
Crystal-Growth-Inspired Algorithms
for Computational Grids

Yuriy Brun and Nenad Medvidovic
Computer Science Department University of Southern California

Los Angeles, CA 90089-0781, USA
{ybrun,neno}@usc.edu

ABSTRACT
Biological systems surpass man-made systems in many im-
portant ways. Most notably, systems found in nature are
typically self-adaptive and self-managing, capable of surviv-
ing drastic changes in their environments, such as internal
failures and malicious attacks on their components. Large
distributed software systems have requirements common to
those of some biological systems, particularly in the number
and power of individual components and in the qualities of
service of the system. However, it is not immediately clear
how engineers can extract useful properties from natural sys-
tems and inject them into software systems.

In this paper, we explore the nature’s process of crystal
growth and develop mechanisms inspired by that process for
designing large distributed computational grid systems. The
result is the tile architectural style, a set of design principles
for building distributed software systems that solve complex
computational problems. Systems developed using the tile
style scale well to large computations, tolerate faults and
malicious attacks, and preserve the privacy of the data.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.11 [Software Engineering]: Software Archi-
tectures

General Terms
Design, Reliability, Security

Keywords
Nature-Inspired Software, Software Architectural Style, Self-
Assembly, Privacy, Fault Tolerance, Computational Grid

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BADS’09, June 19, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-584-0/09/06 ...$5.00.

1. BIOLOGY’S INSPIRATION
Biological systems are in many ways superior to man-

made software and hardware systems. The human body
alone has orders of magnitude more complexity than our
most intricate designed systems. Further, biological systems
are decentralized in such a way that allows them to bene-
fit from built-in error correction, fault tolerance, and scal-
ability. Despite added complexity, human beings are more
resilient to failures of individual components and injections
of malicious bacteria and viruses than engineered software
systems are to component failure and computer virus infec-
tion. Other biological systems, for example worms and some
sea stars, are capable of recovering from such serious hard-
ware failures as being cut in half (both worms and some sea
stars are capable of regrowing the missing pieces to form two
nearly identical organisms), yet we envision neither a func-
tioning desktop, half of which was crushed by a car, nor a
machine that can recover from being installed with only half
of an operating system. It follows that if we can extract cer-
tain properties of biological systems and inject them into our
software design process, we may be able to build complex
self-adaptive software systems.

Distributed Internet-sized systems is one area that is likely
to benefit from biological inspiration. While we have a lot
of experience and knowledge in how to build software to
be executed on a single processor, and even on controlled
networks of fixed sizes, the notions of “programming the In-
ternet”or“running an operating system or a virtual machine
in a distributed fashion on an ultra-large network” are fairly
new. Such distributed systems will likely require a great
deal of collaboration, while the large size of the network is
likely to require that collaboration to scale well. Further,
since no single entity controls the Internet, and the nodes
may join or leave the network at any time, the collabora-
tion must be fault-tolerant and resilient to dynamic node
addition, removal, and failure. Finally, if these systems are
to perform important computations, they must be resilient
to malicious attacks from the network’s nodes. In nature,
systems often deal with constant component birth, death,
and failure, as well as attacks from malicious components
within the system, while allowing well-scaling collaboration
between the components. The need for the development of
design and implementation tools for these large distributed
software systems together with the apparent similarities in
requirements between these systems and large-scale natural
systems make large distributed software systems an ideal
target for research into nature-inspired algorithms.

While the notion that software and hardware systems

19

Figure 1: Termite mounds, such as those found in Australia, can reach several meters in size, but are built
by millimeter-sized termites. These mounds have intricate internal structure that individual termites neither
understand nor internally represent.

can benefit from biologically inspired paradigms has been
around for some time [1], it has been unclear how one might
leverage the mechanisms we see in nature to actually engi-
neer software systems. Suggested methods include explor-
ing automated solution-generation techniques by leveraging
ideas from evolution [17], replicating the control flow of bi-
ological systems in software [12], and developing high-level
design principles [18]. These methods may each prove fruit-
ful in developing biologically inspired software and hard-
ware; however, in this paper we argue that another method,
leveraging the algorithms that individual biological compo-
nents of a system follow to produce system-level emergent
behavior, should also be a focus of research. Studying the
algorithms of social insects and other simple components
in nature, and the way their behavior combines to produce
emergent system-level behavior, has already been an area of
research in robotics for some time [21].

Let us consider an example biological system and explore
how it can influence our engineering process. Termites,
whose size is on the order of millimeters and who have fewer

Hill-Build:

if (not carrying dirt)

if (see small patch of dirt)

pick up dirt

else

if (see dirt)

place dirt on top

else

take a few random steps

repeat

Figure 2: An algorithm for self-organizing creatures
to build simplified termite mounds.

than 105 neurons, construct complex and comparatively gi-
ant termite mounds of the size on the order of meters (see
Figure 1). These mounds have intricate and functional in-
ternal structure that individual termites neither understand
nor internally represent. This structure involves careful con-
trol over air circulation for temperature and atmospheric
regulation, placement of fungus combs, gardens, nurseries,
and royal chambers. As an example of the mounds’ func-
tionality, large colonies are capable of keeping the mound’s
internal temperature at a constant 30◦C, while the ambient
air temperature changes from 0◦C to 40◦C, throughout the
day [14].

The termite mound is a complex structure, but let us con-
sider a simplified structure that is only concerned with the
outer shape of the mound. Figure 2 presents an algorithm
that termites can use to build such structures. Each ter-
mite executes this algorithm locally and assists in building
a mound, even though neither the termite nor the algorithm
have an internal description of the mound. This algorithm
allows simple termites to build hill structures far larger than
themselves, though without the added functional complex-
ity of actual termite mounds. The algorithm real termites
use is more complex than this one.

The Hill-Build algorithm demonstrates how simple crea-
tures can build structures without an internal representation
of those structures anywhere within the creatures or the
algorithm they follow. When thousands of termites, each
executing Hill-Build, arrive at a location with some dirt,
they move around, picking up the small patches of dirt and
building a hill. Note that the algorithm never mentions or
describes a hill or a mound and does not contain or use
any global view of the world. We can use termite-inspired
ideas to develop new algorithms for construction and self-
organization of software systems.

In the remainder of this paper, we will, in Section 2, de-
scribe the nature’s process of crystal growth and how scien-
tists have leveraged crystals to compute mathematical func-

20

tions, in Section 3, present ideas for a way to build large dis-
tributed computational software systems based on crystal-
growth-inspired ideas, and, in Section 4, demonstrate our
plans for the tile style’s theoretical and empirical evalua-
tions.

2. CRYSTALS AND COMPUTATION
In nature, crystals play a role that is integral to life. Crys-

tals are composed of simple monomers and grow into distinct
complex structures based on the environmental conditions of
the growth process and several, typically few, dimensions of
freedom in the attachments between the monomers.

With some careful control over the growth conditions and
the degrees of freedom of the monomers, scientists have
been able to produce crystals out of DNA that display in-
formation, such as the Sierpinski triangle [20], and com-
pute simple functions, such as copying an input and count-
ing in binary [4]. The ability to control the parameters of
crystal growth and to encode the monomers to compute
mathematical functions has given researchers in the field
of self-assembly good reason to be optimistic about the fu-
ture uses of crystal growth for computation [2], fabrication
of nanoelectronic devices [19], and development of nanoma-
chines [26].

Self-assembly and crystal growth are exciting to computer
scientists because they offer computation mechanisms that
are easily susceptible to (1) parallelization, with billions of
computations easily happening in parallel in a test tube,
(2) data mobility, with computation and data represented
within the same medium, and (3) fault-tolerance techniques,
detecting and correcting possible errors as they happen [25].
Further, self-assembly and crystal growth are also exciting
to software engineers, as the mechanisms and algorithms
monomers follow to assemble complex crystals can lead to
novel paradigms for building distributed software systems
that (1) scale well, (2) preserve the privacy of the data, and
(3) tolerate node faults and malicious attacks [11, 10]. In or-
der to demonstrate how software engineers can leverage the
desirable properties of crystal growth in software systems,
we must first formalize a model of crystal growth.

2.1 Tile Assembly Model
The tile assembly model [24] is a formal mathematical

model of self-assembly and crystal growth. It allows model-
ing of the crystal-growth process on assemblies that can,
among other things, build complex shapes and compute
functions.

In the tile assembly model, individual components are
square tiles with special labels on their four sides. Tiles
are not allowed to rotate but they can stick together under
certain conditions when their abutting sides’ labels match.
It is possible to encode inputs using tiles and design sets of
tiles that attach to those input tiles to compute functions [6].
Figure 3 shows a very simple example of adding the numbers
34 and 27, which we describe in Section 2.2.

A tile assembly computes by growing a crystal. A crys-
tal starts from a seed configuration (this configuration can
encode an input to the computation) and tiles attach, au-
tonomously, to that seed to grow a larger crystal. The at-
tachments are autonomous but follow straightforward rules
based on a set temperature and the sides of the tiles. In
a simplified version of tile assembly, tiles can attach to a
configuration when the number of sides that match the at-

1

1

11

1

1

1

01

0

0

1

1 1

0

0

1

0 01

0

0

0 00

0

0

0 1

1

1

0

00

1

1

0

11

0

(a)

0

0

1

1

0

0

0

0

0

0

1

1

1

1

1

1

0

0

1

1

1

1

0

0

0

0

0

0

0

(b)

0

1

0 01

0

0

1

1

0

0

0

0

0

0

1

1

1

1

1

1

0

0

1

1

1

1

0

0

0

0

0

0

0

(c)

0

1

0 01

1

1

1 00

0

0

1

1

0

0

0

0

0

0

1

1

1

1

1

1

0

0

1

1

1

1

0

0

0

0

0

0

0

(d)

0

1

0 01

1

1

1 00

0

0

0

1

1

0

1

0 01

0

1
0 01

1

0

0 01

0

0

1

1

0

0

0

0

0

0

1

1

1

1

1

1

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0 00

(e)

Figure 3: A sample tile assembly that adds num-
bers. The assembly has eight computation tiles (a)
carefully designed with addition logic. A seed con-
figuration (b) encodes the inputs, 34 = 1000102 and
27 = 110112. At temperature 3, a tile can attach
only when three of its sides match the already at-
tached tiles, so a single tile attaches on the east side
(c), creating the ability for a second tile to attach
(d). This process continues until no more tiles can
attach and the final configuration (e) displays the
sum of 34 + 27 = 61 = 1111012.

tachments meets of exceed the temperature. For example, if
the assembly’s temperature is 3, a tile can attach to a con-
figuration only if at least 3 of its side labels match the labels
of the tiles to which it is attaching. Eventually, the attach-
ment process can terminate, producing a final configuration.
If the assembly is properly designed, the final configuration
can encode the output of a mathematical function. We now
illustrate the process of crystal growth with an example.

2.2 Adding Tile Assembly
The adding tile assembly depicted in Figure 3 has eight

computational tile types. These eight tiles are shown in
Figure 3(a). The eight computational tiles encode the logic
of addition: each of the tile’s labels (number in the center of

21

the tile) is the binary sum of its north, east, and south sides
(e.g., 1+0+1 = 02) and each of the tile’s number on its west
side is the carry bit of the sum of the north, east, and south
sides (e.g., carry bit of 1 + 0 + 1 is 1). Figure 3(b) shows
a seed configuration that encodes two numbers, in binary:
34 = 1000102 and 27 = 110112, in the top and bottom
rows of the seed, respectively. This tile assembly executes
at temperature 3, so tiles can only attach when they match
on three of their sides. A single tile, with the north, east,
and south labels 0, 0, and 1, respectively, can attach to
the seed, as shown in Figure 3(c). Note that this tile, in
its center, displays the binary sum of the least significant
bit of 34 and the least significant bit of 27 (0 + 1 = 1)
and, on its west side, displays the carry bit associated with
adding those least significant bits (carry bit of 0 + 1 is 0).
This process now allows a second tile to attach, as shown in
Figure 3(d). This tile adds the carry bit from the previous
tile and the second-least-significant bits of 34 and 27. This
process continues until no more tiles can attach, and the
bits in the centers of the tiles in the center row spell out the
solution: 1111012 = 61 = 34 + 27.

While our explanation should give some intuition to how
a simple tile assembly, combined with the process of crys-
tal growth, can solve mathematical functions, we refer the
reader to [6] for the full proof that the tile assembly shown
in Figure 3 is an adding assembly.

2.3 Pushing Tiles Further
The addition example illustrates that tiles can compute

mathematical functions. The key to the computation is the
eight tiles from Figure 3(a) whose logic encodes that of addi-
tion. An interesting question is whether tile assemblies that
compute more complex functions can be designed and how
large and complex would those assemblies have to be. Re-
search revealed that the tile assembly model, and thus crys-
tal growth, is Turing universal [23], implying that crystals
can compute all the functions that a traditional computer
program can compute. However, it remains unclear just how
complex tile assemblies would have to be in order to solve
complex computational problems.

We have studied computation in the tile assembly model
and found that fairly simple assemblies can compute fairly
complex functions. Most notably, each of the following sys-
tems uses Θ(1) computational tile types, so the complexity
of the assembly does not grow with input size: an assem-
bly with 28 computational tile types can multiply two num-
bers [6], as assembly with 49 computational tile types can
nondeterministically solve the NP-complete problem Subset-
Sum [8], an assembly with 50 computational tile types can
nondeterministically factor integers [7], and an assembly
with 64 computational tile types can nondeterministically
solve the well-known NP-complete problem 3-SAT [9]. Of
particular interest to software engineers are the tile assem-
blies that solve NP-complete problems. We will now de-
scribe one such assembly, and in Section 3 describe how to
leverage this assembly and the algorithms inherent to crys-
tal growth to build distributed software systems for solving
NP-complete problems.

2.4 SubsetSum-Solving Tile Assembly
SubsetSum is a well-known NP-complete problem that

consists of determining whether the sum of a subset of num-
bers adds up to a given target number. The input to the

x1

1

x ?

1

*1

1
! ?

1

x1

1

x x

1

x0

0
x ?

0

*0

0

! ?

0

x0

0

x x

0

x1

x1

x ?

1

*1

x1

! ?

1

x0

x0

x ?

0

*0

x0

! ?

0

1

1

! !1

0

0

! !0

x1

x1

x x

1

x0

x0

x x

0

1

x1

! !1

0

x0

! !0

x1

*1

x x

1

x0

*0

x x

0

1

*1

! !1

0

*0

! !0

|

|

0

|

|

!

|

|

x

|

|
#
0

0
| |

*0

| |

x0

| |

|

|

|

|

*0

0

*0

*0

#
00

1

*1

*0

#
01

1

*0

*1

#
11

0

*1

*0

#
10

0

0

#
0

#
0 0

0

0

#
1

#
1 0

1

1

#
1

#
1 1

1

1

#
0

#
0 1

*0

0

0 *00

*1

1

0 *01

*1

0

1 *11

*0

1

0 *10

0

0

0 0

0

1

1

0 0

1

1

0

1 1

1

0

1

0 1

0

x0

x0

#
0

#
00

x0

x0
#
0

#
10

x1

x1
#
0

#
01

x1

x1

#
0

#
11

Figure 4: The SubsetSum-solving tile assembly has
49 computational tile types.

problem is a set of natural numbers and a natural target
number, and the output is 1 if the sum of some subset of
those numbers is equal to the target number, and 0 oth-
erwise. For example, the answer to the question whether
some subset of {1, 2, 3} adds up to 5 is “yes” (or 1), because
2 + 3 = 5.

The nature of NP-complete problems is that if one can
solve one such problem quickly, then one can solve all such
problems quickly. For example, if one finds a polynomial-
time algorithm to solve SubsetSum, one can now solve the
traveling salesman, 3-SAT , protein folding, and all other
NP problems in polynomial time. Thus, designing a tile
assembly that solves one NP-complete problem is in some
sense sufficient to solve all other NP-complete problems.

The tile assembly we present to solve SubsetSum uses 49
computational tile types, shown in Figure 4. (There are
also 7 tile types used to encode the input.) These tile types
are carefully designed to solve this problem, as we describe
in [8].

The SubsetSum tile assembly is really a combination of
four tile assemblies, designed to work together. Each of the
four assemblies, respectively, (1) nondeterministically selects
whether or not to subtract the next number, either (2) sub-
tracts or (3) does not subtract the next number, and (4)
checks if all the subtractions completed correctly and if the
final result is 0. In combination, these assemblies nonde-
terministically select a subset of the input set of numbers,
subtract each of the numbers in the subset from the target
number, and determine if the result is 0. If the result is,
in fact, 0, the assembly has found a subset of numbers that
adds up to the target number and a special X tile attaches
to indicate success.

Figure 5(a) shows a sample seed configuration that en-
codes, in binary, the set of numbers {11, 25, 37, 39} and the
target number 75. Because 75 = 11+25+39, one nondeter-
ministic execution of the tile system finds the proper selec-
tion of numbers and attaches the special X tile. Figure 5(b)
shows one such execution with the X tile attached in the
northwest corner. If there were no subset of {11, 25, 37, 39}
whose sum equaled 75, the attaching tiles would create an
incomplete configuration to which neither the X tile nor any
other tile could attach. Therefore, the X tile’s ability to at-
tach to at least one of the seeds indicates a positive answer
to the problem, whereas the inability to attach indicates a

22

?
#
0 0

#
1 1

0

0

1

1

|

|

0

0

1

1

0

0

1

1

1

1

#
1 1

#
1 1

?
#
1 1

#
1 1

#
0 0

#
0 0

#
1 1

?
#
1 1

#
0 0

#
0 0

#
1 1

#
0 0

#
1 1

?
#
1 1

#
0 0

#
0 0

#
1 1

#
1 1

#
1 1

(a)

*1

1

! ?

1

1

1

! !1

0

0

! !0

1

1

! !1

0

0

! !0

0

0

! !0

1

1

! !1

0

*0

*0

#
00

0

*1

*0

#
10

0

0

#
0

#
0 0

0

0

#
1

#
1 0

*0

0

0 *00

*1

1

0 *01

0

0

0 0

0

1

1

0 0

1

0

0

0 0

0

0

0

0 0

0

1

1

0 0

1

0

*1

*0

#
10

1

1

0 0

1

0

0

0 0

0

0

0

0 0

0

1

1

0 0

1

0

0

#
0

#
0 0

*1

1

0 *01

0

0

0 0

0

0

0

0 0

0

1

1

0 0

1

0

0

#
1

#
1 0

0

0

#
1

#
1 0

0

0

#
1

#
1 0

0

*1

*0

#
10

*0

0

0 *00

0

0

0 0

0

1

1

0 0

1

*0

0

! ?

0

1

1

! !1

0

0

! !0

0

0

! !0

0

0

! !0

0

*0

! !0

0

0

! !0

1

*0

*1

#
11

*1

0

1 *11

1

0

1 1

1

1

0

1 1

1

1

0

1 1

1

1

0

1 1

1

0

1

0 1

0

1

1

#
0

#
0 1

1

*1

*0

#
01

*1

1

0 *01

1

1

0 0

1

1

1

0 0

1

1

1

0 0

1

0

0

0 0

0

1

1

#
0

#
0 1

1

1

#
0

#
0 1

1

*1

*0

#
01

*1

1

0 *01

1

1

0 0

1

1

1

0 0

1

0

0

0 0

0

1

1

#
1

#
1 1

1

1

#
1

#
1 1

1

1

#
1

#
1 1

0

*1

*0

#
10

*1

1

0 *01

1

1

0 0

1

0

0

0 0

0

1

1

#
1

#
1 1

1

1

#
1

#
1 1

1

1

#
1

#
1 1

0

0

#
1

#
1 0

0

*1

*0

#
10

*1

1

0 *01

0

0

0 0

0

x1

1

x ?

1

x1

1

x x

1

x0

0

x x

0

x1

1

x x

1

x0

0

x x

0

x1

*1

x x

1

x0

0

x x

0

x0

x0

#
0

#
00

x1

x1

#
0

#
01

x1

x1

#
0

#
11

x1

x1

#
0

#
01

x0

x0

#
0

#
00

x1

x1

#
0

#
01

x0

x0

#
0

#
00

x1

x1

#
0

#
01

x0

x0

#
0

#
00

x1

x1

#
0

#
01

x1

x1

#
0

#
01

x0

x0

#
0

#
00

x1

x1

#
0

#
01

x0

x0

#
0

#
00

x0

x0

#
0

#
00

x1

x1

#
0

#
01

x1

x1

#
0

#
11

x1

x1

#
0

#
01

x0

x0

#
0

#
00

x1

x1

#
0

#
01

x0

x0

#
0

#
00

x1

x1

#
0

#
01

x0

x0

#
0

#
00

x1

x1

#
0

#
01

x1

x1

#
0

#
01

x0

x0

#
0

#
00

x1

x1

#
0

#
01

x0

x0

#
0

#
00

x1

x1

#
0

#
01

x0

x0

#
0

#
00

x1

x1

#
0

#
01

x1

x1

#
0

#
01

x0

x0

#
0

#
00

x1

x1

#
0

#
01

x0

x0

#
0

#
00

x0

x0

#
0

#
00

x1

x1

#
0

#
01

x1

x1

#
0

#
11

x1

x1

#
0

#
01

x0

x0

#
0

#
00

x1

x1

#
0

#
01

x0

x0
#
0

#
00

*1

x1

! ?

1

1

x1

! !1

0

x0

! !0

1

x1

! !1

0

x0

! !0

1

x1
! !1

0

x0

! !0

0

*1

*0

#
10

*1

1

0 *01

1

1

0 0

1

0

0

0 0

0

0

0
0 0

0

1

1

0 0

1

0

0

0 0

0

0

0

#
1

#
1 0

0

*1

*0

#
10

*1

1

0 *01

0

0
0 0

0

0

0

0 0

0

1

1

0 0

1

0

0

0 0

0

0

0

#
1

#
1 0

0

0

#
1

#
1 0

0

*1
*0

#
10

*0

0

0 *00

0

0

0 0

0

1

1

0 0

1

0

0

0 0

0

0

0

#
0

#
0 0

0

0

#
0

#
0 0

0

0
#
0

#
0 0

0

*0

*0

#
00

*0

0

0 *00

1

1

0 0

1

0

0

0 0

0

0

0

#
0

#
0 0

0

0
#
0

#
0 0

0

0

#
0

#
0 0

0

0

#
0

#
0 0

0

*0

*0

#
00

0

0

0 0

0

0

0
#
1

#
1 0

0

0

#
1

#
1 0

0

0

#
1

#
1 0

0

0

#
1

#
1 0

0

0

#
1

#
1 0

0

*1

*0

#
10

*1

1

0 *01

*0

0

0 *00

|

|

0

|

|

!

|

|

x

|

|

#
0

0

| |

|

|

0

|

|

0

|

|

0

|

|

0

|

|

!

|

|

0

|

|

0

|

|

0

|

|

0

|

|

0

|

|

#
0

|

|

#
0

|

|

#
0

|

|

#
0

|

|
#
0

|

|

!

|

|

0

|

|

0

|

|

0

|

|

0

|

|

0

0

| |

0

| |

0

| |

0

| |

0

| |

*0

| |

|

|

?
#
0 0

#
1 1

0

0

1

1

|

|

0

0

1

1

0

0

1

1

1

1

#
1 1

#
1 1

?
#
1 1

#
1 1

#
0 0

#
0 0

#
1 1

?
#
1 1

#
0 0

#
0 0

#
1 1

#
0 0

#
1 1

?
#
1 1

#
0 0

#
0 0

#
1 1

#
1 1

#
1 1

(b)

Figure 5: An example execution of the tile assembly that solves SubsetSum. The seed configuration (a)
encodes the input in binary: a set of numbers: {11 = 10112, 25 = 110012, 37 = 1001012, 39 = 1001112} along
the right column, and a target number 75 = 10010112 along the bottom row. Because 75 = 11 + 25 + 39, one
nondeterministic execution (b) of the tile assembly finds the proper selection of numbers and attaches the
special X tile in the northwest corner. If there were no subset of numbers whose sum equaled 75, no such
tile could attach.

23

negative answer. We refer the reader to [8] for the full de-
scription and proof of the SubsetSum-solving tile assembly.

3. TILE ARCHITECTURAL STYLE
The tile assembly model has turned out to be a fruitful en-

vironment for research in theoretical computer science and
biological-agent computing, such as DNA computation. In
this section, we describe how the algorithms and paradigms
inspired by crystal growth and made formal by the tile as-
sembly model can be used to develop distributed software
systems that solve complex computational problems, such
as NP-complete problems. We will first, in Section 3.1, de-
scribe a domain of systems and problems that can benefit
from crystal-growth algorithms, and then, in Section 3.2, de-
scribe how particular aspects of crystal growth can benefit
distributed software systems.

3.1 Computational Grids
Solving computationally intensive problems is integral to

modern research in artificial intelligence, physics, astrophy-
sics, bioinformatics, disease and drug design, economics,
networking, neuroscience, system biology, and a number of
other fields [5, 15]. To satisfy this extensive need for fast
computation, researchers have turned to computational grid
systems, which pool hardware and software resources to de-
liver computation as a standardized service. For example,
computational grids can leverage public networks to combine
machines with idle cycles into single-interface distributed
computing systems [3]. The organization of loosely coupled
networked devices achieved by computational grids has per-
mitted advances in science and engineering that would oth-
erwise not be possible [16].

There are many existing solutions to the problem of ag-
gregating the computational power of machines into a sin-
gle computational grid. For example, BOINC is an au-
tonomic grid platform currently deployed on over a mil-
lion computers. Examples of BOINC applications include
SETI@home, LHC@home, Folding@home, Quantum Monte
Carlo at Home, Malariacontrol.net, Climateprediction.net,
PrimeGrid, and many others [3]. BIONC applications allow
users around the world to volunteer their computers’ idle
cycles to solve small parts of large problems and use some-
what centralized (though independent for each application)
servers to distribute that computation. Another example
of a successful computational grid technology is Google’s
MapReduce [13]. Developers who use MapReduce to create
applications design two functions: Map and Reduce. Map di-
vides a problem into a small number of subproblems that can
be solved in parallel and Reduce takes the solutions to several
subproblems and combines them into a solution to the orig-
inal problem. The MapReduce infrastructure then handles
taking a single problem, distributing it by recursively divid-
ing it into smaller and smaller subproblems, and recursively
combining the solutions to the subproblems into the final
answer. Commercial uses of MapReduce include computing
Google’s PageRank. As many as a thousand MapReduce
jobs are executed on Google’s clusters daily [13].

3.2 Crystal-Growth Benefits
Computational grids coordinate distributed federated re-

sources on a network and combine them into a single-interfa-
ce computational resource. This allows users to submit a
computation to a single place and have it distributed onto

a large number of computing devices. The exiting methods
typically rely on the trustworthiness of the underlying com-
puters by either using nodes located on a single trusted clus-
ter (e.g., a cluster owned by Google [13]) or replicating and
performing the same computation on several independent
nodes to ensure quality [3]. These methods often require a
single central node to have contact with every other node
on the network [3] and can withstand only easily detectable
failures. We propose a fundamentally different approach to
distributing computation, one based on the nature’s process
of crystal growth, that ensures scalability, privacy of data,
and tolerance of a wide range of faults and malicious attacks.

Suppose a user wishes to solve an NP-complete problem1.
The user could first convert, using a standard reduction [22],
the problem to a different NP-complete problem for which
there exists a tile assembly, such as the SubsetSum assembly
from Section 2.4 or the 3-SAT assembly from [9].

Armed with a tile assembly for solving a problem, one
could imagine a virtual beaker that contains many copies of
each tile type from that tile assembly. The user could drop a
single seed into this virtual beaker, initiating two processes:
replication and recruitment. Replication is the autonomous
copying of a seed, whereas recruitment is the attachment to
a growing seed of a tile that matches its neighbors on a suffi-
cient number of sides, as we explain further in Sections 3.2.1
and 3.2.2. After some time, the imaginary beaker would
contain many copies of the seed (if each replication takes
some constant amount of time, then the number of replicas
would be exponential in the elapsed time), and each seed
would have recruited some tile attachments, exploring one
nondeterministic execution of the tile-assembly algorithm.
Eventually, either some replica finds the positive solution or
enough replicas exist and have not found the positive solu-
tion that, with high probability, a positive solution does not
exist.

The beaker thought experiment is one way to solve the
user’s problem that provides the possibility of interesting
properties that traditional software approaches lack. First,
each of the contributing tiles knows very little about the en-
tire structure of the problem; at most, a tile might know a
single bit of the input or some bit internal to the compu-
tation, and perhaps which neighbors it is attached to, but
would know neither a significant part of the input nor the
significance of the data it does know. We call this prop-
erty privacy preservation. Second, if some of the tiles were
faulty and misattached, or even if some tiles were intelligent,
malicious, collaborating agents, existing techniques for error
correction developed for the tile assembly model [25] could
quickly reduce the probability that those faults and attacks
would break the system. We call this property fault and
malice tolerance. Third, because each of the seeds acts inde-
pendently of the others, under the proper conditions (e.g., no
competition for tiles), the system scales as well as a system
can scale for large inputs. We call this property scalability.

We now explain how nodes on a distributed network can
benefit from the ideas of our beaker thought experiment to
self-organize into a distributed computational grid. We call
the set of principles for designing distributed software sys-
tems using these ideas the tile architectural style [11].

Each computer on the network will be responsible for de-

1The approach we describe should extend to other compu-
tationally-intensive problems as well, but we limit our dis-
cussion to NP-complete problems for now.

24

ploying copies of a single tile type. Thus, for example, for
the SubsetSum tile assembly, for each of the 49 + 7 = 56
tile types, every 56th computer will be deploying tiles of
that type. At the start of the computation, the user will
create a tile type map that maps the IPs to tile types and
distribute that map to all the nodes by broadcasting it to
its neighbors, who will then broadcast it to their neighbors,
and so on. The user will then create a single seed on the
network that encodes the input by asking computers that
deploy the appropriate tile types to deploy tiles and attach
to their appropriate neighbors.

Next, the distributed system takes over the distribution
and execution of the computation through the processes of
replication and recruitment.

3.2.1 Replication
For each tile within a seed, the computer that deploys

that tile will participate in the replication procedure. That
computer, called the parent computer, will use the tile type
map to select a different computer on the network, called
the child computer, that deploys the same type of tile. The
parent will ask the child to deploy a tile. If the child has
adequate resources and agrees, the new tile will represent
the replica of the parent’s tile.

Once the parent’s neighbors perform the same procedure
and obtain replicas, these replicas must be connected to form
a standalone seed. The parents relay the identities of their
children to the children of their neighbors, completing the
replication procedure.

Each of the standalone seeds can replicate in parallel,
growing the number of independent seeds exponentially, un-
til the computing network’s resources are used up. At the
same time, each of the seeds performs recruitment, as we de-
scribe next. Whenever seeds finish recruiting, the resources
they use can be freed to allow more replication.

3.2.2 Recruitment
Computers deploying adjacent tiles without appropriate

neighbors will attempt to recruit other computers to deploy
those neighbors. These computers deploying adjacent tiles
will survey computers that deploy tiles of various types to
find one that may attach. That computer will deploy a tile
and attach to its new neighbors. The seeds, thus, grow
independently to execute the computation and determine
the solution, which the node deploying the special X tile
reports to the user.

4. EVALUATING THE TILE STYLE
The tile style can be evaluated along three dimensions:

privacy preservation, fault tolerance, and efficiency. Be-
cause the tile style is based on a formal mathematical model
of crystal growth, desirable properties of tile-style systems
can be proven formally, as well as demonstrated empirically.
For example, demonstrating what fraction of the network a
spy must compromise in order to learn a private input and
what fraction of the network an adversary must compromise
to break the computation indicate privacy preservation and
fault tolerance. Further, a tile-style implementation can em-
pirically determine the speed and efficiency in a real-world
environment.

We anticipate the tile style to be highly efficient and scal-
able. One interesting and common intuition about tile-style
systems that contradicts our expectation of efficiency is that

these systems will be significantly slower than traditional
distributed systems because data that typically is internal
to a single processor must be sent over the network to other
nodes, and network communication is far slower than com-
munication internal to a single computer. However, this in-
tuition is incorrect. Each node in a tile-style system deploys
many tiles (of the same tile type) at once, and thus partici-
pates in many of the nondeterministic executions in parallel.
Because best known algorithms for NP-complete problems
require an exponential number of executions (either parallel
or sequential) and because tiles are lightweight, each node
can easily deploy tens of thousands of tiles. Thus, while
some tiles have to wait for network communication, other
tiles can be executing. The result is that no node is ever
idly waiting and the system executes virtually as fast as it
would if network communication were instantaneous (with
the exception of latency, which is insignificant for reasonably
sized computations).

5. SUMMARY
We have given a high-level description of the nature-in-

spired algorithms that allow the distribution of computation
onto distributed networks in a scalable, privacy-preserving,
and fault- and malice-tolerant manner. We have only pro-
vided the intuition of how the system will work here and have
omitted numerous details that go along with turning these
ideas into an actual running software system. These details,
along with empirical data on the executions of these systems
and their efficiency, as well as comparisons with traditional
computational grid technologies, can be found in [11].

6. REFERENCES
[1] H. Abelson, D. Allen, D. Coore, C. Hanson,

G. Homsy, T. F. Knight, Jr., R. Nagpal, E. Rauch,
G. J. Sussman, and R. Weiss. Amorphous computing.
Communications of the ACM, 43(5):74–82, May 2000.

[2] L. Adleman. Towards a mathematical theory of
self-assembly. Technical Report 00-722, Department of
Computer Science, University of Southern California,
Los Angeles, CA, 2000.

[3] D. P. Anderson. BOINC: A system for public-resource
computing and storage. In Proceedings of the 5th
IEEE/ACM International Workshop on Grid
Computing (GRID04), pages 4–10, Pittsburgh, PA,
USA, 2004.

[4] R. Barish, P. W. K. Rothemund, and E. Winfree. Two
computational primitives for algorithmic
self-assembly: Copying and counting. Nano Letters,
5(12):2586–2592, 2005.

[5] B. Berger and T. Leighton. Protein folding in the
hydrophobic-hydrophilic (HP) is NP-complete. In
Proceedings of the 2nd Annual International
Conference on Computational Molecular Biology
(RECOMB98), pages 30–39, New York, NY, USA,
March 1998.

[6] Y. Brun. Arithmetic computation in the tile assembly
model: Addition and multiplication. Theoretical
Computer Science, 378(1):17–31, June 2007.

[7] Y. Brun. Nondeterministic polynomial time factoring
in the tile assembly model. Theoretical Computer
Science, 395(1):3–23, 2008.

25

[8] Y. Brun. Solving NP-complete problems in the tile
assembly model. Theoretical Computer Science,
395(1):31–46, 2008.

[9] Y. Brun. Solving satisfiability in the tile assembly
model with a constant-size tileset. Journal of
Algorithms, 63(4):151–166, 2008.

[10] Y. Brun and N. Medvidovic. Fault and adversary
tolerance as an emergent property of distributed
systems’ software architectures. In Proceedings of the
2nd International Workshop on Engineering Fault
Tolerant Systems (EFTS07), pages 38–43, Dubrovnik,
Croatia, September 2007.

[11] Y. Brun and N. Medvidovic. Preserving privacy in
distributed computation via self-assembly. Technical
Report USC-CSSE-2008-819, Center for Software
Engineering, University of Southern California, 2008.

[12] Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese,
H. Kienle, M. Litiou, H. Müller, M. Pezzè, and
M. Shaw. Engineering self-adaptive systems. In B. H.
Cheng, R. de Lemos, H. Giese, P. Inverardi, and
J. Magee, editors, Software Engineering for
Self-Adaptive Systems. Lecture Notes in Computer
Science, In Press, 2009.

[13] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In Proceedings of the
6th Symposium on Operating System Design and
Implementation (OSDI04), San Francisco, CA, USA,
December 2004.

[14] J. Korb and K. E. Linsenmair. Thermoregulation of
termite mounds: what role does ambient temperature
and metabolism of the colony play? Journal Insectes
Sociaux, 47(4):357–363, November 2000.

[15] M. Lamanna. The LHC computing grid project at
CERN. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 534(1-2):1–6,
2004.

[16] D. Lucent, V. Vishal, and V. S. Pande. Protein folding
under confinement: A role for solvent. Proceedings of

the National Academy of Sciences,
104(25):10430–10434, 2007.

[17] P. McKinley, B. H. Cheng, C. Ofria, D. Knoester,
B. Beckmann, and H. Goldsby. Harnessing digital
evolution. IEEE Computer, 41(1):54–63, 2008.

[18] S. Raudys and M. Tamosiunaite. Biologically inspired
architecture of feedforward networks for signal
classification. In Proceedings of the Joint IAPR
International Workshops on Advances in Pattern
Recognition, pages 727–736, Alicante, Spain, 2000.
Springer-Verlag.

[19] D. Reishus. Design of a self-assembled memory circuit.
In Proceedings of the 5th Foundations of Nanoscience:
Self-Assembled Architectures and Devices
(FNANO08), pages 239–246, Snowbird, UT, USA,
April 2008.

[20] P. W. K. Rothemund, N. Papadakis, and E. Winfree.
Algorithmic self-assembly of DNA Sierpinski triangles.
PLoS Biology, 2(12):e424, 2004.

[21] W.-M. Shen, M. Krivokon, H. Chiu, J. Everist,
M. Rubenstein, and J. Venkatesh. Multimode
locomotion for reconfigurable robots. Autonomous
Robots, 20(2):165–177, 2006.

[22] M. Sipser. Introduction to the Theory of Computation.
PWS Publishing Company, 1997.

[23] E. Winfree. Algorithmic Self-Assembly of DNA. PhD
thesis, California Institute of Technology, Pasadena,
CA, USA, June 1998.

[24] E. Winfree. Simulations of computing by self-assembly
of DNA. Technical Report CS-TR:1998:22, California
Institute of Technology, Pasadena, CA, USA, 1998.

[25] E. Winfree and R. Bekbolatov. Proofreading tile sets:
Error correction for algorithmic self-assembly. In
Proceedings of the 43rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS02), volume
2943, pages 126–144, Madison, WI, USA, June 2003.

[26] B. Yurke, A. Turberfield, A. Mills, Jr., F. Simmel, and
J. Neumann. A DNA-fuelled molecular machine made
of DNA. Nature, 404:605Ű–608, 2000.

26

	1 Biology's Inspiration
	2 Crystals and Computation
	2.1 Tile Assembly Model
	2.2 Adding Tile Assembly
	2.3 Pushing Tiles Further
	2.4 SubsetSum-Solving Tile Assembly

	3 Tile Architectural Style
	3.1 Computational Grids
	3.2 Crystal-Growth Benefits
	3.2.1 Replication
	3.2.2 Recruitment

	4 Evaluating the Tile Style
	5 Summary
	6 References

