
Smart Redundancy for Distributed Computation

Yuriy Brun , George Edwards�, Jae young Bang , and Nenad Medvidovic

University of Washington �Blue Cell Software University of Southern California

Seattle, WA, USA Los Angeles, CA, USA Los Angeles, CA, USA

brun@cs.washington.edu george@bluecellsoftware.com {jaeyounb, neno}@usc.edu

Abstract

Many distributed software systems allow participa-
tion by large numbers of untrusted, potentially faulty
components on an open network. As faults are in-
evitable in this setting, these systems utilize redun-
dancy and replication to achieve fault tolerance. In
this paper, we present a novel “smart” redundancy
technique called iterative redundancy, which ensures
efficient replication of computation and data given
finite processing and storage resources, even when
facing Byzantine faults. Iterative redundancy is more
efficient and more adaptive than comparable state-of-
the-art techniques that operate in environments with
unknown system resource reliability. We show how
systems that solve computational problems using a
network of independent nodes can benefit from iterative
redundancy. We present a formal analytical analysis
and an empirical analysis, demonstrate iterative re-
dundancy on a real-world volunteer-computing system,
and compare it to existing methods.

1. Introduction

Many software systems today, such as distributed

data stores (e.g., Freenet [11]) and peer-to-peer A/V

streaming applications (e.g., Skype [6]), consist of

large numbers of autonomous software and hard-

ware participants that interact over untrusted networks.

These systems utilize redundancy mechanisms to toler-

ate faults and achieve acceptable levels of reliability. In

this paper, we focus on one subset of these systems:

distributed computation architectures (DCAs), which

solve massive problems by deploying highly paralleliz-

able computations (i.e., sets of independent tasks) to

dynamic networks of potentially faulty and untrusted

computing nodes. Widely known and successful DCAs

include grid systems (e.g., Globus [16]), volunteer-

computing systems (e.g., BOINC [7]), and MapReduce

systems (e.g., Hadoop [17]). DCAs are used exten-

sively for diverse applications, including cryptanaly-

sis [29], web analytics [13], and scientific simulations

in fields such as physics [22], bioinformatics [5], and

economics [20].
It is imperative that DCAs be able to withstand

frequent failures since the entities in their networks are

not subjected to any significant dependability checking

and malicious entities can easily join the system or

compromise other participants. Today’s DCAs aim to

ensure the correct execution of each task through

voting: multiple independent worker machines perform

the same computation and their results are checked for

agreement. This technique is costly, however, as taking

a vote among n workers requires expending a factor

of n resources or suffering a factor of n slowdown in

performance.
In this paper, we propose a new redundancy tech-

nique — iterative redundancy — that is based on

voting but exploits the properties of DCAs to adapt

to changing execution environments and improve reli-

ability more efficiently than existing alternatives. More

generally, iterative redundancy is applicable to systems

that perform computations using a pool of independent

processing resources, such that multiple resources have

the ability to perform each task and the system may

choose, at runtime, among the available resources at

random. A key property of iterative redundancy is

that it does not require knowing the reliability of the

processing resources in the pool, which expands its

applicability to systems for which this information can-

not be determined. We describe iterative redundancy,

formally analyze its cost and performance impacts,

and perform a rigorous empirical evaluation on a

real-world volunteer-computing system. We compare

iterative redundancy to two alternatives:

• Traditional redundancy, also called k-modular re-
dundancy [21]), which performs k ∈ {3, 5, 7, . . .}
independent executions of the same task in par-

allel and then takes a vote on the correctness of

the result.

2011 31st International Conference on Distributed Computing Systems

1063-6927/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDCS.2011.25

665

• Progressive redundancy, which is an adaptation

of a related technique from the area of self-

configuring optimistic programming research [8].

We demonstrate that iterative redundancy is superior

to both traditional and progressive redundancy because

iterative redundancy is more efficient than both these

alternative methods. Iterative redundancy produces the

same level of system reliability at a lower cost in

employed system resources (or, equivalently, higher

reliability at the same cost). In fact, as we argue

in Section 3.3, iterative redundancy is optimal with

respect to the cost: it is guaranteed to use the minimum

amount of computation needed to achieve the desired

system reliability.

Finally, we discuss the relationship between iterative

redundancy and several other types of redundancy

techniques, including active replication [28], primary

backup [9], checkpointing [26], and credibility-based

fault tolerance [27]. In some cases, iterative redun-

dancy can be used in conjunction with these tech-

niques, as is the case with active replication. In other

cases, iterative redundancy can be used in situations

where these techniques cannot, as is the case with

credibility-based fault tolerance.

The remainder of this paper is organized as follows.

Section 2 presents the definitions and assumptions

underlying our work. Section 3 describes the three

redundancy techniques and provides their theoretical

analysis, while Section 4 presents the empirical evalu-

ation and results. Section 5 analyzes several threats to

the validity. The paper concludes with an overview of

the related work and a recap of our contributions.

2. Definitions and Assumptions

This section defines our model of a DCA, states the

threat model we use, and enumerates the assumptions

we make to aid the explanation and analysis of iterative

redundancy.

2.1. System Model

In this paper, we use the following nomenclature. A

computation is the typically large problem being solved

by a DCA. A task is one of the parts of the computation

that can be performed independently of the others.

A job is an instance of a task that a particular node

performs. With redundancy, each task will be executed

as several identical jobs on distinct nodes. In our model

of a DCA, a task server breaks up a computation into

a large number of tasks. The task server then assigns

jobs to nodes in a node pool, ensuring that each node

is chosen at random. After returning a response to a

leave
node
pool

nodes
quit
pool

new
nodes

volunteer

computation subdivide computation into tasks

task server

node pool

get next job from queue

randomly select node

assign job to node

compare results and
create new jobs

job
queue

perform
job

return
to node
pool

create jobs for tasks

Figure 1: A model of a DCA.

job to the task server, each node rejoins the node pool

and can again be selected and assigned a new job. New

volunteer nodes may join the pool while other nodes

may leave.

Figure 1 depicts this system model. The model

accurately represents a number of DCAs, including

the BOINC family of volunteer-computing systems [4],

[7]. Section 6 discusses some specific distributed sys-

tems to which our techniques apply.

2.2. Threat Model

In this paper, we employ the Byzantine failure

model, which is the most general and widely accepted

threat model [15], [19], [21], [23] that has been ap-

plied to numerous distributed systems [1], [3], [19].

The model includes Byzantine failures and allows for

malicious nodes that collude and form cartels to try to

mislead and break computations. Byzantine nodes may

try to report incorrect results or not report a result at

all. For the purposes of this paper, we assume a node

that does not report a result in a timely fashion to have

failed. There are two important statements to be made

about this threat model:

1. Our threat model is at least as strong as those

used by redundancy techniques currently deployed in

DCAs [4], [10], [13]. On the one hand, our threat

model is certainly not bulletproof. For example, if

failures are perfectly correlated (meaning if one node

fails on a task, all nodes will fail on that task), all

redundancy techniques fail to increase system reliabil-

ity. On the other hand, we make no assumptions about

failures that existing implementations of DCAs do not

make. In particular, we assume whether a node fails to

be a function of that node, and not of the computation

it is performing.

666

2. Given that faults occur, our model assumes the

worst possible case scenario: all faults are Byzantine

faults. That is, malicious nodes may collude to return

results that most hurt the reliability of the system.

For example, colluding nodes might not only return

a wrong result, but the same wrong result, making it

hard to identify malicious nodes. Similarly, malicious

nodes are aware of other nodes that failed and how

they failed, and consequently are able to return the

same wrong result as those failing nodes.

In a system with voting, the Byzantine failure model

can be applied by assuming that the result of every

job is one of two possible values. Although perhaps

counterintuitive, this assumption creates a worst-case

scenario because all failing and malicious nodes report

not only a wrong result but the same wrong result,

making it difficult to differentiate wrong results from

correct results.

2.3. Assumptions

In this section, we state five assumptions about the

nodes of the network on which a DCA is deployed.

These assumptions simplify the description and anal-

ysis of the three redundancy techniques, and help to

define the class of systems to which the techniques

apply. Section 5.3 discusses relaxing these assumptions

and demonstrates that iterative redundancy still applies

and, in some cases, performs even better on more

general networks.

1. Every job sent to the node pool has the same

probability of failure because, even though some nodes

may be more reliable than others, the jobs are assigned

to the nodes at random.

2. The reliability of nodes cannot be determined.

This assumption creates a constraint on the redundancy

technique, but expands the class of systems to which

the technique can be applied.

3. Node failures are independent of each other. That

is to say, which nodes fail is independent. However,

once nodes do fail, they are allowed to collude, fol-

lowing the Byzantine failure model.

4. The result of every job is one of two possible val-

ues (e.g., “yes” or “no”), but the result cannot be easily

verified, as in decision NP-complete problems [30]).

This assumption is derived from the Byzantine failure

model, as described above.

5. The reliability of the client that receives the final

result of the computation is excluded from the system’s

reliability.

3. Redundancy Algorithms

In this section, we specify three redundancy tech-

niques: the state-of-the-practice traditional redundancy,

the state-of-the-art progressive redundancy, and our

novel iterative redundancy. To characterize the behav-

ior of each technique, we derive formulae for two mea-

sures of their effect on systems: the system reliability
R(r) achieved by and the cost factor C(r) of applying

the redundancy technique. Both of these measures are

functions of the average reliability r ∈ [0, 1] of the

node pool; r can be defined as the fraction of time a

job returns the correct response. For completeness, we

present the somewhat complex formulae for cost and

reliability of each technique. As an aid to the reader,

Figure 3 provides a graphical depiction of the costs

and reliabilities. Further, in Section 4, we verify the

formulae’s correctness experimentally.

3.1. Traditional Redundancy

The k-vote traditional redundancy technique (some-

times called k-modular redundancy [21]) performs

k ∈ {3, 5, 7, . . .} independent executions of the same

task in parallel, and then takes a vote on the correctness

of the result. If at least some minimum number of

executions agree on a result, a consensus exists, and

that result is taken to be the solution. To simplify the

subsequent discussion, we use k+1
2 (i.e., a majority)

as the minimum number of matching results required

for a consensus. Modern implementations of DCAs,

including BOINC [4], [7] and Hadoop [17], rely on

traditional redundancy. Figure 2(a) graphically depicts

the traditional redundancy algorithm.

Example: Suppose each node’s reliability is r =
0.7 and k = 1 (i.e., there is no redundancy). Then the

system distributes just a single job for each task and

has the system reliability of 0.7. Using, instead, k = 19
results in a system reliability of 1− the chance that at

least 10 of the jobs fail: 1−∑19
i=10

(
19
i

)
0.3i0.719−i =

0.97, but the cost for this procedure is using 19 times

as many resources.

Analysis: Recall the two measures of a redundancy

technique: system reliability and cost factor. For k-

vote traditional redundancy, we refer to the system

reliability as R
k
TR(r) and the cost factor as C

k
TR(r).

Traditional k-vote redundancy repeats every task k
times, independently of r. Thus,

C
k
TR(r) = k. (1)

The reliability of k-vote traditional redundancy is the

probability that at least a consensus of jobs
(
k+1
2

)
does

667

solution

� �results identicalmax determine

distribute independent jobsk

(a) traditional redundancy

solution

yes

no

0
0

�
�
b
a

� � 2
1,max �� kba

results ofnumber
results ofnumber

bbb
aaa

��
��

distribute independent jobs� �bak ,max2
1 ��

(b) progressive redundancy

yes

solution

no

distribute enough independent
jobs to, in the best case,

achieve desired reliability

desired reliability
achieved?

compute reliability based on results

(c) iterative redundancy

Figure 2: Schematics of (a) traditional, (b) progressive, and (c) iterative redundancy techniques.

not fail, in other words, the sum of the probabilities

that only 0, 1, . . . , and k−1
2 jobs fail. Thus,

R
k
TR(r) =

k−1
2∑

i=0

(
k

i

)
rk−i(1− r)i. (2)

Figure 3 graphs the system reliability vs. the cost

factor of redundancy techniques for a node pool of

reliability r = 0.7. The reliability of a system employ-

ing traditional redundancy (labeled “TR”) approaches

1 exponentially as the cost factor grows linearly.

3.2. Progressive Redundancy

As part of our research into redundancy techniques,

we discovered a self-configuring optimistic program-

ming technique [8] that can be redesigned to apply

to DCAs. We have leveraged this scheme to develop

progressive redundancy. While, to our knowledge, pro-

gressive redundancy is not used today in any deployed

distributed systems, we introduce it here because,

in a sense, it represents a “midway” point between

traditional and iterative redundancy, both in terms of

the achieved system reliability as a function of cost,

and in helping to better explain iterative redundancy

to a reader who is familiar only with traditional re-

dundancy.

The key to progressive redundancy is the observation

that traditional redundancy sometimes reaches a con-

sensus quickly but still continues to distribute jobs that

do not affect the task’s outcome. Progressive redun-

dancy minimizes the number of jobs needed to produce

a consensus: the k-vote progressive redundancy task

server distributes only k+1
2 jobs. If all jobs return the

same result, there will be a consensus and the results

produced by any subsequent jobs of the same task

become irrelevant. If some nodes agree, but not enough

to produce a consensus, the task server automatically

distributes the minimum number of additional copies

of the job necessary to produce a consensus, assuming

that all these additional executions were to produce the

same result. The task server repeats this process until

a consensus is reached. Figure 2(b) graphically depicts

the progressive redundancy algorithm.

Example: As before, suppose k = 19 and r = 0.7.

Using progressive redundancy, the system reliability is

the probability that fewer than 10 (fewer than half) of

the jobs fail, or 0.97, which is the same as traditional

redundancy. As we will show in Equation (3), the cost

of this procedure is using 14.2 times as many resources

as a system without redundancy. This number is 1.3
times smaller than the cost of traditional redundancy:

while sometimes a task is distributed to as many as 19
nodes, many tasks reach the consensus earlier.

Analysis: For k-vote progressive redundancy, we

use R
k
PR(r) and C

k
PR(r) to denote the system reliabil-

ity and the cost factor, respectively. The cost factor of

progressive redundancy is at least the consensus (since

at least that many jobs must be distributed), plus the

sum, for every integer i larger than the consensus up

to k, of the probability that i jobs have not produced

a consensus. Thus,

C
k
PR(r)=

k+1

2
+

k∑
i= k+3

2

k−1
2∑

j=i− k+1
2

(
i−1

j

)
ri−1−j(1−r)j. (3)

668

TR

TR

TR

TR

TR
TR

TR

PR

PR

PR

PR

PR
PR

PR
PR PR

IR

IR

IR
IR IR

3 4 5 6 7 8 9
Cost Factor

10 11 12 13 14 15

0.85

0.9

0.95

1
System Reliability

Figure 3: The reliability of a system approaches 1
exponentially, as a function of cost, for traditional

(TR), progressive (PR), and iterative (IR) redundancy

techniques (here, r = 0.7).

The reliability of a system with k-vote progressive

redundancy is the probability that at least a consensus

of jobs
(
k+1
2

)
do not fail, exactly the same as with

traditional redundancy:

R
k
PR(r) =

k−1
2∑

i=0

(
k

i

)
rk−i(1− r)i. (4)

Figure 3 shows that for a given cost factor, pro-

gressive redundancy (labeled “PR”) always achieves a

higher system reliability than traditional redundancy.

3.3. Iterative Redundancy

DCAs typically execute jobs asynchronously and

have (1) access to runtime information about system

reliability and (2) the ability to alter task deployment

decisions based on that information. We leveraged this

observation to develop iterative redundancy.

Iterative redundancy distributes the minimum num-

ber of jobs required to achieve a desired confidence

level in the result, assuming that all the jobs’ results

agree. Then, if all jobs agree, the task is completed.

However, if some results disagree, the confidence

level associated with the majority result is diminished

because of the chance that the disagreeing results are

correct. In other words, the apparent risk of failure of

the task is increased. The algorithm then reevaluates

the situation and distributes the minimum number of

additional jobs that would achieve the desired level

of confidence. This process repeats until the agreeing

results sufficiently outnumber the disagreeing results to

reach the confidence threshold. Figure 2(c) graphically

depicts the progressive redundancy algorithm.

Example: Suppose r = 0.7 and the desired system

reliability is R = 0.97. Iterative redundancy uses R

as the confidence threshold and calculates how many

jobs’ results must unanimously agree to be sure of the

result’s correctness with probability R. For example,

if the task server distributes only one job, there is a
0.7

0.7+0.3 = 0.7 chance that the result is correct, but if

the task server distributes four jobs and they all return

the same result, there is a 0.74

0.74+0.34 > 0.97 chance that

the result is correct. Four is the minimum number of

jobs that can achieve the confidence threshold in this

example, so the task server distributes four jobs. If all

four jobs return the same result, the task is finished.

However, if some jobs return a disagreeing result,

the task server determines the minimum number of

additional jobs that must be distributed to achieve the

confidence threshold and produce the desired system

reliability. For example, if three jobs return agreeing

results and one returns a disagreeing result, the task

server determines that at least two more jobs must

return the majority result (with no additional jobs

returning the minority result) to achieve R. The task

server then automatically distributes two more jobs.

As we will show in Equation (5), the cost of iterative

redundancy, for this particular example, is the use

of 9.4 times as many resources as a system without

redundancy. Note that this cost is 1.5 times less than

the cost of progressive redundancy and 2.0 times less

than the cost of traditional redundancy.

Intuitively, progressive redundancy is guaranteed to

distribute the fewest jobs to achieve a consensus. In

contrast, iterative redundancy is guaranteed to dis-

tribute the fewest jobs needed to achieve a desired
system reliability. Thus far, we have avoided specifying

how the technique determines this minimum number of

jobs. The basic intuition described above leads to an al-

gorithm that requires (1) numerous relatively complex

probability computations and (2) node reliability as

an input parameter. Requiring the availability of node

reliabilities violates one of the assumptions we stated

in Section 2.3. We made this assumption because,

for many systems, it is not practical to obtain this

information. For example, in a volunteer-computing

system, the system has no information about new

volunteers. If the system collects information about

the reliability of nodes over time, malicious nodes

that have developed a bad reputation can change their

identity. For iterative redundancy, we have devised an

algorithm that does not require knowledge of node

reliability and can thus be applied to a wider class

of systems than credibility-based fault tolerance and

blacklisting [27]. We first describe the naı̈ve, complex

algorithm (that requires node reliabilities) and then the

simplified algorithm (which does not).

669

Complex algorithm: Suppose that, of a + b jobs,

a return one result with probability r, and b return

another result with probability 1− r. The confidence,

denoted q(r, a, b), that the a jobs reported the correct

result is the probability that a jobs are right and b jobs

are wrong, divided by the probability that a jobs are

right and b jobs are wrong plus the probability that b
jobs are right and a jobs are wrong. So q(r, a, b) =

ra(1−r)b

ra(1−r)b+(1−r)arb
. We can use this formula to deter-

mine, given some number b of jobs that have reported

a result we believe to be wrong (i.e., a result that is in

the minority), how many jobs must report the result we

believe to be right (i.e., a result that is in the majority)

for us to be R confident in the majority result. We

denote that number d(r,R, b). Thus, d(r,R, b) is the

minimum a such that q(r, a, b) ≥ R. We can compute

d(r,R, b) by testing consecutive a values or employing

Newton’s method [25].

Simplifying insight: While investigating iterative

redundancy, we observed that whenever a task com-

pleted, the difference between the number of majority

and minority results was constant. For example, if

the algorithm first sought 6 unanimously agreeing

results, but got 4 agreeing and 2 disagreeing results,

the algorithm would distribute 4 additional jobs in

an effort to produce an 8-to-2 majority. Thus, for

this example, the algorithm was attempting to achieve

a difference of 6 between agreeing and disagreeing

results. This phenomenon arises from the somewhat

counterintuitive fact (related to Bayes’s Theorem), that,

for all j, q(r, a, b) = q(r, a + j, b + j). For example,

6 agreeing results and 0 disagreeing results instills

the same confidence as 106 agreeing results and 100
disagreeing results. The key to understanding the rea-

soning is that while the probability of a 106-to-100
decision split occurring may be low, once the system

is faced with a 106 to 100 decision split, it is irrelevant

how unlikely such a situation was to happen in the first

place; given that this unlikely situation has occurred,

the relevant quantity is how likely the 106 jobs are to

have been correct. Theorem 1 and its proof formalize

this observation.

Theorem 1. Let r ∈ [0..1] and a, b ∈ Z≥0. Then ∀j ∈
Z≥0, q(r, a, b) = q(r, a+ j, b+ j).

Proof:

q(r, a+ j, b+ j) =
ra+j(1−r)b+j

ra+j(1−r)b+j + (1−r)a+jrb+j

=
rj

rj
ra(1−r)b+j

ra(1−r)b+j + (1−r)a+jrb

=
rj

rj
ra(1−r)b+j

ra(1−r)b+j + (1−r)a+jrb

=
(1−r)j

(1−r)j
ra(1−r)b

ra(1−r)b + (1−r)arb

=
ra(1−r)b

ra(1−r)b + (1−r)arb

= q(r, a, b)

Theorem 2 exhibits an even stronger notion: no

matter what r is, if a (potentially biased) coin is flipped

2b + d times and lands heads up b + d times, the

probability the coin is biased to land heads more often

than tails depends only on d and is independent of b.

Theorem 2. Let X be a Bernoulli random variable
and let d ∈ Z≥0. Then there exists c such that, for
all b ∈ Z≥0, if out of 2b + d samples of X , exactly
b + d are T (and b are F), then the probability that
P (X) ≥ 1

2 = c.

Proof: There are two possibilities: either P (X) ≥
1
2 or P (x) < 1

2 . If P (X) ≥ 1
2 , the probability that

exactly b + d samples are T is
(
2b+d
b+d

)
P (X)b+d(1 −

P (X))b. If P (x) < 1
2 , the probability that exactly b+d

samples are T is
(
2b+d

b

)
P (X)b(1− P (X))b+d. Then,

P

(
P (X) ≥ 1

2

)
=

=

(
2b+d
b+d

)
P (X)b+d(1− P (X))b(

2b+d
b+d

)
P (X)b+d(1−P (X))b+

(
2b+d

b

)
P (X)b(1−P (X))b+d

=
P (X)b+d(1− P (X))b

P (X)b+d(1− P (X))b + P (X)b(1− P (X))b+d

=
P (X)d(1− P (X))b

P (X)d(1− P (X))b + (1− P (X))b+d

=
P (X)d

P (X)d + (1− P (X))d

Let c be that value. Note that c does not depend on b.
Thus, c is identical for all b.

Simple algorithm: Using this insight, we can

greatly simplify the iterative redundancy algorithm.

We only need to determine d(r,R, 0) once and set

that quantity to be the required minimum difference

d between the number of jobs reporting the majority

result and the number reporting the minority result.

For example, if d(r,R, 0) = 6, the algorithm iterates,

automatically distributing jobs until 6 more jobs have

reported one result than the other. Even further, a

user may specify the desired reliability improvement

in terms of the d number, and then neither the user

670

COMPUTE(Task task, int d)
1 a← 0
2 b← 0
3 while a− b < d
4 deploy d− (a− b) task jobs on
5 independent, randomly chosen nodes
6 a← a + number of a results returned
7 b← b + number of b results returned
8 if a < b
9 a↔ b
10 return result a

Figure 4: The iterative redundancy algorithm.

nor our technique need know the average reliabil-

ity r of nodes in the node pool. This situation is

parallel to the progressive and traditional redundancy

techniques, in which the user specified a parameter

k. Figure 4 specifies the entire iterative redundancy

algorithm in pseudocode. Despite being much simpler

than and appearing to be quite different from the

original algorithm, this simplified algorithm deploys

the same number of redundant jobs in every situation

and accomplishes the exact same efficiency.

Analysis: For iterative redundancy with d as defined

above, we use R
d
IR(r) and C

d
IR(r) to denote the system

reliability and the cost factor, respectively. The cost

factor of iterative redundancy is the sum, for every b,
of the probability that the system distributes (d + 2b)
jobs and receives d+b of one result and b of the other,

weighted by the cost (d+ 2b). Thus,

C
d
IR(r)=

∞∑
b=0

(d+ 2b)P

[
d+ 2b jobs produce

d+ b identical results

]
. (5)

Note that for non-trivial d, Cd
IR(r) ≈ d

2r−1 .

Finally, the reliability of a system with iterative

redundancy is the probability that d more jobs return

the right result than the wrong result. Thus,

R
d
IR(r) = q(r, 0, d) =

rd

rd + (1− r)d
. (6)

Figure 3 shows that for a given cost factor, iterative

redundancy (labeled “IR”) always achieves a higher

system reliability than both traditional and progressive

redundancy.

4. Evaluation

This section analyzes the costs and benefits of

the three redundancy techniques. In addition to some

formal arguments based on Equations (1) through

(6), each analysis includes data from a discrete event

simulation of a DCA and a deployment of the BOINC

volunteer-computing system [4], [7] on the distributed

PlanetLab platform [24].

In Section 4.1, we describe our evaluation platforms

for the simulation and BOINC deployments. In Sec-

tion 4.2, we evaluate the efficiency of the techniques.

4.1. Evaluation Platforms

We used off-the-shelf platforms to evaluate the re-

dundancy techniques: XDEVS [14] and BOINC [7].

XDEVS Simulation Environment. The XDEVS sim-

ulation framework [14] is a highly extensible discrete

event simulator specialized for simulating software

systems. The jobs distributed to nodes in our XDEVS

simulations do not solve any specific problem; rather,

they perform simulated work for a simulated period

of time. The XDEVS simulation engine, which is

designed to enforce constraints on system behavior,

ensures that our system model described in Section 2

is accurately represented.

Using XDEVS allowed us to rapidly implement

each redundancy technique, flexibly experiment with

system parameters, such as the job reliability and

amount of redundancy employed, and observe dynamic

behavior not exposed by formal static analysis. To

allow for comparison, all the data given in this section

were generated from XDEVS simulation runs with (1)

at least 1,000,000 tasks and 10,000 nodes, (2) job

completion times that varied stochastically between 0.5
and 1.5 time units, according to a uniform distribution,

and (3) an average node reliability of 0.7.

Each simulation run recorded the simulated time

units required to complete the computation, the total

number of jobs generated, the average number of

jobs per task generated, the maximum number of jobs

generated for any single task, the number of tasks that

achieved a correct result, the average response time per

task, and the maximum response time for any task.

BOINC Deployment. Our second empirical evaluation

utilized the BOINC volunteer-computing system [4],

[7]. BOINC is a popular DCA currently deployed on

over a million machines. Examples of BOINC appli-

cations include SETI@home, Folding@home, Malar-

iacontrol.net, and Climateprediction.net. The BOINC

server software [7] allows distribution of a custom

problem to volunteering computers. To compare the

three redundancy techniques, we (1) developed a cus-

tom task server that decomposes 3-SAT [30] prob-

lems into individual tasks that test whether particular

Boolean assignments satisfy a Boolean formula, and

(2) modified the job-assignment and result-validation

671

TR

TR

TR

TR

TR
TR

TR
TR

PR

PR

PR

PR
PR

PR
PR

PR PR

IR

IR

IR
IR

IR

3 4 5 6 7 8 9
Cost Factor

10 11 12 13 14 15

0.85

0.9

0.95

1
System Reliability

(a) XDEVS simulations

TR

TR

TR

TR

TR
TR

TR

PR

PR

PR
PR

PR
PR PR PR

PR

IR

IR

IR
IR

IR

3 4 5 6 7 8 9
Cost Factor

10 11 12 13 14 15

0.75

0.8

0.85

0.9

0.95

1
System Reliability

(b) BOINC deployments

PR

PR
PR

PR
PR

IR

IR

IR
IR

IR

0.6 0.7 0.8
Node Reliability

0.9 1

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

Improvement Over
Traditional Redundancy

(c) Improvement

Figure 5: Experimental results from the (a) XDEVS simulations and (b) BOINC deployments, for r = 0.7. (c) The

ratio improvement in cost factor for progressive (PR) and iterative (IR) redundancy over traditional redundancy

varies with r.

procedures to employ iterative and progressive redun-

dancy.

We deployed BOINC on a 200-node subset of Plan-

etLab [24]. The PlanetLab testbed consists of ∼1,000
machines of varying speed and resources, distributed

at ∼500 locations around the world.

To allow for comparison, all the data given in this

section were generated from BOINC executions on 200
nodes that solved 22-variable 3-SAT problems. Each

problem was decomposed into 140 tasks. Three types

of failures were present in the BOINC system:

1) seeded failures that caused the wrong result to be

returned 30% of the time,

2) PlanetLab nodes becoming unresponsive, and

3) all other unanticipated failures that PlanetLab

nodes might experience.

Each execution recorded the time to complete the

computation, the total number of jobs generated, the

average number of jobs per task generated, the max-

imum number of jobs generated for any single task,

and the number of tasks that achieved a correct result.

4.2. Efficiency

In Section 3, we described our expectations for

the performance of the redundancy techniques. In this

section, we present empirical data from, first, simulated

systems executed in XDEVS and, then, from BOINC

systems deployed on PlanetLab to confirm our theo-

retical predictions.

Figure 5(a) shows empirical data from the XDEVS

simulations that supports the claim that iterative re-

dundancy outperforms traditional and progressive re-

dundancy in the number of jobs and time to execute

the computation. The data (for r = 0.7) closely agrees

with our analytical predictions. The exact cost factor

improvement of iterative redundancy depends on r.

Figure 5(c) demonstrates the improvement of iterative

and progressive redundancy, as a function of r, over

traditional redundancy. Progressive redundancy is most

helpful for high r. If r is close to 0.5, the cost factor of

k-vote progressive redundancy is close to k because,

most likely, the nodes just barely reach the consensus.

If, however, r is close to 1, progressive redundancy

reaches the consensus quickly and shows greatest ben-

efit over traditional redundancy. For r approaching 1,

progressive redundancy uses 2.0 times fewer resources

than traditional redundancy.

Iterative redundancy follows a similar trend. It is

more efficient for larger r, but it is at least 1.6 times as

efficient even for r close to 0.5. Iterative redundancy’s

efficiency peaks at 2.8 times that of traditional redun-

dancy for r ≈ 0.86. As r approaches 1, the efficiency

of iterative redundancy decreases slightly, to ≈ 2.4
times that of traditional redundancy. We hypothesize

that this decrease exists because, when almost all

nodes are reporting correct results, utilizing runtime

information to make redundancy decisions is somewhat

less beneficial than when the nodes’ behavior is highly

variable. More precisely, as r increases, the cost Ck
R(r)

to produce a constant increase in R
k
R(r) decreases

linearly for traditional redundancy, but approaches a

constant for iterative redundancy. We intend to conduct

further experiments to test this hypothesis.

In our next set of experiments, we deployed the

redundancy techniques on a BOINC system running

on PlanetLab. Since we seeded some faults, we knew

the reliability of the nodes would be no higher than

r = 0.7. However, due to the other PlanetLab failures,

we were unaware of the actual value of r. This scenario

accurately represents typical real-world deployments.

Figure 5(b) depicts the system reliability as a func-

tion of the cost factor of each technique. These data

points are averages of multiple executions. Iterative

672

redundancy, as we predicted, outperformed the other

redundancy techniques, delivering the highest system

reliability at the lowest cost in resources. Progressive

redundancy also outperformed traditional redundancy.

The measurements in Figure 5(b) allowed us to esti-

mate the reliability of PlanetLab nodes. The executions

consistently reported costs and system reliabilities con-

sistent with 0.64 < r < 0.67. Seeded faults lowered

r to 0.7 and naturally occurring PlanetLab faults were

responsible for the difference. The consistency of the

derived node reliabilities, among multiple trials with

different parameters and across all techniques, provides

strong evidence for the validity of the experiments.

5. Threats to Validity

We now discuss several perceived and actual threats

to validity. Section 5.1 discusses why predicting the

reliability of nodes is difficult and comes at a cost (and

that it is a significant advantage that iterative redun-

dancy does not require such predictions). Section 5.2

addresses the issue of response time, which is one

measure in which traditional redundancy outperforms

iterative and progressive redundancies. Section 5.3

analyzes how relaxing the assumptions we made in

Section 2.3 affects our analysis, at times, improving

our results.

5.1. Predicting Node Reliability

We have already shown that it is not necessary to

estimate r to use iterative redundancy. The user only

needs to specify how much improvement is needed (or

how high a cost in execution time is acceptable) and

the algorithm uses the available resources to achieve

the highest possible system reliability. However, in

some circumstances, it may be possible to estimate the

reliability of the node pool as a whole or the distinct

reliability of different classes of nodes and jobs.

Numerous techniques, such as spot-checking of re-

sults, blacklisting, and computing node credibility [27],

have been proposed as mechanisms to determine the

reliability of nodes and utilize that information to

improve system reliability. For example, in an attempt

to use node reliability knowledge, BOINC has recently

added adaptive replication, which prevents replication

of a task if a trusted node returns its result. However,

these techniques have various shortcomings. For exam-

ple, Byzantine faults cannot be reliably spot-checked,

and malicious nodes can earn credibility and fool

schemes for rating credibility. Moreover, these tech-

niques incur performance penalties of varying severity.

For example, spot-checking requires distributing jobs

to which the result is already known, while estimating

node credibility requires storing and updating the past

behavior of every node. In a large system, these per-

formance costs are significant and we regard iterative

redundancy not needing mechanisms for estimating

node reliability as a significant advantage.

5.2. Response Time

We have focused on minimizing the jobs needed to

to complete computations reliably. However, we have

thus far ignored one aspect of iterative redundancy that

may be important in some domains. Using traditional

redundancy, a task server can deploy all k jobs at once.

Meanwhile, using progressive or iterative redundancy,

the task server must deploy several jobs and wait for

the responses before possibly choosing to deploy more.

Therefore, these techniques can increase the response

time for a particular task. In the realm of DCAs, the

number of tasks is far larger than the number of nodes,

so the increased response time does not present a

problem because the nodes can always execute jobs

related to other tasks [4], [13]. In other words, no node

will ever be idle and all nodes processing capability

will be fully utilized. However, some applications may

pose requirements on the response time for particular

tasks.

A task server employing traditional redundancy at-

tempts to start all the jobs related to a single task

at once, in a single wave. In contrast, a task server

employing progressive redundancy may wait for sev-

eral waves of jobs to finish before deploying more;

however, it guarantees that there will be no more than
k−1
2 such waves. Iterative redundancy makes no such

guarantees, and while it is very unlikely, any one task

may require arbitrarily many waves of jobs.

TR TR TR TR TR

PR

PR
PR PR

PR

IR

IR
IR

IR
IR

0 5 10 15
Cost Factor

20 25

1

1.5

2

2.5

3

Response Time

Figure 6: The average response time for tasks using

traditional (TR), progressive (PR), and iterative (IR)

redundancy.

673

Figure 6 graphs the average response times for tasks

using the three redundancy techniques, as computed

by XDEVS simulations. The response time depends

on the cost factor. For the instances measured, pro-

gressive redundancy took between 1.4 and 2.5 times

longer and iterative redundancy between 1.4 and 2.8
times longer to respond than traditional redundancy.

Thus, progressive redundancy offers a lower average

response time and a lower upper bound on response

time than iterative redundancy.

5.3. Relaxing Assumptions

We made several assumptions, listed in Section 2.3,

that helped to clarify how and why iterative redun-

dancy works. We assumed that every job sent to the

node pool had the same probability of failure, that

those failures were independent, and that the result of

every job was one of two possible values. This section

explains how redundancy can apply to DCAs deployed

on networks without these assumptions, and, in some

cases, can even benefit from their relaxation.

Equations (1) through (6), as well as the analysis in

Section 4, reflect the assumption that each job has an

equal probability of failure. We made this assumption

based on the fact that many DCAs (e.g., BOINC [4]

and Hadoop [17]) assign jobs to nodes from the node

pool at random; therefore, from the node reliability

perspective, every job submitted to the job queue has

the same probability of failure. However, for some

other types of systems, this assumption might not

hold. In these cases, the only necessary change to

Equations (1) through (6) is the replacement of r
with appropriate reliabilities of the relevant nodes. For

example, if rc denoted the reliability of a particular job

c, Equation (3) becomes

C
k
PR=

k+1

2
+

k∑
i= k+3

2

k−1
2∑

j=i− k+1
2

(
i−1

j

) j∏
c=1

rc

i∏
c=j+1

(1−rc) .

The final cost and probability of failure would then

depend on the probability distribution.

We have so far assumed that job failures are in-

dependent. However, in some cases, probabilities of

job failures may depend on each other: e.g., if a

node in one part of the world fails because of a

natural disaster, others near it are more likely to

fail as well. If the dependencies among job failure

probabilities are known, job schedulers can use the

additional information to decrease the probability of

failure, using a scheme based on the complex form of

the iterative redundancy algorithm or credibility-based

fault tolerance [27]. However, if the dependencies are

unknown, iterative redundancy can still be used. The

analysis of the algorithm would again change as above,

with r being replaced with the specific reliabilities of

the relevant nodes.

The assumption that the result of every task is a

single bit, as in decision NP-complete problems, has

simplified our analysis thus far, but it actually turns

out to be the worst-case scenario. Compare two types

of tasks: the first asks whether 22 = 4 and the second

asks for the result of 22. For the first task, all nodes

that fail and report the wrong result will report “no”,

possibly making it difficult to distinguish between the

correct and incorrect result. For the second task, nodes

may report distinct integers, and it may be possible to

determine that the correct result is 4 even if more than

half of the nodes fail, because the plurality (though not

the majority) will report the correct result.

Iterative redundancy is naturally applicable to sys-

tems that perform tasks with non-binary results. The

probabilities of failure and costs of execution we have

presented are upper bounds for non-binary systems,

and all our analysis applies as is. For all (binary and

non-binary) systems with malicious nodes that collude

to try to cause failures, our analysis gives tight bounds

on the failure probabilities and execution costs. It is

possible to develop a threat model that is weaker than

ours and analyze non-binary systems that disallow

cooperation between malicious nodes; however, such

an analysis is unlikely to produce meaningful improve-

ments on the bounds we present.

Another important aspect of non-binary results is

that two non-identical results may actually represent

the same information (e.g., evaluations of
√
2 may

return slight differences in the least significant bits). In

such cases, the comparison of jobs’ results is problem-

specific, and the distributing nodes must be equipped

with the proper comparison algorithms. BOINC uses

homogeneous redundancy, an approach that sorts nodes

into equivalence classes that report identical answers,

to resolve this issue.

6. Related Work

This section contrasts iterative redundancy with ex-

isting approaches. Space limitations prevent discussion

of the extensive literature in distributed systems.

We based progressive redundancy on a self-con-

figuring optimistic programming technique [8] aimed

at component-based systems. Such systems allow for

asynchronous job scheduling; however, they focus on

minimizing response time and typically allocate finite

resources to each task. DCAs relax these limits, which

allows iterative redundancy to deploy jobs without a

674

priori knowledge of node reliability or a bound on the

number of jobs.

Primary backup [9] and active replication [28] are

two popular redundancy architectures. Primary backup

uses multiple servers to improve the reliability of a ser-

vice — one server designated as primary. The primary-

backup architecture handles on-the-fly updates of the

backups to ensure limits on losses from primary-server

failures, while keeping the cost of updates among

the servers low. Primary backup is widely used in

commercial fault-tolerant systems [9]. Iterative redun-

dancy complements primary backup by specifying, at

runtime, how many backups should exist to guarantee

the maximum reliability for a given cost.

Active replication removes the centralized control of

primary backup and minimizes losses that occur when

some replicas fail. Active replication incurs a high cost

associated with keeping all replicas synchronized [28].

Iterative redundancy complements active replication

by specifying, at runtime, how many replicas should

exist. While primary backup and active replication

propose mechanisms for implementing redundancy in

distributed systems, iterative redundancy improves the

efficiency of those mechanisms.

Credibility-based fault tolerance [27] uses prob-

ability estimates to efficiently detect erroneous re-

sults submitted by malicious volunteers in volunteer-

computing systems. The probability calculations used

by credibility-based fault tolerance resemble the com-

plex form of the iterative redundancy algorithm. How-

ever, credibility-based fault tolerance does not incorpo-

rate our simplifying insight that allows the algorithm

to function without any estimates of node reliability.

As a result, credibility-based fault tolerance is forced

to rely on spot-checking with blacklisting. However,

Byzantine faults cannot be reliably spot-checked, and

malicious nodes can earn credibility and fool schemes

for rating credibility.

Hwang and Kesselman [18] proposed a method for

injecting fault tolerance into grids that handles a wide

variety of faults within distributed systems. This work

uses a service to detect crash failures (and an extension

to allow the system designer to specify how to detect

other failures) and a failure-handling framework that

enforces designer-defined policies [18].

Traditional checkpoint techniques can also be ap-

plied to DCAs to log partially completed work and

prevent data and computation loss in cases of crash

failures. Checkpoints can be effective when individual

subcomputations take a long time to complete [26].

Further, using checkpoints and replication together can

reduce the number of replicas needed to detect Byzan-

tine failures [2] over what the standard Byzantine

agreement protocols [28] require.

Finally, autonomous agents capable of detecting

failing components and initiating on-demand repli-

cation allow autonomic fault tolerance, although the

developer has to implement fault-specific detection

mechanisms into these agents [12].

7. Contributions

We presented a novel technique, iterative redun-

dancy, that improves on existing reliability techniques

by leveraging runtime information. We identified sev-

eral types of systems to which iterative redundancy ap-

plies and concentrated in this paper on DCAs. Iterative

redundancy is more efficient than existing methods in

its use of resources. In addition to a rigorous theoretical

analysis of iterative redundancy, we verified iterative

redundancy’s efficiency with an empirical evaluation

based on two deployments: the XDEVS discrete event

simulator and the BOINC volunteer-computing system.

Acknowledgments

This material is supported by the National Science

Foundation under Grant numbers 0820170, 0905665,

and 0937060 to the Computing Research Association

for the CIFellows Project.

References

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K.
Reiter, and J. J. Wylie, “Fault-scalable Byzantine fault-
tolerant services,” in Proceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP05),
Brighton, UK, 2005, pp. 59–74.

[2] A. Agbaria and R. Friedman, “A replication- and
checkpoint-based approach for anomaly-based intrusion
detection and recovery,” in Proceedings of the Sec-
ond International Workshop on Security in Distributed
Computing Systems (SDCS05), 2005, pp. 137–143.

[3] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier,
and S. Toueg, “Consensus with Byzantine failures
and little system synchrony,” in Proceedings of the
International Conference on Dependable Systems and
Networks (DSN06), Philadelphia, PA, USA, 2006, pp.
147–155.

[4] D. P. Anderson, “BOINC: A system for public-resource
computing and storage,” in Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing
(GRID04), Pittsburgh, PA, USA, 2004, pp. 4–10.

[5] J. Andrade, L. Berglund, M. Uhlén, and J. Odeberg,
“Using grid technology for computationally intensive
applied bioinformatics analyses,” In Silico Biology,
vol. 6, no. 0046, 2006.

675

[6] S. A. Baset and H. Schulzrinne, “An analysis of
the skype peer-to-peer Internet telephony protocol,”
in Proceedings of the 25th Conference on Computer
Communications (IEEE Infocom06), Barcelona, Spain,
2006.

[7] BOINC, “The Berkeley open infrastructure for network
computing,” http://boinc.berkeley.edu, 2009.

[8] A. Bondavalli, S. Chiaradonna, F. D. Giandomenico,
and J. Xu, “An adaptive approach to achieving hardware
and software fault tolerance in a distributed computing
environment,” Journal of Systems Architecture, vol. 47,
no. 9, pp. 763–781, 2002.

[9] N. Budhiraja, K. Marzullo, F. B. Schneider, and
S. Toueg, “The primary-backup approach,” in Dis-
tributed Systems, 2nd ed., 1993, pp. 199–216.

[10] A. J. Chakravarti and G. Baumgartner, “The organic
grid: Self-organizing computation on a peer-to-peer
network,” in Proceedings of the 1st International Con-
ference on Autonomic Computing (ICAC04), New York,
NY, USA, 2004, pp. 96–103.

[11] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong,
“Freenet: A distributed anonymous information storage
and retrieval system,” in International Workshop on
Design Issues in Anonymity and Unobservability, 2001,
pp. 46–66.

[12] A. De Luna Almeida, J.-P. Briot, S. Aknine, Z. Gues-
soum, and O. Marin, “Towards autonomic fault-
tolerant multi-agent systems,” in Proceedings of the
2nd Latin American Autonomic Computing Symposium
(LAACS07), Petropolis, RJ, Brazil, 2007.

[13] J. Dean and S. Ghemawat, “Mapreduce: Simplified
data processing on large clusters,” in Proceedings of
the 6th Symposium on Operating System Design and
Implementation (OSDI04), San Francisco, CA, USA,
2004.

[14] G. Edwards and N. Medvidovic, “A highly extensi-
ble simulation framework for domain-specific architec-
tures,” Center for Software Engineering, University of
Southern California, Tech. Rep. USC-CSSE-2009-511,
2009.

[15] A. D. Friedman and P. R. Menon, Fault Detection in
Digital Circuits. Prentice Hall, 1971.

[16] “The Globus alliance,” http://www.globus.org, 2005.

[17] “Hadoop,” http://hadoop.apache.org, 2009.

[18] S. Hwang and C. Kesselman, “A flexible framework for
fault tolerance in the grid,” Journal of Grid Computing,
vol. 1, no. 3, pp. 251–272, 2003.

[19] P. Jalote, Fault Tolerance in Distributed Systems. Pren-
tice Hall, 1994.

[20] T. Kimoto, K. Asakawa, M. Yoda, and M. Takeoka,
“Stock market prediction system with modular neural
networks,” in Proceedings of the International Joint
Conference on Neural Networks (IJCNN90), 1990, pp.
1–6.

[21] I. Koren and C. M. Krishna, Fault-Tolerant Systems.
Elsvier, Inc., 2007.

[22] M. Lamanna, “The LHC computing grid project at
CERN,” Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, De-
tectors and Associated Equipment, vol. 534, no. 1–2,
pp. 1–6, 2004.

[23] L. Lamport, R. Shostak, and M. Pease, “The Byzantine
generals problem,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 4, pp. 382–401,
1982.

[24] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A
blueprint for introducing disruptive technology into the
Internet,” ACM SIGCOMM Computer Communication
Review, vol. 33, no. 1, pp. 59–64, 2003.

[25] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery, Numerical Recipes: The Art of Scientific
Computing, 3rd ed. Cambridge University Press, 2007.

[26] S. B. Priya, M. Prakash, and K. K. Dhawan, “Fault
tolerance-genetic algorithm for grid task scheduling
using check point,” in Proceedings of the 6th Interna-
tional Conference on Grid and Cooperative Computing
(GCC07), 2007, pp. 676–680.

[27] L. F. G. Sarmenta, “Sabotage-tolerance mechanisms
for volunteer computing systems,” Future Generation
Computer Systems, vol. 18, no. 4, pp. 561–572, 2002.

[28] F. B. Schneider, “Implementing fault-tolerant services
using the state machine approach: A tutorial,” ACM
Computing Surveys, vol. 22, pp. 299–319, 1990.

[29] A. Setiawan, D. Adiutama, J. Liman, A. Luther, and
R. Buyya, “GridCrypt: High performance symmetric
key using enterprise grids,” in Proceedings of the
5th International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies
(PDCAT04), Singapore, 2004.

[30] M. Sipser, Introduction to the Theory of Computation.
PWS Publishing Company, 1997.

676

