
Connecting the Dots:

Molecular Machinery for Distributed Robotics

Yuriy Brun and Dustin Reishus

University of Southern California, Los Angeles, CA, USA
{ybrun,reishus}@usc.edu

Abstract. Nature is considered one promising area to search for inspi-
ration in designing robotic systems. Some work in swarm robotics has
tried to build systems that resemble distributed biological systems and
inherit biology’s fault tolerance, scalability, dependability, and robust-
ness. Such systems, as well as ones in the areas of active self-assembly
and amorphous computing, typically use relatively simple components
with limited computation, memory, and computational power to accom-
plish complex tasks, such as forming paths in the presence of obstacles.
We demonstrate that such tasks can be accomplished in the well-studied
tile assembly model, a model of molecular self-assembly that is strictly
simpler than other biologically-inspired models. Our systems use a small
number of distinct components to find minimal-length paths in time
linear in the length of the path while inheriting scalability and fault
tolerance of the underlying natural process of self-assembly.

1 Introduction

Swarm robotics, active self-assembly, and amorphous computing are fields that
focus on designing systems of small, simple components that are capable of co-
operating to complete complex tasks. Many of these systems have been inspired
by biological systems seen in nature, so we will refer to them as biologically-
inspired systems. Work on biologically-inspired systems started in theoretical
explorations [1,2,3,4,5,6] and fueled the creation of distributed robotic systems
in hardware, in which individual robots with limited capabilities come together
in swarms to exhibit complex emergent behaviors [7,8,9,10,11]. Because systems
are built out of simple, and therefore cheap, components, creating a large number
of components is typically not a concern, but the number of distinct components
is. To further reduce the cost of the component-manufacturing process, many of
the systems strive to allow for unreliable components. In large, much of the work
in these fields is inspired by biological systems that not only build complex sys-
tems out of simple and cheap components, but that also often deal with faulty
and malicious agents.

Biologically-inspired systems are typically made up of a large number of iden-
tical components that are resource- and computational power-limited agents.
Various researchers have defined distinct models for studying such systems; the

A. Goel, F.C. Simmel, and P. Sośık (Eds.): DNA 14, LNCS 5347, pp. 102–111, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Connecting the Dots: Molecular Machinery for Distributed Robotics 103

models differ in the components, in the types of interactions between compo-
nents, and in the environmental resources available to the components. The
primary goal behind the creation of many of these models is to use the simplest
components to achieve complex behavior, such as the assembly of shapes or for-
mation of paths between points. While these may not seem like complex tasks
on first inspection, these behaviors can be used as primitives to accomplish more
practical results. For example, the path-forming primitive can be used to form
wires between two electrodes on a surface.

In our approach, we show that an extremely simple model of components
with practically no memory, no communication, and no control requirements
are capable of accomplishing many of the tasks commonly presented in related
literature. To that end, we leverage the tile assembly model [12,13,14], a formal
model of crystal growth. It was designed to model self-assembly of molecules
such as DNA, and thus its components are no more complex than oversimplified
biological molecules. It is an extension of a model proposed by Wang [15] in 1961.
In essence, a component is a square with a label on each of its four sides. Com-
ponents cannot change their labels, nor input or output any information. They
can, however, attach to other components if the labels on their abutting sides
match. The tile assembly model is a formal mathematical model, which allows
for the study of assembly time and tileset complexities. Many other biologically-
inspired systems lack the formalism to allow this type of study. We will present
tile systems that find paths between points, and show that these systems exhibit
the same robustness demonstrated by other biologically-inspired systems.

2 Related Work

The work presented in this paper builds on the tile assembly model to solve
problems commonly found in biologically-inspired systems literature, such as
path finding. Thus, we will first discuss the work in biologically-inspired systems
in Section 2.1 and then review work related to the tile assembly model in Sec-
tion 2.2. We will define the tile assembly model in Section 3 and explain our
path-finding system in Section 4. Finally, we will conclude in Section 5.

2.1 Biologically-Inspired Systems

Perhaps the first instance of using simple components to solve the path-finding
problem was in the paintable computing model. Paintable computing was in-
spired by the idea of placing cheap, unreliable, and tiny (invisible to the naked
eye) components into paint, and covering a wall or other surface with that
paint. The components remain stationary on the wall and are able to commu-
nicate wirelessly with their neighbors to accomplish certain tasks, for example
forming a wire between a light switch and a light fixture on the wall (an in-
stance of the path-finding problem) or displaying a photograph (an instance of
shape construction). Pushpin computing was the first physical implementation
of a paintable-computing-like system. Butera created cubic-inch-sized immobile

104 Y. Brun and D. Reishus

robots that could be pinned to a special wall made of foil [7]. The wall provided
the robots with power, and they, in turn, could communicate with a small radius
of neighbors and turn on and off LED lights.

Abelson et al. [1] formally defined an amorphous computer to be a 2-D sheet
with randomly placed immobile robots. The robots have wireless communication
capability with radius far smaller than the sheet, and their computational abil-
ities are restricted to be less powerful than Turing machines, but are otherwise
left open. In general, these robots are expected to have some memory and a
finite control. This definition formed a medium for researchers to test the power
of simple components and to experiment with programming those components
to complete complex tasks. The path-finding problem in this model was solved
in [7] with the use of messages similar to chemical gradients used in biological
systems. Several extensions of this model exist, and the path-finding problem has
been solved in almost all of them. Nagpal’s extension to the amorphous com-
puter model allows the 2-D sheet to fold along a line. She solved the path-finding
problem and related mathematical work on origami to show that it is possible to
compile an origami-folding procedure for a given structure into a program, such
that when an identical copy of the program is loaded onto each of the robots,
the robots self-organize to create that shape [5].

Clement et al. looked at ways of making the amorphous computing algorithm
that solves the path-finding problem more robust to failing robots [3]. While
most algorithms are resilient to holes and broken robots at the time of self-
organization, this work looked at situations in which robots may fail during or
after the algorithm’s execution. They came up with modified algorithms to gen-
erate lines between points that, essentially, continually check for a line’s validity,
and if a line is no longer valid, regenerate a new line to fix the problem.

Later, Nagpal et al. showed that it is possible for the robots of an amorphous
computer to self-organize into coordinate systems, with each robot knowing its
coordinate, and thus display preprogrammed images (given some ability to shine
light) [6]. Their robots send out messages similar to the gradient discussed in the
line-formation procedure, and robots can, in essence, triangulate their positions
on the sheet.

Arbuckle et al. developed their own model, similar to the amorphous com-
puter. They concentrated on limiting the robots to only a few bits of memory,
and allow the robots to move on a 2-D surface. They demonstrated the ability
to build paths, assemble shapes, and repair formed paths and shapes [2].

A number of researchers have worked on implementing systems of robots in
hardware. These implementations commonly have dozens of robots, rather than
millions as is often assumed in the theoretical work, and each robot is actually
far more complex and expensive than the theoreticians would like them to be.
Werfel et al. showed the ability for distributed robots to move blocks to form
shapes [11]. McLurkin et al. used mobile robots to assemble into groups based on
the sounds they were making, self-organizing into robotic orchestras [9]. Klavins
worked with triangular robots with programmable side interfaces that can attract
or repel each other to assemble shapes and study assembly dynamics [8]. Shen

Connecting the Dots: Molecular Machinery for Distributed Robotics 105

et al. demonstrated reconfigurable robots, made up of identical basic units, self-
organizing to crawl, walk, climb, as well as perform other complex tasks [10].

While a wealth of literature exists on biologically-inspired systems, this lit-
erature lacks the organization and common definitions necessary to effectively
compare the complexity of the basic components or the complexity of the tasks
performed by the systems. Our systems presented in this paper use components
far simpler than the ones described in this section (they have no finite control,
minimal read-only memory, and incredibly limited communication abilities) and
perform some of the same tasks we have described thus far.

2.2 Self-assembly

Research in self-assembly attempts to explain how simple objects come together
on their own to form more complex objects capable of more complex behaviors.
Self-assembly is a process that is ubiquitous in nature. Systems form on all
scales via self-assembly, e.g., atoms self-assemble to form molecules, molecules to
form complexes, and stars to form galaxies. One manifestation of self-assembly
is crystal growth: molecules self-assemble to form crystals. The tile assembly
model [12,13,14] is a formal model of such crystal growth.

One of the potential applications of the tile assembly model is self-assembling
electronic circuits [16,17]. Researchers have shown that it is possible to attach
simple, electronically-active components to DNA tiles and use the self-assembling
interactions of the tiles to arrange these components [18]. One of the most basic
tasks one might want to use self-assembly to complete is constructing a wire
between two points. This task involves finding a path between them. One might
further specify that the path should be short, use no extraneous components,
or perhaps avoid certain regions (for example, other circuit elements). We will
present a system that accomplishes these tasks.

One similarity between the study of self-assembly and other biologically-inspired
systems is that researchers have identified the problem of forming shapes as im-
portant in both fields. It is possible to build shapes using tiles, simpler compo-
nents than the ones used in other biologically-inspired systems, to create arbitrary
computable shapes. Adleman proposed studying the complexity of tile systems
that can uniquely produce n×n squares. A series of researchers [14,19,20,21] pro-
ceeded to answer the questions “what is a minimal tile set that can assemble such
shapes?” and “what is the assembly time for these systems?” They showed that
the minimal tile set that assembles n × n squares is of size O

(
log n

log log n

)
and the

optimal assembly time is Θ(n) [20]. A key issue related to assembling squares is
the assembly of small binary counters, which theoretically can have as few as 6 or
7 tile types [22,21].

The path-finding problem is related to the “domino snake problem” that
asks whether a given tileset can form a path between two points. On the whole
plane, the domino snake problem turns out to be decidable; however, if there
are obstacles or regions that the path must avoid, the problem may become
undecidable [23].

106 Y. Brun and D. Reishus

Researchers have also studied variations on the traditional tile assembly model.
Aggarwal et al. and Kao et al. have shown that changing the temperature of as-
sembly from a constant throughout the assembly process to a discrete function
reduces the minimal tile set that can build an n × n square to a size Θ(1) tile
set [24,25]. In our work with path-finding systems, we allow the temperature to
change once.

Soloveichik et al. studied assembling all decidable shapes in the tile assembly
model and found that the size of the minimal set of tiles necessary to uniquely as-
semble a shape is directly related to the Kolmogorov complexity of that shape [26].
One of the tasks commonly used to demonstrate power in biologically-inspired sys-
tems is the construction of simple shapes. What Soloveichik et al. showed is that
systems in the tile assembly model are capable of assembling all decidable shapes,
on some scale. While we do not go into great depth on shape construction in this
paper, tile assembly model’s ability to construct shapes is one indicator of this
model’s ability to perform the same tasks other biologically-inspired systems per-
form.

3 Tile Assembly Model

The tile assembly model [12,14], a formal mathematical model of self-assembly,
can compute functions and is Turing universal. It is an extension of a model
proposed by Wang [15]. It was designed to model crystal growth via self-assembly
of molecules such as DNA. The model was fully defined by Rothemund and
Winfree [14], and the definitions here are similar to those, though we make a
slight extension to allow for growth and decay of crystals. Full formal definitions
can be found in [27].

Intuitively, the model has tiles, or squares, that stick or do not stick together
based on various binding domains on their four sides. Each tile has a binding
domain on its north, east, south, and west side. The four binding domains,
elements of a finite alphabet Σ, define the type of the tile. The strength of the
binding domains are defined by the strength function g. The placement of some
tiles on a 2-D grid is called a configuration, and a tile may attach in empty
positions on the grid if the total strength of all the binding domains on that tile
that match its neighbors exceeds the current temperature and detach if the total
strength of all the binding domains on a tile in a configuration that match its
neighbors is below the current temperature. Finally, a melting tile system S is a
quadruple 〈T, g, τg, τm〉, where T is a finite set of tiles, g is a strength function,
and τg, τm ∈ N are two temperatures , where N = Z≥0.

Starting from a seed configuration S, tiles may attach or detach at temperature
τg to form new configurations. At some switching time, the temperature changes
to τm and tiles continue to attach and detach. If that process terminates, the
resulting configuration is said to be final. At some times, there may be a position
where more than one tile can attach, there may be more than one position where
a tile can attach, or there may be more than one position where a tile can
detach. If, for all sequences of tile attachments, all possible final configurations

Connecting the Dots: Molecular Machinery for Distributed Robotics 107

are identical, then S is said to produce a unique final configuration on S. The
assembly time of the system is the minimal number of steps it takes to build a
final configuration, assuming maximum parallelism.

4 Path-Finding

Path finding is the problem of forming a path between two points on a 2-D
plane. Intuitively, given a seed configuration with a single start tile, a single goal
tile, and some number of special obstacle tiles, a path-finding system should
attach tiles to connect the start to the goal, avoiding all the obstacle tiles. It is
straightforward to design such a system that leaves extraneous tiles: simply fill
fill the plane with tiles and claim that the path is there. Thus we wish to restrict
systems to leave no extraneous tiles in the final configuration.

Informally, for a tile system S to solve the path-finding problem, starting from
a configuration with a single S tile, a single G tile, and some obstacle tiles, S

must produce a final configuration F that contains a path of connected tiles
from S to G of minimal length, and every tile in F must be on such a path. Due
to space limitations, we refer the reader to [27] for the formal definition of the
path-finding problem.

The path-finding problem is analogous to the path-finding relatives that re-
searchers have solved previously [1,2,3,5]. Demonstrating that there exists a tile
system that solves the path-finding problem indicates that it can be solved with
simpler basic components than those used in the related work.

We now describe the melting tile system Scpf that solves the path-finding
problem. Figure 1(a) shows the start (S) and goal (G) tiles. The start tile has an
n, e, s, and w binding domain on its north, east, south, and west sides, respec-
tively, the goal tile is covered with γ binding domains, and the obstacle tile is
covered with x binding domains.

Figure 1(b) shows the four tiles of Tcpf . Each tile is labeled with an arrow
(we explain the meaning of the arrow later). The glue strength function gcpf is
defined as follows:

– The x binding domain binds with strength 0 to every other binding domain,
– The γ binding domain binds with strength 1 to every other binding domain,

except x, and
– All other binding domains bind with strength 2 to themselves and 0 to others.

Let us examine the intuition behind Scpf = 〈Tcpf , gcpf , 2, 3〉. Figure 2(a) shows
a sample seed configuration with a four-tile obstacle. At temperature 2, tiles will

n

s
w eS G

(a)

n

n
w e

s

s
w e

n

s
e e

n

s
w w

(b)

Fig. 1. Scpf uses a special start (S) and goal (G) tile (a) and four “working” tiles (b)

108 Y. Brun and D. Reishus

n

s
w eS

G
x

x
x x

x

x
x x

x

x
x x

x

x
x x

obstacle

(a)

n

s
w eS

G

n

n
w e

x

x
x x

x

x
x x

x

x
x x

x

x
x x

obstacle

n

s
e e

s

s
w e

n

s
w w

(b)

G

n

s
w eS e

n
w

s

n

n
w e

n

s
e e

s

s
w e

n

s
w w

n
e

n

n
w

s

s
w

s
e e

x

x
x x

x

x
x x

x

x
x x

x

x
x x

obstacle

(c)

n

s
w eS

n
w

s
e

n n

n

s
w w

s

s
w

s

s
w

e

e

n

n
w

w w

s

s
e

s

s
e

e

s
e e

n

n
w w

e e

n

n
w

n

n
e e

G
x

x
x x

x

x
x x

x

x
x x

x

x
x x

obstacle

(d)

n

s
e e

n

s
e e

n

n
e

s
e e

n

s
w eS

G

n

s
e e

n

n
w e

x

x
x x

x

x
x x

x

x
x x

x

x
x x

obstacle

(e)

Fig. 2. An example execution of Scpf . Scpf works at temperature 2 (a-d) to build
possible paths and then at temperature 3 (e) to prune unsuccessful paths. Only binding
domains that are exposed or attached have been labeled.

attach to S to create possible paths toward G. Each of the four tiles in Tcpf is
designed to attach in a specific way to an existing assembly: each of the tiles
has exactly one of its four domains be “irregular” (where “regular” means n
for north, e for east, s for south, and w for west). The growing assembly will
always have regular domains on all its exposed sides, thus tiles may only attach
via their single irregular domain. Figures 2(b) and 2(c) show tile attachments
after 1 and 2 steps, respectively. Paths may turn and fork in their attempts to
reach G. Once G is reached, the last tile attaches with a total strength of 3 (2
via its irregular binding domain and 1 to G). Figure 2(d) shows some possible
attachments after the system has been running for some time and has reached
G. We can now increase the temperature to 3. Partial paths detach, one tile at
a time, because the tiles on one end of each of those paths are only connected
by a single strength 2 attachment. All partial paths detach, while the successful
paths remain. Figure 2(e) shows the final configuration encoding a single path
from S to G that avoids the obstacles.

To show that Scpf solves the path-finding problem, we need a notion of dis-
tance in systems with obstacles. The notion we choose is the obstructed Man-
hattan distance. The obstructed Manhattan distance between two points on a
2-D grid is the fewest number of unit-sized steps one has to take from one point
to get to the other, without stepping on an obstacle. Note that the obstructed
Manhattan distance can be quite a bit larger than the Manhattan distance, and
even infinite between two points that are unreachable from each other via a walk.

Connecting the Dots: Molecular Machinery for Distributed Robotics 109

The melting tile system Scpf solves the path-finding problem with the switch
time on the order of the obstructed Manhattan distance between the start and
the goal, if we assume maximum parallelism: whenever a tile can attach, it does,
and whenever a tile can detach, it does. In actual physical implementations of
the tile assembly model, it is far more likely that attachments and detachments
happen stochastically, with rates that are related to the bond strength. Scpf

may not always produce minimal-length paths without the maximum parallelism
assumption, but with high probability, the length of the solution path is on the
order of the obstructed Manhattan distance. Due to space constraints, we cannot
provide the proofs of these statements here, and we refer the reader to [27] for
these proofs, as well as the explanation of a slightly simpler system that solves
a variant of the path-finding problem without obstacles.

While the theoretical definitions do not require knowing the proper switch
time, in practice it may be helpful to know when to increase the temperature.
The switch time is Θ(d), where d is the obstructed Manhattan distance between
S and G. More specifically, the proper minimum switch time is exactly d − 1.
In practice, if the distance d is known, one can wait that long to increase the
temperature. If d is unknown, one can devise an algorithm of increasing and
decreasing the temperature repeatedly, perhaps increasing the length of switch
time exponentially, such that in expectation a path can be found quickly.

5 Contributions

A number of nature-inspired systems [1,2,4,5,6,10,11] attempt to use simple com-
ponents with limited computational power to come together to accomplish com-
plex tasks. The tasks commonly accomplished by these systems include finding
paths between two points in 2-D space and assembling shapes. The reason for the
desire to use simple components is that they are cheap to produce in bulk. We
have presented a tile assembly system that finds paths between two points with
obstacles present. This system uses components far simpler than those used in
the related work. The components’ interfaces are static and each component per-
forms no computation, has no controlled movement, and has no writable memory
(the binding domains are read-only memory). Components such as these have
been built out of DNA [28,29,30,31,32] at incredibly low costs.

While we have not discussed fault-tolerance within tile systems, an entire
field of related research exists on making tile systems tolerant to individual
tile failures [33]. One could apply the ideas in that related work directly to
the tile systems we describe in this paper to make these systems able to perform
successfully despite high probabilities of tiles failing, usually at the cost of slowing
down the system assembly. We have also discussed related work demonstrating
that tiles can be used to assemble arbitrary computable shapes and to solve
Turing-complete problems, showing strong reason to believe that even though
tiles are simpler than the components described in the related work, together
they can accomplish the same tasks as those components.

110 Y. Brun and D. Reishus

References

1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr., T.F., Nagpal,
R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Communications
of the ACM 43(5), 74–82 (2000)

2. Arbuckle, D.J., Requicha, A.A.G.: Active self-assembly. In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA 2004), New
Orleans, LA, USA, pp. 896–901 (April 2004)

3. Clement, L., Nagpal, R.: Self-assembly and self-repairing topologies. In: Proceed-
ings of the Workshop on Adaptability in Multi-Agent Systems, RoboCup Aus-
tralian Open (January 2003)

4. Kondacs, A.: Biologically-inspired self-assembly of two-dimensional shapes using
global-to-local compilation. In: Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico (August 2003)

5. Nagpal, R.: Programmable Self-Assembly: Constructing Global Shape Using
Biologically-Inspired Local Interactions and Origami Mathematics. PhD thesis,
Massachussetts Institute of Technology, Cambridge, MA, USA (June 2001)

6. Nagpal, R., Shrobe, H.E., Bachrach, J.: Organizing a global coordinate system
from local information on an ad hoc sensor network. In: Zhao, F., Guibas, L.J.
(eds.) IPSN 2003. LNCS, vol. 2634, pp. 333–348. Springer, Heidelberg (2003)

7. Butera, W.J.: Programming a Paintable Computer. PhD thesis, Massachussetts
Institute of Technology, Cambridge, MA, USA (February 2002)

8. Klavins, E.: Programmable self-assembly. Control Systems Magazine 24(4), 43–56
(2007)

9. McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., Schmidt, B.: Speak-
ing swarmish: Human-robot interface design for large swarms of autonomous mo-
bile robots. In: Proceedings of the AAAI Spring Symposium, Stanford, CA, USA
(March 2006)

10. Shen, W.M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., Venkatesh, J.:
Multimode locomotion for reconfigurable robots. Autonomous Robots 20(2), 165–
177 (2006)

11. Werfel, J., Bar-Yam, Y., Rus, D., Nagpal, R.: Distributed construction by mobile
robots with enhanced building blocks. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA 2006), Orlando, FL, USA (May
2006)

12. Winfree, E.: Simulations of computing by self-assembly of DNA. Technical Report
CS-TR:1998:22, California Institute of Technology, Pasadena, CA, USA (1998)

13. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute
of Technology, Pasadena, CA, USA (June 1998)

14. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares. In: Proceedings of STOC 2000, Portland, OR, USA, pp. 459–468 (May
2000)

15. Wang, H.: Proving theorems by pattern recognition. II. Bell System Technical J. 40,
1–42 (1961)

16. Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In:
Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 91–107. Springer,
Heidelberg (2004)

17. Reishus, D.: Design of a self-assembled memory circuit. In: Proceedings of the 5th
Foundations of Nanoscience: Self-Assembled Architectures and Devices (FNANO
2008), Snowbird, UT, USA, pp. 239–246 (April 2008)

Connecting the Dots: Molecular Machinery for Distributed Robotics 111

18. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-
assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884
(2003)

19. Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Kempe, D., Moisset de Espanés,
P., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In:
Proceedings of STOC 2002, Montreal, Quebec, Canada, pp. 23–32 (May 2002)

20. Adleman, L., Goel, A., Huang, M.D., Moisset de Espanés, P.: Running time and
program size for self-assembled squares. In: Proceedings of STOC 2002, Montreal,
Quebec, Canada, pp. 740–748 (May 2002)

21. Moisset de Espanés, P., Goel, A.: Toward minimum size self-assembled counters.
Natural Computing 7(3), 317–334 (2008)

22. Chen, H.L.: Towards minimum tile self-assembled counters. In: Proceedings of
the 5th Foundations of Nanoscience: Self-Assembled Architectures and Devices
(FNANO 2008), Snowbird, UT, USA, pp. 218–223 (April 2008)

23. Etzion-Petruschka, Y., Harel, D., Myers, D.: On the solvability of domino snake
problems. Theoretical Computer Science 131(2), 243–269 (1994)

24. Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.Y., Moisset de Espanés, P.,
Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM J. on
Computing 34(6), 1493–1515 (2005)

25. Kao, M.Y., Schweller, R.: Reducing tile complexity for self-assembly through tem-
perature programming. In: Proceedings of the 17th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2006), Miami, FL, USA, pp. 571–580 (January
2006)

26. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. on
Computing 36(6), 1544–1569 (2007)

27. Brun, Y., Reishus, D.: Path finding in the tile assembly model. Theoretical Com-
puter Science (in press, 2008)

28. Barish, R., Rothemund, P.W.K., Winfree, E.: Two computational primitives for
algorithmic self-assembly: Copying and counting. Nano Letters 5(12), 2586–2592
(2005)

29. Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.:
DNA triangles and self-assembled hexagonal tilings. JACS 126(43), 13924–13925
(2004)

30. Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32(13),
3211–3220 (1993)

31. Reishus, D., Shaw, B., Brun, Y., Chelyapov, N., Adleman, L.: Self-assembly of
DNA double-double crossover complexes into high-density, doubly connected, pla-
nar structures. JACS 127(50), 17590–17591 (2005)

32. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biology 2(12), 424 (2004)

33. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic
self-assembly. In: Proceedings of FOCS 2002, Madison, WI, USA, vol. 2943, pp.
126–144 (June 2003)

	Connecting the Dots: Molecular Machinery for Distributed Robotics
	Introduction
	Related Work
	Biologically-Inspired Systems
	Self-assembly

	Tile Assembly Model
	Path-Finding
	Contributions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

