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Abstract

In self-assembly research, reducing the number of distinct tiles necessary to compute
functions can make it feasible to implement tile systems to solve complex problems. Existing
methods for solving 3-SAT, a well-known NP-complete problem, in the tile assembly model
involve either using ©(n?) distinct tiles to nondeterministically decide whether an n-variable
Boolean formula is satisfiable or simulating a cellular automata system simulating a Turing
machine, which requires a constant but large number of tiles to deterministically make the
decision. Here, I propose a system that solves k-SAT nondeterministically, for all £ € N,
in time linear in the input size using only 64 distinct tiles. Further, I propose a mechanism
for converting the tilesets of tile systems for many NP-complete and other problems from
tilesets whose size depends on the input into ©(1)-size tilesets.

1 Introduction

Self-assembly is the study of how simple objects come together to form more complex objects.
In nature, self-assembly occurs on all scales, from atoms self-assembling into molecules to stars
and planets to form galaxies. Crystal growth is just one example of self-assembly, and one
that has been studied at length and shown capable of computing mathematical functions [1].
Molecular systems can also compute, in particular DNA systems [2], and solve NP-complete
problems [3, 4]. This idea of using molecules to compute nondeterministically is the driving
motivation behind my work.

NP-complete problems are integral to our everyday lives and yet we know of no efficient
algorithms to solve them. Many problems in the realms of resource allocation, scheduling,
and protein folding have been shown to be NP-hard, and the ability to solve these problems
quickly is highly desirable. Molecular computing models are a possible powerful route toward
feasible algorithms for solving NP-complete problems quickly because of high information density
molecules allow.

Winfree showed that DNA computation is Turing-universal [5]. While DNA computation
suffers from relatively high error rates, the study of self-assembly shows how to utilize redundancy
to design systems with built-in error correction [6, 7, 8, 9, 10]. Researchers have used DNA to
assemble crystals with patterns of binary counters [11] and Sierpinski triangles [12], but while
those crystals are deterministic, generating nondeterministic crystals may hold the power to
solving complex problems quickly.

Two important questions about self-assembling systems that create shapes or compute func-
tions are: “what is a minimal tile set that can accomplish this goal?” and “what is the minimum
assembly time for that system?” Here, I study systems that solve NP-complete problems and ask
these questions, as well as another that is important to nondeterministic computation: “what is
the probability of assembling the crystal that encodes the solution?” Adleman has emphasized
studying the number of steps it takes for an assembly to complete (assuming maximum paral-
lelism) and the minimal number of tiles necessary to assemble a shape [13]. He answered these
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questions for n-long linear polymers [14]. Previously, I have extended these questions to apply
to computing tile systems [15].

I proposed and studied systems that compute the sums and products of two numbers using
the tile assembly model [15]. I then showed that systems can be combined to create systems with
more complex behavior, and designed a system that nondeterministically factors numbers [16].
I have also shown a system that solves the NP-complete problem SubsetSum using a system
with 49 different computational tile types [17]. One interesting aspect of solving satisfiability in
the tile assembly model using a constant-size tileset is that writing the input itself is difficult
because each Boolean formula has some n distinct variables, and one must encode all variables
using a constant number of tiles. Previous attempts have used distinct tiles for each variable.
The mechanism I design here can be applied to solving other problems that require an encoding
of variables in its input, as well as graph problems that require the encoding of vertices and
edges.

The work closest to mine on solving satisfiability using tiles is a proposal by Lagoudakis et
al. [18]. They informally define two systems that nondeterministically compute whether or not an
n-variable boolean formula is satisfiable using ©(n*) and ©(n?) distinct tiles, respectively. The
former system encodes each clause-variable pair as a separate tile, and the latter system encodes
each pair of literals as a separate tile. In a DNA implementation of even the smaller system,
to solve a 50-variable satisfiability problem, one would need on the order of 2500 different DNA
complexes, while current DNA self-assembly systems have on the order of 10 different complexes.
In contrast, the system I present in this paper for solving an NP-complete problem uses O(1)
distinct tiles and assembles in time linear in the input. Section 1.2 will describe the ©(n?)-sized
tileset system in detail.

1.1 Tile Assembly Model

The tile assembly model [1, 19] is a formal model of crystal growth. It was designed to model
self-assembly of molecules such as DNA. It is an extension of a model proposed by Wang [20].
The model was fully defined by Rothemund and Winfree [19], and the definitions I use are
similar to those. Full formal definitions can be found in [17].

Intuitively, the model has tiles, or squares, that stick or do not stick together based on various
binding domains on their four sides. Each tile has a binding domain on its north, east, south,
and west side. The four binding domains, elements of a finite alphabet ¥, define the type of the
tile. The strength of the binding domains are defined by the strength function g. The placement
of some tiles on a 2-D grid is called a configuration, and a tile may attach in empty positions
on the grid if the total strength of all the binding domains on that tile that match its neighbors
exceeds the current temperature (a natural number). Finally, a tile system S is a triple (T, g, ),
where T is a finite set of tiles, g is a strength function, and 7 € N is the temperature, where
N = ZZO.

Starting from a seed configuration S, tiles may attach to form new configurations. If that
process terminates, the resulting configuration is said to be final. At some times, it may be
possible for more than one tile to attach at a given position, or there may be more than one
position where a tile can attach. If for all sequences of tile attachments, all possible final
configurations are identical, then S is said to produce a unique final configuration on S. The
assembly time of the system is the minimal number of steps it takes to build a final configuration,
assuming maximum parallelism.

In solving NP-complete problems it is important to compute a particular subset of functions,
the characteristic functions of subsets of the natural numbers. A characteristic function of a set
has value 1 on arguments that are elements of that set and value 0 on arguments that are not
elements of that set. Typically, in computer science, programs and systems that compute such
functions are said to decide the set. I adapt the definition of nondeterministically computing
functions from [16] to nondeterministically deciding subsets of natural numbers. Since for all
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Figure 1: Solving 3-SAT using ©(n?) distinct tiles. The concepts behind the tiles in T2 (a)
indicate that for every n € N, the set T2 contains 4n? + 12n + 4 tiles: the four bottom-row tiles,
including the special v tile, 14n middle-row tiles, with ¢i enumerating over all the literals and
0 < i < n, and 4n® —2n top row tiles, with ¢i enumerating over all the literals and ¢ enumerating
over all the literals such that ¢i # £j. Tiles from T2 attach to a seed to nondeterministically
select a truth assignment (b). Here ¢ = (z2 V =21 V o) A (mxg V —x1 V =) A (mxg V 21 V )
and the literal selection is xg, 721, 2 meaning that g = xo = TRUE and x1 = FALSE. Tiles
attach to allow the v tile to attach in the northwest corner iff the assignment satisfies the
Boolean formula encoded by the seed.

constants n € N, the cardinalities of N” and N are the same, one can encode an element of N”
as an element of N. Thus it makes sense to talk about deciding subsets of N™. Let Q@ C N™ be a
set. A tile system S = (T, g, 7) nondeterministically decides 2 with identifier tile r € T iff for all
a € N™_ there exists a seed configuration S that encodes @ and for all final configurations F' that
S produces on S, r € F(Z?) iff @ € 2, and there exists at least one final configuration F with r
attached. In other words, the identifier tile r attaches to one or more of the nondeterministic
executions iff the seed encodes an element of 2. I call the set of tiles used to encode the input
T.

I have given informal definitions to assist the reader in understanding the system I discuss
in this paper and I refer the reader to [17] for more formal definitions.

1.2 Background and Work Related to Solving 3-SAT

The Boolean satisfiability (SAT') problem is a well-known NP-complete problem. Let n € N,
then for all 0 < i < n, let x; be a Boolean variable that can take on values from the set
{TRUE,FALSE}. Let the set of literals be the set of those variables and their negations
(U;{xi, ~2:}), where ~TRUE = FALSE, and ~FALSE = TRUE. A clause is a disjunction
of literals, e.g., (xoV —x1 V z2). A Boolean formula, in conjunctive normal form (CNF), is a
conjunction of clauses, e.g., (zoV —z1 V x2) A (mx3 V x2 V —x3). If every clause has exactly k
literals, the Boolean formula is said to be in kCNF. A Boolean formula is satisfiable iff there
exists some assignment of each variable to an element of { TRUE, FALSE} such that the formula
evaluates to TRUE.

The notions of truth assignment and literal selection are in some sense parallel, and I will
use them somewhat interchangeably in this paper. Formally, every literal selection corresponds
to a truth assignment. Thus I will sometimes use a literal selection, e.g., xg, =21, T2, to specify
a truth assignment, in this case xg = 9o = TRUFE and x1 = FALSE.

The k-SAT problem is, given a kKCNF Boolean formula, to determine whether or not it is
satisfiable. It is well known that 1-SAT and 2-SAT can be solved in polynomial time, while
each k-SAT for k > 3 is NP-complete. Formally, k-SAT is the set of all Boolean formula in
kCNF that are satisfiable. To solve k-SAT means to decide the set k-SAT.

Lagoudakis et al. proposed a tile system for nondeterministically deciding whether a 3CNF
Boolean formula is satisfiable [18]. This system uses ©(n?) distinct tiles for a formula with
n distinct variables, and can be adapted to decide the satisfiability of k-SAT for arbitrary



k € N. While Lagoudakis et al. do not formally define what it means for a tile system to solve
a problem or compute a function and do not formally argue that their system does in fact solve
satisfiability, I believe their system can be made to fit my definitions and proven correct. What I
present here is a slight variant of their system, which follows the same basic logic. My approach,
described in Section 2 will build on the techniques in this system while reducing the tileset from
O(n?) to ©(1), thus understanding (or accepting the correctness of) this system is crucial to
understanding my modifications and contributions.

I now describe a family of tile systems that determine whether a Boolean formula with
n € N distinct variables is satisfiable (because the size of the system depends on the number of
variables, there will be a different system for every n, and thus I refer to the systems for all n
as a family). I will refer to these systems as S2.

The idea behind encoding the input is to encode the Boolean formula in the row of the
seed configuration with a unique tile for each possible literal, prefixing each clause with a special
clause tile, and to encode the variables in the 0" column with a unique tile for each variable.
There are also three helper tiles used to mark the clauses and the ends of the input. For a given
n € N, the set I'2 contains the three helper tiles, 2n literal tiles, and n variable tiles. Thus
IT2| = 3n + 3.

I will use the tiles in I'2 to encode an n-variable Boolean formula in a specific way. T will
place tiles representing the formula’s literals in the 0** row such that the literals of each clause
are together, place the special clause tile to the east of each clause, place the variable tiles in the
0" column, and place special end tiles in the west-most and north-most positions on that row
and column. The clear tiles in Figure 1(b) show a sample seed encoding the 3-variable Boolean
formula (z2 V —x1 V =) A (mxe V -y V —xg) A (e V 21 V x0) using the tiles from Fg. Note
that while this example tries to follow some logical order, the order of the variables, the clauses,
and the literals within each clause is not important.

The main idea of the computation is to have tiles attach nondeterministically in column —1
to select either TRUE or FALSE for each variable and then to “sweep” those choices westward,
checking if a literal in a clause evaluates to TRUE. Whenever a literal evaluates to TRUFE, that
information propagates northward, and along the top row, tiles attach to ensure that at least
one literal in every clause evaluates to TRUE. Iff that is the case, a special v tile attaches in
the northwest corner.

The system S2 will use the set of computational tiles 72. Figure 1(a) shows the concepts
behind the tiles in 72. The bottom row shows four helper tiles, including the special v tile,
that are the same for all n. For each tile in the middle row there will be ©(n) tiles in T2, with
¢i enumerating over all the literals and 0 < ¢ < n. Finally, the top row shows the concept
behind the tile which will expand to ©(n?) tiles in T2, with i enumerating over all the literals
and ¢ enumerating over all the literals such that ¢i # ¢j. Thus, for a given n € N, the set
T2 contains the four bottom-row tiles, 14n middle-row tiles, and 4n? — 2n top-row tiles. Thus
|T?2| = 4n? + 12n + 4. Note that Lagoudakis et al. claim that their systems use 2n? + 12n + 10
distinct tiles, but after careful analysis, I disagree with their calculations and believe their
systems actually use significantly more tiles, even more than my system’s 4n® + 12n + 4. Most
notably, their analysis assumes that there are 2n? — n tiles identical to my yellow tiles, whereas
in reality there are 4n? — 2n such tiles. The tiles of T32 attach to a seed configuration to
nondeterministically select a truth assignment of the variables and check if that assignment
satisfies the Boolean formula, as shown in Figure 1(b). If and only if the assignment is satisfiable,
the v tile attaches in the northwest corner.

Oth

Theorem 1 For all n € N, let ¥2 = {c,|,||,4,x;, =x;, OK}, where 0 < i < n. Let T? be as
defined in Figure 1(a). Let g2 =1 and 72 = 2. Let S? = (T2, g2, 72). Then S? nondeterministi-
cally decides k-SAT (for all k € N) with up to n distinct variables per formula with the black v/
tile from T? as the identifier tile.



I refer the reader to [21] for the full proof of this theorem, as well as proofs of the facts that
the system’s assembly time is linear in the size of the input and that the probability that a single
nondeterministic execution of S2 succeeds in attaching a v tile if ¢ is satisfiable is at least (%)n

2 Reducing Tileset Size

I now describe a nondeterministic tile system Sg47, which will follow a logic similar to that of
S2, but will use only a constant number of tiles. The idea of Sga7 is to encode ¢ in the same
way S2 did, but instead of using a single tile for each literal, the literals will be encoded by a
tile that indicates whether the literal is a negation (I place this tile in the east-most position),
and a series of 0 and 1 tiles encoding, in binary, the index of the variable. For example, the
literal x5 would be encoded by a v tile, and by a 1 tile, then a 0 tile, and then a 1 tile (101v)
because 5 = 1015. The literal —x4 would be encoded by a —v tile, and by a 1 tile, then a 0 tile,
and then a 0 tile (100-v) because 4 = 1002. For consistency, I will use the same number of bits
to encode all variables, e.g., if my ¢ has 7 distinct variables, I will need three bits to encode x7,
so I will encode z; as 001v. Similarly, I will encode the variables in the 0** column using this
binary encoding method. The assemblies in Sg47 will be larger in size than the assemblies in S2
because what used to be encoded by a single tile will now be represented by a ©(logn) x ©(logn)
block of tiles, but the overall logic will remain the same. The key to Sgar is building the logic
of the blocks to correctly match literals without affecting the inherited logic of S2.
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Figure 2: The 12 tiles in I'sar (a) and the 64 tiles in Tsa7 (b).

There are 12 tiles in I'ga7, no matter how large ¢ is or how many variables it contains. I will
use the tiles in I's47 to encode an n-variable Boolean formula in a specific way. I will encode
the formula’s literals in the 0*" row, as described above, such that the literals of each clause are
together, place the special clause tile to the east of each clause, place the encoded variables in
the 0" column, and place special end tiles in the west-most and north-most positions on that
row and column. The clear tiles in Figure 4 show a sample seed encoding the 3-variable Boolean
formula (z2 V =21 V o) A (—z2 V —x1 V —xo) A (e V 21 V 29) using the tiles from I'gqr. Note
that while this example tries to follow some logical order, the order of the variables, the clauses,
and the literals within each clause is not important.

Just as before, the main idea of the computation is to have tiles attach nondeterministically
in column —1 to select either TRUFE or FALSE for each variable and then to “sweep” those
choices westward, checking if a literal in a clause evaluates to TRUFE. The comparison of literals
will take place within a ©(log n) x ©(log n) block of tiles. Whenever a literal evaluates to TRUE,
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Figure 3: Tiles comparing two inputs. In (a), the comparison is between 1111010v and 1111010v.
Because the two inputs are the same, the northwest tile’s north binding domain contains a *, and
none of the rest of the exposed binding domains do. In (b), the comparison is between 1111010v
and 1110010v. Because the two inputs do not match, no exposed binding domain contains a *.

that information propagates northward, and along the top row, tiles attach to ensure that at
least one literal in every clause evaluates to TRUFE. Iff that is the case, a special v” tile attaches
in the northwest corner.

The system Sgar will use the set of computational tiles Ts47. Figure 2(b) shows the 64 tiles
in Tsar. The colors of the tiles are coordinated with the colors of the T2 system — the tiles of
the same colors perform the same functions.

To reduce the number of tiles from ©(n?) to ©(1), I used a technique illustrated in Figure 3.
The system illustrated here compares two variable labels. Figure 3(a) shows a comparison of
1111010v and 1111010v. Because the two inputs are the same, the northwest tile’s north binding
domain contains a *, and none of the rest of the exposed binding domains do. Figure 3(b) shows
a comparison of 1111010v and 1110010v. Because the two inputs do not match, no exposed
binding domain contains a *.

The tiles of Tsar attach to a seed configuration to nondeterministically select a truth as-
signment of the variables and check if that assignment satisfies the Boolean formula, as shown
in Figure 4.

Theorem 2 Let Ygar ={c, 7, |, ||, v, *v, 7v, *=wv, 0, *0, 1, *1, OK}. Let Tsar be as defined
in Figure 2(b). Let gsar = 1 and 7sar = 2. Let Sgar = (Tsar,gsar,Tsar). Then Sgar
nondeterministically decides k-SAT (for all k € N) with the black v tile from Tsar as the
identifier tile.

I refer the reader to [21] for the full proof of this theorem, as well as proofs of the facts that
the system’s assembly time is linear in the size of the input and that the probability that a single
nondeterministic execution of Sgar succeeds in attaching a v tile if ¢ is satisfiable is at least

1 n
(2)111 summary, Sgar decides whether a KCNF Boolean formula ¢ on n variables is in k-SAT,
has 64 = ©(1) computational tile types, and uses 12 = ©(1) tile types to encode the input. It
computes in time linear in the size of the input, and each assembly has the probability of at
least (%)n of finding the satisfying assignment, if one exists.

2.1 Reducing Other Tile Systems’ Tilesets

Satisfiability is just one of many computational problems that require unique identifiers to encode
the input. In satisfiability, the n variables of a Boolean formula must be unique. Most graph
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Figure 4: Tiles from Tg47 attach to the seed to nondeterministically select a truth assignment.
Here ¢ = (z2V —x1 V —xg) A (mxe V -y V —xg) A (mz2 Vap V xg) and the literal selection is
g, 1, To meaning that xg = ro = TRUFE and 1 = FALSE. Tiles attach to allow the v tile
to attach in the northwest corner iff the assignment satisfies the Boolean formula encoded by
the seed.

problems, many of which are known to be NP-complete, require the encoding of vertices and
edges, each of which must also be unique. Even though I have previously designed a tile system
with a constant-sized tileset to solve an NP-complete problem [17], the smallest previously known
tile solution to one of these special problems that require unique identifiers uses ©(n?) tiles [18].

The technique I present here for using a binary encoding to represent the necessary distinct
identifiers can be adapted to be used with other problems. The adaptation is not immediately
obvious and it is unlikely that a general adaptation exists that would work for all such problems.
In the SAT system, it is sufficient to build a ©(logn) x O(logn) block to compare two literals,
and to “display” the result of the comparison in the north binding domain of the northwest
tile. Other computational problems may require more complex computations than comparisons,
and may require the result in more binding domains, thus larger tile blocks may be necessary
for those other problems. The central idea of all such adaptations, however, remains the same:
to represent unique identifies using a binary encoding, and to translate computation previously
performed within a single tile into relatively small blocks of tiles.

3 Contributions

The main contribution of my work is a technique for reducing the size of the tileset used to solve
certain computational problems. Tile system solutions to problems that require such unique
identifiers, such as satisfiability and almost all graph problems, have resorted to using ©(n) tiles
to encode the input, and no fewer than ©(n?) tiles to compute, for inputs of size n [18]. My
proposal allows the first constant-size tileset solution that solves such a problem. The mechanism
I design for uniquely addressing variables is completely portable to solving other problems.

To illustrate my technique, I have designed a system that solves well-known NP-complete
problems k-SAT, for all k € N, in the tile assembly model. The system, Sgar, uses 64 = O(1)
distinct tiles to decide whether a Boolean formula is satisfiable, computes in time linear in the
input size, and each nondeterministic assembly has a probability of success of at least (%)n,
where n is the number of distinct variables. Thus a parallel implementation of Sga7, such as a
DNA implementation like those in [11, 12], with 2" seeds has at least a 1 — % > 0.5 chance of
correctly deciding whether a Boolean formula is satisfiable, and that probability can be brought
arbitrarily close to 1 by increasing the number of seeds.
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