
Predicting Development Trajectories to
Prevent Collaboration Conflicts

Yuriy Brun , Kıvanç Muşlu , Reid Holmes , Michael D. Ernst , David Notkin
Computer Science & Engineering School of Computer Science

University of Washington University of Waterloo
Seattle, WA, USA Waterloo, ON, Canada

{brun, kivanc, mernst, notkin}@cs.washington.edu rtholmes@cs.uwaterloo.ca

ABSTRACT
The benefits of collaborative development are reduced by the
cost of resolving conflicts. We posit that reducing the time
between when developers introduce and learn about conflicts
reduces this cost. We outline the state-of-the-practice of man-
aging and resolving conflicts and describe how it can be im-
proved by available state-of-the-art tools. Then, we describe
our vision for future tools that can predict likely conflicts be-
fore they are even created, warning developers and allowing
them to avoid potentially costly situations.

Author Keywords: collaborate development; collaborative
conflicts; conflict prediction; conflict detection
ACM Classification Keywords: D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques; D.2.6 [Software Engineer-
ing]: Programming Environments
General Terms: Design; Human Factors

COSTS OF COLLABORATIVE DEVELOPMENT
Collaborative software development enables work to be par-
allelized and completed faster. The benefits of collaboration
are offset in part by conflicts that may arise when multiple
developers work in parallel. As the amount of parallel work
increases, so does the frequency of defects [15]. Resolving
conflicts is costly, in part because conflicts are often discov-
ered long after they are created. Delays in learning about
conflicts add two costs. First, as more time passes between
the introduction of a conflict and its detection, the likelihood
increases that the relevant assumptions, artifacts, and changes
have faded in the developers’ minds. Second, the changes
grow in size as time passes, which increases the cost of in-
tegration and the likelihood that work must be abandoned or
revamped.

In this paper, we discuss sources of delays between conflict
introduction and detection in today’s practice, outline the state-
of-the-art technology that exists to reduce those delays, and
describe our vision for how to predict conflicts even before
they are introduced, further reducing some of the costs associ-
ated with collaborative development.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSCW’12, February 11–15, 2012, Seattle, Washington, USA.
Copyright 2012 ACM 978-1-4503-1086-4/12/02...$10.00.

STATE-OF-THE-PRACTICE OF CONFLICT DETECTION
Today, developers use version control to assist collaborative de-
velopment. Version control systems allow developers to work
in parallel and deal with conflicts systematically. Conflicts can
arise whenever developers share inconsistent changes. Devel-
opers have two suboptimal options: sharing partial changes or
waiting until the assigned tasks are complete. Sharing partial
changes can unnecessarily break others’ builds and tests, pre-
venting effective parallel work. Meanwhile, waiting until tasks
are complete creates a delay between the times when conflicts
are introduced and when developers learn about them. Even
after changes are shared, other developers may further delay
incorporating those changes until their own tasks are complete
because incorporating earlier may distract the developers by
forcing them to resolve conflicts.

Version control systems are in widespread industrial use and
represent today’s state-of-the-practice in collaborative develop-
ment. Since the first source code control system in 1975 [16],
numerous similar systems — characterized by a centralized
shared repository — have been developed and deployed, in-
cluding RCS [22], CVS [10], and Subversion [5]. Distributed
version control systems have recently emerged, including
Bazaar, Code Co-op, Git, and Mercurial [14]. These systems
do not rely on a centralized repository, allow more freedom to
the collaborators in terms of branching, merging, and keeping
multiple repositories, and are less dependent on network avail-
ability. Distributed version control systems may encourage
more frequent branching and merging, which may create more
conflicts but also reduce the cost of their resolution [23].

STATE-OF-THE-ART OF CONFLICT DETECTION
Fear of conflicts can adversely affect developers’ behavior. For
example, developers sometimes avoid working in parallel to
ensure not running into conflicts [9]. Other times, developers
may share their code hastily in an attempt to avoid responsi-
bility for expected conflicts [6]. Making available accurate
information about conflicts, and about lack of conflicts, can
lead to better risk management and a reduction in conflict-
related costs [8].

Awareness tools help developers better understand how their
changes interact with those of others [17]. These benefits
have been verified experimentally [2, 7, 20], suggesting that
improving developer awareness can decrease development
costs and perhaps reduce defect frequency [15].

Sarma provides a comprehensive classification of collabora-
tive tools for software development [17]. Palantı́r [19, 18, 1]

mailto:brun@cs.washington.edu,kivanc@cs.washington.edu,rtholmes@cs.uwaterloo.ca,mernst@cs.washington.edu,notkin@cs.washington.edu
mailto:brun@cs.washington.edu,kivanc@cs.washington.edu,rtholmes@cs.uwaterloo.ca,mernst@cs.washington.edu,notkin@cs.washington.edu

shows which developers are changing which artifacts, and by
how much. FASTDash [2] is an interactive visualization — a
spatial representation of which files each developer is editing —
that helps developers understand what other team members are
doing. Syde [11] increases precision of awareness tools by us-
ing a fine-grained analysis of the changed abstract syntax trees
(ASTs). Two potentially conflicting changes to the same file
are flagged for a developer only when they also affect changes
to the same parts of the underlying ASTs. CollabVS “detects
a potential conflict when a user starts editing a program ele-
ment that has a dependency on another program element that
has been edited but not checked-in by another developer” [7].
Safe-commit [24] does the deepest program dependence anal-
ysis, identifying changes that are guaranteed not to cause tests
to fail; this allows developers to share some of their changes
earlier. YooHoo [12] can be used to predict build errors early
by looking at AST interactions among already created changes
that are likely to be merged soon.

Collaborating developers may be distracted when awareness
tools suggest or report conflicts inaccurately. Our approach
to proactive detection of collaboration conflicts [4] eliminates
false positive and false negative reports by using speculative
analysis [3] to detect conflicts. Our tool, Crystal1, creates
copies of the developers’ code and speculatively merges them
in the background using the version control system. Crystal re-
ports textual conflicts if and only if the version control system
reports a conflict in a background copy. Further, Crystal builds
the merged code and executes its test suite to report when
merging changes will result in build and test failures. While
awareness tools provide an approximation of what is likely to
cause conflicts, Crystal uses the version control system and
build and test scripts for conflict detection.

Speculative analysis — the technique behind Crystal — rep-
resents the state-of-the-art of conflict detection. As soon as
developers create a conflicting change, speculative analysis
can notify them about the conflict, reducing the delay between
conflict introduction and detection. As we describe in the next
section, we believe future tools can do even more to help lower
the costs of collaborative development.

OUR VISION: CONFLICT PREDICTION
The need for early conflict detection can be reduced — per-
haps even eliminated — by conflict prediction and prevention.
We imagine future collaborative development tools that not
only observe the changes developers have already made, but
also predict the changes developers are likely to make. (We
propose below several approaches to making such predictions.)
Such tools could analyze the consequences of those changes
to predict potential conflicts before developers make the con-
flicting changes. The tools’ interfaces have to be unobtrusive
and should not overload the developers while allowing them
to manage risk and avoid situations that are likely to cause
conflicts. Additionally, developers will know to communicate
with others whose future changes are likely to cause conflicts
and resolve inconsistencies in their planned changes before
costly conflicts arise.

1http://crystalvc.googlecode.com

For example, consider a tool that informs a developer that “if
you attempt a particular refactoring right now, you will edit
lines of code near those another developer is currently editing
and likely will need to resolve a conflict manually.” Such
information can (1) help developers make well-informed deci-
sions about how to proceed, (2) identify risks of performing
certain tasks, and (3) encourage communication to prevent
costly future conflicts.

Consider a team of collaborative developers, each working in
parallel on adding a new, independent feature to a software
system. The developers are currently working in separate
packages, and their changes cause neither textual, build, nor
test conflicts. We envision three ways in which a tool could
predict the trajectories of the developers’ changes and identify
potential future conflicts.

First, for each developer, a tool could consider the changes
that developer has already made, and look at the history of
this project’s development to identify other software artifacts
(such as methods, classes, files, tests, configuration parame-
ters, requirements, etc.) that were edited after, or otherwise
affected by these changes. The tool could then check for over-
laps between artifacts edited by the developers and predict
if the changes may cause conflicts. The tool would deliver
information to the developers about potential interactions of
their possible future changes, such as whether they are likely
to edit the same method, or affect the same test or requirement.

Second, a tool could build a model (perhaps using machine
learning) of partial changes that have resulted in conflicts
in the past and then apply this model to classify the current
changes. To do this, the tool would need a history of project
development and sets of changes labeled as having or not hav-
ing resulted in conflicts. Some such sets already exist [4]. For
this approach to succeed, machine learning needs to be able to
infer, from exiting data, whether changes cause conflicts.

Third, building on the speculative analysis technique used
by Crystal, for each developer, a tool could (1) attempt to
identify which actions that developer is most likely to perform
next, (2) execute sequences of those actions speculatively
in the background to create new possible future development
states, and then, (3) again speculatively, attempt to merge those
states to identify conflicts. To do this, the tool would have to
accurately and precisely identify those actions developers are
likely to perform. These could be mined from development
histories or determined using heuristics, e.g., a developer is
more likely to fix complication errors before attempting to
refactor or to add a new feature.

While no existing tools implement our vision, some do in-
crease developer awareness of the consequences of future ac-
tions. For example, Mylyn [13] shares with others manually-
specified information about what tasks the developers will
work on, improving awareness and potentially preventing con-
flicts. However, Mylyn does not detect this information auto-
matically, instead relying on humans to consistently update
their lists of tasks. HATARI [21] warns developers when they
are working on error-prone artifacts. While not aimed at col-
laborative development, HATARI has a similar goal to ours:

http://crystalvc.googlecode.com

making developers aware of the risks of their future actions.

While predicting long-term trajectories may be far fetched, we
are encouraged by the fact that even short term prediction can
immediately bring benefits to the developers. Today, develop-
ers are forced to make poorly-informed decisions because they
lack access to information about potential conflicts. We envi-
sion that future collaborative development tools will make this
information available and allow for well-informed decisions.

BIOGRAPHIES
Yuriy Brun is a postdoctoral researcher at the University of
Washington. He believes that collaborative development can
be significantly aided by improving the understanding of how
local changes developers make affect others’ changes and the
system as a whole.

Kıvanç Muşlu is a PhD student at the University of Washing-
ton. He believes that collaborative development can benefit
from tools and techniques that capture not only the interactions
between the developers and machines but also between the
developers themselves.

Reid Holmes is on the faculty of Computer Science at the
University of Waterloo. His research interests focus on un-
derstanding and improving how developers reason about and
evolve software systems.

Michael D. Ernst is on the faculty of Computer Science &
Engineering at the University of Washington. His research
aims to make software more reliable, more secure, easier, and
more fun to produce.

David Notkin is on the faculty of Computer Science & Engi-
neering at the University of Washington, with research and
educational interests in software engineering in general and
software evolution in particular.

REFERENCES
1. Al-Ani, B., Trainer, E., Ripley, R., Sarma, A., van der

Hoek, A., and Redmiles, D. Continuous coordination
within the context of cooperative and human aspects of
software engineering. In CHASE (Leipzig, Germany, May
2008), 1–4.

2. Biehl, J. T., Czerwinski, M., Smith, G., and Robertson,
G. G. FASTDash: A visual dashboard for fostering aware-
ness in software teams. In CHI (San Jose, CA, USA, Apr.
2007), 1313–1322.

3. Brun, Y., Holmes, R., Ernst, M. D., and Notkin, D. Spec-
ulative analysis: Exploring future states of software. In
FoSER (Santa Fe, NM, USA, Nov. 2010), 59–63.

4. Brun, Y., Holmes, R., Ernst, M. D., and Notkin, D. Proac-
tive detection of collaboration conflicts. In ESEC/FSE
(Szeged, Hungary, Sep. 2011), 168–178.

5. Collins-Sussman, B. The Subversion project: Buiding a
better CVS. Linux 2002, 94 (2002), 3.

6. de Souza, C. R. B., Redmiles, D., and Dourish, P. “Break-
ing the code”, Moving between private and public work in
collaborative software development. In GROUP (Sanibel
Island, FL, USA, Nov. 2003), 105–114.

7. Dewan, P., and Hegde, R. Semi-synchronous conflict de-
tection and resolution in asynchronous software devel-
opment. In ECSCW (Limerick, Ireland, Sep. 2007), 159–
178.

8. Estublier, J., and Garcia, S. Process model and awareness
in SCM. In SCM (Oxford, England, UK, Sep. 2005), 59–
74.

9. Grinter, R. E. Using a configuration management tool to
coordinate software development. In CoOCS (Milpitas,
CA, USA, Aug. 1995), 168–177.

10. Grune, D. Concurrent Versions System, a method for inde-
pendent cooperation. Tech. Rep. IR 113, Vrije Universiteit,
1986.

11. Hattori, L., and Lanza, M. Syde: A tool for collaborative
software development. In ICSE Tool Demo (Cape Town,
South Africa, May 2010), 235–238.

12. Holmes, R., and Walker, R. J. Customized awareness:
Recommending relevant external change events. In ICSE
(Cape Town, South Africa, 2010), 465–474.

13. Kersten, M., and Murphy, G. C. Using task context to
improve programmer productivity. In FSE (Portland, OR,
USA, 2006), 1–11.

14. Milewski, B. Distributed source control system. In SCM
(Boston, MA, USA, 1997), 98–107.

15. Perry, D. E., Siy, H. P., and Votta, L. G. Parallel changes in
large-scale software development: an observational case
study. ACM TOSEM 10 (July 2001), 308–337.

16. Rochkind, M. J. Mining metrics to predict component
failures. IEEE TSE 1, 4 (1975), 364–370.

17. Sarma, A. A survey of collaborative tools in software
development. Tech. Rep. UCI-ISR-05-3, University of
California, Irvine, Institute for Software Research, 2005.

18. Sarma, A., Bortis, G., and van der Hoek, A. Towards
supporting awareness of indirect conflicts across software
configuration management workspaces. In ASE (Atlanta,
GA, USA, Nov. 2007), 94–103.

19. Sarma, A., Noroozi, Z., and van der Hoek, A. Palantı́r:
raising awareness among configuration management
workspaces. In ICSE (Portland, OR, May 2003), 444–454.

20. Sarma, A., Redmiles, D., and van der Hoek, A. Empir-
ical evidence of the benefits of workspace awareness in
software configuration management. In FSE (Atlanta, GA,
USA, Nov. 2008), 113–123.

21. Śliwerski, J., Zimmermann, T., and Zeller, A. HATARI:
Raising risk awareness. In ESEC/FSE (Lisbon, Portugal,
2005), 107–110.

22. Tichy, W. F., and Tichy, W. F. RCS - a system for version
control. Software: Practice and Experience 15 (1985),
637–654.

23. Walrad, C., and Strom, D. The importance of branching
models in SCM. Computer 35, 9 (Sep. 2002), 31–38.

24. Wloka, J., Ryder, B., Tip, F., and Ren, X. Safe-commit
analysis to facilitate team software development. In ICSE
(Vancouver, BC, Canada, May 2009), 507–517.

