report the solution to
the client, indicating the node IDs of their crystal neighbors,
which the client uses to reconstruct the output.

2.3 The Source of Privacy

Each tile instance is aware of only a single bit of the input,
output, or intracomputation data, and not of the bit’s global
location. An adversary may attempt to reconstruct the
confidential data from the nodes it controls. For example,
Fig. 1f shows an adversary that has compromised three
nodes (2, 3, and 6), and now has access to the data in
five tiles. However, this adversary can only tell that there
are some 0 and 1 bits scattered throughout the input, the
computation, and the output, but not how many and not
their relative positions. In fact, in this example, no three
nodes contain the entire input (nodes 1, 2, 5, and 7 deploy
the input). The adversary may recover partial information
about the frequencies of 0s and 1s, and may be able to
reconstruct small parts of the input and output (e.g., if it is
lucky enough to control adjacent tiles). However, as we
show in Section 5, as long as the adversary controls less
than half the network, the probability that it can reconstruct
the input is prohibitively small. In the 10þ 11 example, it is
easy to see that controling half the nodes translates to
controlling roughly half the tiles, which is unlikely to be
sufficient to reconstruct the input or the output.

3 sTILE

sTile is a technique for designing, implementing, and
deploying software systems that distribute computation
onto large, insecure, public networks. sTile’s primary
concern is to perform computation while preserving the
privacy of the involved data. Fig. 2 shows a high-level
overview of sTile. sTile consists of four components: a tile
assembly, the corresponding tile architecture, the asso-
ciated algorithms, and the Mahjong implementation frame-
work. We have developed multiple tile assemblies,
specifically for sTile. These assemblies solve NP-complete
problems [10], [11], [12] and factor integers [9]. In this

paper, we use one of those assemblies to demonstrate how
sTile can solve 3-SAT. The nature of NP-complete problems
allows for polynomial-time translations among them, so it
is possible to use sTile for all NP-complete problems
without designing new assemblies, although we do not
discuss that approach here. Tile assemblies are Turning-
universal [37], so future extensions of sTile can be made to
perform arbitrary computations and to automatically
compile programs into tile assemblies.

A software engineer who wishes to develop and deploy
a sTile-based system does not need to understand the
underlying computational model that we describe in
Section 3.1 and use throughout this paper. sTile includes
a compilation procedure that allows the engineer to
automatically compile a computational problem to a sTile
based, but otherwise completely conventional looking,
software system. The underlying tile model is important
for proving many of the properties of system correctness
and privacy preservation, and we describe them all in this
paper. However, from the point of view of the developer,
these details are abstracted away, e.g., much like the
assembly language that executes underneath a program
written in C++.

3.1 Computing with Tiles

A key component of sTile is a tile assembly. Tile assemblies
are extensively studied mathematical objects [1], [6], [37],
[41], [44]. Our own prior work has developed the notion of
efficient computation with tile assemblies and constructed
efficient assemblies to add and multiply integers [8], factor
integers [9], and solve NP-complete problems [10], [11],
[12]. More generally, the tile assembly model is Turing
universal [6], [37].

Tile assemblies are theoretical objects that have no notion
of privacy, although it is their basic structure that allows
sTile to preserve privacy. sTile is a reification of a tile
assembly as a distributed software system. Tile assemblies
are not the focus of this paper. We concentrate here on
building software systems that solve computational pro-
blems on large networks. To that end, we leverage existing
tile assemblies, such as our previous work on NP-complete
computation. We now formally define the tile assembly
model and describe the tile assembly we developed to solve
3-SAT [11], though the reader need not master this
formalism to appreciate sTile.

The tile assembly model has tiles, or squares, that stick or
do not stick together based on various interfaces on their
four sides. Each tile has an interface on its top, right,
bottom, and left side, and each distinct interface has an
integer strength associated with it. The four interfaces,
elements of a finite alphabet, define the type of the tile. The
set of tile types in a tile assembly encodes the “program” the

BRUN AND MEDVIDOVIC: ENTRUSTING PRIVATE COMPUTATION AND DATA TO UNTRUSTED NETWORKS 227

Fig. 2. A high-level overview of sTile.

tiles will execute. For example, the eight tile types from
Fig. 1a encode integer addition. The placement of a set of
tiles on a 2D grid is called a crystal; a tile may attach in
empty positions on the crystal if the total strength of all the
interfaces on that tile that match its crystal neighbors
exceeds the current temperature. Starting from a seed crystal,
tiles may attach to form new crystals. Sometimes, several
tiles may satisfy the conditions necessary to attach at a
position, in which case the attachment is nondeterministic.
A tile assembly SS computes a function f : INn ! INm if there
exists a mapping i from INn to crystals and a mapping o
from crystals to INm such that for all inputs ~� 2 INn, ið~�Þ is a
seed crystal such that SS attaches tiles to produce a terminal
crystal F and oðF Þ ¼ fð~�Þ. In other words, if there exists a
way to encode inputs as crystals and the system attaches
tiles to produce crystals that encode the output. For those
systems that allow nondeterministic attachments, the
terminal crystal F that encodes the output must contain a
special identifier tile that we will denote as the

p
tile.

Developing a tile assembly is a process similar to
programming or specifying an algorithm. On the surface,
tile assemblies are low-level programs, such as instances of
Turing machines or cellular automata. However, it is
possible to use high-level paradigms, such as encapsula-
tion, abstraction, and recursion to engineer tile assemblies.
For example, we have previously designed a multiplica-
tion tile assembly [8] that we later use as a subroutine in
other assemblies [9].

Fig. 3 shows the 64 possible types of tiles of the 3-SAT-
solving assembly. The tiles “communicate” via their side
interfaces. Some interfaces contain a 0 or a 1, communicat-
ing a single bit to their crystal neighbors. Other interfaces
include special symbols such as v and :v indicating that a
variable is being addressed, ? meaning that a comparison
should take place, ? meaning the given tile attaches
nondeterministically, and j and k indicating the correctness
of the computation up to this point. The assembly
nondeterministically selects a variable truth assignment
and checks if that assignment satisfies the formula. If and
only if it does, a special

p
tile attaches to the crystal.

Every 3-SAT input Boolean formula can be encoded as a
sequence of tiles. Such a formula consists of a conjunction of
clauses, each of which, in turn, consists of a disjunction of
literals. Each literal, either a Boolean variable or its
negation, can be encoded with a binary representation of
the variable’s index and a single bit indicating negation. For
example, the literal x2 can be encoded as three tiles, with

labels 1, 0, and v, and the literal :x3 can be encoded as three
tiles with labels 1, 1, and :v. We insert a special c tile
between the clauses.

Fig. 4 shows the progress of the growth of a sample
crystal of the tile assembly that solves 3-SAT. The example
asks the question “Is � ¼ ðx2 _ :x1 _ :x0Þ ^ ð:x2 _ :x1 _
:x0Þ ^ ð:x2 _ x1 _ x0Þ satisfiable?”

Fig. 4a shows part of the seed crystal of the computation.
This seed encodes �. For example, the three tiles near the
right side with labels 0, 0, and v encode the literal x0, which
is the last literal of the last clause of �. The rightmost
column (seen easiest in Fig. 4e) encodes the fact that �
contains three variables 10? ¼ x2, 01? ¼ x1, and 00? ¼ x0.

Fig. 4b shows the first three tiles (instances of tile types
from Fig. 3) that attach to the seed. These tiles make the
nondeterministic decision on whether to try x0 ¼ TRUE
or x0 ¼ FALSE. Note that these tiles’ left interfaces
encode 00v, indicating that the assembly has nondetermi-
nistically chosen x0 ¼ TRUE (00:v would have indicated
x0 ¼ FALSE).

Having selected the assignment for x0, the assembly
compares the rightmost literal in � to that assignment.
Fig. 4c shows that comparison. The top left corner tile with a
top interface containing a ? indicates that the literal and the
assignment match (they are both 00v ¼ x0). If the assign-
ment and literal did not match, the top left corner’s top
interface would contain no ?. Fig. 4d shows the comparison
of the x0 assignment to the rest of �. Since the unnegated
literal x0 does not appear anywhere else in �, the rest of the
top-row tiles do not contain a ? in their top interfaces.

In Fig. 4e, the assembly repeats the above steps to
nondeterministically select assignments for x1 and x2, and
compare each of those to the literals in �. Whenever a match
occurs, tiles with OK top interfaces propagate that
information up, to the top row. Finally, a series of gray
tiles attach in the top row to check whether each clause had
at least one literal match the assignment. If it does, the
special

p
tile can attach in the top left corner of the crystal.

If some clauses were not satisfied, no such tile could attach.
The fact that Fig. 4e contains the

p
tile indicates that the

nondeterministically chosen truth assignment hx0; x1; x2i ¼
hTRUE;FALSE; TRUEi satisfies �.

We refer the reader to [11] for the formal proof that this
assembly solves 3-SAT. As discussed above, a single tile
assembly, such as the 3-SAT-solving one we have described
here, is sufficient to develop sTile-based systems. However,
as part of our work on sTile, we have also provided a tile
assembly solution for SubsetSum, another well-known NP-
complete problem [10]. This second assembly illustrates the
flexibility of our work and provides some insight into
possible sTile efficiency improvements.

The tile assembly we have described here follows the
algorithm that runs in Oð2nÞ time. It is possible to leverage
more efficient algorithms that solve NP-complete problems
to develop efficient tile assemblies. We have already
designed one such assembly that solves 3-SAT in
Oð1:8394nÞ time, but do not describe it here because of its
complexity [12]. We mention it here to make clear that tile
assemblies can implement the same algorithms used on
today’s fastest systems that solve NP-complete problems,
such as SAT solvers.

228 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 4, JULY/AUGUST 2013

Fig. 3. A tile assembly that solves 3-SAT consists of 64 tile types.

3.2 Tile Architecture and Algorithms

A sTile-based system is a software system that uses a network

of computers to solve a computational problem. Intuitively,

the network simulates a tile assembly: Each computer

pretends to be a tile (or many tiles), and communicates with

other computers to self-assemble a solution to a computa-

tional problem. Each computer deploys tile components,

each representing a tile in a tile assembly, and facilitates the

proper communication channels and algorithms to allow the

tile component self-assembly. Thus, a tile architecture is

based on a tile assembly; the software system employing that

architecture solves the particular computational problem

that the tile assembly solves.
A developer interested in using sTile to construct

distributed systems may follow one of two possible
processes: The first approach would require a detailed

understanding of tile assemblies; the second approach,
which we adopt, insulates the developer from those
details. Next, we outline the first approach and then
elaborate the second.

Since a tile architecture is based on a tile assembly, and
a sTile-based system solves the same computational
problem the underlying tile assembly solves, one way to
build a sTile-based system to solve a particular computa-
tional problem P is to develop a tile assembly IP that
solves P , then follow the procedures we describe below to
translate IP into an architecture, and finally implement a
software system by employing that architecture and the
appropriate algorithms. This process can be quite painstak-
ing and requires the design of a tile assembly, such as the
one from Section 3.1.

Instead, we recommend an automated compilation
procedure that allows the developer to create a sTile-based

BRUN AND MEDVIDOVIC: ENTRUSTING PRIVATE COMPUTATION AND DATA TO UNTRUSTED NETWORKS 229

Fig. 4. An example progression of the growth of a crystal of the 3-SAT-solving tile assembly. The crystal seed (a) consists of the clear seed tiles,
encoding the input � ¼ ðx2 _ :x1 _ :x0Þ ^ ð:x2 _ :x1 _ :x0Þ ^ ð:x2 _ x1 _ x0Þ. Specially designed tiles (Fig. 3) attach to nondeterministically select
a variable assignment for x0 (b); compare that assignment to, first, a single literal in � (c); and then, the rest of the literals in � (d); and, finally, repeat
those steps for variables x1 and x2 and ensure that each clause is satisfied at least once by the particular selected variable assignment (e). Because
� is satisfied when x0 ¼ x2 ¼ TRUE and x1 ¼ FALSE, represented by the tiles in the second from the right column in (e), the black

p
tile attaches

in the top left corner.

system without ever understanding the details of tile
assemblies. The compilation reduces [39] the problem for
which the developer wishes to build a sTile-based system to
a problem with a known tile assembly [10], [11], [12]. This
compilation, as virtually all compilations, may result in less
efficient systems than the direct approach of developing a
tile assembly for each particular problem. However, the
benefits of automated compilation are numerous, and
include a significant time and cost savings and a lower
likelihood of bugs.

We will not focus on the well-studied compilation
process [39] in this paper. We do, however, note three
facts: 1) The time the compilation takes is insignificant, as
compared to actually solving the NP-complete problems,
such as 3-SAT; 2) even without compilation, our sTile-based
systems present a considerable contribution because solving
3-SAT itself has important implications for real-world
systems [38]; and 3) in addition to ease of use, compilation
masks the problem the user is solving. While this is a
beneficial side effect of using sTile, we discuss the much
more important privacy-preservation property in Section 5.

We now describe what a tile architecture looks like and
how it is based on a tile assembly. The components of the
tile architecture are instantiations of the tile types of the
underlying assembly. A sTile-based system employing
such an architecture will contain a large number of
components; on the other hand, as with traditional soft-
ware systems, those components are of a much smaller
number of different types (e.g., 64 types for solving 3-SAT).
Nodes on the network will contain these components, and
components that are adjacent in a crystal can recruit other
components to attach, thus dynamically completing the
architectural configuration [40] corresponding to a tile
crystal. The components recruit other components by
sampling nodes until they find one whose interfaces
match. Note that many components in the sTile architec-
ture can run on a single physical node, as we will further
elaborate below.

In addition to defining the tile types, a tile assembly also
directs sTile how to encode the input to the computation
into the set of components comprising the initial, partial
architectural configuration. The input consists of a seed
crystal, such as the one in Fig. 4a. Fig. 5 summarizes the
algorithms a sTile-based system follows to find a solution.
During initialization, the system sets up a single seed crystal
(i.e., partial sTyle architectural configuration) on the net-
work to encode the input. The seed then replicates to create
many copies, and each of the copies recruits tiles to
assemble larger crystals (i.e., to complete the architectural
configuration corresponding to each crystal) and eventually

produce the solution. The solution tile components (e.g., thep
component for the 3-SAT assembly) then report their

state to the user. Note that the nodes perform these
operations autonomously, without central control, in
essence self-assembling the sTile architecture and, by
extension, the underlying computation.

We elaborate on these operations next. We also discuss
what happens when sTile is unable to find a solution to a
computational problem.

3.2.1 Initializing Computation

The client computer initializes the computation by perform-
ing three actions: creating the tile type map, distributing the
map and tile type descriptions, and setting up a seed crystal.

Creating the tile type map. A tile type map is a mapping
from a large set of numbers (e.g., all 128-bit IP addresses) to
tile types. It determines the type of tile components a
computer with a given unique identifier (e.g., IP or MAC
address) deploys. The tile type map breaks up the set of
numbers into k roughly equal-sized regions, where k is the
number of types of tiles in the tile assembly. For the 3-SAT
example from Section 3.1, there are 64 different tile types, so
the tile type map would divide the set of all 128-bit
numbers into 64 regions of size 2122. The size of the tile type
map, which will later be sent to all the nodes on the
network, is small: For an assembly with k tile types, the
map is k 128-bit numbers.

For our analysis, we assume that every node on the
network is connected to p other nodes, distributed roughly
randomly. This is a first-order approximation of the
Internet, but our analysis will extend to more accurate
models. Every computer may contact its network neighbors
directly and may query its network neighbors for their lists
of network neighbors. On more highly connected networks,
our algorithms can be simplified.

Distributing the map and tile descriptions. The client node
distributes the tile type map and a short description of one
tile type to a node that deploy that type, as determined by
the tile type map. A tile type’s description consists of the
four tile component interfaces, which can be described
using a few bits. The client node contacts at least one node
that deploys each tile type by contacting its network
neighbors, then their network neighbors, and so on, until
at least one node of each type assignment in the tile type
map knows the tile type map and its own tile type
description. Per the coupon collector problem [34], a system
with k tile types takes, with high probability, less than
2k log k time to “collect” a node of each type.

The nodes that learn their types from the client computer
propagate the information to their network neighbors
whose IPs map to the same tile types, and so on, until
every computer on the network learns the type of tile
component that computer will deploy. Thus, every compu-
ter receives the tile type map and the description of its own
tile type. Each computer might receive its tile type
information and the tile type map several times, up to as
many times as it has network neighbors, which on our
network is only p. Each node sends only �ðpÞ data because
roughly 1

k of a node’s p network neighbors will have to be
sent the 128k bits, and ð128kp

k ¼ �ðpÞÞ. Because the diameter

230 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 4, JULY/AUGUST 2013

Fig. 5. Overview of tile architecture node operations.

of a network of N nodes with randomly distributed
connections is �ðlogNÞ [34], the tile type map and the tile
types will propagate through the network in �ðlogNÞ time.

Creating a seed. The client is responsible for creating the
first seed on the network through a fairly straightforward
procedure. For each tile in the seed crystal described by the
underlying tile assembly, the client selects a node that
deploys that tile type (as we describe in Section 3.2.2), and
asks that node to deploy a tile. The client then informs each
deployed tile component of its crystal (seed) neighbors. This
procedure is significantly faster and requires significantly
less network communication than the distribution of the tile
type map.

3.2.2 Discovery

The node discovery algorithm is central to sTile because
initialization, replication, and recruitment all use it. The
discovery operation, given a tile type, returns a uniformly
random IP of some computer deploying tile components of
that type. Thus, every suitable computer has an equal
chance of being returned, in the long run, which in turn
guarantees that all nodes on the network perform a similar
amount of computation. The algorithm uses a property of
random walks to ensure uniform-randomness.

To quickly return the IP address of a computer that
deploys tile components of a certain type, each node will
keep a table, called the node table, of three IP addresses for
each component type, as we explain below. For 3-SAT, the
size of this table will be 64� 3 ¼ 192 IPs. The table contains
only an identifier for each tile type, not the details about the
interfaces. The preprocessing necessary to create the node
table is simple: First, a node fills in the table with all its
network neighbors and then gets help from those network
neighbors (by requesting their network neighbor lists). The
analysis of this procedure is identical to the analysis of
distributing the tile type map; this preprocessing procedure
will take �ðk log kÞ time per node (happening in parallel for
each node), for k different tile types. The amount of data sent
by each node is limited to �ðk log kÞ packets. For the 3-SAT
example with k ¼ 64, that is fewer than 300 packets, which
for typical UDP packets amounts to only 15 kilobytes.

After the preprocessing, when queried for the IP of a
computer that deploys tile components of a given type, the
node performs two steps: 1) it selects one of the three entries
in the node table for that tile type, at random, and 2) it
replaces its list of three entries in the table with the selected
node’s corresponding three entries. The reason for the
replacement is that we want the selection of IPs to emulate a
random walk on the node graph [34]. The request packet
only needs to contain the tile type (e.g., a 32-bit number)
and the answer packet must contain three IPs (three 128-bit
numbers). This entire procedure takes �ð1Þ time.

We now help clarify the preprocessing and discovery
operations with the use of an example. Suppose the
network in Fig. 6 represents the connectivity of six nodes
that all map to the same tile type. In creating its node table,
A first checks its network neighbors B, C, and D, and
records them in the three slots for that tile type. A’s node
table (for that tile type) is now complete, but had A not
found three valid nodes to fill its table, it would expand its
network neighbor list by querying one of its network

neighbors for its network neighbors, until it discovered a
sufficiently large portion of the network. B follows the same
procedure as A and creates a node table and records its
network neighbors A, D, and F as the three nodes deploying
the same tile type. When A needs a node of that type later
(for reasons discussed below), it selects a random node
from its three entries. Suppose it selects B. A then replaces
its node table entries with B’s entries (A, D, F). Note that it is
possible for a node to store itself on its node table.

Theorem 1. On an N-node network, after filling only �ðlogNÞ
requests for an IP of a computer that deploys a certain tile type
using the above-outlined procedure, the probability of each
valid IP being returned is uniformly distributed.

Proof. Because the node table keeps independent lists of
three nodes of each type, it is sufficient to prove the
lemma for a single tile component type. Consider the
directed graph G formed by representing every node as a
vertex with three outgoing edges to the vertices
representing the nodes on the node table. Now, consider
a sequence of nodes derived by the above-outlined
procedure of picking a random node from the three
entries, and replacing those three entries with that node’s
entries. That sequence corresponds to a random walk on
G. From [34], we know that a random walk on G mixes
rapidly, which means that if selecting nodes via this
random walk after �ðlogNÞ steps, the probability of
getting the IP of each node becomes proportional to that
node’s in degree. Thus, on a uniform graph, every IP is
equally likely to be returned. tu

Note that the random walk theorem [34] holds for all
graphs with nodes with three or more graph neighbors, so
this result is directly applicable to all reasonable dis-
tributed networks.

3.2.3 Recruitment

The seed crystal grows into a full assembly by recruiting
tile attachments. In a computational tile assembly (such
as the assembly described in Section 3.1 that solves 3-SAT),
a tile component that has both an upper and a left crystal
neighbor recruits a new tile to attach to its upper left. Fig. 7
indicates several places in a sample crystal where tile
components are ready to recruit new tiles. A recruiting tile
component X (highlighted in Fig. 7), for each tile type,
picks a potential attachment node Y of that type from its
node table, as described in Section 3.2.2, and sends it an
attachment request. An attachment request consists of X’s
upper crystal neighbor’s left interface and X’s left crystal
neighbor’s top interface. If those interfaces match Y ’s right

BRUN AND MEDVIDOVIC: ENTRUSTING PRIVATE COMPUTATION AND DATA TO UNTRUSTED NETWORKS 231

Fig. 6. A network with six nodes. We assume that every node in our
underlying network has p network neighbors (here p ¼ 3).

and bottom interfaces, respectively, then Y can attach. At
that point, X informs Y of the IPs of its two new crystal
neighbors, and those crystal neighbors of Y ’s IP. Note that
X can perform this operation without ever learning its
crystal neighbors’ interfaces by using Yao’s garbled
protocol [47].

Each component’s recruitment is a five-step process: X
asks N (its upper crystal neighbor) to encode its left
interface, N asks W (X’s left crystal neighbor) to encode its
top interface, W responds to X, X sends attachment
requests to a set of potential attachments Y , and those Y s
reply to X. We analyze these steps in Section 4.5 when we
compute the speed of sTile-based systems.

In the 3-SAT example from Section 3.1, the crystal
recruits 310 tile components (nonclear tiles in Fig. 4e).

3.2.4 Replication

Whenever network nodes have extra cycles they are not
using for recruitment, they replicate the seed. Each node X
uses its node table, as described in Section 3.2.2, to find
another node Y on the network that deploys the same type
components as itself, and sends it a replication request. A
replication request consists of up to two IP addresses
(two 128-bit numbers) of X’s crystal neighbors. X lets its
crystal neighbors know that Y is X’s replica (by sending
Y ’s IP to X’s crystal neighbors). Those crystal neighbors,
when they replicate using this exact mechanism, will send
their replicas’ IPs to Y . Thus, the entire seed replicates.
Each component’s replication is thus a three-step process:
X sends a replication request to Y , Y replies to X, and X
tells its crystal neighbors about Y . We analyze these steps
in Section 4.5.

At the start of the computation, while there are very few
recruiting seeds, the replication will create an exponentially
growing number of identical seeds (the first seed will
replicate to create two, those two will create four, then eight,
etc.). When there are sufficiently many seeds to keep the
nodes occupied recruiting, replication naturally slows down
because recruitment has a higher priority than replication.
As some seeds complete recruitment and free up nodes’
cycles, replication will once again create more seeds.

The seeds continue to replicate and self-assemble until
one of the assemblies finds the solution, at which time the
client broadcasts a signal to cease computation by sending a
small “STOP” packet to all its network neighbors, and they
forward that packet to their crystal neighbors, and so on.
Since the diameter of a large connected network of N nodes
with randomly distributed connections is �ðlogNÞ [34], the
“STOP” message will propagate in �ðlogNÞ time.

3.2.5 Solution Reporting

One tile type, the black
p

tile in Figs. 3 and 4e, includes in
its encoding the identity (IP address) of the client. Recall

that the black
p

tile only attaches to a crystal when that
crystal finds a solution. When that happens, the node
deploying the black

p
tile informs the client that the

Boolean formula is satisfiable. While 3-SAT is a decision
problem (i.e., the answer is either “yes” or “no”), the client
may wish to also learn the Boolean assignment that satisfies
the formula. To do so, the client may ask the node that
notified it of the solution for its crystal neighbors’ identities
(IP addresses), and those for their crystal neighbors’
identities, to reconstruct the entire crystal responsible for
finding the solution. The client can then query the nodes
that deploy the tiles encoding the assignment for their tile
types. The cost of reconstructing the entire crystal is no
more than contacting, and getting a response from each of
the nodes deploying tiles in that crystal (310 tiles for the
3-SAT example from Fig. 4). However, since only part of the
crystal is responsible for the assignment, it can be retrieved
even more efficiently. To ensure privacy, all the relevant
communication must be encrypted, and each involved node
must verify the identity of the client. These requirements
can be handled using standard public key encryption and
authentication techniques, which we do not describe here.

While a satisfying assignment has a black
p

tile-
deploying node to report the solution, deciding that there
is no satisfying assignment is more difficult. No crystal can
claim to have found the proof that no such assignment
exists. Rather, the absence of crystals that have found such
an assignment stands to provide some certainty that it does
not exist. Because for an input on n variables there are
2n possible assignments, if 2n randomly selected crystals
find no suitable assignment, then the client knows there
does not exist such an assignment with probability at least
ð1� e�1Þ. After exploring m� 2n crystals, the probability
grows to at least ð1� e�mÞ. Thus, as time grows linearly,
the probability of error diminishes exponentially. Given the
network size and bandwidth, it is possible to determine
how long one must wait to get the probability of an error
arbitrarily low. For the assembly execution that solves a
3-variable 3-SAT problem from Fig. 4, the probability of
exploring 23 ¼ 8 crystals and not finding the solution is no
more than e�1. After exploring 80 crystals, that probability
drops to e�10 < 10�4. Note that no crystal can be larger
than 310 tiles, so 80 crystals would require fewer than
25,000 tile components. Because the tile components are
lightweight (each one is far smaller than 1 KB), there is
little reason why even a single computer could not deploy
that many components.

3.3 Mahjong Implementation Framework

The final element of sTile is the Mahjong implementation
framework which uses the tile architecture and algorithms
to automatically compose a sTile-based software system on
a network.

The open-source Mahjong framework [14] is realized as
a Java-based middleware platform that faithfully imple-
ments the tile architecture and its algorithms. It takes as
input a description of a tile assembly, implements a
software system using the tile architecture based on that
assembly and employing the algorithms described in
Section 3.2, and outputs (i.e., deploys) a complete sTile-
based software system.

232 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 4, JULY/AUGUST 2013

Fig. 7. Tile components that have both an upper and a left crystal
neighbor (highlighted in the diagram) can recruit new components to
attach to their upper left.

Mahjong’s implementation uses Prism-MW [33], a
middleware platform that provides explicit implementa-
tion-level constructs for declaring components, interfaces,
interactions, network communication, and so on.

Each node on a network runs a Prism-MW Architecture,
which forms a “sandbox” within which all of the Prism-
MW (and, in our case, Mahjong) code deployed on a given
node executes. The use of system resources on each
participating hardware host is hence restricted and can
be released at any time. The tile components deploy inside
the Architecture objects and perform their functionality as
part of the tile algorithms via their interfaces, which are
implemented as Prism-MW Ports. Mahjong takes a user-
provided description of the set of tiles for an NP-complete
problem and the input to the computation and automates
the remaining steps of building a sTile-based system. The
Mahjong extends PrismMW with 29 objects and 2,900 lines
of Java code.

4 COMPUTATIONAL FEASIBILITY

To demonstrate that sTile is a feasible solution for building
software systems that distribute computationally intensive
problems on very large networks, we must show that
1) such systems’ computational speed is proportional to the
size of the underlying network, 2) such systems are robust
to network delay, and 3) real-world-sized problems can be
solved on real-world-sized networks in reasonable time.

To that end, we have built two Mahjong-based imple-
mentations that distribute distinct NP-complete problems
on physical networks. Further, we have built Simjong, a
discrete-event simulator that distributes Mahjong computa-
tions onto a simulated network of virtual nodes while
controlling the network message delays. Simjong’s goal is to
accurately simulate Mahjong distributions on networks up
to 1 million nodes.

Section 4.1 presents the Mahjong-based implementations
and Simjong. Section 4.2 details our experimental setup.
Sections 4.3, 4.4, and 4.5 discuss our experiments testing the
scalability, robustness to network delay, and efficiency,
respectively. Finally, Section 4.6. summarizes the potential
threats to the validity of our evaluation.

4.1 sTile-Based Implementations

We have built and made public [14] two Mahjong-based
implementations, for 3-SAT and SubsetSum, as well as
Simjong-based simulations of the same systems.

Simjong [14] is a Java-based discrete-event simulator
with network-delay simulation capabilities. Simjong exe-
cutes on a single machine and creates a user-specified
number of virtual hardware Node components, each
capable of deploying tiles. A central Clock component
keeps track of virtual time and allows each Node to
execute one instruction per clock cycle. Whenever a Node’s
tile needs to communicate to another Node’s tile, it sends a
message via the Network component that determines the
delay for that message’s delivery. Simjong’s network
model allows for message delivery time to be constant,
chosen at random from some distribution, or proportional
to the geographic distance between locations assigned to
each virtual node. Simjong’s network model is based on

ns-2 [23], simplified to abstract away the exact topology of
the network.

While executing, Simjong keeps track of the number of
completed seeds and reports its progress. Thus, it is possible
to use Simjong to estimate the time required for a
computation to complete after executing only a fraction of
that computation.

4.2 Experimental Setup

We use three distributed networks for our experimental
evaluation: 1) a private heterogeneous cluster of 11 Pentium 4
1.5-GHz nodes with 512 MB of RAM, running Windows XP
or 2000; 2) a 186-node subset of USC’s Pentium 4 Xeon 3-GHz
High Performance Computing and Communications cluster
[28]; and 3) a 100-node subset of PlanetLab [36], a globally
distributed network of machines of varying speeds and
resources that were often heavily loaded by several experi-
ments at a time.

The cross section of data we present in this paper used
four representative instances of NP-complete problems, to
which we will refer by their labels:

. A: 5-number 21-bit SubsetSum problem,

. B: 20-variable 20-clause 3-SAT problem,

. C: 11-number 28-bit SubsetSum problem, and

. D: 33-variable 100-clause 3-SAT problem.

Our experimental goals were to verify sTile’s scalability
with respect to network size and robustness to network
delay. Our experiments had three independent variables—
the number of nodes, the network communication speed
between nodes, and the size of the NP-complete problem—
and one dependent variable—the time the computation took
to complete.

First, to verify the correctness of sTile-based systems,
we used Mahjong-based implementations to solve over
one hundred of SubsetSum and 3-SAT problems, including
A, B, and C. As a rule of thumb, we chose the sizes of
problem instances to each execute in under 4 hours on our
186-node cluster. We verified that, on each of the above
three networks, the implementations found the correct
solution to each instance, it sent no unexpected commu-
nication between network nodes, and no node produced
undesired connections between tile components. Further,
we verified that, when provided inputs with a negative
answer, the implementations continued to execute indefi-
nitely, as expected.

We were able to perform experiments with Mahjong-
based implementations on networks of up to 186 nodes and
with Simjong on virtual networks of up to 1,000,000 nodes.
In the Simjong experiments reported here, we simulated
the first 10�4 percent of the seeds to estimate the time
required to complete the entire computation. PlanetLab in
particular presented a unique opportunity to test sTile as
well as a number of challenges. PlanetLab is distributed on
1,090 nodes at 485 locations around the world. Almost half
of PlanetLab’s nodes are typically unresponsive; of the
responsive nodes, some are heavily loaded or exceedingly
slow. Because of these well-known issues with PlanetLab
[22], we were unable to repeat our experiments as many
times as on the other networks. In the end, PlanetLab did
demonstrate useful numerical trends.

BRUN AND MEDVIDOVIC: ENTRUSTING PRIVATE COMPUTATION AND DATA TO UNTRUSTED NETWORKS 233

4.3 Scalability

To verify that the speed of the computation is proportional
to the number of nodes on the underlying network, for each
of the three networks described above, we deployed
Mahjong-based implementations on the entire network
and on randomly selected halves of the network. We varied
the size of the problem and measured the average time in
which the implementations found the solution over 20 ex-
ecutions (except on PlanetLab, as explained above). We then
also deployed Simjong on virtual networks of increasing
size from 125,000 to 1,000,000 nodes (with a constant
network delay of 100 ms for all packets). This allowed each
Simjong execution to complete in about an hour of actual
time, while executing a sufficiently large number of seeds.
Our measurements have shown that, after the first few
thousand seeds, our implementations make fairly constant
progress through the seeds and that extrapolating from the
10�4 percent fraction is accurate.

We hypothesized that as we double the size of the
underlying network, the Mahjong-based implementations
and Simjong would take approximately half as much time
to complete. Fig. 8 shows a cross section of the results of our
scalability experiments, which confirm this hypothesis. For
example, executing D on a 1,000,000-node virtual network
took a factor of 1.97 less time than on a 500,000-node virtual
network. We speculate that the slight inefficiency on the
physical networks (1.9 instead of 2) comes from the constant
underlying network bandwidth; by contrast, increasing the
size of a global network is likely to add communication
pathways and increase overall bandwidth. The experimen-
tal results provide confirmation that the speed of a sTile-
based system is proportional to the size of the network,
resulting in a desirable scaling trend for large networks.

4.4 Robustness to Network Latency

Intuitively, high-network latency should adversely affect
the speed of sTile-based systems: If the tile attachments
happen sequentially, the latency affects every attachment
and greatly slows down the overall computation. This
intuition holds for the addition example from Section 2.
However, in the case of NP-complete computations, this
intuition is false. In such computations, many of the
subcomputations (tile attachments) happen independently,

in parallel. Each node in our experiments deployed millions
of lightweight tiles, and whenever a sTile packet traveled
between nodes, those nodes handled other tiles rather than
waiting idly for the network communication to arrive. As a
result, the throughput of sTile-based systems is not affected
by the network latency.

We have previously formally verified that network
latency has little to no effect on sTile-based system speed.
We have further demonstrated this property empirically, by
solving the same problem on physical networks of varying
latency, and by controlling the latency in Simjong [16].

4.5 Efficiency

The final claim we address in demonstrating sTile’s
feasibility for industrial systems is that real-world-sized
problems can be solved on real-world-sized networks in
reasonable time. In particular, we posit that sTile-based
systems can outperform existing privacy-preserving meth-
ods for solving NP-complete problems. There are three
ways to solve a highly parallelizable problem while
preserving the data privacy: 1) on a large insecure network
by using sTile, 2) on a single private computer, or 3) on a
private network of trustworthy computers. We will first
discuss the time needed to solve such a problem using the
three methods in terms of the number of required
operations, and then discuss the actual time necessary to
solve problems.

Suppose a network with N nodes uses a sTile-based
system to solve an n-variable m-clause 3-SAT problem. In
expectation, the system has to explore 2n crystals to reach a
solution, and each crystal contains ð3mþ nÞ lgn replicated
tiles (Fig. 4a) and no more than 3nm lg2 n recruited tiles
(nonclear tiles in Fig. 4e). On average, each node will need
to replicate ð3mþnÞ lgnN 2n tiles and recruit 3nm lg2 n

N 2n tiles. The
replication procedure requires three distinct operations, as
described in Section 3.2.4, each concluded by sending a
single network packet; let the time for these operations be
denoted as 3i. Similarly, the recruitment procedure requires
five operations, as described in Section 3.2.3, each also
concluded by sending a single network packet; let the time
for these operations be denoted as 5u. Thus, the time
required by each node is summarized by (1). This analysis is
specific to 3-SAT, but the running times for other NP-
complete problems will be very similar, since the fastest
growing factor of 2n will be the same. (Note that our
analysis here assumes the naı̈ve algorithm that runs in
Oð2nÞ time, but can be extended to more efficient algo-
rithms, such as those used in today’s SAT solvers [12]. We
discuss the reasoning and implications for our assumption
further in Section 4.6.)

3i
ð3mþ nÞ lgn

N
þ 5u

3nm lg2 n

N

� �
2n ð1Þ

2nðnþ 3mÞr: ð2Þ

Now, suppose a user wishes to solve the 3-SAT instance

on a single computer. That computer would need to

examine 2n possible assignments, and check each n-variable

assignment against the m clauses. Equation (2) describes the

time this procedure would take using the most efficient

234 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 4, JULY/AUGUST 2013

Fig. 8. The effect of doubling the network size on the system’s execution
time. The speedup ratio is the factor of speed improvement over the
network of half the size.

available technique, assuming r is the amount of time each

operation takes to execute: For each assignment, create a

hash set containing the n literal-selection elements and

check for each of the 3m literals whether the hash set

contains that literal. The overhead of using sTile over a

single computer is the ratio of (1) and (2). Assuming m > n

and i ¼ u ¼ r, meaning that it takes roughly the same

amount of time to perform each operation (e.g., looking up

a value in a hash set and releasing a message on the

network), the ratio is no greater than 8n lg2 n
N . In other words,

if the size of the public network exceeds 8n lg2 n, a sTile-

based system will execute faster than a single machine.
Finally, suppose a user wishes to solve the 3-SAT

instance on a private network of M computers. Assuming
the best possible distribution of computation and that the
network communication is nonblocking, the time this
system would require to solve the problem is no less
than 2nðnþ3mÞr

M . In this case, the overhead of using sTile over
a private network is 8n lg2 nM

N . In other words, if the size of
the public network exceeds 8n lg2 nM, a sTile-based system
will execute faster than the private network.

We estimated the time a sTile-based system will take to
solve a given problem by two methods: 1) empirically
determining the values of the constants r, i, and u, and
2) running Simjong. We measured the constants on a
2.4-GHz machine running Windows XP and Sun JDK 6.0 by
executing several million benchmark tests and averaging
their running times. We found that r � 3:6� 10�7 seconds
(� 2:8 MHz), i � 2:8� 10�7 seconds (� 3:8 MHz), and u �
4:1� 10�7 seconds (� 2:4 MHz). With these measurements
and (1) and (2), we can estimate the speeds of a sTile-based
system and a single computer solving a given NP-complete
problem. For example, solving a 38-variable, 100-clause
instance on a single computer would take 3:3� 107 seconds
� 1 year.

However, the same problem could be solved using sTile
on a million-node network in 1:8� 105 seconds � 2:1 days.

Fig. 9 compares the execution times of sTile and single-
computer solutions. For each of the three depicted 100-
clause 3-SAT instances (with 30, 40, and 50 variables), the
graph shows the horizontal line indicating the running
time of a single-computer solution, and the diagonal line
indicating the running time of a sTile-based system

implemented in the Mahjong implementation framework
and deployed on networks of varying sizes. For networks
larger than about 4,000 nodes, sTile-based solutions out-
perform their competitors; for extremely large networks,
sTile-based systems are much faster. For example, solving
the 40-variable, 100-clause 3-SAT problem on a single
computer would take four years, while doing so using a
sTile-based solution implemented in Mahjong and de-
ployed on the network the size of SETI@home (1.8 million
nodes [43]) would take seven days.

To confirm these results, we compared the execution
times measured by Simjong with the estimates from (1) for
D. Fig. 10 shows the comparison. We have consistently
found that (1) was within 8 percent of the Simjong-
measured execution times.

4.6 Threats to Validity

In our evaluation, as well as in targeting our technique, we
make several assumptions that may threaten the validity of
our results.

In our comparisons between sTile-based and other
approaches to solving NP-complete problems, we have
used simple underlying algorithms for those problems
(e.g., ones that take �ð2nÞ time to solve n-bit-sized
problems.) Some alternative systems that exist today
employ much faster algorithms; however, since the tile
assembly model is Turing universal, there exists tile
assemblies that implement these efficient algorithms and
sTile can leverage those assemblies to create efficient sTile-
based systems. In fact, we have already implemented some
such efficient tile assemblies (e.g., one that solves 3-SAT in
Oð1:8394nÞ time [12]). In our analysis, we have made the
assumption that our comparisons would be similar to
comparisons between these efficient systems. In part, this
assumption is justified because using the same efficient
algorithm for sTile-based and conventional systems simply
reduces the amount of required computation by the same
factor. Nonetheless, this assumption poses a potential
threat to the validity of our analysis.

One of the uses of sTile we have suggested involves
distributing the software system onto multiple clouds,
ensuring that no entity controls too large a fraction of the
underlying network. While certainly feasible, such a
distribution presents several challenges we have not
described here. Notably, today’s clouds tend to lack
interoperability. While we have addressed part of this issue
since Mahjong-based systems only require the underlying
nodes to be able to execute JVMs, some engineering
challenges may remain in deploying such systems on
multiple clouds.

We have taken into account accurate models of how the
underlying network handles message delivery and the

BRUN AND MEDVIDOVIC: ENTRUSTING PRIVATE COMPUTATION AND DATA TO UNTRUSTED NETWORKS 235

Fig. 9. Expected execution times for single-computer (horizontal lines)
and sTile-based (diagonal lines) solutions for 30-, 40- and 50-variable,
100-clause 3-SAT problems.

Fig. 10. Comparison of execution time for solving D as measured by
Simjong and estimated by (1).

involved delays. However, we have assumed that the
volume of network traffic created by sTile-based systems
will not affect message delivery, in particular, that the
volume will not be significantly larger than typical
volumes. Our deployments suggest that this assumption
holds for the networks we have explored. However, it is
conceivable that for some networks, the traffic volume will
significantly increase when executing sTile-based systems
and message delivery may suffer.

5 PRIVACY PRESERVATION

In this section, we formally argue that sTile systems
preserve privacy. Specifically, we analytically argue that,
as long as no adversary controls more than half the
network, the probability of that adversary learning the
input can be made arbitrarily low.

sTile’s privacy preservation comes from each tile being
exposed only to a few intermediate bits of the computation
(see Fig. 4) and the tiles’ lack of awareness of their global
position. To learn meaningful portions of the data, an
adversary needs to control multiple, adjacent tiles. We call a
distributed software system privacy preserving if, with high
probability, a randomly chosen group of nodes smaller than
half of the network cannot discover the entire input to the
computational problem the system is solving. (We will also
discuss, at the end of this section, the probability of
discovering parts of the input.) We argue that neither 1) a
node deploying a single tile, nor 2) a node deploying
multiple tiles can know virtually any information about the
input; moreover, 3) controlling enough computers to learn
the entire input is prohibitively hard on large networks.

1. Each tile type in an assembly encodes at most one bit
of the input. A special tile encodes the solution, but
has no knowledge of the input. A node that deploys
a single tile is only able to learn information such as
“there is at least one 0 bit in the input,” which is less
than one bit of information.

2. Each node on the network may deploy several tiles
(all of the same type). However, each tile is only
aware of crystal-neighboring tiles and not of its
global position. Thus, a node deploying several
noncrystal-neighboring tiles cannot reconstruct any
more information than if it only deployed a single
tile. The only way the node may gain more
information is if it deploys crystal-neighboring tiles.
We handle this case next.

3. Suppose an adversary controls a subset of the
network nodes and can see all the information
available to each of the tiles deployed on those
nodes. Then, the adversary can attempt to recon-
struct the computation’s input from parts of the
crystal that consist of tiles deployed on the compro-
mised nodes. Theorem 2 bounds the probability that
an adversary can use this scheme to learn the input.

Theorem 2. Let c be the fraction of the network that an adversary

has compromised, let s be the number of seeds deployed during

a computation, and let n be the number of bits (tiles) in an

input. Then, the probability that the compromised computers

contain an entire input seed to a sTile system is 1� ð1� cnÞs.
Proof. If an adversary controls a c fraction of the network

nodes, then for each tile in a seed, the adversary has a
probability c of controlling it. Thus, for a given n-bit
seed, distributed independently on the nodes, the
adversary has probability cn of controlling all the nodes
that deploy the tiles in the seed, and thus the
probability that the seed is not entirely controlled is
1� cn. Since there are s independent seeds deployed,
the probability that none of them are entirely controlled
is ð1� cnÞs. Finally, the probability that the adversary
controls at least one seed is 1� ð1� cnÞs. tu

The log-scale plot in Fig. 11 graphically illustrates that
the probability of input reconstruction drops exponentially
in c. Suppose we deploy a sTile system on a network of
220 � 1;000;000 machines to solve a 38-variable 100-clause
3-SAT problem. Also, suppose a powerful adversary has
gained control of � 125; 000 machines (1

8 of the network).
The adversary will be able to reconstruct the seed with
probability 1� ð1� 2�114Þ2

38

< 10�22. As the input size
increases, this probability further decreases. The probability
decays exponentially for all c < 1

2 . An adversary who
controls exactly half the network has a 1� 1

e � 63% chance
of learning the input, which is why our technique is geared
toward large public networks and networks comprised of
multiple clouds.

The same analysis and exponential probability drop-off
apply to reconstructing fractional parts (e.g., one-third) of
the input. It is somewhat simpler to reconstruct small (e.g.,
3-bit) fragments of the input, but the information contained
in those fragments is greatly limited and cannot be used to
reconstruct larger fragments [17].

One possible challenge to privacy preservation on large
networks is botnets. However, no single botnet comes close
to controlling a significant fraction, ðsay;more than 1

1;000Þ, of
the Internet [20]. As the size of the underlying network
grows, for any fixed-size botnet, the probability that botnet
can affect a sTile system drops exponentially. Further,
combining multiple clouds in a single sTile computation
ensures that no single cloud provider has control of a large

236 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 4, JULY/AUGUST 2013

Fig. 11. The probability that an adversary controlling c fraction of the
network can reconstruct an entire 20-, 38-, and 56-bit input.

fraction of the network, and thus data can be kept private
from the cloud providers themselves.

Finally, each tile component handles at most a single bit
of the input. Theoretically, this is sufficient for solving NP-
complete problems; however, in practice, handling more
than a single bit of data at a time would amortize some of
the overhead. Such a transformation would result in a
tradeoff between privacy preservation and efficiency, as
faster computation would reveal larger segments of the
input to each node.

6 RELATED WORK

Distributing computation. The growth of the Internet has
made it possible to use public computers to distribute
computation to willing hosts. This notion focuses the
underpinning of computational grids [24]. Among systems
that concentrate on distributed computation are BOINC
systems [2] (such as SETI@home [30] and Folding@home
[32]), MapReduce [21], and the organic grid [18]. A unique
approach—FoldIt—uses the competitive human nature to
solve the protein-folding problem [4]. These systems try to
solve exactly the highly parallelizable problems toward
which our work is geared, but unlike sTile, they do not
preserve privacy.

NP-complete computation can be accelerated by devel-
oping faster algorithms for single machines and small
clusters [5], [31], [35], [45]. Such work is complementary to
ours since sTile is based on a Turing-universal computa-
tional model [6], [37] and can implement each of these
advanced algorithms on large distributed networks.

Cloud privacy. Cloud computing has reemphasized the
importance of data privacy, causing the emergence of
numerous approaches for keeping data private on the cloud
[3], [42], [46], [48]. Most such approaches concentrate on
private data storage and user-authorized data retrieval and
require some trusted agents [3], [42], [46] whereas our work
concentrates on preserving privacy during computation and
requires no trusted agents.

Privacy-preserving computation. In classical (as opposed to
quantum) computing, it is not possible to get help from a
single entity in solving an NP-complete problem without
disclosing most of the information about the input and the
problem one is trying to solve [19]. Our approach avoids
this shortcoming by distributing such a request over many
machines without disclosing the entire problem to any
small-enough subset of them.

A fully homomorphic encryption scheme encrypts a
circuit (program) and then executes that circuit on a
separate agent without disclosing the private data [25].
While theoretically exciting, in practice, this approach
cannot be used today because of the exponential amount
of computation and memory required to encrypt and
decrypt. Using homomorphic encryption to perform a
Google search, while keeping the query private, would
require one trillion times as much computation as is needed
today [26]. Homomorphic encryption is theoretically more
powerful than sTile because it keeps the data private from
the entire network (as opposed to subsets of the network).
However, sTile is efficient enough to be used today.

Secure multiparty computation allows multiple compu-
ters, each with a part of an input, to compute a function of
that entire input without sharing the parts [47]. Secure
multiparty computation applies to functions on large,
distributed, private data sets, while our work applies to
functions on fairly small data sets, but ones that require
exponential time or space to compute.

7 CONTRIBUTIONS

sTile distributes computation onto large, insecure, public
networks in a manner that ensures privacy preservation,
fault and adversary tolerance, and scalability. We presented
a rigorous theoretical analysis of sTile and formally proved
that the resulting systems are efficient and scalable, and that
they preserve privacy as long as no adversary controls half
of the public network.

We deployed two sTile implementations on several
networks, including the globally distributed PlanetLab
[36], to empirically verify

1. the correctness of sTile algorithms,
2. that the speed of sTile computation is proportional

to the number of nodes,
3. that network delay has a negligible effect on the

speed of the computation, and
4. that our mathematical analysis of the time needed to

solve large problems on large networks is accurate.
For networks larger than about 4,000 nodes, sTile
outperforms optimized solutions that assume pri-
vately owned, secure hardware.

sTile explores the fundamental cost of achieving privacy
through data distribution and bounds the extent to which a
privacy-preserving system is less efficient than a nonprivate
one. While that cost is not trivial, we have demonstrated
that sTile-based systems execute orders of magnitude faster
than homomorphic encryption systems, the alternative
promising approach to preserving privacy.

ACKNOWLEDGMENTS

The authors thank Jae young Bang for his help deploying
Mahjong-based implementations on PlanetLab. This mate-
rial was based upon work supported by the US National
Science Foundation (grant 0937060 to the Computing
Research Association for the CIFellows Project and grants
0905665 and 1117593), and by Infosys.

REFERENCES

[1] L. Adleman, J. Kari, L. Kari, and D. Reishus, “On the Decidability
of Self-Assembly of Infinite Ribbons,” Proc. 43rd Ann. IEEE Symp.
Foundations of Computer Science (FOCS ’02), pp. 530-537, Nov. 2002.

[2] D.P. Anderson, “BOINC: A System for Public-Resource Comput-
ing and Storage,” Proc. Fifth IEEE/ACM Int’l Workshop Grid
Computing (GRID ’04), pp. 4-10, 2004.

[3] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved
Proxy Re-Encryption Schemes with Applications to Secure
Distributed Storage,” ACM Trans. Information and System Security,
vol. 9, no. 1, pp. 1-30, Feb. 2006.

[4] D. Baker, “Foldit,” http://fold.it, 2009.
[5] A. Balint, M. Henn, and O. Gableske, “A Novel Approach to

Combine a SLS- and a DPLL-Solver for the Satisfiability Problem,”
Proc. 12th Int’l Conf. Theory and Applications of Satisfiability Testing
(SAT ’09), pp. 284-297, 2009.

BRUN AND MEDVIDOVIC: ENTRUSTING PRIVATE COMPUTATION AND DATA TO UNTRUSTED NETWORKS 237

[6] R. Berger, The Undecidability of the Domino Problem, no. 66. Am.
Math. Soc., 1966.

[7] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M.
Faerman, S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S.
Smallen, N. Spring, A. Su, and D. Zagorodnov, “Adaptive
Computing on the Grid Using AppLeS,” IEEE Trans. Parallel and
Distributed Systems, vol. 14, no. 4, pp. 369-382, Apr. 2003.

[8] Y. Brun, “Arithmetic Computation in the Tile Assembly Model:
Addition and Multiplication,” Theoretical Computer Science,
vol. 378, no. 1, pp. 17-31, June 2007.

[9] Y. Brun, “Nondeterministic Polynomial Time Factoring in the Tile
Assembly Model,” Theoretical Computer Science, vol. 395, no. 1,
pp. 3-23, Apr. 2008.

[10] Y. Brun, “Solving NP-Complete Problems in the Tile Assembly
Model,” Theoretical Computer Science, vol. 395, no. 1, pp. 31-46, Apr.
2008.

[11] Y. Brun, “Solving Satisfiability in the Tile Assembly Model with a
Constant-Size Tileset,” J. Algorithms, vol. 63, no. 4, pp. 151-166,
2008.

[12] Y. Brun, “Efficient 3-SAT Algorithms in the Tile Assembly
Model,” Natural Computing, vol. 11, no. 2, pp. 209-229, 2012.

[13] Y. Brun, G. Edwards, J. Young Bang, and N. Medvidovic, “Smart
Redundancy for Distributed Computation,” Proc. 31st Int’l Conf.
Distributed Computing Systems (ICDCS ’11), pp. 665-676, June 2011.

[14] Y. Brun and N. Medvidovic, “Mahjong: A sTile Framework for
Distributing NP-Complete Computations Onto Untrusted Net-
works in a Trustworthy Manner,” http://www.cs.umass.edu/
brun/Mahjong, 2013.

[15] Y. Brun and N. Medvidovic, “Fault and Adversary Tolerance as
an Emergent Property of Distributed Systems’ Software Archi-
tectures,” Proc. Second Int’l Workshop Eng. Fault Tolerant Systems
(EFTS ’07), pp. 38-43, Sept. 2007.

[16] Y. Brun and N. Medvidovic, “Keeping Data Private While
Computing in the Cloud,” Proc. Fifth Int’l Conf. Cloud Computing
(CLOUD ’12), pp. 285-294, June 2012.

[17] M. Chaisson, P. Pevzner, and H. Tang, “Fragment Assembly
with Short Reads,” Bioinformatics, vol. 20, no. 13, pp. 2067-
2074, 2004.

[18] A.J. Chakravarti and G. Baumgartner, “The Organic Grid: Self-
Organizing Computation on a Peer-To-Peer Network,” Proc. First
Int’l Conf. Autonomic Computing (ICAC ’04), pp. 96-103, 2004.

[19] A.M. Childs, “Secure Assisted Quantum Computation,” Quantum
Information and Computation, vol. 5, no. 456, pp. 456-466, 2005.

[20] D. Dagon, G. Gu, C. Lee, and W. Lee, “A Taxonomy of Botnet
Structures,” Proc. 23rd Ann. Computer Security Applications Conf.
(ACSAC ’07), pp. 325-339, Dec. 2007.

[21] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Proces-
sing on Large Clusters,” Proc. Sixth Symp. Operating System Design
and Implementation (OSDI ’04), Dec. 2004.

[22] J. Duerig, R. Ricci, J. Zhang, D. Gebhardt, S. Kasera, and J.
Lepreau, “Flexlab: A Realistic, Controlled, and Friendly Environ-
ment for Evaluating Networked Systems,” Proc. Fifth Workshop Hot
Topics in Networks (HotNets V), pp. 103-108, Nov. 2006.

[23] S. Floyd and V. Paxson, “Difficulties in Simulating the Internet,”
IEEE/ACM Trans. Networking, vol. 9, no. 4, pp. 392-403, Aug. 2001.

[24] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” Int’l J. High Performance
Computing Applications, vol. 15, no. 3, pp. 200-222, 2001.

[25] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,”
Proc. 41st Ann. ACM Symp. Theory of Computing (STOC ’09),
pp. 169-178, 2009.

[26] A. Greenberg, “IBM’s Blindfolded Calculator,” Forbes Magazine,
July 2009.

[27] A.S. Grimshaw, W.A. Wulf, and the Legion Team, “The Legion
Vision of a Worldwide Virtual Computer,” Comm. ACM, vol. 40,
no. 1, pp. 39-45, 1997.

[28] “High Performance Computing and Communications,” http://
www.usc.edu/hpcc, 2013.

[29] Javelin Strategy & Research “2010 Identity Fraud Survey
Report,”http://www.marketresearch.com/product/display.
asp?productid=2592343, 2010.

[30] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky,
“SETI@home—Massively Distributed Computing for SETI,” Com-
puting in Science and Eng., vol. 3, no. 1, pp. 78-83, Jan./Feb. 1996.

[31] O. Kullmann, “New Methods for 3-SAT Decisions and Worst-Case
Analysis,” Theoretical Computer Science, vol. 223, pp. 1-72, 1999.

[32] S.M. Larson, C.D. Snow, M.R. Shirts, and V.S. Pande,
Folding@Home and Genome@Home: Using Distributed Computing
to Tackle Previously Intractable Problems in Computational Biology.
Horizon Press, 2002.

[33] S. Malek, M. Mikic-Rakic, and N. Medvidovic, “A Style-Aware
Architectural Middleware for Resource-Constrained, Distributed
Systems,” IEEE Trans. Software Eng., vol. 31, no. 3, pp. 256-272,
Mar. 2005.

[34] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge
Univ. Press, 1995.

[35] A. Nakano, R.K. Kalia, P. Vashishta, T.J. Campbell, S. Ogata, F.
Shimojo, and S. Saini, “Scalable Atomistic Simulation Algorithms
for Materials Research,” Scientific Programming, vol. 10, no. 4,
pp. 263-270, 2002.

[36] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A Blueprint
for Introducing Disruptive Technology into the Internet,” ACM
SIGCOMM Computer Comm. Rev., vol. 33, no. 1, pp. 59-64, 2003.

[37] R.M. Robinson, “Undecidability and Nonperiodicity for Tilings of
the Plane,” Inventiones Math., vol. 12, no. 3, pp. 177-209, 1971.

[38] S.M. Rubin, Computer Aids for VLSI Design. Addison-Wesley, 1994.
[39] M. Sipser, Introduction to the Theory of Computation. PWS Publish-

ing, 1997.
[40] R.N. Taylor, N. Medvidovic, and E.M. Dashofy, Software Archi-

tecture: Foundations, Theory, and Practice. John Wiley & Sons, 2009.
[41] H. Wang, “Proving Theorems by Pattern Recognition,” II. Bell

System Technical J., vol. 40, pp. 1-42, 1961.
[42] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling Public

Auditability and Data Dynamics for Storage Security in Cloud
Computing,” IEEE Trans. Parallel and Distributed Systems, vol. 22,
no. 5, pp. 847-859, May 2011.

[43] Wikipedia, “SETI@home,” http://en.wikipedia.org/wiki/
SETI@home, 2008.

[44] E. Winfree, “Simulations of Computing by Self-Assembly of
DNA,” Technical Report CS-TR:1998:22, California Inst. of
Technology, Pasadena, CA, 1998.

[45] G.J. Woeginger, “Exact Algorithms for NP-Hard Problems: A
Survey,” Combinatorial Optimization - Eureka, You Shrink!,
vol. 2570/2003, pp. 185-207, 2003.

[46] Z. Yang, S. Yu, W. Lou, and C. Liu, “P 2: Privacy-Preserving
Communication and Precise Reward Architecture for V2G Net-
works in Smart Grid,” IEEE Trans. Smart Grid, vol. 2, no. 4,
pp. 697-706, Dec. 2011.

[47] A.C.-C. Yao, “How to Generate and Exchange Secrets,” Proc. 27th
Ann. IEEE Symp. Foundations of Computer Science (FOCS ’86),
pp. 162-167, Oct. 1986.

[48] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving Secure, Scalable,
and Fine-Grained Data Access Control in Cloud Computing,”
Proc. IEEE INFOCOM, pp. 534-542, 2010.

Yuriy Brun received the MEng degree from the
Massachusetts Institute of Technology in 2003
and the PhD degree from the University of
Southern California in 2008. He completed his
postdoctoral work in 2012 at the University of
Washington as a CI Fellow. He is currently an
assistant professor in the School of Computer
Science at the University of Massachusetts. His
research focuses on software engineering, dis-
tributed systems, and self-adaptation. He is a

member of the IEEE, the ACM, and the ACM SIGSOFT. More
information is available at http:// www.cs.umass.edu/brun/.

Nenad Medvidovic received the PhD degree
from the University of California, Irvine, in 1999.
He is a professor in the Computer Science
Department at the University of Southern Cali-
fornia. He received the US National Science
Foundation CAREER Award. His research fo-
cuses on the software architectures of large,
distributed, mobile, and embedded systems. He
is a member of the IEEE, the IEEE Computer
Society, the ACM, and the ACM SIGSOFT.

More information is available at http://sunset.usc.edu/neno/.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

238 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 4, JULY/AUGUST 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

