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a b s t r a c t

Swarm robotics, active self-assembly, and amorphous computing are fields that focus on
designing systems of large numbers of small, simple components that can cooperate to
complete complex tasks. Many of these systems are inspired by biological systems, and
all attempt to use the simplest components and environments possible, while still being
capable of achieving their goals. The canonical problems for such biologically-inspired
systems are shape assembly and path finding. In this paper, we demonstrate path finding
in the well-studied tile assembly model, a model of molecular self-assembly that is strictly
simpler than other biologically-inspired models. As in related work, our systems function
in the presence of obstacles and can be made fault-tolerant. The path-finding systems use
Θ(1) distinct components and findminimal-length paths in time linear in the length of the
path.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Swarm robotics, active self-assembly, and amorphous computing are fields that focus on designing systems of small,
simple components that are capable of cooperating to complete complex tasks. Many of these systems have been inspired
by biological systems seen in nature, sowewill refer to them as biologically-inspired systems.Work on biologically-inspired
systems started in theoretical explorations [1,8,18,25,30] and fueled the creation of distributed robotic systems in hardware,
in which individual robots with limited capabilities come together in swarms to exhibit complex emergent behaviors [15,
27,37]. The objective of the majority of the theoretical work has been to design systems that perform the most complex
tasks using the simplest components. Because systems are built out of simple, and therefore cheap, components, creating
a large number of components is typically not a concern, but a large number of distinct components is. To further reduce
the cost of the component-manufacturing process, many of the systems strive to allow for unreliable components. In large,
much of the work in these fields is inspired by biological systems that not only build complex systems out of simple and
cheap components, but that also often deal with faulty and malicious agents.
Biologically-inspired systems are typically made up of a large number of identical components that are resource- and

computational-power-limited agents. Various researchers have defined distinct models for studying such systems; the
models differ in the components, in the types of interactions between components, and in the environmental resources
available to the components.
The primary goal behind the creation of many of these models is to use the simplest components to achieve complex

behavior such as the assembly of shapes or formation of paths between points. While these may not seem like complex
tasks on the first inspection, these behaviors can be used as primitives to accomplish more practical results. For example,
the path-forming primitive can be used to form wires between two electrodes on a surface.
It is not uncommon for new fields to remain heterogeneous for some time, with every research group coming up with its

own definitions of systems, tasks, and components. However, as the common goal of biologically-inspired systems is to use
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the simplest and cheapest components to produce systems that complete themost complex tasks, it is reasonable to compare
themodels in which these systems reside. Unfortunately, such a comparison is unlikely to produce a single clear winner. For
example, somemodelsmay use low-memory components but require complex communication abilities, othersmay require
more memory but use simpler communication, and others may require minimal communication and memory but rely on
careful control of the components’ motions. Further, the complexity of the tasks is an ambiguous quantity: is it harder to find
a path between points or assemble a square? In this paper, we show that there are systems in an extremely simple model,
whose components have practically no memory, communication, or control abilities, capable of accomplishing some of the
tasks commonly presented in related literature.
To this end, we leverage the tile assembly model [42,41,36], a formal model of crystal growth. It was designed to model

self-assembly of molecules such as DNA, and thus its components are no more complex than oversimplified biological
molecules. In essence, a component is a square with a label on each of its four sides. Components can neither change their
labels nor input or output any information. They can, however, attach to other components when the labels on their sides
match. The tile assemblymodel is a formal mathematical model that allows for the study of assembly time and construction
complexity. Many other biologically-inspired models lack the formalism to allow this type of study. We will fully define the
tile assembly model in Section 3, then present tile systems that find paths between points, and show that these systems
exhibit the same robustness demonstrated by other biologically-inspired systems.

2. Related work

The idea of using swarms of simple, cheap, unreliable, and tiny (invisible to the naked eye) components to solve complex
problems is attractive because manufacturing such components can be automated and their execution may take place in
extreme environments. In one exploration of computing devices, Abelson et al. [1] formally defined an amorphous computer
to be a 2D sheet with randomly placed immobile robots. The robots have wireless communication power with radius far
smaller than the sheet, and their computational abilities are restricted to be less powerful than Turing machines, but are
otherwise left open. In general, these robots are expected to have some memory and a finite control. This definition formed
amedium for researchers to test the power of simple components and to experiment with programming those components
to complete complex tasks. The path-finding problem in this model was solved in [15] with the use of messages similar to
chemical gradients used in biological systems.
Nagpal showed that systems in the amorphous computer model, leveraging the primitive path-finding operation, can

create complex shapes [30]. Later, Clement et al. [18] improved the path-finding procedure to be robust to robot failure.
Meanwhile, other researchers developed their own models, similar to the amorphous computer. Arbuckle et al. [8]

concentrated on keeping the robots to have only a few bits of memory, and allow the robots to move around a 2D surface.
They have demonstrated the ability to build paths, assemble shapes, and repair formed paths and shapes. Others attempted
to implement physical manifestations of these models [15,27,37].
While a wealth of literature exists on biologically-inspired systems, this literature lacks the organization and common

definitions necessary to effectively compare the complexity of the basic components or the complexity of the tasks
performed. Our systems presented in this paper use components far simpler than the ones described above (they have
no finite control, minimal read-only memory, and incredibly limited communication abilities), and perform some of the
same tasks we have described thus far.
To demonstrate how such simple components can perform complex tasks, we leverage the field of self-assembly.Winfree

showed that DNA computation is Turing-universal [40]. While DNA computation suffers from relatively high error rates, the
study of self-assembly shows how to utilize redundancy to design systems with built-in error correction [44,10,17,31,43].
Researchers have used DNA to assemble crystals with patterns of binary counters [9] and Sierpinski triangles [35].
The tile assembly model [42,41,36] is a formal model of crystal growth. It was designed to model self-assembly of

molecules such as DNA. It is an extension of a model proposed by Wang [39]. The model was fully defined by Rothemund
and Winfree [36], and the definitions here are similar to those, but we restate them here for completeness and to assist the
reader. Intuitively, the model has tiles or squares that stick or do not stick together based on various binding domains on
their four sides. Each tile has a binding domain on its north, east, south, and west side, which define the type of the tile.
In this definition, tiles are not allowed to rotate. A tile may stick to another tile when the binding domains on the abutting
sides of those tiles match and the total strength of all the binding domains on that tile exceeds the current temperature.
Winfree showed that the tile assembly model at temperature 2 is Turing-universal [41] by showing that a tile system

can simulate Wang tiles [39], which are universal [11,34]. We have previously shown that the problem of whether a given
set of tiles can form an infinite path is undecidable [6]. This work implies that the tile assembly model at temperature 1 is
Turing-universal.
Two important questions about self-assembling systems in the tile assembly model are: ‘‘what is a minimal tile set that

can accomplish a particular goal?’’ and ‘‘what is the minimum assembly time for that system?’’ Here, we study systems that
find paths and answer these questions about our systems. Adleman has emphasized studying the number of steps it takes
for an assembly to complete (assuming maximum parallelism) and the minimal number of tiles necessary to assemble a
shape [2]. He answered these questions for n-long linear polymers [4]. Previously,wehave extended these questions to apply
to systems that compute functions, rather than assemble shapes, deterministically [12] and nondeterministically [13,14].
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One of the potential applications of the tile assembly model is self-assembling electronic circuits [19,32]. Researchers
have shown that it is possible to attach simple, electrically-active components to DNA tiles and use the self-assembling
interactions of the tiles to arrange these components [45]. One of the most basic tasks one might want to use self-assembly
to complete is constructing a wire between two points. This task involves finding a path between those points. One might
further specify that the path should be short, use no extraneous components, or perhaps avoid certain regions (other circuit
elements, for example). We will present systems that solve these tasks.
The domino snake problem is a variant of the path-finding problem. It asks, given an arbitrary set of tiles and two points in

the plane, is it possible to construct a path between the points using those tiles? This problem turns out to be decidable [29,
22]. However, if the path is restricted to a half-plane or a quadrant, it becomes undecidable [20]. In fact, the problem remains
undecidable even if there is only one point in the plane through which the path is not allowed to travel [21].
We proposed and studied systems that compute the sums and products of two numbers using the tile assembly

model [12]. We found that in the tile assembly model, adding and multiplying can be done using Θ(1) tiles (as few as 8
tiles for addition and as few as 28 tiles for multiplication), and that both computations can be carried out in time linear
in the input size. We then showed that systems can be combined to create systems with more complex behavior, and
designed systems that factor numbers [13] and solve NP-complete problems [14]. Other early attempts at nondeterministic
computation include a proposal by Lagoudakis et al. [26] to solve the satisfiability problem. They informally define a system
that usesΘ(n2) distinct tiles to nondeterministically compute whether or not an n-variable boolean formula is satisfiable.
Barish et al. [9] have demonstratedDNA implementations of tile systems, one that copies an input and another that counts

in binary. Similarly, Rothemund et al. [35] have demonstrated a DNA implementation of a tile system that computes the xor
function, resulting in a Sierpinski triangle. These systems grow crystals using double-crossover complexes [23] as tiles.
Adleman proposed studying the complexity of tile systems that can uniquely produce n × n squares. A series of

researchers [36,3,5,28] proceeded to answer the questions: ‘‘what is a minimal tile set that can assemble such shapes?’’
and ‘‘what is the assembly time for these systems?’’ They showed that the minimal tile set that assembles n× n squares is
of size O( log n

log log n ) and the optimal assembly time isΘ(n) [5].
Researchers have also studied variations of the traditional tile assemblymodel. Aggarwal et al. and Kao et al. have shown

that changing the temperature of assembly from a constant throughout the assembly process to a discrete function reduces
the minimal tile set that can build an n× n square to a size Θ(1) tile set [7,24]. In our work with path-finding systems we
allow the temperature to change once.

3. Tile assembly model

Formally, let Σ be a finite alphabet of symbols called binding domains such that null ∈ Σ . We will always assume
null ∈ Σ even when we do not specify so explicitly. A tile over a set Σ of binding domains is a 4-tuple 〈σN , σE , σS , σW 〉
∈ Σ4. A position is an element of Z2. The set of directions D = {N, E, S,W } is a set of four functions from positions to
positions, i.e. Z2 to Z2, such that for all positions (x, y), N(x, y) = (x, y + 1), E(x, y) = (x + 1, y), S(x, y) = (x, y − 1),
and W (x, y) = (x − 1, y). The positions (x, y) and (x′, y′) are neighbors iff ∃d ∈ D such that d(x, y) = (x′, y′). For a tile
t , for d ∈ D, we will refer to bdd(t) as the binding domain of tile t on d’s side. A special tile empty = 〈null, null, null, null〉
represents the absence of all other tiles.
A strength function g : Σ ×Σ → N, where g is commutative and ∀σ ∈ Σ g(null, σ ) = 0, denotes the strength of the

binding domains.
Let T be a set of tiles containing empty. A configuration of T is a function A : Z × Z → T . We write (x, y) ∈ A iff

A(x, y) 6= empty. A is finite iff there is only a finite number of distinct positions (x, y) ∈ A. When it does not lead to
ambiguity, we will sometimes say tile t is in position (x, y) if A(x, y) = t , and we will refer to the position a tile is in
implicitly (e.g., tile t1 neighbors tile t2).
Finally, a tile system S is a triple 〈T , g, τ 〉, where T ⊆ Σ4 is a finite set of tiles over a setΣ of binding domains such that

empty ∈ T , g : Σ ×Σ → N is a strength function, and τ ∈ N is the temperature.
If S = 〈T , g, τ 〉 is a tile system and A is a configuration of some set of tiles T ′ ⊆ Σ4 then a tile t ∈ T can attach to A at

position (x, y) and produce a new configuration A′ iff:

• (x, y) /∈ A, and
•

∑
d∈D g(bdd(t), bdd−1(A(d(x, y)))) ≥ τ , and

• ∀(u, v) ∈ Z2, (u, v) 6= (x, y)⇒ A′(u, v) = A(u, v), and
• A′(x, y) = t .

That is, a tile can attach to a configuration only in empty positions and only if the total strength of the appropriate binding
domains on the tiles in neighboring positions meets or exceeds the temperature τ . For example, if for all σ , g(σ , σ ) = 1
and τ = 2 then a tile t can attach only at positions with matching binding domains on the tiles in at least two neighboring
positions.
Alternatively, if S = 〈T , g, τ 〉 is a tile system and A is a configuration of some set of tiles T ′ ⊆ Σ4 then a tile t ∈ T can

detach from A at position (x, y) and produce a new configuration A′ iff:

• (x, y) ∈ A, and
•

∑
d∈D g(bdd(t), bdd−1(A(d(x, y)))) < τ , and



1464 Y. Brun, D. Reishus / Theoretical Computer Science 410 (2009) 1461–1472

• ∀(u, v) ∈ Z2, (u, v) 6= (x, y)⇒ A′(u, v) = A(u, v), and
• (x, y) /∈ A′.

That is, a tile can detach from a configuration only if the total strength of the appropriate binding domains on the tiles
in neighboring positions is less than the temperature τ . For example, if for all σ , g(σ , σ ) = 1 and τ = 2 then a tile t can
detach from every position with matching binding domains on the tiles in fewer than two adjacent positions.
Given a tile system S = 〈T , g, τ 〉, a set of tiles Γ , and a seed configuration S0 : Z2 → Γ , if the above conditions are

satisfied, one may attach and detach tiles of T to and from S0. Note that we allow the codomain of S0 to be Γ , a set of tiles
which may be different from T . Let V0 ⊆ Z2 be the set of all positions where a tile from T can detach from S0. Let S ′0 be the
configuration produced by all the tiles detaching from S0 at all positions in V0. LetW0 ⊆ Z2 be the set of all positions where
at least one tile from T can attach to S ′0. For all w ∈ W0 let Uw be the set of all tiles that can attach to S

′

0 at w. Let Ŝ1 be the
set of all configurations S1 such that for all positions p ∈ S ′0, S1(p) = S

′

0(p) and for all positions w ∈ W0, S1(w) ∈ Uw and
for all positions p /∈ S0 ∪W0, S1(p) = empty. For all S1 ∈ Ŝ1 we say that S produces S1 on S0 in one step. If A0, A1, . . . , An
are configurations such that for all i ∈ {1, 2, . . . , n}, S produces Ai on Ai−1 in one step, then we say that S produces An on
A0 in n steps. When the number of steps taken to produce a configuration is not important, we will simply say S produces
a configuration A on a configuration A′ if there exists k ∈ N such that S produces A on A′ in k steps. If the only configuration
produced by S on A is A itself, then A is said to be a final configuration. If there is only one final configuration A produced
by S on S0, then S is said to produce a unique final configuration on S0. Finally, if A is a final configuration produced by S on
S0 and n is the least integer such that A is produced by S on S0 in n steps, then n is the assembly time of S on S0 to produce A.
Less formally, if S is a tile system and S0 is a seed configuration, onemay detach and attach tiles of T from and to S0. If one

detaches all the tiles one can from S0 and then attaches all the tiles one can, one creates a configuration S1 that is produced
by S on S0 in one step. Note that there may have been many choices of which tile to attach in each position. This process
can be repeated until no detachments or attachments are possible, at which point one is left with a final configuration. The
number of steps taken to produce the final configuration is its assembly time.
Sometimes, it may be useful to allow a system towork at a certain temperature and then later increase that temperature.

This process would allow a system to ‘‘explore’’ the space of configurations and then melt away unsuccessful explorations.
Thus we define a melting tile system S = 〈T , g, τg , τm〉. Let R be the set of configurations that the tile system 〈T , g, τg〉
produces on a seed configuration S0 in t steps. Let F be the union of the sets of final configurations that the tile system
〈T , g, τm〉 produces on each configuration of R, where tiles are forbidden from detaching from positions in S0. We say that
S produces the final configurations F on S0 with the switch time t . If F is a singleton, then we say that S produces a unique
final configuration F on S0 with the switch time t .

4. Path finding

In this section, we will first discuss a tile system that finds paths in an unconstrained environment in Section 4.1, and
then a tile system that can handle obstacles in Section 4.2.
Path finding is the problem of forming a path between two points on a 2D plane. Intuitively, given a seed configuration

with a single start and a single goal tile, a path-finding system should attach tiles to connect the start to the goal. It is
straightforward to design such a system that leaves extraneous tiles because one could just fill the planewith fully-connected
tiles and claim that the path is there. Thus we wish to restrict systems to leave no extraneous tiles in the final configuration.
Formally, an untiled path of length n is a sequence of positions 〈p1, p2, . . . , pn〉 such that ∀i 6= j ∈ {1, 2, . . . , n}, pi 6= pj

and ∀i ∈ {1, 2, . . . , n−1}, ∃d ∈ D such that pi+1 = d(pi). Given a tile system S = 〈T , g, τ 〉 and a configuration A of some set
of tiles T ′, a tiled path, or simply a path, in A of length n is an untiled path P of length n such that for all i ∈ {2, 3, . . . , n−1},
A(pi) is attached to A(pi−1)with strength a > 0 and A(pi) is attached to A(pi+1)with strength b > 0 and a+ b ≥ τ .
That is to say, an untiled path is a sequence of neighboring positions that does not cross itself. A path in a configuration A

is a sequence of neighboring positions such that the tile in each of the positions (except the first and the last) is attached to
the preceding and succeeding tiles with total strength at least the temperature. In some related literature [6], what we call
paths have been called ribbons.
We say that a melting tile system S solves the path-finding problem if for all seed configurations S0 : N2 → Γ , where

{S,G} ⊆ Γ and S0 maps exactly one position to S and exactly one position to G, there exists t ∈ N such that for all final
configurations F that S produces on S0 with the switch time t there is a path 〈p0, p1, p2, . . . , pn〉 such that:

• F(p0) = S,
• F(pn) = G,
• ∀(x, y) ∈ F , (x, y) is on a path in F of minimal length.

Informally, starting from a configuration with a single S and G, Smust produce a final configuration F that contains a path
of connected tiles from S to G of minimal length, and every position in F must be on such a path. For now, our definition of
‘‘minimal length’’ from p0 to pn will be the L1 norm or Manhattan distance between the two positions.
The path-finding problem is analogous to the path-finding relatives that researchers have solved previously [1,8,18,30].

Demonstrating that there exists a tile system that solves the path-finding problem indicates that it can be solved with
simpler basic components than those used in the related work. We now present such a system.
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Fig. 1. The start (S) and goal (G) tiles of Sdpf .

Fig. 2. The three tiles of Tdpf .

4.1. Direct path finding

The intuition behind the first system we present is the following: tiles will grow vertically from the start tile, in both
directions (north and south). Each of the tiles that attaches verticallywill have tiles attach horizontally, searching for the goal
tile. Once a path is found (we discuss below how one might know when such a path is found), we increase the temperature
and all non-successful paths melt away. We call this system the direct path-finding system, or Sdpf .

Sdpf will contain tiles over the following set of binding domains: Σdpf = {null, γ , v, +, −}. Fig. 1 shows Γdpf , which
contains the start (S) and goal (G) tiles. The start tile has v binding domains on its north and south and a+ binding domain
on its east and− binding domain on its west, while the goal tile is covered with γ binding domains.
Fig. 2 shows the three tiles of Tdpf . The V tile is designed to attach vertically to the S tile and the other two tiles (+ and

−) are designed to attach horizontally to S and the V tiles. These two tiles have null glues on their north and south sides
(unlabeled in the figure). The glue strength function gdpf is defined as follows:

• ∀σ ∈ Σdpf , gdpf (σ , null) = gdpf (null, σ ) = 0,
• ∀σ ∈ Σdpf \ {null}, gdpf (σ , γ ) = gdpf (γ , σ ) = 1,
• ∀σ ∈ Σdpf \ {γ , null}, gdpf (σ , σ ) = 2,
• ∀σ , σ ′ ∈ Σdpf \ {γ }, if σ 6= σ ′ then gdpf (σ , σ ′) = 0.

Intuitively, the null binding domain has binding strength 0 to every other binding domain; the γ binding domain has
binding strength 1 to every other binding domain, except null; and all other binding domains have binding strength 2 to
themselves and 0 to others.
We will show that the melting tile system Sdpf = 〈Tdpf , gdpf , 2, 3〉 solves the path-finding problem. Let us examine the

possible attachments of tiles to a seed configuration S0 that maps one position to S and one other position to G. Fig. 3(a)
shows one sample seed configuration. Because the temperature during the first stage of the process is 2 and all ofG’s binding
domains are γ and ∀σ ∈ Σdpf , gdpf (σ , γ ) ≤ 1, unless some tile isG’s neighbor’s neighbor (there is a gap of one tile between
them, thus allowing a tile to attach to them both), no tile may attach to G. Tiles may, however, attach to S. In the first time
step, four tiles will attach to S, one on each of its sides. Fig. 3(b) shows the configuration after one time step. Tiles will
continue to attach and grow larger diamond formations around the S tile. At step t , all of the positions with Manhattan
distance t from Swill be filled with tiles attached to the growing configuration. Fig. 3(c) shows the configuration after two
steps. Eventually, the diamond will grow large enough to touch the G tile. Fig. 3(d) shows part of a configuration that has
reached G. Note that only a single tile actually attaches to G, the tile directly to its west; the adjacent tile to its south has a
null north binding domain and thus the strength of the bond between it and G is 0.
At this point, the tile system temperature can be increased to 3. Note that the tile directly west of G is attached with

strength 3, thus it will remain in the structure. The tiles highlighted in gray in Fig. 3(e) are only attached to the assembly
with strength 2, and thus will detach. Once detached, some tiles that were previously connected by two strength 2 binding
domains will now be only connected by a single such domain, and thus will detach (Fig. 3(f)). This process will continue
until the only tiles left are the tiles in the path going north or south from S until G’s row and then going east or west to G.

Theorem 1. The melting tile system Sdpf = 〈Tdpf , gdpf , 2, 3〉 solves the path-finding problem.

Proof. Let S0 be a seed configuration such that S0(xS, yS) = S and S0(xG, yG) = G and for all other positions (x, y),
S0(x, y) = empty. Let d = |xS − xG| + |yS − yG| be the Manhattan distance from S to G. We will show by induction
that after t < d steps:

(1) All positions with Manhattan distance≤t from (xS, yS)will not be empty.
(2) All positions with Manhattan distance>t from (xS, yS)will be empty (except for (xG, yG)).
(3) The north binding domain of the tile in position (xS, yS + t)will be v.
(4) The south binding domain of the tile in position (xS, yS − t)will be v.
(5) All other exposed north and south binding domains will be null (except for those on G).
(6) All exposed east binding domains will be+ (except for those on G).
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Fig. 3. An example execution of Sdpf (a–g). Sdpf can find paths between S and G in different columns and rows (g), in the same column (h), and in the same
row (i).

(7) All exposed west binding domains will be− (except for those on G).
(8) If t > 0, then all tiles with Manhattan distance t from (xS, yS) will be attached to exactly one tile with Manhattan
distance t − 1 from (xS, yS).

At t = 0, the configuration is S0 and the only position withManhattan distance 0 from S is S itself, thus all the conditions
are satisfied.
Let St be a configuration produced by Sdpf on S0 in t < d steps. Assume St satisfies the above conditions. Note that G has

γ binding domains on every side, and gdpf (γ , σ ) = 1 for all σ ∈ Σdpf \ {null}, so at temperature 2 no tile can attach to G
without also attaching to at least one other tile. Further, since all of the binding domains on tiles from T attach to S and to
other tiles from T with strength 2, if a tile from T can attach to G at temperature 2, then it would also be able to attach in
that position if Gwere not there.
Since tiles can only attach to St in positions neighboring a position in St , and by (2) all positions with Manhattan distance

>t from (xS, yS) will be empty (except for (xG, yG)), in step t + 1 no tile will be able to attach to St in a position with
Manhattan distance >t + 1 from (xS, yS), so St+1 will satisfy condition (2). By (1) and the fact that every position with
Manhattan distance t + 1 from (xS, yS) neighbors a position with Manhattan distance t , and by (3), (4), (6), and (7), each
of those positions has at least one neighboring tile with an exposed strength 2 binding domain, we know that in step t + 1
at least one tile will be able to attach in every position with Manhattan distance t + 1 from (xS, yS), so St+1 will satisfy
condition (1).
By (2), we know that position (xS, yS + t + 1) (respectively position (xS, yS − t − 1)) is not in St . The only neighboring

position with Manhattan distance ≤t is (xS, yS + t) (resp. (xS, yS − t)). By (3) (resp. (4)), we know the north (resp. south)
binding domain of the tile in that position is v. The only tile that can attach to St in position (xS, yS + t + 1) (resp. position
(xS, yS− t−1)) is the V tile. When this tile attaches, it will expose a north (resp. south) v binding domain, an east+ binding
domain, and a west− binding domain, so St+1 will satisfy conditions (3) and (4).
Every position (x, y)withManhattan distance t+1 from (xS, yS) except for (xS, yS+ t+1) and (xS, yS− t−1) neighbors

a position (x′, y′)with Manhattan distance t from (xS, yS) on either the east or the west side. By (2), St(x, y) = empty. By (6)
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(respectively (7)), all the exposed binding domains on the east will be+ (resp. west will be−). The only tile that can attach
in position (x, y) is+ (resp.−). That tile will expose a+ (resp.−) binding domain on the east (resp. west) and null binding
domains on the north and south. Therefore St+1 will satisfy conditions (5), (6), and (7). If any positions in St neighbor (x, y)
on the north or south, the abutting binding domain will be null by (5), so St+1 satisfies condition (8).
Consider the configuration Sd−1 produced by Sdpf on S0 in d − 1 steps. The Manhattan distance from S to G is d, and all

positions with Manhattan distance d− 1 from Swill not be empty, so at least one position that neighbors Gwill be in Sd−1.
If xS = xG then by conditions (3) and (4), the tile that neighbors G has a v binding domain on the side that abuts G. Since
gdpf (v, γ ) = 1, the tile is attached to Gwith a strength 1 binding domain.
If xS 6= xG then either E(xG, yG) ∈ Sd−1 orW (xG, yG) ∈ Sd−1. By conditions (6) and (7) a tile that neighbors G has either a

+ or− binding domain on the side that abutsG. Since gdpf (+, γ ) = gdpf (−, γ ) = 1, the tile is attached toGwith a strength
1 binding domain. Note that only one tile in Sd−1 can be attached toG because, by condition (5), the north and south binding
domains of a tile that neighbors G on the south or north must be null.
Choose the switch time to be d− 1. Consider the tiles in positions (x, y) such that (x, y) ∈ Sd−1 and (x, y) /∈ Sd−2. Except

for the one tile td−1 that is attached toG, all these tiles are attached to exactly one other tilewith a strength 2 binding domain
by condition (8). At temperature 3, all these tiles will detach. The one tile that is attached to G with a strength 1 binding
domain is also attached to one other tile with a strength 2 binding domain (by (8)) and is thus attached to Sd−1 with strength
3 so it will not detach at temperature 3. Since G ∈ S0 it is forbidden from detaching.
In the next step, all the tiles in positions (x, y) such that (x, y) ∈ Sd−2 and (x, y) /∈ Sd−3 will detach, except for the tile

td−2 that is attached to td−1 because it is also attached to a tile in Sd−3. It follows that for all k ∈ {1, 2, . . . , d− 2}, every tile
in Sk that is not in Sk−1 will detach except for exactly one tile tk that is attached to one tile in Sk−1 and one tile in Sk+1. After
d − 1 steps, no more tiles will be able to detach and we will be left with a final configuration F . The sequence of positions
given by the position of the tiles 〈S, t1, t2, . . . , td−2, td−1,G〉 is a path that starts at S and ends at G. Further, every position
in F is on this path. Thus Sdpf solves the path-finding problem. �

Corollary 1. Let S0 be a seed configuration such that S0(xS, yS) = S and S0(xG, yG) = G and for all other positions (x, y),
S0(x, y) = empty. Let d be theManhattan distance between (xS, yS) and (xG, yG). Then Sdpf produces a unique final configuration
F on S0 with switch time d− 1 and assembly timeΘ(d). Further, for all t ≥ d, Sdpf produces F on S0 with switch time t.

Proof. By conditions (3), (4), (5), (6), and (7) above, and by inspection of Tdpf it is clear that at each step t < d at most one
tile may attach in each position. After switch time d − 1, since the temperature is 3 no new tiles may attach, and at step
d ≤ t ≤ 2(d− 1) all tiles (except one) with Manhattan distance 2d− t − 1 from S detach, so at after step 2(d− 1) no more
tiles can detach. Thus S produces a unique final configuration with assembly time 2(d− 1) = Θ(d).
Now consider a switch time t ≥ d. At step d − 1, one tile attaches to G. If that tile is V, then xG = xS. If yG > yS

(respectively yG < yS) then no tile will ever be able to attach in or above (resp. in or below) row yG. Therefore no other tile
may attach toG. After step t , all tiles in positions not between S andGwill eventually detach, leaving only those tiles on the
path from S to G.
At step d − 1, if tile + (respectively tile −) attaches to G, then xG > xS (resp. xG < xS). If a tile attaches in position

(xG, yG + 1) or (xG, yG − 1) it must be a+ tile (resp.− tile). These tiles have null binding domains on their north and south
sides, so they do not attach to G. Further, no tile will ever be able to attach in position (xG + 1, yG) (resp. (xG − 1, yG)).
Therefore, after step t , only one tile is attached to G. All the other tiles not on the path from S to Gwill eventually detach.
Hence, the final configuration produced by S on S0 with switch time t ≥ d is the same as the final configuration produced

by S on S0 with switch time d− 1. �

In summary, Sdpf is guaranteed to find the shortest possible path between two points, in time linear in the length of the
path.
In light of Corollary 1, one need not know the minimum switch time. However, in practice it may be helpful to be able

to assess how long one has to wait before increasing the temperature. As Corollary 1 indicates, the switch time is Θ(d),
where d is the Manhattan distance between S and G. More specifically, the proper minimum switch time is exactly d− 1. In
practice, if the distance d is known, one can wait that long to increase the temperature. If d is unknown, one can devise an
algorithm of increasing and decreasing the temperature repeatedly, perhaps increasing the switch time exponentially, such
that in expectation a path can be found quickly.
Some biologically-inspired systems that find paths between points can recover from damage done to an existing path [8,

18]. The mechanism those systems employ are generally a detection phase (every component checks to make sure its
neighbors are alive) and a repair phase (detach if your neighbor is dead, and rebuild the path from scratch). Sdpf can
employ a similar mechanism: if some of the tiles are ever removed from a well-formed path, the rest of the tiles will detach
automatically at temperature 3. Lowering the temperature to 2 restarts the assembly process, rebuilding the path.

4.2. Constrained path finding

Many of the biologically-inspired systems from related literature are capable not only of self-organizing to find a path
between two points, but also of doing so with obstacles in the way [1,8,18,30]. In fact, the amorphous computer, and similar
systems, have no sense of a 2D grid, despite having components positioned in a 2D space. The notion of a straight line
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Fig. 4. The start (S) and goal (G) tiles of Scpf .

Fig. 5. The four tiles of Tcpf .

in such a system is simply the shortest communication path between two points, and thus if there are obstacles or regions
unpopulated by robots, the systemautomatically ‘‘bends’’ the 2D space to represent straight lines as curved lines that happen
to be shortest communication paths. This feature comes naturally tomost such systems specifically because the systems are
biologically-inspired and in biology, the individual components (e.g., cells) are not aware of their 2 or 3D grid coordinates a
priori, and signals (e.g., chemical gradients) travel around obstacles.
Themelting tile system Sdpf finds paths between pointswithout obstacles. If an obstaclewere to be placed in the standard

path, the systemwould simply hit the obstacle and get stuck. In this section, we present a system, Scpf , that finds paths even
with obstacles in the way.
We will denote obstacles as part of the seed configuration mapping positions with obstacles to special tile obstacle =

〈x, x, x, x〉. Like the special empty tile, if there is a configuration A and a position p such that A(p) = obstacle, we will say
p /∈ A.

Scpf will contain tiles over the following set of binding domains: {null, x, γ , n, e, s, w}. Fig. 4 shows the start (S) and goal
(G) tiles. The start tile has an n, e, s, and w binding domain on its north, east, south, and west sides, respectively, and as
before, the goal tile is covered with γ binding domains.
Fig. 5 shows the four tiles of Tcpf . Each tile is labeled with an arrow (we explain the meaning of the arrow later). The glue

strength function gcpf is defined as follows:

• ∀σ ∈ Σcpf , gcpf (σ , null) = gcpf (null, σ ) = 0,
• ∀σ ∈ Σcpf , gcpf (σ , x) = gcpf (x, σ ) = 0,
• ∀σ ∈ Σcpf \ {null, x}, gcpf (σ , γ ) = gcpf (γ , σ ) = 1,
• ∀σ ∈ Σcpf \ {null, x, γ }, gcpf (σ , σ ) = 2,
• ∀σ , σ ′ ∈ Σcpf \ {γ }, if σ 6= σ ′ then gcpf (σ , σ ′) = 0.

Intuitively, the null and x binding domains have binding strength 0 to every other binding domain; the γ binding domain
has binding strength 1 to every other binding domain, except null and x; and all other binding domains have binding strength
2 to themselves and 0 to others.
Let us examine the intuition behind Scpf = 〈Tcpf , gcpf , 2, 3〉. Fig. 6(a) shows a sample seed configuration with a four-tile

obstacle. At temperature 2, tiles will attach to S to create possible paths towardG. Each of the four tiles in Tcpf is designed to
attach in a specific way to an existing assembly: each of the tiles has exactly one of its four domains be ‘‘irregular’’ (where
‘‘regular’’ means n for north, e for east, s for south, andw for west). The growing assembly will always have regular domains
on all its exposed sides, thus tiles may only attach via their single irregular domain. Fig. 6(b) and (c) show tile attachments
after 1 and 2 steps, respectively. Pathsmay turn and fork in their attempts to reachG. OnceG is reached, the last tile attaches
with a total strength 3 (2 via its irregular binding domain and 1 to G). Fig. 6(d) shows some possible attachments after the
system has been running for some time and has reached G. Once the temperature is increased to 3, all partial paths detach,
while the successful paths remain. Fig. 6(e) shows the final configuration encoding a single path from S to G that avoids the
obstacles.
To show that Scpf solves the path-finding problem, we need a notion of distance in systems with obstacles. Formally,

if T is a set of tiles containing obstacle, A : Z → T is a configuration of T and (x, y), (x′, y′) ∈ Z2, then the obstructed
Manhattan distance between (x, y) and (x′, y′) with respect to A is n − 1, for the least n such that there exists an untiled
path 〈p1, p2, . . . , pn〉 of length n such that p1 = (x, y) and pn = (x′, y′) and for all i ∈ {1, 2, . . . , n}, A(pi) 6= obstacle.
That is to say, the obstructed Manhattan distance between two points on a 2D grid is the fewest number of unit-sized

steps one has to take from one point to get to the other, without stepping on an obstacle. Fig. 7 shows an example grid
with the obstructed Manhattan distances from the position marked 0. (If a point is not reachable from another because of
obstacles, we say that the obstructed Manhattan distance between those points is∞.) Note that the obstructed Manhattan
distance could be far greater than the Manhattan distance. Fig. 8 shows an example obstacle arrangement in which the
obstructed Manhattan distance is on the order of the Manhattan distance squared.

Theorem 2. The melting tile system Scpf = 〈Tcpf , gcpf , 2, 3〉 solves the path-finding problem with obstacles.
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Fig. 6. An example execution of Scpf . Scpf works at temperature 2 (a–d) to build possible paths and then at temperature 3 (e) to prune unsuccessful paths.
Only binding domains that are exposed or attached have been labeled.

Fig. 7. The obstructed Manhattan distances on a 2D grid.

Proof. Let S0 be a seed configuration such that S0(xS, yS) = S and S0(xG, yG) = G and for all other positions (x, y),
S0(x, y) ∈ {empty, obstacle}. Let d be the obstructed Manhattan distance from S to G. We will show by induction that after
t < d steps:

(1) All positions with obstructed Manhattan distance≤t from (xS, yS)will not be empty.
(2) All positions with obstructed Manhattan distance >t from (xS, yS) will be empty (except for (xG, yG) and positions
containing obstacle tiles).

(3) All exposed north binding domains will be n (except on G).
(4) All exposed south binding domains will be s (except on G).
(5) All exposed east binding domains will be e (except on G).
(6) All exposed west binding domains will be w (except on G).
(7) All tiles except S and G have an arrow that points to a position with a smaller obstructed Manhattan distance from

(xS, yS), and will be attached to the tile in that position with strength 2.

For t = 0, all the conditions are trivially satisfied from S0. Let St be a configuration that Scpf produces on S0 in t < d steps.
Assume that St satisfies conditions 1–7 above.
Note that at temperature 2, no tiles can attach to the obstacle tiles because their binding domains have 0-strength bonds

to all other tiles, and no tiles will bind to G without binding to something else as well because its binding domains have
1-strength bonds to the four tiles in Tcpf . Further, if a tile from Tcpf can attach to G at temperature 2, it would also be able to
attach in that position if G were not there, because all the binding domains on tiles from Tcpf attach to S and to other tiles
from Tcpf with strength 2.
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Fig. 8. A situation in which the obstructed Manhattan distance is on the order of the Manhattan distance squared. The obstructed Manhattan distance
between S andG is 27, while theManhattan distance is only 12. One can design obstacle formations to make the obstructedManhattan distance arbitrarily
greater than Manhattan distance, including infinite.

Similarly to the direct path-finding case, condition (2) and the facts that tiles may only attach in positions neighboring
positions in St and no tile may attach to G without also attaching to at least one other tile in St , together imply that after
step t + 1 no tile from T will be in a position with obstructed Manhattan distance>t + 1 from (xS, yS), so St+1 will satisfy
condition (2). By condition (1), every position (x, y)with obstructedManhattan distance t+1 from (xS, yS)will be adjacent
to a position in St and by conditions (3), (4), (5), and (6) and by inspection of the tiles in Tcpf , at least one tile can attach in
position (x, y). Hence, after step t + 1 every position with obstructed Manhattan distance≤t + 1 will not be empty, so St+1
will satisfy condition (1).
Consider a position (x, y)with obstructedManhattan distance t+1 from (xS, yS). By (1) and (2), (x, y) /∈ St and neighbors

at least one position (x′, y′) ∈ St . If (x, y) is such that (x, y) = N(x′, y′) (respectively S(x′, y′), E(x′, y′), W (x′, y′)) then
bdN(St(x′, y′)) = n (resp. bdS(St(x′, y′)) = s, bdE(St(x′, y′)) = e, bdW (St(x′, y′)) = w) by condition (3) (resp. (4), (5), (6))
so tile ↓ (resp. ↑,←,→) can attach in position (x, y) with strength 2. The arrow points toward position (x′, y′), which has
a smaller obstructed Manhattan distance from (xS, yS) than (x, y), so St+1 satisfies condition (7). Finally, since tile ↓ (resp.
↑,←,→) attached to St via its south (resp. north, west, east) binding domain, the only possible exposed binding domains
are on the other three sides, and by inspection of Tcpf all these binding domains satisfy conditions (3), (4), (5), and (6), so
St+1 will satisfy those conditions.
Note that there exists a path between S and G iff the obstructed Manhattan distance from S to G is finite. Thus if

there exists a path, then after d − 1 steps, at least one tile td−1 will have attached in a position pd−1 neighboring G by
condition (1). Since td−1 will be attached to some tile td−2 in position pd−2 with strength 2 and to G with strength 1, td−1
is attached with strength 3. Following the arrow on td−1 leads to td−2. Then td−2 is attached to two tiles (td−1 and the tile
in the direction of the arrow on td−2), and thus with strength 4; further, the obstructed Manhattan distance from pd−2 to
S is smaller than from pd−1 to S. Repeating this process, following the arrows, we can construct a sequence of positions
〈(xS, yS), p1, p2, . . . , pd−2, pd−1, (xG, yG)〉. This sequence is a path in Sd−1 of length d + 1 from S to G and each tile on the
path (except S and G) is attached to other tiles on the path with strength at least 3.
Consider a tile t1 in a position not on a minimum length path in Sd−1. Either t1 has a tile t2 in a neighboring position with

an arrow pointing at t1 or not. If not, then since t1 is not on a minimum length path, it is not attached to G, so the only tile
it can be attached to with positive strength is the tile in the direction of the arrow on t1. This attachment is of strength 2, so
t1 will detach at temperature 3. If t1 has a neighboring tile t2 with an arrow pointing at t1, then t2 is also not on a minimum
length path so the same argument applies. This process can continue for at most d − 1 steps at which point td−1 must not
have a neighboring tile pointing at it. Then td−1 will detach at temperature 3, which will lead to td−2 detaching in the next
time step and so on.
Therefore at temperature 3, the only tiles that will remain in the final configuration are the tiles on a minimum length

path. Thus given a seed configuration S0, Scpf produces a final configuration F on S0 with switch times t = d − 1 and F
encodes a path from S to G that avoids obstacles iff there exists at least one such path. �

Corollary 2. Let S0 be a seed configuration such that S0(xS, yS) = S and S0(xG, yG) = G and for all other positions (x, y),
S0(x, y) ∈ {empty, obstacle}. Let d be the obstructed Manhattan distance between (xS, yS) and (xG, yG). Then Scpf produces a
final configuration F on S0 with switch time d − 1 and assembly time Θ(d). Further, for all t ≥ d − 1, Scpf produces a final
configuration F on S0 with switch time t, such that:

(1) There exists a path from S to G in F of length d+ 1.
(2) For all (x, y) ∈ F , if F(x, y) 6= obstacle then (x, y) is on a path from S to G.

Proof. Part (1) follows from Theorem 2 and the fact that once a path of minimal length is assembled, each tile on the path is
attached with strength at least 3, so will not detach from the path at temperature 3. The assembly time is the time required
to attach tiles for form the path at temperature 2 plus the time required to detach all tiles that are not on a path from S to
G. The assembly time is 2(d− 1) = Θ(d).
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To show part (2), let St be a configuration produced by Scpf on S0 with switch time t ≥ d − 1 in t steps. If a tile t1 is not
on a path from S to G in St , then either there is no tile in a neighboring position with an arrow pointed at t1 (in which case
t1 will detach in step t + 1 because the temperature will be 3), or every tile t2 in a neighboring position that has an arrow
pointing at t1 is also not on a path from S to G. The same argument applies to t2, so it follows that there must exist a tile tk
such that t1 is on a path from S to tk and tk does not have a neighboring tile with an arrow pointing at tk. Thus tk will detach
in step t + 1 and t1 will detach in step t + k. Therefore the final configuration F will not have any tiles (except for obstacle)
in positions not on a path from S to G. �

Note that we have been assuming maximum parallelism in our systems. That is, whenever a tile can attach, it does, and
whenever a tile has to detach, it does. In physical implementations of the tile assembly model, it is far more likely that
attachment and detachments happen stochastically, with rates that are related to the bond strength. While Sdpf always
produces optimal-length paths, even without the maximum-parallelism assumption, Scpf only produces optimal-length
paths with the maximum-parallelism assumption. Theorem 2 does not hold if tiles may attach to positions with a greater
obstructed Manhattan distance before attaching to ones with a lower obstructed Manhattan distance. One could analyze
the expected length of the path in such an environment and find that with high probability, the length is on the order of the
obstructed Manhattan distance.
In summary, Scpf is guaranteed to find the shortest possible path between two points, in time linear in the length of the

path, assuming maximum parallelism.
As before, while the theoretical definitions do not require knowing the proper switch time, in practice it may be helpful

to be able to assess how long one has to wait before increasing the temperature. As Corollary 2 indicates, the switch time is
Θ(d), where d is the obstructedManhattan distance between S andG. More specifically, the properminimum switch time is
exactly d−1. In practice, if the distance d is known, one can wait that long to increase the temperature. If d is unknown, one
can devise an algorithm of increasing and decreasing the temperature repeatedly, perhaps increasing the length of switch
time exponentially, such that in expectation a path can be found quickly.

5. Contributions

A number of biologically-inspired systems [1,8,15,18,25,27,30,37] attempt to use simple components with limited
computational power to come together to accomplish complex tasks. The tasks commonly accomplished by these systems
include finding paths between two points in 2D space and assembling shapes. The reason for the desire to use simple
components is that they are cheap to produce in bulk.
We have presented two tile assembly systems, one that finds paths between two points in unrestricted space, and one

that finds paths between two points evenwith obstacles present. These systems use components far simpler than those used
in the related work. The components’ interfaces are static and each component performs no computation, has no controlled
movement, and has no writable memory (the binding domains could be considered read-only memory). Components such
as these have been built out of DNA [9,16,23,33,35] at incredibly low costs.
While we have not gone into discussion of fault-tolerance within tile systems, a whole field of related research exists

on making tile systems tolerant to individual tile failures [10,17,31,38,43,44]. One could apply the ideas in that related
work directly to the tile systems we describe in this paper to make these systems able to perform successfully despite high
probabilities of tiles failing, usually at the cost of slowing down the system assembly.
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