
Improving Impact of
Self-Adaptation and Self-Management Research

through Evaluation Methodology

Position Paper

Yuriy Brun
Computer Science & Engineering

University of Washington
Seattle, WA 98195-2350, USA
brun@cs.washington.edu

ABSTRACT
Today, self-adaptation and self-management approaches to
software engineering are viewed as specialized techniques
and reach a somewhat limited community. In this paper, I
overview the current state and expectation of self-adaptation
and self-management impact in industry and in premier pub-
lication venues and identify what we, as a community, may
do to improve such impact.

In particular, I find that common evaluation methodolo-
gies make it relatively simple for self-adaptation and self-
management research to be compared to other such research,
but not to more-traditional software engineering research. I
argue that extending the evaluation to include comparisons
to traditional software engineering techniques may improve
a reader’s ability to judge the contribution of the research
and increase its impact. Finally, I propose a set of evaluation
guidelines that may ease the promotion of self-adaptation
and self-management as mainstream software engineering
techniques.

1. INTRODUCTION
Self-adaptation and self-management are two classes of

techniques that may significantly improve software systems
of the future. Such techniques can help tackle increased
complexity of the systems themselves and of their environ-
ments. System complexity typically grows with increase in
the number (and complexity) of features and requirements.
Environment complexity typically grows with the size of the
environment and as systems are asked to tolerate potentially
faulty components, malicious attackers, and rapidly chang-
ing, unreliable resources.

Studies of self-adaptation and self-management software
have become popular, with several venues emerging, e.g.,
the ACM Transactions on Autonomous and Adaptive Sys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS ’10, May 2–8, 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-971-8/10/05 ...$10.00.

tems (TAAS), the International Conference on Autonomic
Computing and Communications (ICAC), the IEEE Inter-
national Conferences on Self-Adaptive and Self-Organizing
Systems (SASO), the Workshop on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), and the
Schloss Dagstuhl seminar 08031: Software Engineering for
Self-Adaptive Systems, to name just a few. Our commu-
nity strongly believes that, in the near future, at least cer-
tain classes of complex software systems will rely heavily on
self-adaptation and self-management [13, 20]. Despite our
conviction that this work is relevant to the broad field of
software engineering, with few exceptions (e.g., Calinescu
and Kwiatkowska [8], Denaro et al. [15], and Dolev and
Yagel [16]), our community publishes at the specialized ve-
nues, and not at the highly reputable software engineer-
ing venues (e.g., the ACM/IEEE International Conference
on Software Engineering (ICSE), the European Software
Engineering Conference (ESEC) and the ACM Symposium
on the Foundations of Software Engineering (FSE), IEEE
Transactions on Software Engineering (TSE), etc.). Even
conferences seemingly well-suited for self-management and
self-adaptation, such as the IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), focus
far more on techniques that automate software development
than ones that automate runtime management.

The main goals of this paper are (1) to identify whether
there exists an impact gap: a gap between the expected
impact of self-adaptation and self-management research on
software and the perceived impact of such research in the
premier software engineering publication venues, and (2) to
identify possible reasons for such an impact gap and develop
suggestions for closing the gap.

I will first argue that the increase in the volume of re-
search, growing system complexity, and considerable com-
mitments from industry indicate the importance of self-adap-
tation and self-management techniques to software engineer-
ing. I will then quantitatively observe that such research is
disproportionately underrepresented at the premier software
engineering publication venues. Next, I will speculate that
one way to increase such representation is by easing the com-
parison between self-adaptation and self-management tech-
niques and traditional software engineering techniques. Fi-
nally, I will suggest guidelines that researchers may follow
in evaluating their research to facilitate such a comparison
and to more effectively demonstrate the benefits, and costs,

1

mailto:brun@cs.washigton.edu

of self-adaptation and self-management. It is important to
note that my suggestions will not be universally applicable
and, even when applicable, may not align perfectly with all
researchers’ goals and constraints. These guidelines can help
ease certain types of comparison and should be used when
such comparison is beneficial.

2. EVIDENCE OF AN IMPACT GAP
In this section, I first argue that self-adaptation and self-

management software research is perceived as integral to the
advance of software engineering. Toward that goal, I observe
the vast growth in such research and evaluate the relevant
industrial investment and commitment. I next argue that, in
an apparent contradiction to my first finding and in evidence
of an impact gap, self-adaptation and self-management soft-
ware research is underrepresented at the premier software
engineering publication venues.

2.1 Research Growth and Industrial Commit-
ment

The emergence and growth of self-adaptation and self-
management research are perhaps most evident in the num-
ber and quality of journals and professional meetings, such
as conferences, that have appeared over the last few years.
Among these are: the International Conference on Auto-
nomic Computing and Communications (ICAC), started in
2004; the ACM Transactions on Autonomous and Adaptive
Systems (TAAS), started in 2006; the IEEE International
Conferences on Self-Adaptive and Self-Organizing Systems
(SASO), started in 2007; the Workshop on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS),
started in 2006 and grown to become a symposium starting
in 2011; and the Schloss Dagstuhl seminar 08031: Software
Engineering for Self-Adaptive Systems, held in 2008, as well
as the upcoming sequel Schloss Dagstuhl seminar 10431, to
be held in 2010. The emergence of these venues indicates
not only high interest and level of productivity from the
academic community, but also the recognition by the spon-
soring organizations of the importance and potential impact
of such research.

Scientists from distinct disciplines in software engineer-
ing have identified that self-adaptation or self-management
techniques will become a necessity for software in the near
future [13]. In late 2001, IBM identified the “software com-
plexity crisis” as the main obstacle to progress in the IT
industry. In particular, IBM pointed out that installation,
configuration, tuning, and maintenance of modern complex
software requires skilled IT professionals [23]. In IBM’s view,
the growing complexity of software and number and distri-
bution of resources running such software is unsustainable,
given today’s approaches. The only viable option is auto-
nomic computing, which consists of “systems that manage
themselves according to an administrator’s goals and com-
ponents that integrate themselves as effortlessly as a new
cell establishes itself in the human body” [20].

Thus, IBM has established the Autonomic Computing
initiative, with the vision of developing self-managing soft-
ware systems that require minimal, if any, human interac-
tion for set up and maintenance. Toward solving what IBM
calls “this vitally important problem,” Kephart has outlined
a number of challenges he envisions must be solved to allow
autonomic computing. These challenges include not only
developing autonomic systems, but also (1) high-level ar-

chitectures and design patterns for autonomic elements that
can be composed to create autonomic systems, (2) tools that
support development of autonomic systems, and (3) models
of human-computer interface interaction for proper inclusion
of the users in the software control loop [22].

IBM has also been integral in promoting autonomic com-
puting education, putting together two courses, taught at
the Georgia Institute of Technology, the Ohio State Uni-
versity, and the North Carolina State University, and parts
of which are currently being used at over 200 universities
worldwide. IBM contributes financially toward the goal of
promoting education and research in autonomic comput-
ing with several faculty research awards, gold sponsorship
of the International Conference on Autonomic Computing
and Communications ($15K annually), and sponsorship of
the NSF Center for Autonomic Computing ($35K annu-
ally), combing the efforts of the University of Florida, the
University of Arizona, and Rutgers, the State University
of New Jersey, as well as industrial partners BAE Systems,
Ball Aerospace, Intel, Microsoft, Northrop-Grumman, NEC,
Raytheon, Xerox, Citrix, Imaginestics, and ISCA Technolo-
gies [24].

From the industrial production perspective, Brent A. Mil-
ler, a lead architect at IBM, considers aspects of autonomic
computing to have ingrained themselves into products across
IBM’s entire product line. Rather than becoming a product
of its own, autonomic computing improves the quality of
existing, and newly developed products [24].

Google has also expressed commitment to self-adaptation
and self-management, joining IBM in 2007 in the Large-
Scale Internet Computing Initiative, with one of its foci on
adaptive systems [28]. Their combined ongoing efforts and
commitment of over $5 million in 2009 to study cloud com-
puting, again with one of the foci on adaptive systems [29],
indicate the industry’s perceived future impact of self-adap-
tation and self-management on software.

The vision of significance of self-adaptation and self-mana-
gement research is not limited to the industry. The National
Science Foundation recently announced its 2010 appropria-
tions and has specifically identified “adaptive systems tech-
nology” as one of six areas of research for which high levels
of funding must be maintained, along with climate change,
cyber-enabled discovery and innovation, and the National
Radio Astronomy Observatory, among others [21].

It is important to point out that past experience indicates
that expectations set by industry and government funding
agencies may, at times, be misleading. It is not atypical for a
new technology to generate a funding “boom” followed by a
“bust.” For example, in the late 1980s, computer-aided soft-
ware engineering generated tremendous investments from in-
dustry, which largely subsided by the 1990s [11], leading to
a smaller, more constant stream or funding and research.
While, in this paper, I do not aim to address the question
of whether the expected impact of self-adaptation or self-
management software research is warranted, I do attempt
to demonstrate a gap between the expected impact and the
current impact in software engineering venues.

2.2 Academic Publications
I surveyed seven instances of premier conferences in soft-

ware engineering: the ACM/IEEE International Conference
on Software Engineering (ICSE) 2010, the joint European
Software Engineering Conference (ESEC) and ACM SIG-

2

Venue # of SASM papers total # of papers SASM ratio SASM papers

ICSE 2010 0 52 0.0% —
ESEC/FSE 2009 2 37 5.4% [10, 15]
ASE 2009 2 38 5.3% [7, 35]
ICSE 2009 5 50 10.0% [8, 12, 17, 27, 36]
TSE 2009 0 50 0.0% —
TOSEM 2009 1 13 7.7% [26]
FSE 2008 2 31 6.5% [30, 32]
ASE 2008 1 34 2.9% [37]
ICSE 2008 1 55 1.8% [34]
TSE 2008 4 51 7.8% [9, 14, 16, 19]
TOSEM 2008 0 20 0.0% —

Conference Total 13 297 4.4%
Journal Total 5 134 3.7%
Total 18 431 4.2%

5.3%

7.1%

0.9%

0.0%

10.0%

Figure 1: Less than 4.2% of all paper published in premier software engineering venues in the last two
years deal with self-adaptation and self-management (SASM) research. The graphic on the right shows the
minimum, 1st quartile, median, 3rd quartile, and maximum for the SASM papers distribution accross the
venues.

SOFT Symposium on the Foundations of Software Engi-
neering (FSE) 2009, the IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE) 2009, ICSE
2009, FSE 2008, ASE 2008, and ICSE 2008. Further, I
surveyed the past two years (2008 and 2009) of all publi-
cations in two premier software engineering journals: the
IEEE Transactions on Software Engineering (TSE) and the
ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM).

Figure 1 depicts my estimates of how many, and what frac-
tion of the papers published at the premier software engi-
neering venues describe self-adaptation or self-management
techniques. Despite the high expectation for such tech-
niques, outlined in Section 2.1, less than 4.2% of papers
published at the premier software engineering venues over
the last two years are concerned either with self-adaptation
or self-management.

I used the following methodology in generating data for
Figure 1. For every venue, I evaluated only the full research-
track papers published at that venue. I did not evaluate
short papers or papers published at special tracks at confer-
ences. I did, however, treat special issues of journals identi-
cally to regular issues. For each paper, I considered whether
its title warranted any chance that the paper dealt with self-
adaptation or self-management research. Given the smallest
of such possibilities, I carefully reviewed the paper’s abstract
and meta data (category, terms, and keywords). For most
of the papers, I was at this point able to make the classifi-
cation as to whether the paper described a self-adaptation
or self-management technique. In a few rare cases, I was
still unsure and proceeded to read the paper itself to make
the classification. For a substantial number of the evaluated
papers, I possessed additional information beforehand, such
as having read the paper, seen a talk on the paper, or con-
versed with the authors of the paper about their research.
Where available, I leveraged that additional information in
making the classifications.

While I made every effort to be consistent and ensure that

my classification methodology is repeatable, a portion of my
assessment is subjective. The goal of this data is not to fa-
cilitate deep statistical analysis, but rather to demonstrate a
general trend in these venues’ recognition of self-adaptation
and self-management research. While there are some out-
liers, (e.g., 10.0% for ICSE 2009), most of the values are
close to the average of 4.2%. The middle half of the venues
contained between 0.9% and 7.1% of papers that dealt with
self-adaptation and self-management issues.

In order to fully appreciate the ratios shown in Figure 1,
one could conduct a number of control experiments. For
example, to ensure that my methodology for identifying
self-adaptation and self-management research is accurate,
I applied that methodology to papers from two specialized
venues: the 2009 International Conference on Autonomic
Computing and Communications (ICAC09) and the 2009
IEEE International Conferences on Self-Adaptive and Self-
Organizing Systems (SASO09). I found that my method-
ology identified 14 of the 15 ICAC papers (93.3%), and all
27 of the SASO papers (100%) as self-adaptation and self-
management research.

One other relevant control experiment that I did not per-
form in this study would measure how well other topics are
represented at the premier software engineering venues. It
may be the case that due to the diversity of software en-
gineering research topics, 4.2% does not indicate an under-
representation. However, it is unclear how to properly mea-
sure the relationship of other topics to self-adaptation and
self-management, because, in some sense, self-adaptation
and self-management are independant of the other topics.
That is, research could cover self-adapting testing or self-
managing software architecture.

It is further important to note that no conclusions about
these venues’ acceptance rates of self-adaptation and self-
management papers can be made from the data in Figure 1.
Answering that question requires data on the fraction of all
submissions, as opposed to accepted submissions, that deal
with self-adaptation and self-management. Unfortunately,

3

such data is unavailable. Nevertheless, the data presented
does clearly illustrate the relatively low rate of publication
of self-adaptation and self-management research in premier
software engineering venues.

3. REASONS FOR THE IMPACT GAP
It is not uncommon for young fields to be confined to spe-

cialized venues until they reach an adequately mature state.
While I make no claims about the positive and negative ef-
fects of such confinement, I wish to systematically explore
how we can advance the field’s maturity and facilitate incor-
poration at the premier software engineering venues.

There are likely multiple reasons for the impact gap in
software engineering. These include, but are not limited
to, (1) the relative immaturity of the self-adaptation and
self-management software field; (2) the emergence of new
venues outside of software engineering that are relevant to
self-adaptation and self-management; and (3) importance
of self-adaptation and self-management to artificial intelli-
gence, pervasive and ubiquitous computing, middleware in-
frastructure, multiagent, and distributed robotics research,
as well as other fields.

Although some of the above-outlined reasons indicate that
the impact gap exists because self-adaptation and self-ma-
nagement research is steered toward other venues, I believe
that there is significant value to software engineering in
self-adaptation and self-management research being prop-
erly evaluated, reviewed, and published in software engineer-
ing venues. Further, while specialized venues exist for most
software engineering topics, e.g., the International Sympo-
sium on Software Testing and Analysis for testing and anal-
ysis research, that does not prevent those topics from being
well represented at the premier software engineering venues.
Thus, I am concerned with the reasons self-adaptation and
self-management research is not often accepted at software
engineering venues, partially causing the impact gap.

In my experience as a peer-reviewer for some premier soft-
ware engineering venues and some self-adaptation- and self-
management-specific venues, as well as a consumer of pub-
lished software engineering research, I have observed several
differences in the evaluation methodologies of self-adapta-
tion and self-management research and other software engi-
neering research. These differences may be justified, how-
ever, they, at times, make it difficult to compare self-adapta-
tion and self-management techniques to traditional software
engineering techniques. The diversity of self-adaptation and
self-management techniques often causes researchers to de-
velop one-off evaluation methodologies. While it is certainly
possible to develop a very strong one-off methodology, it is
important to facilitate proper comparison between the eval-
uated techniques and prior art.

The following example illustrates how the evaluation me-
thodology may make it difficult to compare a technique
in question with certain existing techniques. Some self-
adaptation and self-management literature is structured ac-
cording to the following approach. The authors consider a
problem within some dynamic environment and find that
the state-of-the-art does not address some aspect of the en-
vironment’s dynamics. The authors then develop a solution
that addresses the previously missing dynamics and deploy
that solution in the target environment, evaluating how well
(quickly, reliably, consistently, etc.) the solution handles the
dynamics of that environment. Finally, the authors con-

clude that their solution solves the problem. This approach
does, in fact, present a problem, demonstrate a solution,
and evaluate the solution’s performance. However, a short-
coming of this approach is that, by construction, it pro-
vides no insight into the cost-to-benefit relationship of using
the proposed solution. The previous state-of-the-art tech-
nique is likely to still work in the new environment, though
perhaps not as well as before. And the proposed solution
is likely to experience some overhead in self-adjusting to
the new environment. Further, sometimes straightforward
combinations of existing techniques may allow the previous
state-of-the-art to handle the new dynamics. Without a fair
head-to-head comparison to existing software systems, self-
adaptation and self-management software research suffers
the inability to accurately present its benefits. This method-
ology may be acceptable in venues specific to self-adaptation
and self-management because of the environments consid-
ered typical in such research. However, in software engi-
neering research, highly dynamic and unpredictable envi-
ronments are a growing consideration, but not yet the status
quo. Therefore, without a fair head-to-head comparison, it is
harder for reviewers of premier software engineering venues
to assess self-adaptation and self-management research than
other research.

One important counterpoint to my argument for increas-
ing the evaluation and facilitating the comparison is that
research, and the papers that describe that research, have
a number of constraints. Perhaps most notably, researchers
have finite time and papers have limited space, making it
difficult to perform all evaluation that might be desirable,
and even to describe all the performed evaluation in a partic-
ular paper. Thus, the benefits of a head-to-head comparison
may, for some research, be insufficient to offset its cost. It is
up to individual researchers to consider how the comparison
may improve, or detract, from the description of their work.

In order to describe, in greater depth, the ways in which
evaluation methodology of self-adaptation and self-mana-
gement literature stops short of comparison with the state-
of-the-art, I will leverage four example papers on self-adapta-
tion and self-management techniques. Two of these are my
papers, published at workshops, describing two aspects of a
self-organizing computational grid. The evaluation strate-
gies in these papers have several flaws. The other two pa-
pers are award-winning premier conference publications. I
have selected the latter two papers with strong evaluation
methodologies purposefully, because they are clearly some of
the best examples of strong publications, each winning best
paper awards at their respective conferences. Nevertheless,
I will attempt to identify their evaluations’ strengths and
weaknesses. The following is a summary of the four subject
papers:

• In “An architectural style for solving computationally
intensive problems on large networks,” [4], a coauthor
and I describe a nature-inspired architectural style,
the tile style, that can distribute computation onto an
untrusted network without disclosing the private data
that are part of the computation.

• In“Fault and adversary tolerance as an emergent prop-
erty of distributed systems’ software architectures,” [5],
a coauthor and I describe an aspect of the tile style that
allows it to self-repair and recover from faulty nodes
and malicious attacks on the underlying network.

4

• In “Applying genetic algorithms to decision making in
autonomic computing systems,” [31], Ramirez et al. de-
scribe a machine-learning approach to automatically
adapt remote data mirroring, at runtime, to improve
data reliability and performance, while minimizing var-
ious costs. This paper received the 2009 best paper
award at the 6th International Conference on Auto-
nomic Computing and Communications.

• In “Automatically finding patches using genetic pro-
gramming,” [36], Weimer et al. describe an automated
way to fix errors in code. While they did not design
their technique to perform at runtime, it can be imag-
ined that an extension of this technique would allow
for systems to self-diagnose and self-repair a particular
class of errors at runtime. This paper received the 2009
IFIP TC2 Manfred Paul Award for Excellence in Soft-
ware: Theory and Practice and the ACM SIGSOFT
Distinguished Papers Award at the ACM/IEEE 31st

International Conference on Software Engineering.

While these subject papers were clearly successful in their
respective venues, they still had some important differences
in their evaluation methodologies from typical software en-
gineering literature. While these differences were insuffi-
cient to derail these particular papers, I still consider how
these papers could have eased comparison of their techniques
to traditional software engineering techniques. In particu-
lar, I have identified six examples of evaluation-methodology
properties that make the comparison difficult.

1. Some literature states early that current technologies
cannot handle some aspect of a dynamic environment
(e.g., resources being added at runtime, resource fail-
ure, noisy conditions) and never again compare the
proposed approach to existing technologies. In most
cases, existing technologies will still perform in the dy-
namic environment, though perhaps suboptimally. It
is entirely possible that the overhead of self-adaptation
causes a system that can handle the addition of re-
sources at runtime to underperform a static system
that simply ignores new resources. The fault-tolerance
tile style paper [5] suffers from this evaluation short-
coming. The paper compares its technique to one that
uses no fault tolerance, both in the benefit and the cost
measures. However, it does not analyze how often fail-
ures might occur, thus making it impossible to relate
the benefits to the costs.

2. Some papers claim, and perhaps argue, that some as-
pect of the proposed solution (e.g., decentralization) is
critical to solving the target problem in certain envi-
ronments and never experimentally compare the pro-
posed solution to ones without that aspect (e.g., cen-
tralized solutions). Centralized solutions may experi-
ence single points of failure and bottlenecks, but those
shortcomings will only sometimes affect the system’s
performance. Explicit comparison of system perfor-
mance in target scenarios can demonstrate that, in
fact, these shortcomings justify the overhead of self-
adaptation and self-management. In the data mirror-
ing paper [31], the authors evaluate how quickly Plato,
their genetic algorithm-based decision-making process
for finding efficient overlay networks, converges to a

near-optimal solution, how close the solution is to the
optimal one, how long a system takes to recover from a
reconfiguration, and how much data could potentially
be lost during a reconfiguration. However, they do not
examine the performance of the non-adaptive system
and do not demonstrate the cost of not performing
a reconfiguration. Further, they never analyze how
frequently the need for reconfiguration arises in real-
world scenarios. In fact, in this case, Plato most likely
provides significant improvement over the state-of-the-
art; however, in order to recognize this, a reader must
buy into the claim that self-adaptation is important,
rather than observe actual data and make an informed
judgment.

3. It is surprisingly common to compare the proposed
technique to a näıve self-adapting or self-managing so-
lution, rather than the non-self-adaptive and non-self-
managing state-of-the-art. The existing solutions may
have shortcomings, but without experimental compari-
son, the extent of those shortcomings, and the trade-off
between costs and benefits of the proposed technique
are unclear. Of the subject papers, the most striking
example of this phenomenon is in the fault-tolerance
tile style paper [5]. This paper compares its tech-
nique with the non-fault-tolerant version of itself, but
never with other fault-tolerance techniques designed
for other dynamic, or even static environments.

This particular example has previously appeared in
other fields of research. During the early years of re-
search on parallel algorithms, it was quite common to
compare executing an algorithm on n processors to ex-
ecuting that same algorithm on a single processor. In
later years, the community recognized that the proper
comparison is, instead, to the state-of-the-art sequen-
tial algorithms, allowing readers to judge the actual
acceleration of using n processors.

4. Quite typically, self-adaptation and self-management
literature does not perform formal theoretical com-
plexity analysis of its algorithms, often due to the algo-
rithms’ distributed nature. The fact that an algorithm
involves multiple, perhaps many, agents that may act
in a nondeterministic or probabilistic manner, does not
imply that one cannot bound the running-time and
space complexities of that algorithm. In fact, the large
(asymptotically approaching infinite) number of agents
often makes nondeterministic and probabilistic analy-
ses simpler. A theoretical analysis can simplify head-
to-head comparisons with other techniques. Both the
self-repairing data-mirroring [31] and the automated
error-fixing [36] papers lack theoretical analysis, even
though both would benefit from it. One important
measure of the data-mirroring technique is how quickly
it converges on a near-optimal solution after a per-
turbation in the environment. While the paper de-
scribes a number of empirical experiments demonstrat-
ing this convergence time, and a set of parameters that
achieve fast convergence, the evaluation would benefit
from a formal convergence analysis, as is common in
machine-learning literature. Not only would such anal-
ysis bound waiting times, it may reveal the conditions
necessary for convergence, and thus identify scenarios

5

the technique may not apply to. Similarly, the error-
fixing paper lacks a formal characterization of an error
and the theoretical analysis of what types of errors the
technique can fix. A formal analysis could help answer
two of the most important open questions of the paper:
“How scalable is the technique?” and “What classes of
errors can the technique fix?”

5. Some research compares the proposed technique to
existing self-adaptive and self-managing solutions, as-
suming they are the state-of-the-art because they han-
dle more-dynamic environments than non-self-adaptive
and non-self-managing solutions. As long as one com-
pares techniques aimed at different environments, it is
unsafe to make the assumption, without evidence, that
techniques aimed at similar environments will outper-
form techniques aimed at dissimilar ones. The data-
privacy tile style paper [4] compares its approach to
others that aim to preserve privacy. However, it lacks
the analysis of how difficult it may be to recover private
data from techniques that do not explicitly target pri-
vacy preservation, while offering other benefits. With-
out such an analysis, a reader cannot assess the benefit
delivered by the technique over the state-of-the-art.

6. An important aspect of experimentation is repeatabil-
ity. Software engineering researchers, including ones
who work on self-adaptation and self-management, of-
ten make publicly available the various relevant proto-
type systems used for evaluation. However, quite of-
ten, for self-adaptation and self-management research,
simply making the software available is not enough.
In distributed, asynchronous, nondeterministic, and
probabilistic environments, repeating experiments may
often require recording of additional information (such
as event sequences, environmental changes, and seeds
for random number generation) and implementing ad-
ditional control over the system (such as replaying the
events and the environmental changes). None of the
four subject papers [4, 5, 31, 36] facilitated experiment
repeatability in such a manner.

7. The final example requires more effort to avoid than
the previous ones have. It is typical to compare the
proposed technique to the state-of-the-practice solu-
tion published in a paper, as opposed to the state-of-
the-art solution that results from combining multiple
existing techniques. For example, centralized solutions
can often overcome single points of failure with uses
of well-known replication and redundancy techniques.
Of course, developing a combination of existing tech-
niques may, in itself, involve substantial work and serve
as a significant contribution. In such cases, it may be
understandable and acceptable to omit the compari-
son to a not-yet-existing solution. On the other hand,
in other cases, the combinations of existing techniques
are borderline trivial, and comparisons to such combi-
nations should be made.

4. EVALUATION SUGGESTIONS
My central recommendation for evaluation methodology

of self-adaptation and self-management research is to include
a comparison of the proposed techniques to the state-of-
the-art, keeping in mind that different solutions may repre-

sent the state-of-the-art with respect to different evaluation
dimensions and that state-of-the-art solutions may or may
not come from other self-adaption and self-management re-
search. Of course, it could be noted that some of this advice
is applicable to and could improve not only self-adaptation
and self-management research but also other software engi-
neering research.

In this section, I go into greater depth on how one may
improve the comparison with the state-of-the-art for five
specific types of target scenarios self-adaptation and self-
management software research addresses. It is important to
note that not all of my suggestions will be suitable, or even
applicable, to all techniques. It is even conceivable that em-
ploying them may hurt some evaluation methodologies. The
goal of these suggestions is to allow for better comparison
between the proposed techniques and the state-of-the-art,
which may or may not be the aim of any particular paper.

4.1 Decentralization
Centralized systems may have single points of failure and

may contain bottlenecks that adversely affect system perfor-
mance. Decentralization is often a viable solution to avoid-
ing those problems, but in many scenarios may require the
individual components to have significantly more logic than
if they were controlled from a central entity. As a result, de-
centralized systems may outscale centralized ones, but may
underperform in smaller-scale environments.

When proposing a decentralized solution to a problem
with existing centralized solutions, the evaluation should
compare the proposed solution to the existing ones. When
the target environment renders the existing solutions virtu-
ally useless, (e.g., if the aim of the technique is to scale to en-
vironments orders of magnitude larger and more error-prone
than the state-of-the-art can handle), the paper should not
only argue that the existing solutions cannot handle the en-
vironment, but also how likely such an environment is to
exist. In other words, it should be clear to the reader that
the solution not only solves a previously unsolved problem,
but also that the unsolved problem is substantial.

Further, when decentralization aims to allow the system
to handle a particular aspect of the environment, the evalu-
ation should consider the result of applying any of a number
of existing techniques to the existing state-of-the-art solu-
tions. For example, if the proposed solution handles error-
prone and unreliable environments, the evaluation should
consider how existing techniques that improve the reliability
of components (e.g., redundancy [25], self-configuring opti-
mistic programming [1, 2], active replication [18], primary
backup [6]) would affect the existing solutions. If the decen-
tralized solution aims to remove the single-point-of-failure,
the evaluation should compare that solution to the central-
ized solution employing some or all of these techniques to
improve the reliability of its single-points-of-failure. Sim-
ilarly, if the decentralized solution aims to remove bottle-
necks, it must be compared to centralized solutions that em-
ploy load-balancing and channel- and component-replication
techniques.

4.2 Faulty Resources
Perhaps one of the most researched areas of self-adapta-

tion and self-management is fault tolerance: robustness to
component and resource failure. In fact, the central as-
pect of IBM’s autonomic computing is automated detection

6

and repair of failures at runtime. It is quite typical for
self-adaptation and self-management literature to describe
biology-inspired solutions that use large swarms of cheap
faulty components to accomplish complex tasks. For exam-
ple, some biological systems that have been used for such
inspiration are termites building structurally and function-
ally complex mounds and bees self-organizing to optimize
nectar collection.

When proposing such solutions, the evaluation should con-
sider not only biology-inspired fault tolerance, but also other
well-known fault-tolerance mechanisms. In particular, engi-
neers have dealt with faults for a long time and have estab-
lished a number of techniques for improving system relia-
bility (e.g., as previously mentioned, redundancy [25], self-
configuring optimistic programming [1, 2], active replica-
tion [18], primary backup [6]). The evaluation of a biology-
inspired technique should consider whether a state-of-the-
art solution, augmented with one of these well-known fault-
tolerance mechanisms, might not outperform the technique
in question.

4.3 Signal Noise
One common challenge tackled by self-adaptation and self-

management research is runtime adjustment to noisy sig-
nals. Signal noise can come from a variety of sources, such
as real-world sensors, hardware component aging, environ-
mental changes, and availability of inaccurate models of the
environment during design time.

Signal processing research has long studied noisy channels
and their ability to perform their jobs of data transmission
while coping with noise [33]. Similarly, artificial intelligence
techniques have long dealt with sensor and channel noise [3].
When proposing solutions dealing with signal noise, the eval-
uation should consider how the proposed technique com-
pares with the state-of-the-art techniques enhanced with the
known mechanisms from this literature.

Further, because both noise and performance when faced
with noise can be elusive concepts, a formal definition of the
noise model and a theoretical evaluation of how the noise
affects the performance of the technique can greatly simplify
the comparison of the proposed technique and the state-of-
the-art.

4.4 Management Automation
It is typically easy to make the argument that removing

a human from the system-management loop reduces costs,
improves speed, and perhaps reduces errors. In fact, au-
tomation has been synonymous with progress and the future
ever since the 18th century and the industrial revolution.

Nevertheless, self-management research can benefit from
making a clear comparison between the advantages and dis-
advantages of removing the human from the loop. While
speed, response time, and repeatability likely improve with
automation, certain factors may suffer. These factors in-
clude environmental changes unexpected at design time that
may fall outside of the abilities of the self-management com-
ponent and detection of certain patterns within failure oc-
currences that may lead to unscheduled preventative main-
tenance and reduced catastrophic failures and down time.

When proposing solutions that automate previously hu-
man-controlled management, the evaluation should compare
the proposed solutions to the human-controlled state-of-the-
art. Claims about cost reduction and speed improvement

must be carefully argued, as humans may, among other ac-
tions, be able to catch more distinct types of failures, allow
systems to fail in less catastrophic ways, and gain valuable
insight into repairing systems after crashes by observing the
crashes first-hand. Users may also gain deep understand-
ing of the system and be able to identify new requirements
for future versions that may otherwise go unrecognized and
unimplemented.

4.5 Environment Growth
Scalability is perhaps the most general of the challenges

undertaken by self-adaptation and self-management resear-
chers. A system’s self-sufficiency and independence of hu-
man-assisted maintenance can allow it to be deployed in far
larger environments, and even in environments previously
unreachable by systems without such properties.

Decentralization, already discussed in Section 4.1, is one
common way to improve scalability, and the evaluation sug-
gestions for comparing decentralized and centralized systems
apply here as well. In particular, it is important to evalu-
ate both, how often the centralized systems would fail in the
target environments, and the costs of those failures, in terms
of performance and maintenance.

Additionally, the scalability of some techniques can be
improved by leveraging replication [25], and other mecha-
nisms from reliability and decentralization literature. When
proposing techniques that improve a system’s scalability, the
evaluation should compare the proposed technique to the
state-of-the-art enhanced with these scalability-improving
mechanisms.

5. CONCLUSIONS
In this position paper, I have argued that (1) there ex-

ists a gap between the impact of self-adaptation and self-
management research expected by industry and apparent in
premier software engineering venues, and (2) how our com-
munity can facilitate improving the impact on those venues.

While industrial leadership and government funding agen-
cies have high expectations for self-adaptation and self-ma-
nagement research, and while such research has been well
represented at some quality venues, premier software en-
gineering venues have been reluctant to publish such re-
search, with fewer than 4.2% of all papers published there
over the last two years relating to self-adaptation and self-
management. I have identified several reasons for this im-
pact gap and have focused on one of these reasons: that
methodologies commonly used to evaluate self-adaptation
and self-management research often make it difficult to com-
pare such research to traditional software engineering re-
search. I have illustrated seven ways in which such com-
parison is made difficult and provided examples of these
ways from published literature. Finally, I have outlined
five suggestions for facilitating the comparison between self-
adaptation and self-management techniques and traditional
software engineering technqiues.

Acknowledgments
This work is sponsored in part by the National Science Foun-
dation under Grant number CIF-288. The author wishes to
thank David Notkin for helpful discussions of this work and
the anonymous reviewers for suggesting control experiments
and identifying additional evaluation-methodology proper-

7

ties that make self-adaptation and self-management research
difficult to compare to other software engineering research.
These suggestions and discussions helped greatly improve
this paper.

6. REFERENCES
[1] Andrea Bondavalli, Silvano Chiaradonna, Felicita Di

Giandomenico, and Jie Xu. An adaptive approach to
achieving hardware and software fault tolerance in a
distributed computing environment. Journal of
Systems Architecture, 47(9):763–781, 2002.

[2] Andrea Bondavalli, Felicita Di Giandomenico, and Jie
Xu. A cost-effective and flexible scheme for software
fault tolerance. Journal of Computer Systems Science
and Engineering, 8(4):234–244, 1993.

[3] Rodney A. Brooks. Elephants don’t play chess.
Robotics and Autonomous Systems, 6(1&2):3–15, June
1990.

[4] Yuriy Brun and Nenad Medvidovic. An architectural
style for solving computationally intensive problems
on large networks. In Proceedings of Software
Engineering for Adaptive and Self-Managing Systems
(SEAMS07), Minneapolis, MN, USA, May 2007.

[5] Yuriy Brun and Nenad Medvidovic. Fault and
adversary tolerance as an emergent property of
distributed systems’ software architectures. In
Proceedings of the 2nd International Workshop on
Engineering Fault Tolerant Systems (EFTS07), pages
38–43, Dubrovnik, Croatia, September 2007.

[6] Navin Budhiraja, Keith Marzullo, Fred B. Schneider,
and Sam Toueg. The primary-backup approach. In
Distributed Systems, pages 199–216. ACM
Press/Addison-Wesley Publishing Co., 2 edition, 1993.

[7] Jacob Burnim, Nicholas Jalbert, Christos Stergiou,
and Koushik Sen. Looper: Lightweight detection of
infinite loops at runtime. In Proceedings of the 24th
IEEE/ACM International Conference on Automated
Software Engineering (ASE09), Auckland, New
Zealand, 2009.

[8] Radu Calinescu and Marta Kwiatkowska. Using
quantitative analysis to implement autonomic IT
systems. In Proceedings of the ACM/IEEE 31st
International Conference on Software Engineering
(ICSE09), pages 100–110, Vancouver, Canada, 2009.

[9] Carlos Canal, Pascal Poizat, and Gwen Salaün.
Model-based adaptation of behavioral mismatching
components. IEEE Transactions on Software
Engineering (TSE), 34(4):546–563, 2008.

[10] Valeria Cardellini, Emiliano Casalicchio, Vincenzo
Grassi, Francesco Lo Presti, and Raffaela Mirandola.
QoS-driven runtime adaptation of service oriented
architectures. In Proceedings of the 7th Joint Meeting
of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE09), pages 131–140,
Amsterdam, The Netherlands, 2009.

[11] CASE. Foreword. In Proceedings of the 7th
International Workshop on Computer-Aided Software
Engineering (CASE95), page ix, Toronto, Canada,
1995.

[12] Hervé Chang, Leonardo Mariani, and Mauro Pezze.
In-field healing of integration problems with COTS

components. In Proceedings of the ACM/IEEE 31st
International Conference on Software Engineering
(ICSE09), pages 166–176, Vancouver, Canada, 2009.

[13] Betty H.C. Cheng, Rogério de Lemos, Holger Giese,
Paola Inverardi, et al. Software engineering for
self-adaptive systems: A research roadmap. In
Software Engineering for Self-Adaptive Systems,
volume 5525, pages 1–26. Lecture Notes in Computer
Science Hot Topics, 2009.

[14] Siu-Nam Chuang and Alvin T.S. Chan. Dynamic QoS
adaptation for mobile middleware. IEEE Transactions
on Software Engineering (TSE), 34(6):738–752, 2008.

[15] Giovanni Denaro, Mauro Pezzè, and Davide Tosi.
Ensuring interoperable service-oriented systems
through engineered self-healing. In Proceedings of the
7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software
Engineering (ESEC/FSE09), pages 253–262,
Amsterdam, The Netherlands, 2009.

[16] Shlomi Dolev and Reuven Yagel. Towards
self-stabilizing operating systems. IEEE Transactions
on Software Engineering (TSE), 34(4):564–576, 2008.

[17] Ilenia Epifani, Carlo Ghezzi, Raffaela Mirandola, and
Giordano Tamburrelli. Model evolution by run-time
parameter adaptation. In Proceedings of the
ACM/IEEE 31st International Conference on
Software Engineering (ICSE09), pages 111–121,
Vancouver, Canada, 2009.

[18] Pascal Felber and Andre Schiper. Optimistic active
replication. In Proceedings of the 21st IEEE
International Conference on Distributed Computing
Systems (ICDCS01), pages 333–341, Phoenix, AZ,
USA, 2001. IEEE Computer Society.

[19] William G.J. Halfond, Alex Orso, and Pete Manolios.
WASP: Protecting web applications using positive
tainting and syntax-aware evaluation. IEEE
Transactions on Software Engineering (TSE),
34:65–81, 2008.

[20] IBM. Autonomic computing manifesto. http:
//www.research.ibm.com/autonomic/manifesto,
2001.

[21] Richard M. Jones. Fiscal year 2010 National Science
Foundation appropriation. The AIP Bulletin of
Science Policy News, (146), 2009.

[22] Jeffrey O. Kephart. Research challenges of autonomic
computing. In Proceedings of the 27th ACM/IEEE
International Conference on Software Engineering
(ICSE05), pages 15–22, St. Louis, MO, USA, 2005.

[23] Jeffrey O. Kephart and David M. Chess. The vision of
autonomic computing. IEEE Computer, 36(1):41–50,
2003.

[24] Paul Kontogiorgis and Brent A. Miller. Interview on
the state of and IBM’s contribution to autonomic
computing. Personal communication, January 2010.

[25] Israel Koren and C. Mani Krishna. Fault-Tolerant
Systems. Elsvier, Inc., 2007.

[26] Marco Mamei and Franco Zambonelli. Programming
pervasive and mobile computing applications: The
TOTA approach. ACM Transactions on Software
Engineering and Methodology (TOSEM), 18(4):1–56,
2009.

8

http://www.research.ibm.com/autonomic/manifesto
http://www.research.ibm.com/autonomic/manifesto

[27] Brice Morin, Olivier Barais, Gregory Nain, and
Jean-Marc Jézéquel. Taming dynamically adaptive
systems using models and aspects. In Proceedings of
the ACM/IEEE 31st International Conference on
Software Engineering (ICSE09), pages 122–132,
Vancouver, Canada, 2009.

[28] Press release. Google and IBM announce university
initiative to address Internet-scale computing
challenges. http://www.google.com/intl/en/press/
pressrel/20071008_ibm_univ.html, 2007.

[29] Press release. National Science Foundation awards
millions to fourteen universities for cloud computing
research. http://www.nsf.gov/news/news_summ.jsp?
cntn_id=114686&govDel=USNSF_51, 2009.

[30] Franco Raimondi, James Skene, and Wolfgang
Emmerich. Efficient online monitoring of web-service
SLAs. In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering (FSE08), pages 170–180, Atlanta, GA,
USA, 2008.

[31] Andres J. Ramirez, David B. Knoester, Betty H.C.
Cheng, and Philip K. McKinley. Applying genetic
algorithms to decision making in autonomic
computing systems. In Proceedings of the 6th
International Conference on Autonomic Computing
(ICAC06), pages 97–106, Barcelona, Spain, 2009.

[32] Michele Sama, David S. Rosenblum, Zhimin Wang,
and Sebastian Elbaum. Model-based fault detection in
context-aware adaptive applications. In Proceedings of

the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE08), pages
261–271, Atlanta, GA, USA, 2008.

[33] Claude E. Shannon. A mathematical theory of
communication. Bell System Technical Journal,
27:379–423 and 623–656, July and October 1948.

[34] Sylvain Sicard, Fabienne Boyer, and Noel De Palma.
Using components for architecture-based management:
the self-repair case. In Proceedings of the ACM/IEEE
30th International Conference on Software
Engineering (ICSE08), pages 101–110, Leipzig,
Germany, 2008.

[35] Yiqiao Wang and John Mylopoulos. Self-repair
through reconfiguration: A requirements engineering
approach. In Proceedings of the 24th IEEE/ACM
International Conference on Automated Software
Engineering (ASE09), Auckland, New Zealand, 2009.

[36] Westley Weimer, ThanhVu Nguyen, Claire Le Goues,
and Stephanie Forrest. Automatically finding patches
using genetic programming. In Proceedings of the
ACM/IEEE 31st International Conference on
Software Engineering (ICSE09), pages 364–374,
Vancouver, Canada, 2009.

[37] Andrea Zisman, George Spanoudakis, and James
Dooley. A framework for dynamic service discovery. In
Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering
(ASE08), pages 158–167, L’Aquila, Italy, 2008.

9

http://www.google.com/intl/en/press/pressrel/20071008_ibm_univ.html
http://www.google.com/intl/en/press/pressrel/20071008_ibm_univ.html
http://www.nsf.gov/news/news_summ.jsp?cntn_id=114686&govDel=USNSF_51
http://www.nsf.gov/news/news_summ.jsp?cntn_id=114686&govDel=USNSF_51

	1 Introduction
	2 Evidence of an Impact Gap
	2.1 Research Growth and Industrial Commitment
	2.2 Academic Publications

	3 Reasons for the Impact Gap
	4 Evaluation Suggestions
	4.1 Decentralization
	4.2 Faulty Resources
	4.3 Signal Noise
	4.4 Management Automation
	4.5 Environment Growth

	5 Conclusions
	6 References

