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Abstract
Most software tools and environments help developers an-

alyze the present and past development states of their soft-
ware systems. Few approaches have investigated the po-
tential consequences of future actions the developers may
perform. The commoditization of hardware, multi-core ar-
chitectures, and cloud computing provide new potential for
delivering apparently-instantaneous feedback to developers,
informing them of the effects of changes that they may be
considering to the software.

For example, modern IDEs often provide “quick fix” sug-
gestions for resolving compilation errors. Developers must
scan this list and select the option they think will resolve the
problem. Instead, we propose that the IDE should specula-
tively perform each of the suggestions in the background and
provide information that helps developers select the best op-
tion for the given context. We believe the feedback enabled
by speculative operations can improve developer productiv-
ity and software quality.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.6 [Software Engineering]: Programming En-
vironments

General Terms
Design

Keywords
Speculation, developer awareness, recommender system, ver-
sion control, quick fix, IDE

1. Introduction
The world’s ever-growing dependence on software and soft-

ware-intensive systems drives the continued demand for in-
creased software quality and software engineering produc-
tivity. Many approaches for improving software quality and
productivity are based on analysis of the current develop-
ment state, and sometimes past development states, of the
software. A development state represents a snapshot of the
software system’s source code at an instant in time. (Devel-
opment state could also include relevant configuration files,
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library versions, makefiles, and other data affecting the soft-
ware under development.) For example, most bug detec-
tion approaches examine the current development state, and
most analyses underlying regression testing also use a past
development state of the software. However, few, if any,
approaches systematically explore potential future develop-
ment states of a software system under development.

We call the exploration of potential future development
states speculative analysis, by analogy with speculative exe-
cution (e.g., branch prediction and cache pre-fetching). Spec-
ulative analysis expends CPU cycles to analyze a possible fu-
ture development state. This offers two distinct advantages.
If a developer edits the source code into that development
state, then the analysis results are available immediately,
which saves valuable human time. If the developer is choos-
ing what code edit to perform, then the analysis results can
inform the decision, guiding the developer to the best choice.
This paper focuses primarily on the latter benefit.

We believe that speculative analysis can help developers
make better decisions — leading to increased software qual-
ity and developer productivity — by providing them with
information about the consequences of performing each of
a set of likely operations before they execute any of those
operations. As an example, modern interactive development
environments (IDEs) offer “quick fix” suggestions for resolv-
ing compilation problems in source code. The IDE could also
indicate the effects of each quick fix suggestion: whether the
system compiles, whether its tests pass, or whether the code
can be merged with other developers’ changes.

Software tools have always used computational resources
to improve the effectiveness of software developers. Increased
processing power, in the form of multi-core architectures and
Internet-based cloud computing, is dramatically decreasing
the cost and increasing the availability of computing, making
a new set of trade-offs worthwhile to consider. We believe
the time is ripe for speculation-based analysis for software
development.

Section 2 discusses the unexplored nature of analysis over
future software development states. Section 3 then sketches
two concrete examples of speculative analysis. Section 4
identifies some challenges to achieving speculative analysis.
Section 5 places our research in the context of related work.
Finally, Section 6 concludes.

2. Future: An Unexplored Analysis Dimension
Most existing developer tools and techniques focus on us-

ing computational resources to explore the present devel-
opment state of the software. For example, (1) continuous
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testing executes tests in the background, while developers
work, quickly informing them whether a change has broken a
test [20], (2) development environments, such as Eclipse and
VisualStudio, suggest automated or semi-automated quick
fixes that are likely to remove specific compilation errors,
and (3) temporal property mining and monitoring can auto-
matically infer and enforce software models, helping devel-
opers discover model violations and bugs [10].

Two classes of techniques have also leveraged the past de-
velopment states, often along with the present state. The
first class involves comparison between the previous and cur-
rent development state to identify unexpected differences.
For example, regression testing identifies executions that
have different outcomes than previous development states
of the same software [1]. The second class examines past
development states to gain insight that can be used during
future software evolution tasks. For example, past develop-
ment history can be used to recommend files that should
change together [24, 25], identify potentially-reusable source
code [6], or empirically validate actual development prac-
tice [16].

We propose a third class of software tools and environ-
ments, those that speculate and explore potential future de-
velopment states of software to provide developers with use-
ful information about those states. Figure 1 shows a rough
(and incomplete) representation of some techniques used to
improve software development process efficiency and soft-
ware quality. The figure indicates an untapped space of
development states that we claim can be used to help de-
velopers.

Future development states of a piece of software are un-
known, making exploring and exploiting them difficult. Some
such explorations are likely infeasible due to the expansive
required resources. However, some others require only a rea-
sonable amount of computation, as we suggest in our exam-
ples in Section 3. Choosing the right states to explore is a
significant research challenge, as we discuss in Section 4.1.

Several genetic and evolutionary programming techniques
attempt to automatically improve a program by searching
through possible future development states using an objec-
tive function to drive the search [23]. One challenge for such
techniques is that the objective function of a software devel-
oper is often implicit. For example, while it may be explicit
that a developer is planning to fix a bug or add a feature,
there is rarely an explicit and precise definition of the ex-
pected improved behavior. A developer fixing a memory
leak is unlikely to have, for example, a formal specification
of how the program should behave without the leak. We ar-
gue that speculative analysis can aid developers in situations
with implicit or poorly defined objective functions by specu-
lating about the immediate future, largely characterized by
operations the developer is likely to apply, and analyzing
the results of executing those operations (see Section 3 for
examples). Such speculative analysis may yield useful in-
formation regarding which of the operations the developer
should pursue.

Thus, we suggest that some of the additional processing
power available to developers today should be used to ex-
plore the future. Our proposed speculative analysis tech-
niques consider the decisions developers are likely to make
and provide the developers with information about the con-
sequences of making those decisions. Speculative analysis
will provide concrete, precise data to developers who today

Past Present Future

Proposed Speculative 
Development State

Continuous Testing
Prototyping

Genetic ProgrammingDelta Debugging
Regression Testing
Mining Software Repositories

Figure 1: Today’s techniques use the present and past devel-
opment states of the software to improve developer produc-
tivity and software quality. We propose speculative analy-
sis techniques that explore future development states of the
software.

make important decisions based predominantly on experi-
ence and intuition.

In a very general sense, in addition to using cycles to learn
more about the current development state of the software,
we propose a complementary approach in which cycles are
used over a theoretically unbounded set of possible future
development states of the software. Running some existing
analyses, and, potentially, new appropriate analyses on those
future states will augment the developers’ understanding of
their software, provide additional information regarding the
decisions they must make, and potentially improve the qual-
ity of those decisions to make the development processes
more efficient and result in higher-quality software.

One way to express the benefits of speculative analysis is
that, to the first order, today’s techniques help developers
by using cycles to analyze a specific version of a program
to learn more and more about that one version. Specula-
tive analysis leverages the fact that, from the point of view
of a given development state, there are other places to in-
vest computational cycles. Specifically, most useful software
systems will have a large number of subsequent versions —
fixes, enhancements, adaptations, etc. We see potential in
using additional computational cycles to compute possible
new variations of a program and to analyze properties of
those versions (though perhaps not as deep a set of proper-
ties as for the current version), as a way to aid developers
in evolving the software more effectively. One shortcoming
of performing deeper and deeper analysis of a single devel-
opment state is that the costs rise and the benefits often
diminish as the analysis deepens. While speculative analysis
would likely apply shallower analyses to multiple develop-
ment states, such analyses across a set of possible future de-
velopment states is likely to produce significant information
at a lesser cost.

3. Speculative Analysis Examples
We now suggest two concrete examples of speculative anal-

ysis in development environments. These examples are fea-
sible to implement today, and, if done correctly, can improve
the developers’ experience right away. The idea of specula-
tive analysis is not limited to these concrete examples. We
envision that one impact of speculative analysis will be ex-
ploring substantial and far-reaching changes to the software,
such as automated code generation or bug detection and re-
moval [17, 23].

Modern programming environments provide a vast num-
ber of options to developers, such as code completion, refac-
torings, and quick fixes. Developers choose from a set of
alternative potential actions using their intuition; they then
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Figure 2: A speculative analysis technique can augment
Eclipse’s quick fix menu with an indication of the conse-
quences of each fix. For each possible quick fix, the box on
the right indicates whether compilation, testing, and version-
control merging would succeed or fail. The clock icon indi-
cates that the IDE is still computing the result and the ø
symbol means “not applicable” — testing cannot proceed if
compilation fails.

evaluate the outcome of their selection to validate that their
choice was effective. Problems may become apparent dur-
ing compilation, testing, merging of changes from the version
control system, or other development activities. A developer
can perform some or all of these activities, but should not be
forced to remember to do so nor to wait while the task ex-
ecutes. Even more importantly, a developer who unexpect-
edly encounters a difficulty or a dead-end must either return
to the original decision point (e.g., via undo or version con-
trol revert) and redo work — or deal with the consequences
of the poor decision and make suboptimal adjustments to
the code simply because of the difficulty of returning to the
original decision point and redoing work.

3.1 Speculative Quick Fix
Speculative analysis can augment Eclipse’s quick fix mech-

anism. When encountering compilation errors, Eclipse can
suggest a set of changes (quick fixes) to the code that may
resolve those errors. A speculative tool can execute those
quick fixes and report pertinent, precise information on the
outcomes of those executions.

Figure 2 shows a mockup that augments a screenshot of
Eclipse displaying quick fixes. To the right of the quick fix
options, we have added indications of the consequences of
each option on compilation, testing, and merging operations.
By speculating on these options while the developer is work-
ing, the approach can deliver context-sensitive information
in a proactive, online fashion; fields that have not yet been
speculatively analyzed are represented by the clock icon and
dynamically fill in as the speculative analysis tool computes
them.

3.2 Speculative Version Control
Developers increasingly use distributed version control sys-

tems, such as Git or Mercurial, to manage the resources of
their projects. One of the defining characteristics of these

systems is that every developer can work on his or her own
independent workspace. The main benefit of this indepen-
dence is that developers can work in isolation; unfortunately,
this can cause problems when developers merge their activ-
ities. These merge problems can arise in the form of ex-
plicit textual merging conflicts, new compilation errors in
the merged version, or tests failing after a merge that previ-
ously executed successfully.

We wish to improve the developers’ understanding of how
their workspaces relate to the master version and to others’
workspaces. We propose that a tool can speculatively merge
each developer’s workspace with other relevant workspaces
in the background, deriving contextualized feedback about
the potential effects of various version control operations. If
the speculative analysis indicates that merging would not
proceed cleanly, then developers can decide whether to ad-
dress it quickly or to temporarily avoid merges. If the spec-
ulative analysis indicates clean merges, then developers can
merge immediately, reducing the likelihood of future merge
problems. We have already begun building and evaluating
the potential benefits of such a speculative tool [4].

4. Speculative Analysis Research Challenges
Building an effective speculative analysis tool raises a num-

ber of challenges. In this section, we describe some of these
challenges, categorized as research challenges, technical chal-
lenges, and driving questions.

4.1 Research Challenges
A key research challenge is identifying the breadth of the

speculation: a set of possible future actions a developer
might take. The set of possible future development states
is unbounded, but a tractable speculative analysis can only
consider a limited set of them. The two tasks described in
Section 3 achieved their reductions by considering only spe-
cific, likely actions. Quick fix speculation considered only
those actions (a small set) that can be recommended by the
quick fix mechanism. Version control speculation considered
only one common action, merge, applied against all pairs of
development workspaces. Other ways to reduce the size of
the set could include Bayesian predictions of likely user ac-
tions, as just one example. Our work will rely on, or extend
if necessary, previous work on predicting user actions [3, 5,
7, 8, 14, 15]. We do not suggest that there is a correct set
of states that should be considered; indeed different sets of
development states would likely be investigated by different
analyses, as in our two included examples.

In addition to properly limiting the breadth of the specu-
lation, our mechanisms must limit the depth. Our two tasks
considered only a single action (then validated it, for exam-
ple, via compilation and testing), as opposed to sequences
of actions. It would be possible to go deeper. For exam-
ple, speculative quick fix could consider what other quick fix
suggestions would become available after executing a given
quick fix action, and speculate those suggestions’ executions
as well. It is likely that, in some speculative analysis cases,
the utility of some action is not immediately visible until
more actions are performed. Therefore, speculative analysis
must strike a proper balance between the breadth and depth
of its search.

Additionally, developers may be more likely to perform
some actions, while other actions may be more informative
than others. Since computation is limited, a speculative
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analysis must not only take into account the breadth and
depth of its search, but also the potential utility of exploring
the actions. Inevitably, some computation will be expended
on actions that the user never performs. This computation
is not necessarily wasted: the information it computes helps
the developer to avoid a bad development state. Further,
the computation is not wasted if, overall, the cheap cycles
cost less than the savings in expensive developer time.

Finally, we have described only two example uses of spec-
ulative analysis. The space of potential speculations and
speculative analyses is quite large and identifying the right
ones to most effectively and positively influence developers
is a deep and exciting challenge.

4.2 Technical Challenges
Speculative analysis requires significant computation to

explore a large number of states. Thus, it is important to
use the available cycles efficiently. Speculative analysis com-
putational costs can be reduced by leveraging the inherent
similarity of different future development states. It is fea-
sible, for example, that an analysis can be performed on
several similar development states far more efficiently than
performing it independently on each state. This challenge
involves understanding how certain analyses (such as com-
pilation and testing) can be parallelized over different, but
similar, development states on multi-core architectures and
Internet-based cloud computing resources. As another ex-
ample, some of the operations that led to ignored speculated
development states may be reapplied to new states, and the
precomputed analysis may be reapplied without being re-
computed.

Two other technical challenges for speculative analysis are
rapid cloning of development states of a project and prevent-
ing undesired interactions among these clones via shared re-
sources, such as a lock, the file system, etc.

4.3 Driving Questions
Three questions drive the research agenda for speculative

analysis:
First, will developers benefit from knowing information

about the potential future development states of their soft-
ware? If developers make decisions faster (or make better
decisions) about which operations to apply to their projects,
the end result could be improved developer productivity or
higher-quality software than is achieved today.

Second, with abundant information available about a large
number of speculated development states, are there effective
ways to reduce and present the information to developers? A
poor presentation can easily mask the advantages of specu-
lative analysis and may even impede developer productivity
by overwhelming the developer with redundant or uninter-
esting information.

Third, in what situations, if any, will speculative analysis
effectively complement existing deep analyses of the current
development state? These approaches will necessarily com-
pete for computational cycles: does software productivity
and quality improve more by making a marginal investment
in single-state analysis or by speculative analysis? Single-
program analysis will, at some point, provide sufficiently
small returns to make the investment in speculative analy-
sis worthwhile. We may be approaching that situation now.
This suggests that speculative analysis may already have an
opportunity to be more beneficial at the margins.

5. Related Work
A significant body of work exists on ways to increase devel-

oper awareness and assist developers in making better deci-
sions, particularly about collaborative development. Mailing
lists and chat systems can increase collaborative team mem-
ber awareness [13]. FASTDash is an interactive visualization
that helps people understand what other team members are
doing by producing a spatial representation of the shared
code base [2]. CollabVS can identify conflicts by analyzing
dependencies among program elements in developers’ work-
spaces [9]. Palant́ır shows who is changing which artifacts,
and by how much [22]. Sarma provides a comprehensive clas-
sification of collaborative tools for software development [21].

While the work on analyzing past and current states of
development is too numerous to mention, we outline some
of the research on exploring present states the instant they
appear. Modern programming environments perform contin-
uous compilation, providing the developer with rapid, and
typically unobtrusive, feedback about compilation errors.
Continuous testing reduces the time and energy required
to keep code well-tested and prevent regression errors from
persisting uncaught for long periods of time by continuously
running regression tests in the background [18, 19, 20, 11].
Real-time integration may decrease developers’ hesitation in
committing changes [12]. Finally, recent research into auto-
mated generation of bug fixes pushes ever closer to explo-
ration of future development states [17, 23].

6. Conclusion
Speculative analysis offers a new way to improve developer

productivity and software quality by providing a new source
of information that is complementary to existing approaches.
Creating tools that perform speculative analysis is feasible,
given the emergence of cheap computation via multi-core
architectures and cloud computing.

Our vision of speculative analysis is quite broad. As long
as developers make poorly-informed decisions, speculative
analysis has the potential to provide pertinent information
to help them make better decisions. As the field advances,
the potential for applying speculative analysis will only in-
crease — more knowledge and more analyses will provide op-
portunities for speculation over different development states.

The quick fix and version control examples provide a taste
of what speculative analysis techniques may look like. How-
ever, they are only two points in the very large space of pos-
sible speculative analyses. There are an unbounded number
of possible future systems, which provides a rich research
space limited primarily by our imaginations, computational
resources, and developers’ cognitive constraints.
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