
SELF-ASSEMBLY

FOR DISCREET, FAULT-TOLERANT, AND SCALABLE COMPUTATION

ON INTERNET-SIZED DISTRIBUTED NETWORKS

by

Yuriy Brun

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

May 2008

Copyright 2008 Yuriy Brun



Dedication

I dedicate this work to my parents Yefim and Tatyana Brun
for their unconditional love and support.

ii



Acknowledgements

Alice said “Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to,” said the Cat.
“I don’t much care where —”said Alice.
“Then it doesn’t matter which way you go,” said the Cat.
“— so long as I get somewhere,”Alice added as an explanation.
“Oh, you’re sure to do that,” said the Cat, “if you only walk long enough.”1

The beginnings of my adventure in research have not been unlike Alice’s travels in Wonderland.
When I started, I did not have much of a concept of where to go. I did, however, have a white
rabbit to follow. I knew that systems that exist in nature are far more complex and dependable
than systems that we, as humans, design and build. And as engineers are obsessed with building
bigger and better systems, I knew that understanding what makes complex natural systems so
robust and finding a way to use that knowledge was an interesting and powerful hare of a goal, but
I knew little about how to pursue this white rabbit. Of course, I was far from the first to notice
the power of nature and the potential it has to improve our engineering ways, but like many, I did
not know just how to get my hands around and harness that power.

As I started graduate school, I did not have a Cheshire Cat to tell me which way to go, or even
that it did not matter which way I went as long as I walked far enough. I did, however, have a
series of characters who guided and helped me along the way, and I now wish to acknowledge and
thank them.

First, I wish to thank the academic inspirations whose work and ideas have contributed most to
my research. Prof. Erik Winfree originally proposed the tile assembly model, which, in the end, is
the single most important piece of the foundation on which my work rests. Prof. Winfree’s work,
together with that of Dr. Paul W.K. Rothemund and Prof. Leonard Adleman (Len), formed the
basis of the study of self-assembly. Self-assembly is a natural process of combining elements to
form complex compounds. This trio introduced the formalism needed to study self-assembly as a
mathematical model and posed the right questions to ask about such systems. Without inheriting
their momentum, I am unlikely to have reached my current place in research.

Prof. Michael D. Ernst (Mike) was my first graduate advisor for my Masters work at MIT. He
nurtured and supported my desire to do research, taught me the ropes, and was at least partially
responsible for the continuation of my graduate studies. He even tried to convey to me that I must
be at least a little crazy to be going into academia, but softened that news with the fact that all
those I work with will share in my insanity.

Alice tried another question. “What sort of people live about here?”
“In that direction,” the Cat said, waving its right paw round, “lives a Hatter; and

1This and the later quote in this chapter are from Lewis Carroll (Charles Lutwidge Dodgson). Alice’s Adventures
in Wonderland. Macmillan and Co., London, UK, 1865.

iii



in that direction,” waving the other paw, “lives a March Hare. Visit either you like:
they’re both mad.”
“But I don’t want to go among mad people,” Alice remarked.
“Oh, you can’t help that,” said the Cat: “we’re all mad here. I’m mad. You’re mad.”
“How do you know I’m mad?” said Alice.
“You must be,’ said the Cat, “or you wouldn’t have come here.”

In fact, Mike was right. All characters I have encountered in my adventures in the Wonderland
of research have been to some degree insane — a wonderful property without which I believe survival
in academia to be impossible.

Len, my first Ph.D. advisor, deserves special thanks. He introduced me to a formal mathematical
way of studying nature. It was that ability to view aspects of biology as formal mathematical
concepts that has allowed me to extract certain properties of nature-made systems and inject them
into the engineering process. In addition to arming me with the hammer of mathematical formalism
and logic, Len supported and guided me through explorations of various areas within chemistry,
biology, mathematics, and theoretical computer science for over two years. Without his help, I
would have never been able to visualize the definitions of computation in self-assembling systems
— the doorway to building biologically inspired software.

Throughout my years as a Ph.D. student, my primary companion has been Dustin Reishus.
There have been numerous storms that we have weathered together, and I believe it is safe to
say that neither of us would be nearing the completion of our Ph.D. journeys without the other.
Dustin deserves my gratitude for too many of his actions to name here, but his constant support
and motivation, relentless encouragement to improve my mathematical formalism, and constant
(and I mean at all hours of the night) availability to have ideas bounced off him deserve special
mention. I have become so dependent on Dustin, it is not even clear in my mind that I could go off
and do research without at least a photo of him to speak to. These words are unlikely to convey
the proper magnitude of gratitude that Dustin deserves; however, as his and my quests for Ph.D.
degrees are only the start of our academic careers, I envision having plenty more opportunities to
give him well-deserved praise.

Literature buffs know very well that every adventure worthy of being told must contain a conflict
and a metaphorical low-point for the protagonist. The hero must feel despair and hopelessness
before collecting himself and rising to the occasion. Interestingly, I have been told that no story
of earning a Ph.D. is without numerous conflicts and the only difficulty in naming a low-point is
selecting a single one from among the many candidates. However, I have several friends whose
relatively problem-free graduate school experience contradicts this hypothesis. Perhaps even more
interestingly, each of them has abandoned the world of academia, usually by force and not by
choice. (Of course, why would someone who has experienced no major setbacks in a world leave
that world by choice?) Meanwhile, those who hold the most terrifying, depressing, and shriek-
causing stories of epic Ph.D. conquests seem to become the most successful academics. Having
summarized the above anecdotal evidence, I am proud to say that my story has a defining point of
utter vulnerability, misery, and gloom, together with a hard-fought-for happy ending. In the middle
of my third year, my advisor and I came to the conclusion that his and my research were moving
in different directions and that we should part ways. This was not a joyous decision for me, as not
only were there no professors doing the work I had been doing in my proximity, there are perhaps
only half a dozen such researchers in the entire world. Without boring the reader with the sad and
perhaps embarrassing details of the time I spent in the proverbial gutter, cussing the mad nature
of academia, as for the better part of the next year I was a self-guided and self-supported student,
I will say that the person who emerged from that gutter was a stronger, more dedicated, and, dare

iv



I say, wiser researcher. I am inclined to remark that without the support of the aforementioned
Dustin, and the later-mentioned Alaina, as well as a few others, I may have abandoned academia
altogether at this low-point.

With a half-completed project and my focus lacking, Prof. Nenad Medvidović (Neno) was the
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Abstract

When engineers compare biological and software systems, the former come out ahead in the majority
of dimensions. For example, the human body is far more complex, better suited to deal with faulty
components, more resistant to malicious agents such as viruses, and more adaptive to environmental
changes than your favorite operating system. Thus it follows that we, the engineers, may be able to
build better software systems than the ones we build today by borrowing technologies from nature
and injecting them into our system design process.

In this dissertation, I present an architectural style and accompanying implementation support
for building distributed software systems that allow large networks, such as the Internet, to solve
computationally intensive problems. This architectural style, the tile style, is based on a nature’s
system of crystal growth, and thus inherits some of nature’s dependability, fault and adversary
tolerance, scalability, and security. The tile style allows one to distribute computation onto a large
network in a way that guarantees that unless someone controls a large fraction of the network,
they cannot learn the private data within the computation or force the computation to fail. These
systems are highly scalable, capable of dealing with faulty and malicious nodes, and are discreet
since every sufficiently small group of nodes knows neither the problem nor the data.

The tile style is based on a formal mathematical model of self-assembly. In order to leverage this
model to build software, I define the notion of self-assembling computation and develop systems
that compute functions such as adding, multiplying, factoring, and solving NP-complete problems
SubsetSum and SAT . For each system, I prove its correctness, compute its probability of successful
computation, and show that its running time and tileset size are asymptotically optimal.

I use the mathematical nature of the tile assembly model to present a formal mathematical
analysis of the tile style, proving that software systems built using this style are discreet, fault- and
adversary-tolerant, and scalable. I further implement a tile-style system and use it to distribute
computation to empirically evaluate the tile style’s utility.
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Chapter 1

Introduction

Computer science has taken on the study of computation on several levels. Theoreticians try to
devise models that can compute mathematical functions. Software engineers use previously defined
models, most notably the traditional silicon computer, to design systems that manipulate data
in controlled ways. Software architects attempt to generalize the structure of computer software
systems to extract patterns and styles that can be applied to the design of future programs, allowing
for the creation of increasingly more complex systems. Recently, chemists and molecular biologists
have encountered a surprising notion: molecules and compounds can compute [3, 104]. In fact,
molecules and compounds can compute every function that a traditional computer program can
compute [8, 105].

The observation that simple objects, such as molecules and compounds, can compute, has led
scientists to create a new area of research, called self-assembly, that studies the nature of simple
components with simple interfaces coming together to exhibit complex behavior [4]. This field has
produced a formal model of self-assembly known as the tile assembly model [106].

One of the driving forces behind exploring self-assembly systems in the realm of computation
is that many self-assembly systems exhibit great potential for fault tolerance [14, 39, 83, 99, 107,
108]. In fact, self-assembly and other natural processes have many additional properties such as
dependability, scalability, and security that surpass our most intricate human-designed systems. It
follows that if we are able to extract certain properties from biological and other natural systems
and inject them into our system design process, we may be able to build more complex, dependable,
and efficient systems than we do today.

In this dissertation, I present a study of the natural process of self-assembly resulting in a
series of asymptotically optimal (in terms of size and speed) tile assembly systems that compute
functions such as addition, multiplication, factoring, and also solve NP-complete problems. I further
develop a software architectural style, the tile style, for computing on large networks, such as the
Internet. The tile style allows users to distribute computation over untrusted nodes in a discreet
(without telling any small group of computers the problem being solved) and scalable manner, and
be guaranteed the receipt of a correct answer with an arbitrarily high probability even when the
underlying network is partially faulty or malicious.

1.1 Contributions

This dissertation brings forward contributions in two fields of study: self-assembly and software
architecture. While these fields are typically considered quite distant, I introduce a methodology for
using self-assembly systems to guide software architecture, bridging the two fields and uncovering
beneficial cooperation between research in these areas.

1



1.1.1 Formal Study of Self-Assembly

In the area of the formal study of self-assembly, I will define deterministic and nondeterministic
computation in the tile assembly model, as well as the notion of deciding sets. Then, I will present
and analyze tile assembly model systems that compute mathematical functions, such as addition,
multiplication, and factoring, and solve NP-complete problems. For each of those systems, I will
formally prove that the system computes its intended function, analyze the running time and
tileset size (two measures previously identified as important in tile systems [4]) and probability of
successful computation (a measure I identify as important for nondeterministic computation).

I will pinpoint some techniques in designing computational tile systems that can be applied to
future designs of such systems, as well as designs of other kinds of tile systems.

1.1.2 Software Architecture

In the area of software architecture, I will design a software architectural style, called the tile style,
that allows the distribution of certain types of computation over a large insecure network in a
discreet manner.

The tile style is particularly applicable to problems that are computationally intensive and easily
parallelizable. Computationally intensive problems are ones that a single computer is unlikely to
solve quickly, while easily parallelizable problems are ones that inherently yield a large number of
parallel threads. For example, all NP-complete problems have both of those properties [98]. Further,
the style is applicable to users who desire discreetness and have access to large but unreliable
networks. By discreetness, I mean that the user does not want others to find out the input or
the algorithm. By large but unreliable network, I mean a network, such as the Internet, that is
partially or entirely outside of the user’s control, and perhaps even hostile.

For example, someone who may want to use the tile style is a pharmaceutical company that
has finished running a large clinical trial and has collected data that need to be analyzed. The
data are sensitive and the company does not want that data to become public prematurely, but it
wishes to use a large public network in order to process the data. What’s more, not only are the
data private, some of the analysis algorithms may be proprietary as well. The company needs a
way to distribute the computation on an insecure network while making neither the data nor the
algorithms public.

I will present the tile architectural style, and evaluate it theoretically and empirically. Some
of the desired properties of systems built using the tile style I will prove mathematically. For
example, I can guarantee that given a certain fraction of the nodes on the network being faulty or
hostile, the probability of successful correct computation can be bounded arbitrarily closely to 1 at
a relatively small cost in execution speed. I will also be able to prove that no small group of nodes
will be able to learn the algorithm of the computation or the input to that algorithm. Also, I will
present arguments for why the systems built using the tile style are scalable. Finally, I will design
a software system based on the tile style to solve NP-complete problems and evaluate it empirically
on a network to demonstrate the properties of discreetness, fault tolerance, and scalability.

1.2 Structure of This Dissertation

This dissertation is broken up into two parts. Part I discusses the theoretical work on self-assembly,
including background and related work in Chapter 2, definitions of tile systems and computation
in Chapter 3, and the designs and careful analysis of five computational tile systems that add,
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multiply, factor, and solve two NP-complete problems in Chapter 4. This part answers some open
questions in the field of self-assembly and can be read as a standalone document.

Part II discusses work on distributing computation on a large network, including background
on how such distribution is related to self-assembly and work related to distributed systems and
software engineering in Chapter 5, the definitions of the tile architectural style for building such
distributed systems in Chapter 6, and the analysis and evaluation of tile-style systems in Chapter 7.
This part depends heavily on the theoretical work in self-assembly discussed in Part I and leverages
the tile systems from Chapter 4.

Chapter 8 summarizes my work and its contributions and presents several future directions for
the research, some of which I plan to follow. It also briefly describes my other attempts at using
self-assembly to solve interesting mathematical problems that may direct future research.
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Theoretical Study of Self-Assembly
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Chapter 2

Background and Related Work in Self-Assembly

Self-assembly is a crucial process by which systems in nature form on all scales. Atoms self-
assemble to form molecules, molecules to form compounds, and stars and planets to form galaxies.
One manifestation of self-assembly is crystal growth: molecules self-assembling to form crystals.
Crystal growth is an interesting area of research for computer scientists because it has been shown
that, in theory, under careful control, crystals can compute [105]. The field of DNA computation
demonstrates that DNA can be used to compute [3], solving NP-complete problems such as the
satisfiability problem [22, 23]. Winfree showed that DNA computation is Turing-universal [104].
While DNA computation suffers from relatively high error rates, the study of self-assembly shows
how to utilize redundancy for error correction [14, 39, 83, 108]. Researchers have used DNA to
assemble crystals with patterns of binary counters [12] and Sierpinski triangles [88].

In this chapter, I will discuss work related to a formal model of crystal growth called the tile
assembly model. I will first give an intuitive explanation of the tile assembly model (more formal
definitions will follow in Chapter 3) and then demonstrate why the model is Turing universal. I
will then show some results on the complexities of systems that compute or assemble shapes and
on fault tolerance of tile systems.

2.1 Intuitive Definitions of the Tile Assembly Model

Intuitively, the tile assembly model has tiles, or squares, that stick or do not stick together based
on various binding domains on their four sides. Each tile has a binding domain on its north, east,
south, and west sides, and may stick to another tile when the binding domain on the abutting
sides of those tiles match and the total strength of all the binding domains on that tile exceeds
the current temperature. The four binding domains, elements of a finite alphabet Σ, define the
type of the tile. The strength of the binding domains are defined by the strength function g. The
placement of some tiles on a 2-D grid is called a configuration, and a tile may attach in empty
positions on the grid if the total strength of all the binding domains on that tile that match its
neighbors exceeds the current temperature (a natural number). Finally, a tile system S is a triple
〈T, g, τ〉, where T is a finite set of tiles, g is a strength function, and τ ∈ N is the temperature,
where N = Z≥0.

Starting from a seed configuration S, tiles may attach to form new configurations. If that process
terminates, the resulting configuration is said to be final. At some times, it may be possible for
more than one tile to attach at a given position, or there may be more than one position where a
tile can attach. If for all sequences of tile attachments, all possible final configurations are identical,
then S is said to produce a unique final configuration on S. The assembly time of the system is the
minimal number of steps it takes to build a final configuration, assuming maximum parallelism.
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Figure 2.1: Temperature two systems: a set of special systems that operate at temperature 2,
whose strength function is identically 1, and in which tiles attach only when their south and east
neighbors are present.

2.2 Temperature Two Systems

Winfree brought researchers’ attention to a special set of tile assembly systems that I call the tem-
perature two systems. These are systems that operate at temperature 2, whose strength functions
are identically 1, and that, on certain seeds, produce unique final configurations. I will discuss
some properties of these systems in Section 4.1.1, but the essential property of importance is that
every tile in these systems can only attach when its east and south neighbors are already present
in an assembly. Figure 2.1 shows an example execution of such a system.

Winfree showed that temperature two system are Turing universal [105]. For that reason, some
researchers have focused their attention on these systems.

2.3 Turing Universality

Winfree’s constructions develop a way to convert a 1-D cellular automaton into a temperature
two tile system that computes the same function. 1-D cellular automata are known to be Turning
universal because they can emulate Turing machines. A 1-D cellular automaton is an infinite line of
blocks with finite internal state that at every time step change their state based on their neighbors’
states. It is fairly straightforward to see how a tile system could represent a 1-D cellular automaton
in a single row, and compute the state of the automaton at the next time step in the row above.
Continuing the process, tiles can emulate a universal 1-D cellular automaton.

I will present here a construction that converts a Turing machine to a tile system that computes
the same function as the Turning machine. In essence, the tile system emulates the Turing machine
by writing out all the instantaneous Turing machine descriptions [98] at every Turning machine
step. While this construction is my own, the result is essentially identical to that shown by Winfree;
however, it will give me a better sense of the size of the tile system necessary to emulate a Turning
machine.

A Turning machine is a simple computing machine that has a head capable of reading a single
element at a time on an infinite tape. Internal to the Turning machine is a finite state machine
control with a single active state at each time. The machine can follow simple transition rules
based on the symbol on the tape (the tape contains the symbols of some finite alphabet) under its
head to transition to another control state, write a new symbol on the tape, and move the head
to the right or to the left. I refer the reader to [98] for more details on Turning machines. The
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Figure 2.2: A Turning machine with three states. This Turing machine adds 1 to a number encoded
in binary on a tape, and then halts. Each transition arrow is labeled above with the symbol the
head must read on the tape to follow that transition arrow, and labeled below with either L or R,
indicating moving the head left or right, respectively, and the symbol to write in old position on
the tape.

significance of the Turing machine is that it can compute every computable function, and thus no
more “powerful” computer exists (although faster or more efficient ones may exist). Figure 2.2
shows an example Turing machine. This Turing machine has three states (start, add, halt), and a
three-character alphabet (0, 1, ?). When placed at the head of a tape with 0s and 1s written one
after the other, the last followed by a ?, the Turing machine will scan down the tape until the ?,
add 1 to the binary number encoded to the left of the ?, and halt.

A tile system can emulate a Turing machine. For example, Figure 2.3 shows how tiles emulate
the Turing machine from Figure 2.2. The system starts with a single row seed (top left) and tiles
add on top of that seed to form more rows (2, 3, 6, and 10 rows, respectively, clockwise from the
top left). Note that the original row encodes the binary number 010112 = 11 and the final top row
encodes 011002 = 12 = 11+1. The system computes the function f(α) = α+1 for some reasonable
definition of “computes” (I will formally define the notion of computation in Chapter 3). Note
that this system is similar to a temperature two system, but is not quite a temperature two system
because the strength function is not identically 1. The binding domains on the north side of the
tiles highlighted in yellow, the tiles that indicate the position of the head in each instantaneous
Turing machine description, must have a strength of 2.

My constructions are interesting because they show that the tile assembly model is Turing
universal, and further, for every Turing machine, including a universal Turing machine, there exists
a tile system with Θ(1) tiles that emulates it. However, while the constant bound is important,
in some sense these systems are quite large: the number of tile types in a system is Ω

(
|Q| · |Σ|

)
,

where Q is the set of states of the finite control and Σ is the finite alphabet. Note that I am
not being terribly formal with these quantities (e.g., a Turing machine really has two different
alphabets, Σ and Γ), but my quantities give the proper idea of the asymptotic growth of the tileset.
For example, the tile system from Figure 2.3 would have over 200 tile types, while theoretically, a
tile system that counts in binary, and thus adds 1 on each row of an assembly, can use as few as 7
tile types [57].

The main advantage of Winfree’s universal tile system constructions is that they are temperature
two systems, whereas mine are not. This fact allows the application of many fault tolerance
techniques to his constructions, as described in Section 2.6. On the other hand, given a Turing
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Figure 2.3: A tile system simulating the Turing machine from Figure 2.2 (in five steps, clockwise).
Each row of tiles is a single instantaneous description of the Turing machine. The highlighted
yellow tile indicates the position of the head. The diagram of the Turing machine to the left of the
tiles have the current state highlighted in red, and is only shown for the reader — the tiles do not
have a notion of the actual Turing machine. The system starts with a single row of tiles and grows
rows upward. Note that no row has to complete before the row above it starts forming — a tile
may attach as soon as two of its neighbors are present.

machine, Winfree’s conversion of that Turing machine to a 1-D cellular automaton and then to a
tile system will almost certainly result in a tile system with a larger tileset and one that constructs
larger assemblies than my direct conversion from a Turing machine to a tile system.

Other ways of showing that tile systems are Turing universal exist. One such way [105] is to
show that a tile system can simulate Wang tiles [103], which Robinson showed to be universal [85].
Meanwhile, Adleman et al. [8] used yet another approach to show that the tile assembly model at
temperature 1 is also Turing universal.

To make computational tile systems using the constructions presented by Winfree, myself,
or others is not unlike programming using Turning machines. The fact that you can solve all
computable problems with a Turning machine is a powerful statement; however, programs written
using Turing machines are in many ways inferior to ones written using higher-level languages such
as Java. Higher-level languages allow for such concepts as abstraction, memory management,
type-checking, and many others, which facilitate the construction of large and complex systems.
Similarly, the statement that tile systems can emulate Turing machines should not be the end-all
of the exploration of computational tile systems.
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Figure 2.4: The schematic of an optimal assembly of an n × n square. This approach uses a
theoretically optimal Θ

(
logn

log logn

)
tile types to seed two binary counters, and a constant number of

tiles to fill in those counters and the rest of the square (adopted from [89]).

2.4 Complexity of Tile Systems

In studying computer programs, or algorithms, computer scientists have identified several interest-
ing measures: the time complexity of the algorithm, the space complexity of the algorithm, and
the size of the algorithm. When considering tile systems that execute algorithms, there are related
measures that are equally as important. For example, the size of a minimal tileset of a tile system
that can compute a certain function is related to the size of a smallest program that computes that
function and the minimum assembly time for that tile system is related to the time complexity of
that program. Adleman has emphasized studying the number of steps it takes for an assembly to
complete (assuming maximum parallelism) and the minimal number of tiles necessary to assemble
a shape [4]. He answered these questions for n-long linear polymers. Adjusted to my definition
of assembly time (from Chapter 3), the least number of steps required to build an n-long linear
polymer is Θ(n) (Adleman’s definition involves reversible tile assembly and considers tile concen-
trations and probabilities of attachment). The smallest tileset required for the task is of size Θ(n)
tiles [5].

Adleman also proposed studying the complexity of tile systems that can uniquely produce n×n
squares. A series of researchers proceeded to answer the questions: “what is a minimal tileset that
can assemble such shapes?” and “what is the assembly time for these systems?” They showed
that the minimal tileset is of size Θ

(
logn

log logn

)
and the optimal assembly time is Θ(n) [6, 7, 89].

Figure 2.4 shows a diagram of the assembly of a square. A key issue related to assembling squares
is the assembly of small binary counters. Figure 2.4 shows a square being built with a vertical
counter. The counter starts with only Θ

(
logn

log logn

)
unique tiles along an edge and counts out an

(n − log n)-long side of the square, before a constant number of tiles fill in the remaining space.
The counter itself can also be created with only a constant number of tiles (and a Θ

(
logn

log logn

)
tile

seed). In fact, a counter can have as few as seven tile types [57]. Figure 2.5 shows the seven tile
types necessary to count.
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Figure 2.5: The seven tiles of a binary counter (adopted from [57]). The number of lines crossing
the binding domains indicate the strength function value on those binding domains.

Soloveichik et al. [100] studied assembling all decidable shapes in the tile assembly model and
found that the minimal set of tiles necessary to uniquely assemble a shape is directly related to
the Kolmogorov complexity of that shape. Interestingly, they found that for the result to hold,
scale must not be a factor. That is, the minimal set of tiles they found builds a given shape (e.g.,
square, a particular approximation of the map of the world, etc.) on some scale, but not on all
scales. Thus they showed that smaller versions of the same shape might require larger sets of tiles
to assemble. The reason the scale must not be a factor is that their constructions convert a Turning
machine that can describe a shape (e.g., write out the coordinates of the pixels of the shape) by
first emulating the Turing machine using tiles and then building the shape around that Turing
machine assembly.

While my definition of the assembly time assumes maximum parallelism, some other definitions
explore probability models of tiles attaching. Thus in my systems, constructions are in some ways
analogous to traditional computer programs, and their running times are polynomially related to
the running times of Turing machines. Baryshnikov et al. [13] began the study of fundamental
limits on the time required for a self-assembly system to compute functions by considering models
of molecular self-assembly and applying Markov models to show lower limits on assembly times. I
do not go into great detail of this work because it does not apply directly to my systems, though I
do mention it because it brings useful information to the table when considering implementations
of the tile assembly model, especially implementations driven by diffusion of molecules or other
such processes.

Researchers have also studied variations of the traditional tile assembly model. Aggarwal et
al. [9] and Kao et al. [64] have shown that changing the temperature of assembly from a constant
throughout the assembly process to a discrete function reduces the minimal tileset that can build an
n×n square to a size Θ(1) tileset. And along with Dustin Reishus, I have shown that allowing the
temperature to change only once is sufficient for creating tile systems that perform simple robotics
tasks [34].

2.5 Other Computational Tile Systems

Some early attempts at computing nondeterministically using the tile assembly model include
a proposal by Lagoudakis et al. [69] to solve the satisfiability problem. They informally define
two systems that nondeterministically compute whether or not an n-variable Boolean formula is
satisfiable using Θ(n4) and Θ(n2) distinct tiles, respectively. The former system encodes each
clause as a separate tile, and the latter system encodes each pair of literals as a separate tile. In a
DNA implementation of even the asymptotically smaller system, to solve a 50-variable satisfiability
problem, one would need on the order of 2500 different DNA complexes, while current DNA self-
assembly systems have on the order of 10 different complexes. In contrast, the systems I designed
for solving NP-complete problems use Θ(1) distinct tile types (64 for satisfiability) and assemble in
time linear in the input. The Lagoudakis et al. result was largely eclipsed by Winfree’s universality
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proof that showed that a tile system with a constant number of tiles could perform universal
computation; although for small Boolean formulae, the Lagoudakis et al. approach may use fewer
tiles.

Barish et al. [12] have demonstrated a DNA implementation of a tile system that copies an input
and counts in binary. Similarly, Rothemund et al. [88] have demonstrated a DNA implementation
of a tile system that computes the xor function, resulting in a Sierpinski triangle. These systems
grow crystals using double-crossover complexes [55] as tiles.

Cook et al. [43] have explored using the tile assembly model to implement arbitrary circuits.
Their model allows for tiles that contain gates, counters, and even more complex logic components,
as opposed to the simple static tiles used in the traditional tile assembly model. While they spec-
ulate that the tile assembly model logic may be used to assemble logic components attached to
DNA, my assemblies require no additional logic components and encode the computation them-
selves. It is likely that their approach will require fewer tile types and perhaps assemble faster, but
at the disadvantage of having to not only assemble crystals but also attach components to those
crystals and create connections among those components. Nevertheless, Rothemund’s work with
using DNA as a scaffold may be useful in attaching and assembling such components [87].

Some of the tile systems I discuss will require an exponential number of components. Experimen-
tal research [3,22] has shown that it is possible to work with an exponential number of components
and even to solve NP-complete problems, for which we do not know of strictly polynomial-time
algorithms.

2.6 Fault Tolerance

While the tile assembly model is a mathematical model of self-assembly, in its most basic form
tiles only stick to assemblies when the sum of the strengths of the binding domains exceeds the
temperature. That is to say, it assumes that one can design systems such that tiles stick only
when their sides’ binding domains match, and the tile system never makes the mistake of attaching
an incorrect tile. In practice, in many implementations of the tile assembly model, e.g., DNA
implementations, this assumption does not hold — tiles with mismatched binding domains and tiles
whose binding domains’ strengths fall short of the temperature manage to attach to assemblies.
For this reason, Winfree extended the tile assembly model to include error rates and called the
error-free model the abstract tile assembly model and the model with error rates the kinetic tile
assembly model.

In the kinetic tile assembly model, every binding domain has a certain probability of being
mistaken for a different binding domain. This probability is called the error-rate, and is commonly
represented by the symbol ε. In the abstract tile assembly model, every tile that attaches to an
assembly remains in the assembly forever; however, in the kinetic tile assembly model, every tile
may detach from an assembly, and the probability of detachment is inversely proportional to the
sum of the binding domain strengths with which that tile is attached.

A notion related to the difference between the abstract and kinetic tile assembly models is
reversibility [5]. Irreversible tile systems do not allow tiles to fall off an assembly, just as the
abstract tile assembly model. Reversible tile systems are more accurate models of real molecular
biology and chemistry, and allow on and off rates for attachments and detachments, respectively.
The rates between two tiles can depend on the strength of interaction between those tiles.

Using the kinetic tile assembly model, first Winfree and then others were able to design mech-
anisms to reduce the assembly error rates in tile systems. Most of the error correction mechanisms
increase the number of tile types in a system by a constant factor, and lower the expected error
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rate exponentially. That is, applying one such mechanism to a system with n tiles and an inherent
error rate of ε results in a system with cn tiles, for some integer constant c ≥ 2 and an error rate
of εΘ(c).

The error correction work to date was largely motivated by the fact that DNA implementations
of the tile assembly model could not grow large crystals because of the inherent error rates and
systems with built-in error correction may allow the creation of larger crystals. As I will show
in Chapter 7, the same mechanisms can be used to correct errors in assemblies with no inherent
binding domain mistakes, but with tiles that are “malicious” and attempt to break the computation.
There, if an instantiation of a tile system has an ε fraction of all the tiles misbehave, the mechanisms
will increase the number of tile types by a constant factor (or quadratically in one case) and
exponentially lower the probability of an entire assembly failing.

The rest of this section will describe several error correction mechanisms. The error correction
techniques I describe are all applicable to temperature two systems, which is the extent for which
I will need them. Note that some techniques may also be applicable to other systems.

Most of the mechanisms I describe are transformations that convert tile systems into other tile
systems that in some way perform the same tasks as the original systems, but are less likely to
commit errors. My plan is to use these transformations as off-the-shelf mechanisms to convert
systems I create that compute functions into more fault-tolerant systems that compute the same
functions.

2.6.1 Types of Possible Errors

Winfree et al. [108] have identified two different types of errors that occur in temperature two
systems: growth errors and spontaneous nucleation errors. Growth errors occur when incorrect
tiles are incorporated into the growing structure (these happen in practice in DNA self-assembly
with error rates ranging from 1% to 10%). Spontaneous nucleation errors occur spuriously and
do not involve the seed tile. Spontaneous nucleation errors are essentially conglomerates of tiles
that start growing by themselves, rather than from a seed. With DNA assembly, it is important
to concern oneself with sponteneous nucleation errors because otherwise it may be very difficult to
pick error-free assemblies from erroneous ones; however, in many implementations of self-assembly,
the control over the seed is great enough that spontaneous nucleation errors do not pose a problem.

Chen et al. [39] noticed another type of growth error, the facet nucleation error. The facet
nucleation errors occur when a tile attaches to a temperature two system assembly in a position
that is not ready for a new attachment (e.g., the east and south neighbors of that position have not
both attached). While normally, such a tile would have a high probability of detaching from the
assembly because it can only be attached by at most one strength 1 binding domain, it is possible
for a second tile to attach and “lock in” the original mistake tile, in a way such that both tiles are
attached with strength 2 and are unlikely to detach. Because I will not be much concerned with
spontaneous nucleation errors, I will refer to the facet nucleation errors as the nucleation errors.

Figure 2.6(a) shows an example of a growth error (the X represents a mismatched binding do-
main) and Figure 2.6(b) shows an example of a facet nucleation error. The incorrectly attached tiles
are highlighted in red. Note that with a nucleation error, there are no binding domain mismatches.

Finally, a growing crystal may experience an event of having a large collection of its tiles
detached. These errors are different from growth and nucleation errors in that they affect a large
number of tiles at once, and may occur in locations other than the edge of the assembly. I call
these errors shotgun errors because they resemble the effect of a shotgun unloaded at the assembly.
Figure 2.7 shows an example of a shotgun error.
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(a) (b)

Figure 2.6: Two possible types of errors in a temperature two tile assembly system. A growth
error (a) occurs when incorrect tiles are incorporated into the growing structure (the X represents
a mismatched binding domain). A nucleation error, the kind defined by Chen et al., (b) occurs
when a tile attaches in a position that is not ready for a new attachment (e.g., the east and south
neighbors of that position have not both attached). The tiles that attach incorrectly are highlighted
in red. Note that with a nucleation error, there are no binding domain mismatches.

(a) (b)

Figure 2.7: A shotgun error occurs in an assembly that has grown for some time (a) when a large
number of tiles detach from the middle of the assembly (b).

2.6.2 Growth Error Correction

Winfree et al. [108] proposed a mechanism they called proofreading for correcting growth errors in
temperature two systems. In reality, they proposed a number of mechanisms, one for each integer
k ≥ 2. I will first explain how the k = 2 mechanism works and then generalize for all k.

2.6.2.1 2 × 2 Proofreading

For k = 2, the mechanism is called 2 × 2 proofreading and consists of replacing every tile in the
system with 2 × 2 = 4 tiles. Figure 2.8 shows an example of a tile’s transformation to four tiles.
The tile is represented by four new tiles, arranged in a 2× 2 square, with unique internal binding
domains. Each of the original tile’s binding domains becomes represented by two new binding
domains (e.g., binding domain a leads to binding domains a1 and a2), and the exposed binding
domains of the 2 × 2 square are labeled with the new binding domains as shown in Figure 2.8.
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Figure 2.8: A 2 × 2 proofreading mechanism transforms each tile type in a system into four tile
types, such that the four can attach uniquely to each other.

Note that the new 2× 2 square contains essentially all the information the original tile contained,
and some extra internal binding domains. It follows that if all tile types in a temperature two
system are transformed as I described, the assemblies made by the new temperature two system
will be four times larger (two times larger in each of the two dimensions) than the original system’s
assemblies, but will otherwise encode the same information.

As a reminder, growth errors occur when an incorrect tile, one whose east or south binding
domain does not match its neighbors’ binding domains, attaches to an assembly. Suppose that the
probability of a tile attaching, resulting in a growth error, in a temperature two system is ε. Then
the probability that some n tile assembly completes correctly is (1− ε)n, assuming independence of
attachment errors. Assuming that the same per-tile error rate carries over to the system with four
times as many tiles (the 2 × 2 proofreading system), the probability of the assembly representing
the same information assembling correctly would be (1− ε)4n if the errors were still independent.
However, the errors are no longer independent. If an incorrect tile attaches in one of the four
positions, the 2×2 representation of the tile will not be able to assemble, and the computation will
not proceed until either the incorrect tile detaches, or a second growth error occurs in an adjacent
position. Thus if one growth error were to survive until the final assembly is complete, a second
error would have to occur at a nearby location, thus essentially making the error rate ε2 per every
2 × 2 block. Thus the true probability of the 2 × 2 proofreading assembly assembling correctly is(
1− ε2

)n. Thus at a linear cost in assembly size (and speed), the 2 × 2 proofreading mechanism
squared the probability of a growth error.

2.6.2.2 k × k Proofreading

In the general case, a tile can be transformed into k2 tiles by being represented by a k×k block, with
unique internal binding domains, and k versions of each of the original exposed binding domains.
Figure 2.9(a) shows an example with k = 3 and Figure 2.9(b) shows an example for an arbitrary k.

By the same argument as before, by transforming n tile types into k2n tile types, the k × k
proofreading mechanism linearly increases the size of the assemblies (an n tile assembly becomes a
k2n tile assembly), while raising the probability of a growth error to the power k. For the complete
details and the formal proofs of the error rate improvements, I refer the reader to [108].

2.6.3 Nucleation Error Correction

Chen et al. [39] proposed a family of mechanisms they called snake proofreading for correcting
nucleation errors in temperature two systems, one mechanism for each even integer k ≥ 4. I will
first explain how the k = 4 mechanism works and then generalize for all k.
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Figure 2.9: A 3 × 3 proofreading mechanism (a) transforms each tile type in a system into nine
tile types, such that the nine can attach uniquely to each other. In general, a k × k proofreading
mechanism (b) transforms each tile type in a system into k2 tile types that can all uniquely attach
to each other.

Unlike the Winfree et al. proofreading mechanism, the snake proofreading mechanism does not
use a strength function that is identically 1. The snake proofreading mechanism ensures that the
tiles of a k × k block attach in a specific order, which is designed to prevent nucleation errors.

2.6.3.1 4 × 4 Snake Proofreading

A 4×4 snake proofreading mechanism is a transformation of every tile in the system into 4×4 = 16
tiles. The binding domains internal to the 4×4 block are unique to each tile type, and their strengths
ensure a single possible order of attachment. Figure 2.10(a) shows the actual transformation of a
tile with the strengths of the binding domains denoted by the number of """. Figure 2.10(b) shows
the resulting order of the tile attachments.

Similarly to the proofreading mechanism, snake proofreading forces the system to either en-
counter two errors within a single 4× 4 block, or the assembly halts until the incorrectly attached
tiles detach. For the same reasons as with proofreading, at a linear cost in assembly size (and
speed), the 4× 4 snake proofreading mechanism squares the probability of a growth error.
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Figure 2.10: A 4 × 4 snake proofreading mechanism transforms each tile into a 4 × 4 block of 16
tiles (a), ensuring that they attach in a particular order (b). In (a), the strength of each binding
domain is denoted with the number of """.

2.6.3.2 k × k Snake Proofreading

In the general case, Chen et al. came up with the rules for the strengths of the labels of a k × k
block of tiles that ensure a “linear assembly,” such as the example in Figure 2.10(b). The k × k
snake proofreading mechanism transforms a tile system with n tile types into another with k2n tile
types, linearly increases the size of the assemblies (an n tile assembly becomes a k2n tile assembly),
while raising the probability of a growth error to the power k

2 . For the complete details and the
formal proofs of the error rate improvements, I refer the reader to [39].

2.6.4 Compact Error Correction

The error correction mechanisms I have described so far increase the size of the final assembly and
slow down the assembly time. A different class of error correction techniques, ones called compact,
changes neither the size of the assembly nor its speed. I will describe two such mechanisms, one that
works only on some special tile systems but does not increase the size of the tileset, and another
that works on all temperature two systems.

2.6.4.1 Compact Snake Proofreading

Soloveichik et al. [99] observed that the snake proofreading mechanism transforms each tile type
into k2 tile types, and ensures that each one of them is placed precisely in its proper place within a
k× k block. The power of the error correction comes from the tiles attaching in a linear order, and
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Figure 2.11: Some tile systems may require tiles to attach in such a way that each type of a
tile (represented here by different colors) can only occur in a single unique position, and never in
another position.

not from the increase in the number of tile types. This observation led them to explore a particular
subset of tile systems, ones that limit the number of possible combinations of tiles in every k × k
block to one. Suppose a system existed that required that a blue tile always attached to the east
of every red tile, and a yellow tile to the east of every blue tile, and a purple tile to the east of
every yellow tile, and a green tile to the north of every red tile, and so on, uniquely defining a 4× 4
block of tiles, as shown in Figure 2.11. Then it is possible to change the strengths of the binding
domains on the tiles to follow exactly the scheme described in Section 2.6.3.1 and Figure 2.10(b),
thus achieving the benefits of the 4× 4 snake proofreading mechanism without having to increase
the tileset size.

A similar approach can be applied for all even k to emulate k × k proofreading mechanisms
in a compact manner. Of course these mechanisms only apply to systems that have the special
property of having unique k × k subassemblies within all their assemblies, thus greatly limiting
the applicable systems. In particular, information rich systems, (e.g., a binary counter) do not
have unique k × k subassemblies, and, furthermore, can have every possible k × k subassembly
within them. Thus these mechanisms may be useful for some systems, but are not applicable in the
general case. It is an interesting question as to whether one can characterize the set of functions
that are computable by such systems, but it is safe to say that they are not applicable for almost
all interesting functions.

2.6.4.2 Redundancy Proofreading

Reif et al. [83] proposed a technique for redundant computation within the tiles that results in
compact error correction mechanisms. As before, there is a closely related mechanism for every
positive integer k ≥ 2, with k indicating the amount of redundancy introduced into the system.

For k = 2, every tile in the system will perform the computation of that tile as well as its
immediate neighbors. Reif et al. achieve this by creating a new tile type for every pair of tile types
in the original system. Thus if the original system had n distinct tile types, the 2× 2 redundancy
proofreading system will have n2 tiles. Every tile, in its binding domains, encodes the tile that
should attach at that binding domain and the tile that should attach to that tile. In essence, each
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Figure 2.12: The 3×3 self-healing mechanism transforms every tile into a 3×3 block that prevents
backwards (southeast) growth.

tile not only tries to ensure that its neighbor is correct, but also that that neighbor’s neighbor
is correct. The redundancy forces two errors to happen in close proximity in order for the final
assembly to have an error, squaring the error rate (bringing an original error rate of ε to 6ε2). I
do not graphically demonstrate the transformation here, and refer the reader to [83] for a complete
description of the 2× 2 redundancy proofreading mechanism and its formal proof.

Generalizing the idea of redundancy proofreading, each k-tuple of tiles can be represented with
a single tile, essentially forcing k levels or redundant checking, turning a system with n tile types
into one with nk tile types and lowering the error rate from ε to Θ

(
εk
)
.

2.6.5 Self-Healing

Winfree explored shotgun errors in tile assembly and found a mechanism that forces tile systems to
“self-heal” such errors [107]. On one hand, shotgun errors are manageable, because the tiles that
detached can reattach the exact same way they attached in the first place, thus tile systems might
heal themselves; however, the problem is that they do not have to heal themselves. In other words,
if the original assembly grew from the southeast to the northwest (as assemblies in temperature two
systems do), a shotgun error can be repaired if tiles reattach in the error region from the southeast
to the northwest. However, tiles may start attaching from the northwest to the southeast, filling in
the error region incorrectly. Winfree’s solution was to transform each tile type into a block of tiles
that prevents backwards growth by using 0 strength binding domains. Figure 2.12 shows a 3 × 3
self-healing transformation.

Note that while I only showed the transformation necessary for temperature two systems, Win-
free goes into some details for transforming other systems in a similar way. Winfree generalized the
3 × 3 mechanism to k × k mechanisms, for all odd k ≥ 3, which can handle more and more types
of tile systems, but I will not go into the details of those transformations here and refer the reader
to [107] for both the formal proof of the 3× 3 mechanism and the details of other mechanisms.
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Chapter 3

Definitions: The Tile Assembly Model

The definitions in this chapter appear in my papers [24,26–28].
The tile assembly model [89, 105, 106] is a formal model of crystal growth. It was designed to

model self-assembly of molecules such as DNA. It is an extension of a model proposed by Wang [103].
The model was fully defined by Rothemund and Winfree [89], and the definitions here are similar
to those, but I restate them here for completeness and to assist the reader.

Intuitively, the model has tiles or squares that stick or do not stick together based on various
binding domains on their four sides. Each tile has a binding domain on its north, east, south,
and west side, and may stick to another tile when the binding domains on the abutting sides of
those tiles match and the total strength of all the binding domains on that tile exceeds the current
temperature. The four binding domains define the type of the tile.

Formally, let Σ be a finite alphabet of binding domains such that null ∈ Σ. I will always
assume null ∈ Σ even when I do not specify so explicitly. A tile over a set of binding domains
Σ is a 4-tuple 〈σN , σE , σS , σW 〉 ∈ Σ4. A position is an element of Z2. The set of directions
D = {N,E, S,W} is the set of 4 functions from positions to positions, i.e., Z2 to Z2, such that for
all positions (x, y), N(x, y) = (x, y+1), E(x, y) = (x+1, y), S(x, y) = (x, y−1), W (x, y) = (x−1, y).
The positions (x, y) and (x′, y′) are neighbors iff ∃d ∈ D such that d(x, y) = (x′, y′). For a tile
t, for d ∈ D, I will refer to bdd(t) as the binding domain of tile t on d’s side. A special tile
empty = 〈null, null, null, null〉 represents the absence of all other tiles.

A strength function g : Σ×Σ→ R, where g is commutative and ∀σ ∈ Σ, g(null, σ) = 0, denotes
the strength of the binding domains. It is common to assume that g(σ, σ′) = 0 ⇐⇒ σ 6= σ′. This
simplification of the model implies that the abutting binding domains of two tiles have to match
to bind. Here, I will use g = 1 to mean ∀σ 6= null, g(σ, σ) = 1 and ∀σ′ 6= σ, g(σ, σ′) = 0.

Let T be a set of tiles containing the empty tile. A configuration of T is a function A : Z×Z→ T .
I write (x, y) ∈ A iff A(x, y) 6= empty. A is finite iff there is only a finite number of distinct positions
(x, y) ∈ A.

Finally, a tile system S is a triple 〈T, g, τ〉, where T is a finite set of tiles containing empty, g is
a strength function, and τ ∈ N is the temperature, where N = Z≥0.

If S = 〈T, g, τ〉 is a tile system and A is a configuration of some set of tiles T ′ ⊆ Σ4 then a tile
t ∈ T can attach to A at position (x, y) and produce a new configuration A′ iff:

• (x, y) /∈ A, and

•
∑

d∈D g(bdd(t), bdd−1(A(d(x, y)))) ≥ τ , and

• ∀(u, v) ∈ Z2, (u, v) 6= (x, y)⇒ A′(u, v) = A(u, v), and

• A′(x, y) = t.
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That is, a tile can attach to a configuration only in empty positions and only if the total
strength of the appropriate binding domains on the tiles in neighboring positions meets or exceeds
the temperature τ . For example, if for all σ, g(σ, σ) = 1 and τ = 2 then a tile t can attach only at
positions with matching binding domains on the tiles in at least two adjacent positions.

Given a tile system S = 〈T, g, τ〉, a set of tiles Γ, and a seed configuration S0 : Z2 → Γ, if the
above conditions are satisfied, one may attach tiles of T to S0. Let W0 ⊆ Z2 be the set of all
positions where at least one tile from T can attach to S0. For all w ∈ W0 let Uw be the set of all
tiles that can attach to S0 at w. Let Ŝ1 be the set of all configurations S1 such that for all positions
p ∈ S0, S1(p) = S0(p) and for all positions w ∈ W0, S1(w) ∈ Uw and for all positions p /∈ S0 ∪W0,
S1(p) = empty. For all S1 ∈ Ŝ1, I say that S produces S1 on S0 in one step. If A0, A1, . . . , An are
configurations such that for all i ∈ {1, 2, . . . , n}, S produces Ai on Ai−1 in one step, then I say that
S produces An on A0 in n steps. When the number of steps taken to produce a configuration is
not important, I will simply say S produces a configuration A on a configuration A′ if there exists
k ∈ N such that S produces A on A′ in k steps. If the only configuration produced by S on A is A
itself, then A is said to be a final configuration. If there is only one final configuration A produced
by S on S0, then S is said to produce a unique final configuration on S0. Finally, if A is a final
configuration produced by S on S0 and n is the least integer such that A is produced by S on S0 in
n steps, then n is the assembly time of S on S0 to produce A.

I allow the codomain of S to be Γ, a set of tiles which may be different from T . The reason is
that I will study systems that compute functions using minimal sets T ; but the seed, which has to
code for the input of the function, may contain more distinct tiles than there are in T . Therefore,
I wish to keep the two sets separate. Note that, at any temperature τ , it takes Θ(n) distinct tiles
to assemble an arbitrary n-bit input such that each tile codes for exactly one of the bits.

These definitions do not allow tiles to rotate; however, given this definition of a strength function,
these systems are essentially equivalent to systems with rotating tiles.

I now describe how tile systems can compute functions.

3.1 Deterministic Computation

Intuitively, in order for a tile system to deterministically compute a function f : N → N, for all
a ∈ N, for some seed that encodes a, the tile system should produce a unique final configuration
that encodes f(a). To allow configurations to encode numbers, I will designate each tile as a 1-
or a 0-tile and define an ordering on the positions of the tiles. The ith bit of a is 1 iff the tile
in the ith position of the seed configuration is a 1-tile (note that empty will almost always be a
0-tile). I will also require that the seed contains tiles coding for bits of a and no more than a
constant number of extraneous tiles. Formally, let Γ and T be sets of tiles. Let ∆ be the set of
all possible seed configurations S : Z2 → Γ, and let Ξ be the set of all possible finite configurations
C : Z2 → Γ ∪ T . Let v : Γ ∪ T → {0, 1} code each tile as a 1- or a 0-tile and let os, of : N → Z2 be
two injections. Let the seed encoding function es : ∆ → N map a seed S to a number such that
es(S) =

∑∞
i=0 2iv(S(os(i))) if and only if for no more than a constant number of (x, y) not in the

image of os, (x, y) ∈ S. Let the answer encoding function ef : Ξ → N map a configuration F to a
number such that ef (F ) =

∑∞
i=0 2iv(F (of (i))).

Let S = 〈T, g, τ〉 be a tile system. I say that S computes a function f : N → N iff for all a ∈ N
there exists a seed configuration S such that S produces a unique final configuration F on S and
es(S) = a and ef (F ) = f(a).

I generalize the above definition for a larger set of functions. Let m̂, n̂ ∈ N and f : Nm̂ →
Nn̂ be a function. For all 0 ≤ m < m̂ and 0 ≤ n < n̂, let osm , ofn : N → Z2 be injections.
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Let the seed encoding functions esm : ∆ → N map a seed S to m̂ numbers such that esm(S) =∑∞
i=0 2iv(S(osm(i))) iff for no more than a constant number of (x, y) not in the union of the images

of all osm , (x, y) ∈ S. Let the answer encoding functions efn : Ξ → N each map a configuration F
to a number such that efn(F ) =

∑∞
i=0 2iv(F (ofn(i))). Then I say that S computes the function f

iff for all ~a ∈ Nm̂ = 〈a0, a1, · · · , am̂−1〉, there exists a seed configuration S such that S produces a
unique final configuration F on S and esm(S) = am and 〈ef0(F ), ef1(F ), · · · , efn̂−1

〉 = f(~a).

3.2 Nondeterministic Computation

In examining deterministic computation, in order for a system to compute a function, I required
that the system produced unique final configurations. In some implementations of the tile assembly
model systems, many assemblies happen in parallel. In fact, it is often almost impossible to create
only a single assembly, and thus there is a parallelism that my previous definitions did not take
advantage of. Here, I define the notion of nondeterministic computation in the tile assembly model.

I have defined a tile system to produce a unique final configuration on a seed if for all se-
quences of tile attachments, all possible final configurations are identical. If different sequences of
tile attachments attach different tiles in the same position, the system is said to be nondetermin-
istic. Intuitively, a system nondeterministically computes a function iff at least one of the possible
sequences of tile attachments produces a final configuration that codes for the solution.

Since a nondeterministic computation may have unsuccessful sequences of attachments, it is
important to distinguish those from the successful ones. Further, in many implementations of
the tile assembly model that would simulate all the nondeterministic executions at once, it is
useful to be able to identify which executions succeeded and which failed. For some problems,
only an exponentially small fraction of the assemblies would represent a solution, and finding
such an assembly would be difficult. For example, a DNA-based crystal-growing system would
create millions of crystals, and only a few of them may represent the correct answer, while all
others represent failed computations. Finding a successful computation by sampling the crystals
at random would require time exponential in the input size. Thus it would be useful to attach a
special identifier tile to the crystals that succeed so that the crystals may be filtered to find the
solution quickly. It may also be possible to attach the special identifier tile to solid support so
that the crystals representing successful computations may be extracted from the solution. I thus
specify one of the tiles of a system as an identifier tile that only attaches to a configuration that
represents a successful sequence of attachments.

Let m̂, n̂ ∈ N and let f : Nm̂ → Nn̂ be a function. For all 0 ≤ m < m̂ and 0 ≤ n < n̂, let
osm , ofn : N → Z2 be injections. Let the seed encoding functions esm : ∆ → N map a seed S to
m̂ numbers such that esm(S) =

∑∞
i=0 2iv(S(osm(i))) iff for no more than a constant number of

(x, y) not in the union of the images of all osm , (x, y) ∈ S. Let the answer encoding functions
efn : Ξ→ N each map a configuration F to a number such that efn(F ) =

∑∞
i=0 2iv(F (ofn(i))). Let

S be a tile system with T as its set of tiles, and let r ∈ T . Then I say that S nondeterministically
computes a function f with identifier tile r iff for all ~a ∈ Nm̂ = 〈a0, a1, · · · , am̂−1〉 there exists a
seed configuration S such that for all final configurations F that S produces on S, r ∈ F (Z2) iff
∀0 ≤ m < m̂, esm(S) = am and 〈ef0(F ), ef1(F ), · · · , efn̂−1

(F )〉 = f(~a).
I was careful to pick the seed and answer encoding functions before the tile system because if

you are allowed to tailor the encoding functions to specific systems, you can easily solve the halting
problem by encoding all the complexity of the halting problem in the answer encoding function
(design a system that on input n attaches a single 0- and a single 1-tile to the seed and the answer
encoding function maps 0 to 1 if the nth Turing machine halts on input n and to 0 otherwise). While
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this formalism does not allow it, sometimes it may be convenient to give yourself some freedom in
defining the answer encoding function and let it depend on certain aspects of the assembly process,
but one has to be extremely careful stepping on that slippery slope. In Section 4.2, I will step on
exactly that slope, but I will argue carefully that the system I present is equivalent to a slightly
more complex one that fits the definitions exactly as presented here.

I have defined what it means for a tile system to compute a function f , whether it is determin-
istically or nondeterministically; however, I have not mentioned what happens if f is not defined
on some arguments. Intuitively, the deterministic system should not produce a unique final config-
uration, and no nondeterministic assembly should contain the identifier tile. The above definitions
formalize this intuitive idea.

3.3 Deciding Sets

Often, computer scientists talk about deciding subsets of the natural numbers instead of computing
functions. Deciding a subset of the natural numbers is synonymous with computing a function that
has value 1 on arguments that are in the set, and value 0 on arguments that are not in the set. I
adapt the definition of nondeterministically computing functions to nondeterministically deciding
subsets of natural numbers. (There is also a direct analog of deciding sets deterministically, which
I do not bother to formally specify here.) Let N = Z≥0. Since for all constants n ∈ N, the
cardinalities of Nn and N are the same, one can encode an element of Nn as an element of N. Thus
it makes sense to talk about deciding subsets of Nn. The below-defined functions osm can depend
on the mapping of Nn → N.

Let v : Γ ∪ T → {0, 1} code each tile as a 1- or a 0-tile. Let m̂ ∈ N and let Ω ⊆ Nm̂. For all
0 ≤ m < m̂, let osm : N → Z2 be injections. Let the seed encoding functions esm : ∆ → N map
a seed S to m̂ numbers such that esm(S) =

∑∞
i=0 2iv(S(osm(i))) iff for no more than a constant

number of (x, y) not in the union of the images of all osm , (x, y) ∈ S. Let S be a tile system with
T as its set of tiles, and let r ∈ T . Then I say that S nondeterministically decides a set Ω with
identifier tile r iff for all ~a = 〈a0, a1, · · · , am̂−1〉 ∈ Nm̂ there exists a seed configuration S such that
for all final configurations F that S produces on S, r ∈ F (Z2) iff ∀0 ≤ m < m̂, esm(S) = am and
~a ∈ Ω.
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Chapter 4

Computational Tile Systems

In this chapter, I will examine tile assembly model systems that compute functions. Section 4.1
will present systems that add and multiply. Section 4.2 will present systems that factor positive
integers. Sections 4.3 and 4.4 will present systems that solve well-known NP-complete problems:
SubsetSum in Section 4.3 and SAT in Section 4.4. The work presented in this chapter appears in
my papers [24,26–28].

4.1 Arithmetic with Tiles: Addition and Multiplication

In this section, I will examine adders, systems that compute f(a, b) = a+b; and multipliers, systems
that compute f(a, b) = ab. These systems appear in my paper [24].

I require adder and multiplier systems to encode their inputs in binary. I could ask each input
number to have a unique tile (|Γ| = Θ(2n), for n-bit inputs) and a unique tile for every possible pair
of inputs (|T | = Θ(2n)). Such a system would compute in Θ(1) time. However, in implementing
such a system one would need exponentially many different types of tiles (e.g., molecules), which
would make the implementation intractable. I choose, as is common in computer science, to look at
systems that limit the number of components (|Γ|+ |T |) to be polynomial in the size of the input.
In most of the constructions presented here (all but one), |Γ| = Θ(1). I will present systems with
small constants and show their running times are linear in the input size.

4.1.1 Temperature Two Systems and Tile System Configurations

In this section, I will prove three lemmas about temperature two systems that will later be useful
in studying such systems.

Let A be a configuration. A is a step-configuration iff ∃ymin, ymax, xmax ∈ Z such that all of
the following are true:

• ∀x, y ∈ Z such that y < ymin or y > ymax, (x, y) /∈ A, and

• ∀x, y ∈ Z such that x > xmax, (x, y) /∈ A, and

• ∀x, y ∈ Z ∃ky ∈ N such that:

– ky ≤ ky−1, and

– x ≤ xmax − ky ⇒ (x, y) /∈ A, and

– xmax − ky < x ≤ xmax ⇒ (x, y) ∈ A.
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(a) (b) (c)

Figure 4.1: A step-configuration (a), an L-configuration (b), and a configuration that is neither
a step-configuration nor an L-configuration (c). A step-configuration has no holes and consists of
a finite number of consecutive rows, such that each row has the same rightmost position and is
shorter than the row below it. An L-configuration is a special case of a step-configuration and looks
like the mirror image of the letter L.

Intuitively, a step-configuration has no holes and consists of a finite number of consecutive
rows such that each row has the same rightmost position and is no longer than the row below it.
A step-configuration can be desribed as a “solid hill.” Figures 4.1(a) and 4.1(b) show examples
of step-configurations and Figure 4.1(c) shows an example of a configuration that is not a step-
configuration.

A temperature two system is a tile assembly model system S = 〈T, g, τ〉 such that g = 1, τ = 2,
and for all t, t′ ∈ T , 〈bdE(t), bdS(t)〉 = 〈bdE(t′), bdS(t′)〉 ⇐⇒ t = t′. That is, a tile of a unique type
may attach to the northwest of an assembly. In general, I will be interested in studying temperature
two systems’ behavior on step-configurations.

Let A be a configuration. A is an L-configuration iff ∃xmin, xmax, ymin, ymax ∈ Z such that
∀x, y ∈ Z, (x, y) ∈ A iff either

• ymin ≤ y ≤ ymax and x = xmax, or

• xmin ≤ x ≤ xmax and y = ymin.

Intuitively, an L-configuration looks like a mirror image of the letter L. Clearly, an L-configura-
tion is a step-configuration. Figure 4.1(b) shows an example of an L-configuration.

Lemma 4.1.1 (Step configuration lemma) Let S = 〈T, g, τ〉 be a tile system such that g = 1
and τ = 2. Let Γ be a set of tiles and let S : Z2 → Γ be a seed step-configuration. All configurations
produced by S on S are step-configurations.

Proof: (By induction over tile addition.) The base case is trivial because the seed configuration
is assumed to be a step-configuration. Now, assume that you have a step-configuration A and add
the next tile to produce A′. Since all the binding domains are of strength 1, and τ = 2, a tile may
only attach if it is adjacent to τ or more tiles in A. Thus possible places to attach are “corners”
of A, or places at the end of a non-empty row that have a longer row below it. That is, a tile may
attach at (x, y) iff (x, y) /∈ A and (x+ 1, y) ∈ A and (x, y− 1) ∈ A. Therefore, ky−1 > ky and since
only one tile is added, after the addition ky−1 ≥ ky. Therefore A′ is a step-configuration.
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Lemma 4.1.2 (Unique final configuration lemma) Let S = 〈T, g, τ〉 be a tile system such that
g = 1 and τ = 2. Let Γ be a set of tiles and let S : Z2 → Γ be a seed step-configuration. If ∀t ∈ T
the pair (bds(t), bde(t)) is unique then S produces a unique final configuration on S.

Proof: First of all, because τ = 2 and g = 1, a tile may only attach if it has two neighbors,
thus the configuration will never grow larger than the bounding box of S, so there will be a
final configuration. Second, by Lemma 4.1.1, whenever a tile attaches, it will attach to a step-
configuration, and thus the only positions at which it can attach will have the south and east
neighbors available for binding. Since τ = 2 both of them have to be available, and since the
pair (bdS(t), bdE(t)) is unique for each tile t, only one type of tile may attach at every given (x, y)
position. Therefore, the final configuration is unique.

Corollary 4.1.3 (Unique final configuration corollary) Let S = 〈T, g, τ〉 be a tile system
such that g = 1 and τ = 2. Let Γ be a set of tiles and let S : Z2 → Γ be a seed L-configuration but
with the corner southeast tile missing and let the binding domains neighboring that corner be null.
Then if ∀t ∈ T , the pair (bds(t), bde(t)) is unique then S produces a unique final configuration on
S.

Proof: Since the binding domains neighboring the southeast corner are null, no tile can attach
there. By Lemma 4.1.2, the rest of the seed configuration produces a unique final configuration.
Thus S produces a unique final configuration on S.

Lemma 4.1.4 (Assembly time lemma) Let S = 〈T, g, τ〉 be a tile system such that g = 1 and
τ = 2. Let Γ be a set of tiles, let S : Z2 → Γ be a seed L-configuration, and let xmax and ymax be
the lengths of the bottom row and rightmost column of S, respectively. If ∀t ∈ T the pair (bds(t),
bde(t)) is unique then S produces a unique final configuration on S. If that final configuration is
the complete xmax × ymax rectangle, then the assembly time is Θ(xmax + ymax).

Proof: S produces a unique final configuration on S by Lemma 4.1.2. Let that configuration be F .
Assume F is the complete xmax by ymax rectangle. Without loss of generality, assume xmax ≥ ymax.
It is clear that, at first, only a single tile may attach to S, in the corner position. After that tile
attaches, there are two new corner positions that may have a tile attach. Similarly, for the first ymax
time steps, during the ith time step exactly i tiles may attach. After that, for the next xmax−ymax
time steps, exactly ymax tiles may attach per step. Finally, for the last ymax steps, on the jth time
step, exactly ymax − j tiles may attach. The resulting configuration is the xmax × ymax rectangle,
and the assembly time is ymax + xmax steps.

Corollary 4.1.5 (Assembly time corollary) Let S = 〈T, g, τ〉 be a tile system such that g = 1
and τ = 2. Let Γ be a set of tiles, let S : Z2 → Γ be a seed L-configuration but with a single tile
missing: the corner tile and let the binding domains neighboring that corner be null, and let xmax
and ymax be the lengths of the bottom row and rightmost column of S. If ∀t ∈ T the pair (bds(t),
bde(t)) is unique, then S produces a unique final configuration on S. If that final configuration is
the (almost) complete xmax × ymax rectangle (missing only the same single corner as S), then the
assembly time is Θ(xmax + ymax).

Proof: By Corollary 4.1.3, S produces a unique final configuration on S. By Lemma 4.1.4, the
assembly time is Θ(xmax + ymax).

Let a =
∑

i 2iai where ai ∈ {0, 1}. I will often say biti(a) or the ith bit of a to mean ai, so
the indexing of the bits starts at 0. I will also say cbiti(a, b) or the ith carry bit of a + b to mean
1 iff the sum of ai−1, bi−1, and cbiti−1(a, b) is greater or equal to 2. Formally, cbit0(a, b) = 0 and
cbiti(a, b) = bit1(ai−1 + bi−1 + cbiti−1(a, b)).
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Figure 4.2: Tile system S+8 computes the function f(a, b) = a + b. The tiles have 3 input sides
(east, north, and south) and 1 output side (west) (a). Each tile is labeled with a 1 or a 0 to assist
the reader with reading the encoding v8. There are eight tiles in the system (b). Given a sample
input of b = 1000102 = 34 and a = 110112 = 27 (c), with 34 on the top row and 27 on the bottom
row, the system fills the row in the middle with a+ b = 1111012 = 61 to produce the unique final
configuration (d). Note that the least significant digit is on the right. Also note that the inputs are
padded with extra 0 tiles in the most significant bit places because the sum of two n-bit numbers
may be as large as n+ 1 bits.

4.1.2 Adder Tile Systems

In this section, I will first discuss a small tile system that computes f(x, y) = x + y using Θ(1)
distinct tiles, I will second show a system that uses Θ(n) tiles but presents important ideas, and
finally, I will introduce a new concept to simplify that system to use only Θ(1) tiles.

For some tile systems and some seeds, tiles will attach only when certain neighbors are present.
I call the sides of the tile that attaches to these neighbors the “input” sides. I call the other sides
the “output” sides. For example, given a tile system 〈T, 1, 2〉 and a step seed configuration, tiles
will only attach to a configuration at a position if the east and south neighbors of that position are
in the configuration. The east and south sides of these tiles are the input sides and the west and
north sides are the output sides. The input sides determine which tile attaches to a configuration
now, and the output sides determine which tiles may attach later.

4.1.2.1 Eight-Tile Adder

Theorem 4.1.6 Let Σ8 = {0, 1}, g8 = 1, τ8 = 3, and T8 be a set of tiles over Σ8 as described in
Figure 4.2(b). Then S+8 = 〈T8, g8, τ8〉 computes the function f(a, b) = a+ b.

Intuitively, S+8 has eight tiles with the east, north, and south sides as the input sides and the
west side as the output side, outputting 1 iff the sum of the inputs is at least 2. Note that I do not
formally define the tiles of T because it is easiest to read their descriptions from Figure 4.2(b).

To encode the answer, the type of the tile is determined by the sum of the inputs, modulo 2.
Figure 4.2(a) shows the concepts behind the tiles and Figure 4.2(b) shows the eight tiles for all
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possible 0 and 1 binding domains for the three input sides. The 1 or 0 in the middle of the tile t is
that tile’s v8(t) value.

Figure 4.2(c) shows a sample seed configuration, which encodes two numbers in binary: 1000102

= 34, 110112 = 27. The number 34 is encoded in the top row and the number 27 is encoded in the
bottom row. There are 5 tiles in Γ8, the 1 and 0 tiles for each of the two inputs, and the single
starter tile on the right side. Note that at the start, only one tile may attach to this configuration
because τ8 = 3. Figure 4.2(d) shows the final configuration for the example of 34 + 27, with the
solution encoded in the center row. The row reads 1111012, which is 61 = 34 + 27.

Because the sum of two n-bit numbers may be as large as n + 1 bits, each of the two inputs
needs to be padded to be n+ 1 bits long with extra 0 tiles.

Proof: (Theorem 4.1.6) Consider the tile system S+8. Let a and b be the numbers to add and
let na and nb be the sizes, in bits, of a and b, respectively. Let n = max(na, nb). For all i ∈ N, let
ai, bi ∈ {0, 1} be such that a =

∑
i 2iai and b =

∑
i 2ibi.

Let Γ8 = {α0 = 〈0, null, null, null〉, α1 = 〈1, null, null, null〉, β0 = 〈null, null, 0, null〉,
β1 = 〈null, null, 1, null〉, γ = 〈null, null, null, 0〉}. Let the seed configuration S : Z2 → Γ8 be
such that

• S(1, 0) = γ,

• ∀i = 0, . . . , n, S(−i,−1) = αai ,

• ∀i = 0, . . . , n, S(−i, 1) = βbi , and

• for all other (x, y) ∈ Z2, S(x, y) = empty.

It is clear that there is only a single position where a tile may attach to S. It is also clear that
after that tile attaches there will only be a single position where a tile may attach. By induction,
because ∀t ∈ T8 the triplet 〈bdS(t), bdE(t), bdN (t)〉 is unique, and because τ8 = 3, it follows that S
produces a unique final configuration on S. Let that configuration be F .

For all 0 ≤ i ≤ n, S and F agree on (−i, −1) and (−i, 1). Therefore, bdN (F (−i, −1)) = ai and
bdS(F (−i, 1)) = bi. I will now show, by induction, that v(F (−i, 0)) = biti(a+ b) and bdW (F (−i,
0)) = cbiti+1(a, b).

From the definition of S, bdW (F (1, 0)) is 0 = cbit0(a, b). Now I assume that bdW ( F (−(i −
1), 0)) = cbiti(a, b) and show that bdW (F (−i, 0)) = cbiti+1(a, b) and v(F (−i, 0)) = biti(a + b).
Let t = F (−i, 0). The value v(t) is xor(bdN (t), bdE(t), bdS(t)). Since t binds with strength 3,
bdN (t) = bdS(F (−i, 1)), bdE(t) = bdW (F (−(i − 1), 0)), bdS(t) = bdN (F (−i,−1)), so v(t) is the
xor of ai, bi, and cbiti(a, b). The ith bit of a + b is exactly that xor. The binding domain bdW (t)
is defined as 1 if at least two of ai, bi, and cbiti(a, b) are 1 and 0 otherwise. That is exactly the
definition of cbiti+1(a, b).

Thus, for all 1 ≤ i ≤ n v(F (−i, 0)) = biti(a+ b). It is clear that those are the only tiles of T in
F . For all j ∈ N, let os1(j) = (−j,−1), os2(j) = (−j, 1), and of (j) = (−j, 0). Because a + b is no
longer then n+ 1 bits, it follows that S+8 computes f(a, b) = a+ b.

The logic of the system is identical to a series of 1-bit full adders. Each solution tile takes in a
bit from each of the inputs on the north and south sides and a carry bit from the previous solution
tile on the east side, and outputs the next carry bit on the west side. Because τ8 = 3, only a
tile with three neighbors may attach at any time, and therefore, no tile may attach until its right
neighbor has. Thus the assembly time for this system is n steps to add two n-bit numbers. Note
that |Γ8| = 5 and |T8| = 8.

Note that if for some i, ai = bi = 0, then cbiti+1 = 0 regardless of the value of cbiti. Similarly,
if ai = bi = 1, then cbiti+1 = 1 regardless of the value of cbiti. Thus, in theory, computation could
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start in parallel at all such i, and it seems feasible to design a tile system to take advantage of this
property to greatly speed up the assembly time for most inputs.

4.1.2.2 L-Configuration Adder

I now present an adder tile system that uses Θ(n) tile types to compute, but builds on L-shape
seed configurations. This adder will use the 2 sides of the L-configuration to encode inputs, and
produce its output on the top row of an almost complete rectangle. Therefore, systems could chain
computations together, using the output of this computation as an input to another computation.

Theorem 4.1.7 For all n ∈ N, let Σn = {0, 1} ∪ {#i|i = 0, 1, . . . , n}, gn = 1, τn = 2, and Tn be a
set of tiles over Σn as described in Figure 4.3(b). Then S+n = 〈Tn, gn, τn〉 computes the function
f(a, b) = a+ b for all a, b < 2n.

Let na and nb be the sizes, in bits, of a and b, respectively, and let n = max(na, nb). Intuitively,
S+n adds a and b using Θ(n) distinct tile types. The first input number, a, is coded on the bottom
row and the second input number, b, on the rightmost column of an L-configuration. The adder
adds one bit of b to a in each row. The ith bit has to be added in the ith column, and the system
uses the Θ(n) tiles to count down to the correct position. Each tile has two input sides (south and
east) and two output sides (north and west). The north side is the value of the tile and the west
side is the carry bit. The tile descriptions are easiest to read from Figure 4.3(b).

To encode the answer, the type of the tile is determined by the sum of the inputs, modulo 2.
Figure 4.3(a) shows the concepts behind the tiles, and Figure 4.3(b) shows the actual tiles (but
only some of the counting tiles) for n = 99. The 1 or 0 in the middle of the tile t is that tile’s v(t)
value.

Figure 4.3(c) shows a sample seed configuration, which encodes two numbers in binary: 10101112

= 87, 1011012 = 45. The number 87 is encoded in the bottom row and the number 45 is encoded in
the column. There are up to n+ 3 tiles in Γn, the 1 and 0 tiles for the row input, the 0 tile for the
column input, and up to n distinct tiles for the 1-bits of the column input. Note that at the start,
only one tile may attach to this configuration because τn = 2 and there is only a single corner. Since
no two tile types in T+n have identical south-east binding domain pairs, by Corollary 4.1.3, S+n

produces a unique final configuration. Figure 4.3(d) shows the final configuration for the example of
87+45, with the solution encoded in the top row. The row reads 100001002, which is 132 = 87+35.

Again, because the sum of two n-bit numbers may be as large as n+1 bits, the row input needs
to be padded with a single extra 0 tile as its most significant bit. The column input does not need
this padding.

Each row adds a single bit of the column input at the correct location. Theorem 4.1.7 follows
from the logic of the tiles (I do not bother to formally prove it here because the purpose of this
system is to display ideas useful in designing later systems). By Corollary 4.1.5, the assembly time
for adding two n-bit numbers is Θ(n) steps. Note that |Γn| = n+ 3 and |Tn| = 2n+ 6.

4.1.2.3 L-Configuration Constant-Size Tileset Adder

I now modify the adder that acts on L-configurations to only use Θ(1) tiles to compute by invoking
an idea of sandwiching tiles, which will be important in constructing a multiplier system. As
before, this adder will produce its output on the top row of a rectangle and allow the chaining of
computations.

Theorem 4.1.8 Let Σ16 = {0, 1,#0,#1, ?0, ?1}, g16 = 1, τ16 = 2, and T16 be a set of tiles over
Σ16 as described in Figure 4.4(b). Then S+16 = 〈T16, g16, τ16〉 computes the function f(a, b) = a+b.
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Figure 4.3: Tile system S+n computes the function f(a, b) = a+b and uses Θ(n) distinct tile types.
The tiles have 2 input sides (east and south) and 2 output sides (west and north). The north side
is the value of the bit, and the west side is the carry bit (a). Each tile is labeled with a 1 or a 0
to assist the reader with reading the encoding v. There are 2n + 6 tiles in the system (b). Given
a sample input of a = 10101112 = 87, and b = 1011012 = 45 (c), with 87 on bottom row and 45
on the rightmost column, the system fills the rectangle in the middle by adding a single bit of b in
each row. The top row reads the solution: a+ b = 100001002 = 132. Note that the least significant
digit is on the right and that the color is purely to help the reader track tiles; the tiles themselves
have no sense of color. Also note that the row input a has an extra 0 tile in the most significant
bit place because the sum of two n-bit numbers may be as large as n+ 1 bits.
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Intuitively, S+16 adds two n-bit numbers using 16 tiles. While the previous adder used i tiles
to count down to the ith position, this tile system will use a constant number of tiles to find that
position. It is easy to imagine how to create a tile system that finds the ith position in the ith row
(or just builds a diagonal line). The key to S+16 is to make one system compute both, the diagonal
line and the sum, by using a technique related to tile sandwiching. A sandwich tile [8] is a tile
which is essentially made up of two tiles. Suppose a set of tiles A over ΣA constructs a diagonal
line and a set of tiles B over ΣB ensures that red tiles only attach to blue tiles on the east-west
sides. Then one can create a set of sandwich tiles C over ΣA×ΣB which will make striped diagonal
lines. C is defined such that if a = 〈σa,N , σa,E , σa,S , σa,W 〉 ∈ A and b = 〈σb,N , σb,E , σb,S , σb,W 〉
∈ B, then the sandwich tile of a and b is c = 〈(σa,N , σb,N ), (σa,E , σb,E), (σa,S , σb,S), (σa,W , σb,W )〉
∈ C ⊆ (ΣA×ΣB)4. In other words, if c is the sandwich of two tiles a and b, and c′ is the sandwich
tile of a′ and b′, then c binds to c′ iff a binds to a′, and b binds to b′. Note that |C| = |A| · |B|.

S+16 sandwiches tile types that build a diagonal line with the tile types from S+n. First of all,
note that a system with 2 tile types can form an infinite diagonal line. Though I do not formally
describe such a system, I will call the set of 2 tiles that build a diagonal line Tdiagonal. (The reader
may examine the yellow and magenta tiles in Figure 4.4, which under the right conditions would
build a diagonal line, although they do more than just that.)

Remember that S+n had three different kinds of tiles: yellow tiles that added the ith bit to
the running sum, green tiles that added the number below to a possible carry bit, and blue tiles
that counted down to the ith position and also propagated information up. Suppose I change this
set of tiles so that the blue tiles no longer count down to the ith position, but the tile in that
position is always yellow. Then I would need 4 blue tiles and 4 yellow tiles (and the same 4 green
tiles as before) for a total of 12 tiles. I have now almost completely designed T16; however, I have
not explained how to get the yellow tiles to form the diagonal line. To that end, I sandwich the
4 yellow tiles with the 2 tiles in Tdiagonal to create 8 tiles, represented by yellow and magenta in
Figure 4.4(b). The union of green, blue, yellow, and magenta tiles makes up T16.

In other words, in addition to the green, blue, and yellow tiles, S+16 also has magenta tiles that
perform two jobs: propagating the information up just as the blue tiles and guiding the yellow
diagonal line. Just as before, the first input number is coded on the bottom row and the second
input number on the rightmost column of an L-configuration. The adder adds one bit of the column
number to the row number, per row. The ith bit has to be added at the ith position, and the system
uses the yellow diagonal line to compute that position. Each tile has 2 input sides (south and east)
and two output sides (north and west). The north side is the value of the tile and the west side is
the carry bit. The tile descriptions are easiest to read from Figure 4.4(b).

For answer-encoding purposes, the type of the tile is determined by the sum of the inputs,
modulo 2. Figure 4.4(a) shows the concepts behind the tiles, and Figure 4.4(b) shows the actual
16 tiles. The 1 or 0 in the middle of the tile t is that tile’s v(t) value.

Figure 4.4(c) shows a sample seed configuration, which encodes two numbers in binary: 10101112

= 87, 1011012 = 45, just as before. The number 87 is encoded in the bottom row and the number
45 is encoded in the rightmost column. There are 4 tiles in Γ16, the 1 and 0 tiles for each of the
inputs. Note that at the start, only one tile may attach to this configuration because τ16 = 2 and
there is only a single corner. Since no two tile types in T+16 have identical south-east binding
domain pairs, by Corollary 4.1.3, S+16 produces a unique final configuration. Figure 4.4(d) shows
the final configuration for the example of 87+45, with the solution encoded in the top row. The row
reads 100001002 which is 132 = 87 + 35. Note that in addition to the sum, the final construction
“computes” a diagonal yellow (and also a magenta) line. Just as before, because the sum of two
n-bit numbers may be as large as n+ 1 bits, the row input needs to be padded with a single extra
0 tile as its most significant bit. The column input does not need this padding.
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Figure 4.4: Tile system S+16 computes the function f(a, b) = a+ b and uses 16 distinct tile types.
The tiles have 2 input sides (east and south) and 2 output sides (west and north). The north side
is the value of the bit, and the west side is the carry bit (a). Each tile is labeled with a 1 or a 0
to assist the reader with reading the encoding v16. There are 16 tiles in the system (b). Given a
sample input of a = 10101112 = 87, and b = 1011012 = 45 (c), with 87 on bottom row and 45 on
the rightmost column, the system fills the rectangle in the middle by adding a single bit of y in
each row. The top row reads the solution: a+ b = 100001002 = 132. Note that the least significant
digit is on the right and that the color is purely to help the reader track tiles; the tiles themselves
have no sense of color. Also note that the row input a has an extra 0 tile in the most significant
bit place because the sum of two n-bit numbers may be as large as n+ 1 bits.
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Figure 4.5: A set of tiles that perform a left-shift on a row of 0s and 1s. In binary, a left-shift is a
multiplication by 2.

Each row adds a single bit of the column input at the correct location. Theorem 4.1.8 follows
from the logic of the tiles (I do not bother to formally prove it here because the purpose of this
system is to display ideas useful in designing the next system, and I will prove that system’s
correctness formally). By Corollary 4.1.5, the assembly time for adding two n-bit numbers is Θ(n)
steps. Note that |Γ16| = 4 and |T16| = 16.

4.1.3 Multiplier Tile System

I have described two adder systems that start with an L-configuration and add a single bit per
row to arrive at a row representing the sum of two numbers. I have also described briefly how to
combine the functionality of two tile systems to produce a single tile system with properties of each
of them. I will now illustrate how to combine these ideas to create a multiplier tile system. As
with the last two adders, the multiplier will produce its output on the top row of a rectangle and
allow the chaining of computations.

Observe that if b =
∑

i bi2
i, for bi ∈ {0, 1}, that is, the ith bit of b is bi, then the product ab can

be written as ab =
∑

i bia2i. That is, one can multiply a by each of the powers of 2 in b, and then
add up the products. Multiplying by 2 in binary is simple — it is a left-shift. Figure 4.5 shows 4
tiles that would shift a row of 1 and 0 tiles to the left (I do not bother to define a formal system to
do this, but just show the tiles). The tiles simply “flow” the information to the left and display the
information received from the right. What’s left is to add the rows representing the appropriate
powers of 2 to construct the product of two numbers. The system should, therefore, add up to n
numbers, as opposed to just 2. It is feasible to imagine such a system that on each row adds a
new number to a running total, and arrives at the sum of n numbers on the nth row. Thus I have
informally described two sets of tiles: one that performs a left-shift and one that adds a number
to the running total on each row. Sandwiching these two sets of tiles produces a set of tiles that
sums up products of some input number a and powers of 2, i.e., computes

∑
i a2i. What is left is

to add minor control to only sum up the appropriate powers of 2.

Theorem 4.1.9 Let Σ× = {0, 1, 00, 01, 10, 11, 20, 21}, g× = 1, τ× = 2, and T× be a set of tiles
over Σ× as described in Figure 4.6(b). Then S× = 〈T×, g×, τ×〉 computes the function f(a, b) = ab.

Figure 4.6 shows the tiles of S×. Figure 4.7 shows an example execution of S× on a = 87
and b = 45. The input a, as before, is encoded in the bottom row and the input b is encoded in
the rightmost column. There are 4 special magenta tiles which deal with the input and fill in the
bottom row of the computation. These tiles are necessary because the least significant bit of the
column input is 20 and thus requires no left-shift. The blue tiles code rows that have a 0 in the
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Figure 4.6: Tile system S× computes the function f(a, b) = ab and uses 28 distinct tile types. The
tiles have 2 input sides (east and south) and 2 output sides (west and north) (a). There are 24
computation tiles and 4 special magenta tiles to start the computation (b). Note that the colors
are solely for the reader; the tiles themselves have no sense of color.

input b. These tiles perform a left-shift, but do not add the current power of 2 to the running sum.
The green and yellow tiles fill in the rows that have a 1 in the input b. Yellow tiles indicate that
the incoming carry bit is 0, and green tiles indicate that the bit is 1. Each tile, in addition to its
binding domains, is labeled with two pieces of information: the lower half of the tile on the ith row
displays the appropriate bit of 2ia and the upper half of the tile displays the appropriate bit of the
running sum so far. The top half of the top row displays the solution. In the example, the solution
is 001111010010112 = 3915 = ab.

There are 6 tiles in Γ×, the 1 and 0 tiles for each of the inputs and special 0 and 1 tiles for
the least significant bit of b. Note that at the start, only one tile may attach to this configuration
because τ× = 2 and there is only a single corner.

Before, the inputs to the adder systems had to be padded by a single 0 bit. Because the product
of two n-bit numbers may be as large as 2n bits, the row input to the multiplier system needs to
be padded with n extra 0 tiles. The column input does not need this padding.

33



1

1

1

1

1

1

1

1

1

1

0

0

1

1

0

0

0

0

0
0 0

1
0 1

1
0 1

0
0 0

1
0 1

0

0

0

0

0

0

0

0

0

0

0

0

(a)

1

1

11

1

111

1

11

1

111

1

11

1

111

1

11

1

111

1

11

1

11 0

0

00

0

110

0

00

0

11 0

0

00

0

11 0

0

00

0

11 0

0

00

0

11 0

0

00

0

11

1

0

01

11

0
1

0
01

1

11

11

0
1

0
11

1

11

11

0
1

0
10

1

10

00

0
0

0
11

0

01

11

0
1

0
00

1

10

00

0
0

0
11

0

01

11

0
1

0
00

1

10

00

0
0

0
10

0

00

00

0
0

0
0 0

0

00

00

0
0

0
0 0

0

00

00

0
0

0
0

1

0

01

01

1
0

1
01

0

01

11

1
1

1
00

1

10

11

1
1

2
10

1

10

10

2
1

2
11

1

11

01

2
1

2
0

1

0

01

01

1
0

1
01

0

01

01

1
0

1
00

0

00

10

1
1

1
01

1

11

10

1
1

1
10

1

10

11

1
1

2
1

0

0

00

0

11
0

0

00

00

0
0

0
0

1

0

01

01

0
0

0
01

0

01

01

0
0

0
00

0

00

00

0
0

0
01

0

01

11

0
1

0
00

1

10

10

0
1

0
1

1

0

01

10

1
1

2
00

1

10

01

1
1

2
01

0

01

10

1
1

2
01

1

11

00

1
1

1
00

0

00

00

1
0

1
00

0

00

00

1
0

1
00

0

00

00
1
0

1
0

1

1

11

01

2
1

2
01

0

01

10

1
1

2
00

1

10

01

1
1

2
00

0

00

11

2
1

2
00

1

10

00
2
1

2
01

0

01

00
1
0

2
00

0

00

00

1
0

1
0

1

1

11

11

0
1

0
11

1

11

01

0
0

0
10

0

00

10

0
1

0
00

1

10

00

0
0

0
10

0

00

10
0
1

0
01

1

11

01

0
0

0
10

0

00

00

0
0

0
0

1

0

01

01

1
0

1
01

0

01

01

1
0

1
00

0

00

00

1
0

1
01

0

01

01

1
0

1
00

0

00

10

1
1

1
00

1

10

11

1
1

2
11

1

11

11

2
1

2
10

1

10

00

2
1

2
01

0

01

10
1
1

2
01

1

11

00
1
1

1
01

0

01

11

1
1

1
01

1

11

00

1
1

1
0

1

1

1

1

1

1

1

1

1

1

0

0

1

1

0

0

0

0

0
0 0

1
0 1

1
0 1

0
0 0

1
0 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

11 0

0

00

0

11

0

0

00

00

0
0

0
0 0

0

00

00
0
0

0
0

0

0

00

00

0
0

0
00

0

00

00

0
0

0
0

0

0

00

00

1
0

1
0 0

0

00

00

1
0

1
0

0

0

00

00

1
0

1
0 0

0

00

00

1
0

1
0

0

0

00

00

1
0

1
0 0

0

00

00

1
0

1
0

(b)

Figure 4.7: An example of S×. Given a sample input of a = 10101112 = 87, and b = 1011012 = 45
(a), with 87 on bottom row and 45 on the rightmost column, the system fills the rectangle (b). The
ith row has two pieces of information: on the lower half of each tile is the value of the appropriate
bit of 2ia and on the upper half is the running sum of the products of a and powers of 2 in b smaller
or equals to i. The upper portion of the top row reads the solution: ab = 001111010010112 =
3915 = 87 · 45. Note that the least significant digit is on the right and that the color is purely to
help the reader track tiles; the tiles themselves have no sense of color. Also note that the row input
a has nb extra 0 tiles in the most significant bit places because the product of two n-bit numbers
may be as large as 2n bits.
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Proof: (Theorem 4.1.9) Consider the tile system S×. Let a and b be the numbers to multiply
and let na and nb be the sizes, in bits, of a and b, respectively. For all i ∈ N let ai, bi ∈ {0, 1} be
such that a =

∑
i 2iai and b =

∑
i 2ibi.

Let Γ× = {α0 = 〈0, null, null, null〉, α1 = 〈1, null, null, null〉, β0 = 〈null, null, null, 00〉,
β1 = 〈null, null, null, 10〉, ?β0 = 〈null, null, null, 0〉, ?β1 = 〈null, null, null, 1〉. Then the seed
configuration S : Z2 → Γ× is such that

• ∀i = 0, . . . , na + nb − 1, S(−i,−1) = αai ,

• S(1, 0) = ?βb0 ,

• ∀i = 1, . . . , nb − 1, S(1, i) = βbi , and

• for all other (x, y) ∈ Z2, S(x, y) = empty.

Since no two tile types in T× have identical south-east binding domain pairs, by the unique final
configuration corollary (Corollary 4.1.3), S× produces a unique final configuration on S. Let that
configuration be F .

For those tiles with 2-bit binding domains bd, let l(bd) be the first bit and r(bd) be second bit
of the binding domain. For all t ∈ T , let v(t) = r(bdN (t)). I will show that:

1. ∀0 ≤ i < na + nb, l(bdN (F (−i, 0))) = ai and r(bdN (F (−i, 0))) = ai if b0 = 1 and 0 otherwise.

2. ∀0 ≤ i < na + nb, ∀1 ≤ j ≤ nb − 1, all the following are true:

• l(bdN (F (−i, j))) is the ith bit of a2j

• r(bdN (F (−i, j))) = biti(a(b mod 2j+1))

• l(bdW (F (−i, j))) =
{

0 if bj = 0
1 + cbiti+1(a(b mod 2j), a2j) otherwise

• r(bdW (F (−i, j))) = biti(a2j−1)

Proof of (1) (by induction): For all 0 ≤ i < na + nb, S and F agree on (−i,−1) and (1, 0).
Therefore, bdW (F (1, 0)) = b0. I assume that bdW (F (−(i − 1), 0)) = bi−1 and I will show that
bdW (F (−i, 0)) = bi, l(bdN (F (−i, 0))) = ai, and r(bdN (F (−i, 0))) = ai if b0 = 1 and 0 otherwise.
Note that only magenta tiles may attach in this row because they are the only ones with a single
bit east binding domain. For all such tiles t′, bdW (t′) = bdE(t′), so bdW (t′) = b0. Also, l(bdN (t′)) =
bdS(t′), and since F (−i,−1) = S(−i,−1) and bdN (S(−i,−1)) = ai, it follows that l(bdN (t′)) = ai.
Finally, r(bdN (F (−i, 0))) = 1 iff bdS(t′) = 1 and bdE(t′) = 1, so r(bdN (F (−i, 0))) = ai if b0 = 1
and 0 otherwise.

Proof of (2) (by induction): Base cases: ∀0 ≤ i < na + nb, l(bdN (F (−i, 0))) = ai and
r(bdN (F (−i, 0))) = ai if b0 = 1 and 0 otherwise (by (1)); ∀0 < j < nb, l(bdW (F (0, j))) = bj
and r(bdW (F (0, j))) = 0. Inductive hypothesis: I assume that

• l(bdN (F (−i, j − 1))) = biti(a2j−1)

• r(bdN (F (−i, j − 1))) = biti(a(b mod 2j))

• l(bdW (F (−(i− 1), j))) =
{

0 if bj = 0
1 + cbiti(a(b mod 2j), a2j) otherwise

• r(bdW (F (−(i− 1), j))) = biti−1(a2j−1).
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and show that

(i) l(bdN (F (−i, j))) = biti(a2j),

(ii) r(bdN (F (−i, j))) = biti(a(b mod 2j+1)),

(iii) l(bdW (F (−i, j))) =
{

0 if bj = 0
1 + cbiti+1(a(b mod 2j), a2j) otherwise

(iv) r(bdW (F (−i, j))) = biti(a2j−1).

Let t = F (−i, j). Note that t cannot be magenta because for all j ≥ 1 only non-magenta tiles may
attach.

(i): For all non-magenta tiles in position (−i, j):
l(bdN (F (−i, j))) = r(bdE(F (−i, j)))

= r(bdW (F (−(i− 1), j)))
= biti−1(a2j−1)
= biti(a2j).

(ii and iii): There are three possible cases:

1. (bj = 0): only a blue tile may attach in position (−i, j).
(ii):
r(bdN (F (−i, j))) = r(bdS(F (−i, j)))

= r(bdN (F (−i, j − 1)))
= biti(a(b mod 2j))
= biti(a(b mod 2j+1)), since bj = 0.

(iii): l(bdW (F (−i, j))) = 0 for all blue tiles, which is correct because bj = 0.

2. (bj = 1 and cbiti(a(b mod 2j), a2j) = 0): only a yellow tile may attach in position (−i, j)
because l(bdW (F (−(i− 1), j))) = 1.

(ii):
r(bdN (F (−i, j))) = xor(r(bdS(F (−i, j))), r(bdE(F (−i, j))))

= xor(r(bdN (F (−i, j − 1))), r(bdW (F (−(i− 1), j))))
= xor(biti(a(b mod 2j)), biti−1(a2j−1))
= xor(biti(a(b mod 2j)), biti(a2j))
= biti(a(b mod 2j+1)), because the incoming cbit = 0.

(iii): for all yellow tiles,
l(bdW (F (−i, j))) = 1 + and(r(bdS(F (−i, j))), r(bdE(F (−i, j))))

= 1 + and(r(bdN (F (−i, j − 1))), r(bdW (F (−(i− 1), j))))
= 1 + and(biti(a(b mod 2j)), biti−1(a2j−1))
= 1 + and(biti(a(b mod 2j)), biti(a2j))
= 1 + cbiti+1(a(b mod 2j), a2j).

3. (bj = 1 and cbiti(a(b mod 2j), a2j) = 1): only a green tile may attach in position (−i, j)
because l(bdW (F (−(i− 1), j))) = 2.

(ii):
r(bdN (F (−i, j))) = 1− xor(r(bdS(F (−i, j))), r(bdE(F (−i, j))))

= 1− xor(r(bdN (F (−i, j − 1))), r(bdW (F (−(i− 1), j))))
= 1− xor(biti(a(b mod 2j)), biti−1(a2j−1))
= 1− xor(biti(a(b mod 2j)), biti(a2j))
= biti(a(b mod 2j+1)), because the incoming cbit = 1.
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(iii): for all green tiles,
l(bdW (F (−i, j))) = 1 + or(r(bdS(F (−i, j))), r(bdE(F (−i, j))))

= 1 + or(r(bdN (F (−i, j − 1))), r(bdW (F (−(i− 1), j))))
= 1 + or(biti(a(b mod 2j)), biti−1(a2j−1))
= 1 + or(biti(a(b mod 2j)), biti(a2j))
= 1 + cbiti(a(b mod 2j), a2j).

(iv): For all non-magenta tiles in position (−i, j):
r(bdW (F (−i, j))) = l(bdS(F (−i, j)))

= l(bdN (F (−i, j − 1)))
= biti(a2j−1).

Thus, for all 0 ≤ i < na + nb, v(F (−i, nb − 1)) = biti(a(b mod 2nb) = biti(ab). For all j ∈ N, let
os1(j) = (−j,−1), os2(j) = (1, j), and of (j) = (−j, nb). Because ab is no larger then na + nb bits,
it follows that S× computes f(a, b) = ab.

By the assembly time corollary (Corollary 4.1.5), the assembly time for this system is Θ(na+nb).
Note that |Γ×| = 6 and |T×| = 28.

4.2 Factoring with Tiles

In this section, I will examine systems that factor positive integers; that is, systems that nondeter-
ministically compute, for all ζ ≥ 2, f(ζ) = 〈α, β〉, such that α, β ≥ 2 and αβ = ζ. I refer to such
systems as factoring tile systems. These systems appear in my paper [26].

I will describe two factoring tile systems. To that end, I will introduce three tile systems,
building up factoring functionality one step at a time. I will then combine those systems to create
a system that factors at temperature four, and then discuss simplifying this factoring system to
work at temperature three. All the systems use Θ(1) distinct tiles. The factoring systems, and the
proofs of their correctness, are based in part on the multiplier system (one that deterministically
computes f(α, β) = αβ) from Section 4.1. Intuitively, this system will nondeterministically pick
two numbers, multiply them, and then compare the result to the input. If the result and the input
match, the assembly will include an identifier tile.

The factoring tile system will use a set of tiles T4. I will define this set in three disjoint subsets:
T4 = Tfactors∪T×∪TX. The tiles in Tfactors nondeterministically “guess” two factors; T× is identical
to T× from Section 4.1 and multiply the two factors; and the tiles in TX ensure the computation is
complete and compare the product of the factors to the input.

Whenever considering a number α ∈ N, I will refer to the size of α, in bits, as nα. I will further
refer to the ith bit of α as αi; that is, for all i ∈ N, αi ∈ {0, 1} such that

∑
i αi2

i = α. The least
significant bit of α is α0. Finally, I define λα ∈ N≥1 to be the smallest positive integer such that
αλα = 1. For example, let α = 10001012, then nα = 7, and λα = 2 because the smallest positive
power of 2 in 10001012 is 22. Of course, the same definitions extend to β, ζ and other variables.

The tile systems I will describe will use four types of tiles to encode the input number the system
is factoring. Let the set of those tiles be Γ4 = {γL = 〈null, null, s, null〉, γ0 = 〈null, null, 0?, null〉,
γ1 = 〈null, null, 1?, null〉, γs = 〈null, null, |o|, s〉}. Figure 4.8 shows a graphical representation of
Γ4.
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Figure 4.8: There are 4 tiles in Γ4. The value in the middle of each tile t represents that tile’s v(t)
value and each tile’s name is written on its left.
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Figure 4.9: The concepts behind the tiles in Tfactors include variables a and b (a). Each variable
can take on as values the elements of the set {0, 1}. There are 13 actual tile types in Tfactors (b).
The value in the middle of each tile t indicates its v(t) value (some tiles have no value in the middle
because their v value will not be important and can be assumed to be 0) and each tile’s name is
written on its left.

4.2.1 Guessing the Factors

I first describe a tile system that, given a seed consisting of just a single tile will nondeterministically
pick two natural binary numbers, α and β, such that α, β ≥ 2, and encode them using tiles. The
system will use the set of tiles Tfactors.

Figure 4.9(a) shows the concepts behind the tiles in Tfactors. The concepts include variables a
and b. Each variable can take on as values the elements of the set {0, 1}. Figure 4.9(b) shows the
13 actual tile types in Tfactors. The symbols on the sides of the tiles indicate the binding domains
of those sides. The value in the middle of each tile t indicates its v(t) value (some tiles have no
value in the middle because their v value will not be important and can be assumed to be 0).

Lemma 4.2.1 Let Σfactors = {|, ||, |?|, |o|, 0, 1, 00, 10}. For all σ ∈ {|, ||, |?|, |o|}, let gfactors(σ, σ) = 4
(for all other σ ∈ Σfactors, g(σ, σ) is not important for now). Let τfactors = 4. Let Tfactors be as
described in Figure 4.9(b). Let Sfactors = 〈Tfactors, gfactors, τfactors〉. Let Sfactors : Z2 → {γs} be a seed
configuration with a single nonempty tile, such that S(1, 1) = γs and ∀x, y ∈ Z, (x, y) 6= (1, 1) =⇒
Sfactors(x, y) = empty.

Then for all α, β ≥ 2, z ≥ 0, Sfactors produces a final configuration F on Sfactors such that:

1. F (1, 1) = γs

2. F (1, 0) = fbtop

3. ∀i ∈ {1, 2, · · · , nβ − 2}, F (1,−i) = fbβk , where k = nβ − i
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Figure 4.10: Sfactors produces a final configuration F on Sfactors such that F encodes two binary
numbers. In this example, F encodes 103 = 11001112 and 97 = 11000012. Note that the number
encoded in the lower row may have leading zeros; in this case it has 7 leading 0-tiles.

4. F (1,−(nβ − 1)) = fbβ0bot

5. F (1,−nβ) = fR

6. F (0,−nβ) = faα0rig

7. ∀i ∈ {1, 2, · · · , λα − 1}, F (−i,−nβ) = fa0

8. F (−λα,−nβ) = fa1

9. ∀i ∈ {λα + 1, λα + 2, · · · , nα − 1}, F (−i,−nβ) = faαilef

10. ∀i ∈ {1, 2, · · · , z}, F (−(nα − 1 + i),−nβ) = fa0lef

11. F (−(nα + z),−nβ) = fL

And for all final configurations F that Sfactors produces on Sfactors, F corresponds to some choice
of α, β ≥ 2 and z ≥ 0.

Intuitively, Sfactors writes out, in order, the bits of α and β, for all α, β ≥ 2, and pads α with
z extra 0-tiles, where z ≥ 0. Figure 4.10 shows a sample final configuration that corresponds to
β = 103 = 11001112, α = 97 = 11000012, and z = 7.

Proof: Let α, β ≥ 2, let z ≥ 0. I first show that tiles may attach to Sfactors to produce a final
configuration F that encodes α and β and pads β with z 0-tiles.

1. F and Sfactors must agree at position (1, 1), so F (1, 1) = γs.

2. Note that bdS(F (1, 1)) = |o| and the only tile type t with bdN (t) = |o| is fbtop, so F (1, 0) =
fbtop.
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3. Note that bdS(F (1, 0)) = ||, and there are four types of tiles t such that bdN (t) = || (fb0,
fb1, fb0bot, and fb1bot), so only those types of tiles may attach below. Two of those tile types
have bdS(t) = || (fb0 and fb1), so again only those four tile types may attach below them.
Therefore tiles may attach such that for all i ∈ {1, 2, · · · , nβ − 2}, F (1,−i) = fbβk , where
k = nβ − i.

4. Until finally, a tile of type fb0bot or fb1bot attaches so that F (1,−(nβ − 1)) = fbβ0bot.

5. Note that bdS(F (1,−(nβ − 1))) = |?|, and the only tile type t with bdN (t) = |?| is fR, so
F (1,−nβ) = fR.

6. Note that bdW (F (1,−nβ)) = |?|, and there are two types of tiles t such that bdE(t) = |?|
(fa0rig and fa1rig), so only types of tiles may attach at position (0,−nβ). Thus the correct
tile may attach such that F (0,−nβ) = faα0rig.

7. Note that bdW (F (0,−nβ)) = |o|, and there are two types of tiles t such that bdE(t) = |o|
(fa0 and fa1), and only one of those two types has bdW (t) = |o| (fa0). Therefore, for all
i ∈ {1, 2, · · · , λα − 1}, fa0 can attach such that F (−i,−nβ) = fa0.

8. Until finally, a tile of type fa1 attaches so that F (−λα,−nβ) = fa1.

9. Note that bdW (F (−λα,−nβ)) = ||, and there are three types of tiles t such that bdE(t) = ||
(fa0lef, fa1lef, and fL). Two of those tile types have bdW (t) = || (fa0lef and fa1lef), so again
only those three tile types may attach to the left of them. Therefore, tiles may attach such
that for all i ∈ {λα + 1, λα + 2, · · · , nα − 1}, F (−i,−nβ) = faαilef.

10. Similarly, to the west of the position (−(nα − 1,−nβ)), fa0lef may attach such that for all
i ∈ {1, 2, · · · , z}, F (−(nα − 1 + i),−nβ) = fa0lef.

11. Until finally, a tile of type fL attaches so that F (−(nα + z),−nβ) = fL.

Let v : Tfactors → {0, 1} be such that v(fb0) = v(fb0bot) = v(fa0lef) = v(fa0) = v(fa0rig) =
v(fL) = v(null) = 0 and v(fbtop) = v(fb1) = v(fb1bot) = v(fa1lef) = v(fa1) = v(fa1rig) = 1. For all
other t ∈ Tfactors the v(t) value does not matter and can be assumed to be either 0 or 1.

Note that:

• No more tiles may attach to F .

•
∑∞

i=0 v(F (1,−(nβ − 1 + i)))2i = β.

•
∑∞

i=0 v(F (−i,−nβ))2i = α.

• For all i ∈ {1, 2, · · · , z}, v(F (−(nα − 1 + i),−nβ)) = 0.

Thus for all choices of α, β ≥ 2, and z ≥ 0, there exists a final configuration F produced by
Sfactors on Sfactors that encodes α and β and pads α with z 0-tiles. Further note that for all final
configurations F produced by Sfactors on Sfactors:

• F cannot encode β < 2 because v(F (1, 0)) = 1 implies that the most significant bit of β is 1
and F (1,−1) cannot be fR, thus β has at least 2 bits.

• F cannot encode α < 2 because the tile encoding αλα cannot be at position (0, 1) and thus
there exists a non-zero power of 2 in α.
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Thus all final configurations F produced by Sfactors on Sfactors encode some α, β ≥ 2 and pad α
with some z ≥ 0 0-tiles.

For a single choice of α, β ≥ 2, there are several final configurations that encode α and β. They
differ in the choice of z. I am interested only in two of those final configurations, for z = nβ and
for z = nβ − 1, because the product of α and β is either nα + nβ or nα + nβ − 1 bits long.

Lemma 4.2.2 (Factors assembly time lemma) For all α, β ≥ 2, the assembly time of the final
configuration F produced by Sfactors on Sfactors that encodes α and β and pads α with nβ or nβ − 1
0-tiles is Θ(nα + nβ).

Proof: For each tile in F to attach, a tile in a specific location must have attached before it
(either to the north or to the east). Thus there is no parallelism in this assembly, and the assembly
time equals the total number of tiles that attach, which is Θ(nα + nβ).

Lemma 4.2.3 Let each tile that may attach to a configuration at a certain position attach there
with a uniform probability distribution. For all α, β ≥ 2, let δ = αβ. Then, the probability of
assembling a particular final configuration encoding α and β and padding α with nδ − nα 0-tiles is
at least

(
1
4

)nβ (1
3

)nδ .
Proof: I will calculate the probabilities of each tile attaching in its proper position and then,

since the probabilities of attachments are independent, multiply those probabilities together to get
the overall probability of a final configuration.

1. The seed automatically becomes part of the final configuration with probability p1 = 1.

2. There is only 1 tile that may attach in position (1, 0), so it attaches with probability p2 = 1.

3. For the next nβ − 2 positions, out of 4 possible tiles that may attach, only 1 is the correct
one, so the probability that the next nβ − 2 tiles attach correctly is p3 =

(
1
4

)nβ−2.

4. The tile representing the last bit of β is also 1 out of the possible 4 so the probability of it
attaching is p4 = 1

4 .

5. Only 1 tile may attach below the 0th bit of β, so its probability of attaching is p5 = 1.

6. There are 2 possible tiles that may attach to represent α’s 0th bit, and only 1 is correct, so
the probability of it attaching is p6 = 1

2 .

7. The next λα − 1 tiles must be 1 of 2 possible tiles, so the probability of all of them attaching
correctly is p7 =

(
1
2

)λα−1.

8. The next tile encodes the smallest positive power of 2 in α and is 1 of 2 possible tiles, so its
probability of attaching is p8 = 1

2 .

9. The rest of the bits of α can be encoded using 1 specific tile from the 3 possibilities, so the
probability of all of them attaching correctly is p9 =

(
1
3

)nα−λα−1.

10. The next nδ − nα tiles, depending on the desired final configuration, must be 1 of 3 possible
tiles, so the probability of all of them attaching correctly is p10 =

(
1
3

)nδ−nα .

11. Finally, the probability of the last tile attaching is p11 = 1
3 .
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Figure 4.11: The concepts behind the tiles in T× (a) include variables a, b, and c, each of which
can take on as values the elements of the set {0, 1}. There are 28 actual tile types in T× (b). Note
that for each tile t, its v(t) value is indicated in the upper half of the middle of the tile.

The overall probability of a specific final configuration is:∏11
i=1 pi ≥

(
1
4

)nβ−1 (1
2

)λα+1 (1
3

)nα−λα+nδ−nα ≥
(

1
4

)nβ (1
3

)nδ .
Corollary 4.2.4 Let each tile that may attach to a configuration at a certain position attach there
with a uniform probability distribution. For all α ≥ β ≥ 2, let δ = αβ. Then, the probability of
assembling a particular final configuration encoding α and β and padding α with nδ − nα 0-tiles is
at least

(
1
6

)nδ .
Proof: By Lemma 4.2.3, the probability of assembling a particular final configuration encoding

α and β and padding α with nδ − nα 0-tiles is at least
(

1
4

)nβ (1
3

)nδ . Because α ≥ β, nδ ≥ 2nβ, so(
1
4

)nβ (1
3

)nδ ≥ (1
2

)nδ (1
3

)nδ =
(

1
6

)nδ .
4.2.2 Multiplying the Factors

I have just described a tile system that nondeterministically assembles the representations of two
binary numbers. I will now add tiles to multiply those numbers.

Figure 4.11(a) shows the concepts behind the tiles in T×. The concepts include variables a, b,
and c, each of which can take on as values the elements of the set {0, 1}. Figure 4.11(b) shows the
28 actual tile types in T×. These tiles are identical to the multiplier tiles from Section 4.1, thus I
will reference Theorem 4.1.9.

Corollary 4.2.5 For all σ ∈ Σ×, let g′×(σ, σ) = 2 and τ ′× = 4. Then S′× = 〈T×, g′×, τ ′×〉 computes
the function f(α, β) = αβ.
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Proof: For all α, β ∈ N, S× computes the function f(α, β) = αβ. Therefore, there exists some
seed S0, which encodes α and β, such that S× produces a unique final configuration F on S0. Fur-
ther, there exists at least one sequence of attachments W = 〈〈t0, (x0, y0)〉, 〈t1, (x1, y1)〉, · · · , 〈tk, (xk,
yk)〉〉 such that t0 attaches at position (x0, y0) to S0 to produce S1, t1 attaches at position (x1, y1)
to S1 to produce S2, and so on to produce the final configuration Sk+1 = F . Since for all σ ∈ Σ×,
g×(σ, σ) = 1 and τ× = 2, each tile ti must have at least two non-empty neighbors to position (xi, yi)
in Si whose appropriate binding domains match ti’s binding domains.

By the unique final configuration corollary (Corollary 4.1.3), S′× produces a unique final config-
uration on S0. Since for all i, each tile ti has at least two non-empty neighbors to position (xi, yi) in
Si whose appropriate binding domains match ti’s binding domains, and for all σ ∈ Σ×, g′×(σ, σ) = 2
and τ ′× = 4, the tile ti can attach to Si to form Si+1. Thus W is a valid sequence of attachments for
S′× to S0 and S′× must produce the unique final configuration Sk+1 = F on S0, and thus compute
the function f(α, β) = αβ.

Intuitively, Corollary 4.2.5 says that doubling the strength of every binding domain and the
temperature does not alter the logic of assembly of S×. To compute the product of two numbers α
and β, S× attaches tiles to a seed configuration, which encodes α and β, to reach a final configura-
tion, which encodes αβ. The logic of the system dictates that every time a tile attaches, its south
and east neighbors have already attached, and its west and north neighbors have not attached.
Thus by doubling the strength of every binding domain and the temperature, a tile t can attach
at position (x, y) in S′× iff t also attached at (x, y) in S×. Thus the final configurations in the two
systems will be identical, and therefore, S′× computes the function f(α, β) = αβ.

Figure 4.12(a) shows a sample seed configuration S×, which encodes β = 103 = 11001112

and α = 97 = 11000012. Figure 4.12(b) shows the final configuration F that S′× produces of
S×. Along the top row of F , the binary number 100111000001112 = 9991 encodes the product
αβ = 97 · 103 = 9991. It is not a coincidence that S× looks exactly like a final configuration that
Sfactors produces on Sfactors.

Lemma 4.2.6 Let α, β ≥ 2 and let S× be the final configuration produced by Sfactors on Sfactors

that encodes α and β and has nβ padding 0-tiles. Let F be the unique final configuration that S′×
produces on S×. Let v : T× → {0, 1} be defined as in Figure 4.12. Then F encodes the binary
number δ = αβ =

∑∞
i=0 v(F (−i, 0))2i. That is, the ith bit of δ is v(F (−i, 0)). Further, if αβ has

only nα + nβ − 1 bits, then it is sufficient to pad Sfactors with nβ − 1 0-tiles.

The lemma follows directly from the proof of Corollary 4.2.5 and Theorem 4.1.9. S× forms the
sides of a rectangle that has the same binding domains internal to the rectangle as the seed that
S× uses in Section 4.1. S′× produces, on S× the final configuration F , which encodes the product
of the inputs on precisely the 0th row, with the ith bit of the product being v(F (0,−i)). Note that
the product of two binary numbers α and β will always have either nα + nβ or nα + nβ − 1 bits.

Lemma 4.2.7 (Multiplication assembly time lemma) For all α, β ≥ 2, the assembly time
for S× on a seed encoding α and β and padding α with nβ or nβ − 1 0-tiles is Θ(nα + nβ).

This lemma follows directly from the assembly time corollary (Corollary 4.1.5).

4.2.3 Checking the Product

I have described two systems: one to nondeterministically produce two random numbers and an-
other to multiply them. I now present one more system with two functions: to make sure the
multiplication is complete and to compare an input to the result of the multiplication.
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Figure 4.12: A sample seed configuration S× that encodes β = 103 = 11001112 and α = 97 =
11000012 (a). Note that S× is identical to a final configuration produced by Sfactors on Sfactors.
S′× produces a final configuration F on S×, which encodes the product αβ = 97 · 103 = 9991 =
100111000001112 along the top row (b).
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Figure 4.13: The concepts behind the tiles in TX (a) include variables b, c and d, each of which can
take on as values the elements of the set {0, 1}. There are 9 actual tile types in TX (b); each tile’s
name is written on its left. The tile with a check mark in the middle will serve as the identifier tile.

Figure 4.13(a) shows the concepts behind the tiles in TX. The concepts include variables b, c
and d, each of which can take on as values the elements of the set {0, 1}. Figure 4.13(b) shows the
9 actual tile types in TX. The tile with a check mark in the middle will serve as the identifier tile.

Lemma 4.2.8 Let ΣX = {|, 0, 1, 00, 01, 10, 11, 0?, 1?, s}. For all σ ∈ {0?, 1?, s}, let gX(σ, σ) = 1
and for all σ′ ∈ {|, 0, 1, 00, 01, 10, 11}, let gX(σ′, σ′) = 2. Let τX = 4. Let TX be as described
in Figure 4.13(b). For all α, β, ζ ≥ 2, let δ = αβ, let S× be the final configuration produced by
Sfactors on Sfactors that encodes α and β and has nδ −nα padding 0-tiles. Let F× be the unique final
configuration that S′× produces on S×. Let SX be such that:

• ∀x, y ∈ Z, F×(x, y) 6= empty =⇒ SX(x, y) = F×(x, y).

• SX(−nζ , 2) = γL.

• ∀i ∈ {0, 1, · · · , nζ − 1}, SX(−i, 2) = γζi.

Let SX = 〈TX, gX, τX〉. Then SX produces a unique final configuration FX on SX and αβ = ζ
iff FX(−nζ , 1) = X.

Proof: First, observe that if the X tile is ever to attach, it must attach in position (−nζ , 1)
for three reasons. First, since the sum of the g values of the binding domains of X is exactly 4, it
must match its neighbors on all sides with non-null binding domains to attach at temperature 4.
Second, the only tile with a south binding domain s, matching X’s north binding domain, is γL.
And third, γL can only occur in the seed, and only in position (−nζ , 2).

Consider FX. Working backwards, for a X tile to attach at position (−nζ , 1), the tile directly
south, at position (−nζ , 0) must have a north binding domain |. Therefore, that tile is one of the
following four tiles: {L0, L1, L00, L10}. For any one of those four tiles to attach, its east neighbor’s
west binding domain must be 0, 1, 00 or 10, meaning two things: the first bit of the binding domain
cannot be 2, which implies that the carry bit of the tile to the east is 0, and the second bit of the
binding domain cannot be 1, which implies that shifted α has not run past the west bound of the
computation. Together, those two properties ensure that the multiplication is proceeding correctly.
In turn, the tile directly south of that position, at position (−nζ ,−1), by the same reasoning, must
be one of those four tiles and the tile to its east has the two above properties. Similarly, all the
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tiles in the column −nζ must be one of those four tiles, until the position (−nζ ,−nβ), where the
tile must be fL (by the definition, SX(−nδ,−nβ) = fL). Therefore, the X tile may attach only if
nδ = nζ and every row of the multiplication has a 0 carry bit and has not overshifted α.

Working backwards again, for a X tile to attach at position (−nζ , 1) in FX, the tile di-
rectly east must have a west binding domain s, and thus must be one of the following four
tiles: {X00,X01,X10,X11}. For each of those tiles, the first digit of its north binding domain
matches the second digit of its south binding domain. Therefore, v(FX(−(nζ − 1), 0)) must equal
v(FX(−(nζ − 1), 2)). The same argument holds for the tile to the east of that tile, and so on until
position (1, 1), where FX(1, 1) = γs. By Lemma 4.2.6, if δ = αβ, then ∀i ∈ N, v(SX(−i, 0)) = δi.
Therefore, a X tile may attach at position (−nζ , 1) to FX if and only if γ = αβ.

Figure 4.14(a) shows a sample seed SX for β = 103 = 11001112, α = 97 = 11000012, and
ζ = 9991 = 100111000001112. Figure 4.14(b) shows the final configuration FX that SX produces
on SX. Because ζ = αβ, FX contains the tile X.

Lemma 4.2.9 (Checking assembly time lemma) For all α, β, ζ ≥ 2, if ζ = αβ then the as-
sembly time of the final configuration F produced by SX on SX that encodes α, β, and ζ and pads
α with nβ or nβ − 1 0-tiles is Θ(nζ).

Proof: Each tile in the 0th row of F that attaches requires one other specific tile to attach
first. The same is true for column nζ . Thus there is no parallelism in each of those two assembling
processes, and the assembly time for each process equals the total number of tiles that attach in
that process, thus the overall assembly time is Θ(max(nζ , nβ)) = Θ(nζ).

4.2.4 Factoring at Temperature Four

I have defined three different systems that perform the necessary pieces of factoring a number. I
now put them together into a single system S4 and argue that S4 is a factoring system.

Theorem 4.2.10 (Temperature four factoring theorem) Let Σ4 = Σfactors ∪ Σ× ∪ ΣX. Let
T4 = Tfactors ∪ T× ∪ TX. Let g4 be such that g4 agrees with gfactors, g′×, and gX on their respective
domains (note that for all elements of the domains of more than one of those functions, those
functions agree). Let τ4 = 4. Then the system S4 = 〈T4, g4, τ4〉 is a factoring tile system.

If a tile system is the combination of three distinct tile systems, the behavior of the large system
need not be the combined behavior of the three smaller systems — the tiles from different systems
can interfere with each other. However, I have designed Sfactors, S′×, and SX to work together,
without interfering. For the most part, each system uses a disjoint set of binding domains, sharing
binding domains only where tiles from the different systems are designed to interact. As a result,
tiles from each system have a particular set of positions where they can attach: tiles from Tfactors

can only attach in column 1 and row −nβ, tiles from T× can only attach in the rectangle defined
by the rows 0 and −(nβ − 1) and columns 0 and −(nζ − 1), and tiles from TX can only attach in
column −nζ and row 1, thus the tiles do not interfere with each other.

Proof: (Theorem 4.2.10): For all ζ ≥ 2, Let S4 be such that

• S4(1, 1) = γs.

• S4(−nζ , 2) = γL.

• ∀i ∈ N such that 0 ≤ i < nζ , S4(−i, 2) = γζi
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Figure 4.14: A sample seed configuration SX that encodes β = 103 = 11001112, α = 97 = 11000012,
and ζ = 9991 = 100111000001112 (a). SX produces a final configuration F on SX, which includes
a X tile iff ζ = αβ (b).
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Figure 4.15: S4 factors a number ζ encoded in the seed configuration, e.g., ζ = 9991 =
100111000001112 (a). In one sequence of possible attachments, encodings of two randomly
selected numbers α and β attach nondeterministically to the seed such that α, β ≥ 2, e.g.,
α = 97 = 11000012, β = 103 = 11001112 (b). S4 then deterministically multiplies α and β to
encode δ = αβ (c), and then ensures the multiplication is complete and compares δ to ζ to check
if they are equal. If they are equal, a special X tile attaches to signify that the factors have been
found (d).

For all binary numbers α, β ≥ 2, and for all z ≥ 0, tiles from T4 will attach to S4 as follows: the
tiles from Tfactors nondeterministically attach to encode two binary numbers: α in column 1 and β
in row −nβ, padding α with z 0-tiles, as described in Lemma 4.2.1. By Lemma 4.2.6 the tiles from
T× attach, in the rectangle defined by the rows 0 and −(nβ−1) and columns 0 and −(nα+z−1), to
encode δ = αβ in the top row. Finally, tiles from TX attach, in column −nζ and row 1, such that,
by Lemma 4.2.8 the X tile only attaches if δ = ζ and z = nζ −nα ∈ {nβ, nβ − 1}. Let the identifier
tile be X. Thus only if there exists a choice of α, β ≥ 2 such that αβ = ζ will the identifier tile
attach. Further, if the identifier tile does attach to a configuration F4, then F4 encodes α and β as
defined in Lemma 4.2.1. Therefore, S4 nondeterministically and identifiably computes the function
f(ζ) = 〈α, β〉.

Figure 4.15(a) shows the seed configuration S4 for ζ = 9991 = 11000001112. Figures 4.15(b),
4.15(c), and 4.15(d) show one possible progression of tiles attaching to produce a final configuration
that S4 produces on S4.

I mentioned in Section 3.2 that the factoring system I describe does not exactly fit the definition
of a system computing a function nondeterministically. The reason is that the two factors are
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Figure 4.16: S4 factors a number ζ encoded in the seed configuration, e.g., ζ = 9991 =
100111000001112 (a). In a sequence of possible attachments alternate to that in Figure 4.15,
some tiles from all 3 sets Tfactors, T×, and TX attach without waiting for all the attachments from
the others sets to complete (b) and (c). Each set’s tiles have designated areas of attachment and
cannot attach outside of those areas, so they do not interfere with each other. Finally, for each
choice of α, β ≥ 2 and z ≥ 0, all sequences of attachments result in the unique final configuration
for those α, β, and z, containing a special X tile iff αβ = ζ and z = nζ − nα (d).

encoded along column 1 and row −nβ. Thus the answer encoding functions depend on the size
of the final configuration. However, it would be simple to modify the factoring system slightly,
leaving all the same functionality, but also copying α and β to fixed positions, say in row 0. This
modification would make the system fit the definitions perfectly. I will not bother to formally define
such a system here.

While it is possible for tiles to attach in exactly the order shown in Figure 4.15, other orders of
attachments are also possible. For example, some tiles in T× may attach before some other tiles in
Tfactors do, but they do not interfere with each other because they attach in disjoint sets of positions.
Figure 4.16 shows an alternate possible progression of tiles attaching to the seed configuration to
produce a final configuration that S4 produces on S4.

I have shown the details of the final configuration that finds factors α and β of ζ. It is also
interesting to observe what happens when the configuration encodes an α and β whose product does
not equal ζ or when α is padded with the wrong number of 0-tiles. Figure 4.17(a) demonstrates an
attempted assembly on choices of α = 91 = 10110112 and β = 84 = 10101002. The multiplication
finds the product αβ = 7644 = 11101110111002 and because 7644 6= ζ, the tiles along row 1 do not
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attach and thus the X tile cannot attach. Figure 4.17(b) encodes the correct choices of α and β;
however, it does not pad the α with enough 0-tiles. The multiplication cannot complete, and the
tiles along the west column do not attach and thus the X tile cannot attach.

I now examine the assembly time of S4 and the fraction of nondeterministic assemblies that will
produce the factors (or the probability of finding the factors).

Lemma 4.2.11 (Factoring assembly time lemma) For all α, β, ζ ≥ 2 such that αβ = ζ, the
assembly time for S4 to produce a final configuration F that encodes α and β is Θ(nζ).

Proof: By the factors assembly time lemma (Lemma 4.2.2), the encoding of α and β will take
Θ(nα+nβ) = Θ(nζ) steps. By the multiplication assembly time lemma (Lemma 4.2.7), multiplying
α and β will take Θ(nα+nβ) = Θ(nζ) steps. By the checking assembly time lemma (Lemma 4.2.9),
checking if αβ = ζ will take Θ(nζ) steps. When working together, these systems do not affect each
other’s speed (though they may work in parallel), so the assembly time for S4 to produce a final
configuration F that encodes α and β is Θ(nζ).

Lemma 4.2.12 (Probability of assembly lemma) For all ζ ≥ 2, given the seed S4 encoding
ζ, assuming each tile that may attach to a configuration at a certain position attaches there with a
uniform probability distribution, the probability that a single nondeterministic execution of S4 finds
α, β ≥ 2 such that αβ = ζ is at least

(
1
6

)nζ
Proof: In the worst case, a composite number ζ has only 2 prime factors (counting multiplicity).

Either of the 2 factors could be α and the other β, but assume α ≥ β (by forcing the larger factor
to be α, I underestimate the probability). By Corollary 4.2.4, the probability p of assembling a
particular configuration encoding α and β and padding α with nζ − nα 0-tiles is at least

(
1
6

)nζ , as
long as ζ = αβ.

The implication of the probability of assembly lemma (Lemma 4.2.12) is that a parallel imple-
mentation of S4, such as a DNA implementation like those in [12, 88], with 6nζ seeds has at least
a 1 − 1

e ≥ 0.5 chance of finding ζ’s factors and one with 100(6nζ ) seeds has at least a 1 −
(

1
e

)100

chance.
The lemma provides a lower bound on the probability of a successful assembly achievable by

a distribution of tile attachment probabilities. I can derive an upper bound on that probability,
for large ζ, by arguing that as α and β become large, the dominant majority of the tiles in Tfactors

that must attach to encode α are fa0lef and fa1lef and to encode β are fb0 and fb1. Because the
distribution of 0 and 1 bits in a random number is even, and at least one of α and β must become
large as ζ becomes large, for all probability distributions of tile attachments, the probability that
a single nondeterministic execution of S4 finds α, β ≥ 2 such that αβ = ζ is at most

(
1
2

)nζ . If ζ is
selected as a product of two numbers with their bits chosen uniformly and independently, the best
probability of guessing those number one can hope for is

(
1
2

)nζ .
Note that T4 contains 50 distinct tiles.

4.2.5 Factoring at Temperature Three

I have described how S4 factors at temperature four. It was simpler to explain how S4 works at
temperature four, mostly because I could double the strength of every binding domain and the
temperature of S× from Section 4.1; however, it is actually possible to use roughly the same tiles
to compute at temperature three, by altering the strength function. The key observation is that
no tile needs all four of its neighbors in a configuration in order to attach. The most a tile needs
is three, e.g., the X tile.
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Figure 4.17: If αβ 6= ζ or the number of 0-tiles padding α is incorrect, the X tile cannot attach. In
(a), the product of 91 = 10110112 and 84 = 10101002 does not equal 9988 = 100111000001002, so
the tiles along the 0th row do not attach. In (b), α is padded with too few 0-tiles and the tiles in
the west column do not attach. Note that both these configurations are final configurations.
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Figure 4.18: In order to factor at temperature three, some of the tiles from T4 had to be modified
with new binding domains. The new tiles form the set T3.

I will need to differentiate some of the east-west binding domains from their previously identical
north-south binding domain counterparts. That is, suppose that some of the binding domains of
the tiles in T4 were prefixed by v (for vertical) or h (for horizontal). Formally, let Σ3 = {|o|, ||, |?|,
|, s, v0, v1, v00, v01, v10, v11, 0?, 1?, h0, h1, h00, h01, h10, h11, h20, h21}. The strengths of the
binding domains need to be defined such that each tile attaches only under the same conditions
under which it attached in S4. The tiles in Tfactors must attach with only 1 neighbor present, so
for all σ ∈ {|o|, ||, |?|}, let g3(σ, σ) = 3. The tiles in T× must attach when 2 of their neighbors, the
south and the east neighbors, are present so for all σ ∈ {h0, h1, h00, h01, h10, h11, h20, h21}, let
g3(σ, σ) = 2 and for all σ′ ∈ {v0, v1, v00, v01, v10, v11}, let g3(σ′, σ′) = 1. (Note that the alternative
— making the horizontal binding domains have strength 1 and vertical strength 2 — would work
for the tiles in T×, but would not work for the tiles in TX.) The tiles L0, L1, L00, and L10 must
attach when 2 of their neighbors are present, and since their east binding domains have already
been defined to be of strength 2, let g3(|, |) = 1. Finally, the other tiles in TX only attach when
3 of their neighbors are present, and all their binding domains so far have been defined to be of
strength 1, so for all σ ∈ {0?, 1?, s}, let g3(σ, σ) = 1. Figure 4.18 shows the tiles with the new
binding domains labeled.

Theorem 4.2.13 (Temperature three factoring theorem) Let T3 be defined by Figure 4.18.
Let τ3 = 3. Then 〈T3, g3, τ3〉 is a factoring tile system.

Proof: Let α, β, ζ ≥ 2, and let S30 be the seed that encodes ζ as in Theorem 4.2.10. Then
ζ = αβ iff S4 produces some final configuration F on S30 that encodes α and β and contains the
identifier tile X and all final configurations that contain X encode factors of ζ.

Let W be a sequence of attachments in S4 that produces F on S30. W = 〈〈t0, (x0, y0)〉,
〈t1, (x1, y1)〉, · · · , 〈tk, (xk, yk)〉〉 such that t0 attaches at position (x0, y0) to S30 to produce S31, t1
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attaches at position (x1, y1) to S31 to produce S32, and so on to produce the final configuration
S3k+1 = F .

Remember that g3 is designed such that every tile in T3 attaches in S3, under and only under
the same conditions as its counterpart tile in T4 attached in S4. Thus the sequence of attachments
W is also a valid sequence of attachments for S3. Therefore, on seed S30, encoding ζ, for all final
configuration F produced by S3 on S30, F contains X iff F encodes α and β such that ζ = αβ.

Lemma 4.2.14 For all α, β, ζ ≥ 2 such that αβ = ζ, the assembly time for S4 to produce a final
configuration F that encodes α and β is Θ(nζ).

Lemma 4.2.15 For all ζ ≥ 2, given the seed S encoding ζ, assuming uniform distributions of all
tiles, the probability that a single nondeterministic execution of S3 finds α, β ≥ 2 such that αβ = ζ
is at least

(
1
6

)nζ
Lemmas 4.2.14 and 4.2.15 follow from the factoring assembly time lemma (Lemma 4.2.11) and

the probability of assembly lemma (Lemma 4.2.12), respectively, and the fact that S3 follows the
exact same logic as S4.

At the end of Section 4.3, I will discuss a possible approach to factoring at temperature 2.
As with S4, S3 uses 50 tile types.

4.3 Solving SubsetSum with Tiles

In this section, I will examine a tile system that decides an NP-complete set called SubsetSum.
This system appears in my paper [27].

SubsetSum is a well known NP-complete problem. The set SubsetSum is a set of pairs: a finite
sequence ~B = 〈B1, B2, · · · , Bn〉 ∈ Nn, and a target number v ∈ N, such that 〈 ~B, v〉 ∈ SubsetSum
iff ∃~c = 〈c1, c2, · · · , cn〉 ∈ {0, 1}n such that

∑n
i=1 ciBi = v. In other words, the sum of some subset

of numbers of ~B equals exactly v.
In order to explain the system that nondeterministically decides SubsetSum, I will first define

three smaller systems that perform pieces of the necessary computation. The first system subtracts
numbers, and given the right conditions, will subtract a Bi from v. The second system computes
the identity function and just copies information (this system will be used when a Bi should not
be subtracted from v). The third system nondeterministically guesses whether the next Bi should
or should not be subtracted. Finally, I will add a few other tiles that ensure that the computations
went as planned and attach an identifier tile if the execution found that 〈 ~B, v〉 ∈ SubsetSum. The
system works by nondeterministically choosing a subset of ~B to subtract from v and comparing the
result to 0.

I remind the reader of a couple of corollaries I will use in this chapter. In some proofs, I will refer
to the unique final configuration corollary (Corollary 4.1.3), which states that if all the tiles in a
system have unique east-south binding domain pairs, then on some seed configurations, that system
always produces a unique final configuration, and to the assembly time corollary (Corollary 4.1.5),
which states that the final configuration produced by such systems assembles in time linear in the
largest dimension of the seed.

Whenever considering a number α ∈ N, I will refer to the size of α, in bits, as nα. I will further
refer to the ith bit of α as αi; that is, for all i ∈ N, αi ∈ {0, 1} such that

∑
i αi2

i = α. The least
significant bit of α is α0.
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Figure 4.19: There are 16 tiles in T−. The value in the middle of each tile t represents that tile’s
v(t) value.

4.3.1 Subtraction

In this section, I will describe a system that subtracts positive integers. It is similar to one of
the addition systems from Section 4.1, contains 16 tiles, and will subtract one bit per row of
computation.

Figure 4.19 shows the 16 tiles of T−. The value in the middle of each tile t represents that tile’s
v(t) value. Intuitively, the system will subtract the ith bit on the ith row. The tiles to the right
of the ith location will be blue; the tile in the ith location will be yellow; the next tile, the one in
the (i + 1)st location, will be magenta; and the rest of the tiles will be green. The purpose of the
yellow and magenta tiles is to compute the diagonal line, marking the ith position on the ith row.
Figure 4.20 shows two sample executions of the subtracting system.

Lemma 4.3.1 Let Σ− = {0, 1, ?0, ?1,#0,#1}, let T− be the set of tiles defined by Figure 4.19, let
g− = 1, let τ− = 2, and let S− = 〈T−, g−, τ−〉. Let α, β ∈ N and let δ = α − β. Let S− be a seed
configuration such that there exists some (x0, y0) ∈ Z2 such that:

• bdN (S−(x0 − 1, y0)) = ?α0.

• For all i ∈ {1, 2, · · · , nα − 1}, bdN (S−(x0 − i− 1, y0)) = αi.

• For all j ∈ {0, 1, · · · , nβ − 1}, bdW (S−(x0, y0 + j + 1)) = #βj.

• For all other positions (x, y), (x, y) /∈ S−.

Then S− produces a unique final configuration F− on S− such that
α ≥ β =⇒

• For all i ∈ {0, 1, · · · , nα − 1}, bdN (F−(x0 − i− 1, y0 + nβ)) ∈ {δi, ?δi}.

• For all j ∈ {0, 1, · · · , nβ − 1}, bdW (F−(x0 − nα, y0 + j + 1)) ∈ {0, ?0}.

and α < β =⇒

• There exists j ∈ {0, 1, · · · , nβ − 1} such that bdW (F−(x0 − nα, y0 + j + 1)) ∈ {1, ?1}.

Proof: By the unique final configuration corollary (Corollary 4.1.3), S− produces a unique final
configuration on S−. Call that configuration F−.

To simplify notation, given x0, y0, for all i, j ∈ Z, let p(i, j) = (x0 − i − 1, y0 + j + 1). The
purpose of this notation is to more easily identify data in the construction. I expect the north
binding domain of the tile in position p(i, j) to code for the ith bit of jδ (see definition of jδ below),
also denoted jδi. Further, I will refer to row y0 + j + 1 as row p(· · · , j), and column x0 − i− 1 as
column p(i, · · · ). Thus, it is sufficient to show F− is such that:

α ≥ β =⇒
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• For all i ∈ {0, 1, · · · , nα − 1}, bdN (F−(p(i, nβ − 1))) ∈ {δi, ?δi}.

• For all j ∈ {0, 1, · · · , nβ − 1}, bdW (F−(p(nα − 1, j))) ∈ {0, ?0}.

and α < β =⇒

• There exists j ∈ {0, 1, · · · , nβ − 1} such that bdW (F−(p(nα − 1, j))) ∈ {1, ?1}.

For all j ∈ {−1, 0, 1, · · · , nβ − 1}, let jδ = α−
∑j

k=0 βk2
k. (That is, jδ is the difference between

α and the number formed by the j + 1 least significant bits of β.) I show, by induction on j, that
for all i ∈ {0, 1, · · · , j, j + 2, · · · , nα− 1}, bdN (F−(p(i, j))) = jδi and bdN (F−(p(j + 1, j))) = ?

jδj+1.
First, note some properties of jδ: −1δ = α, nβ−1δ = α − β = δ, and for all i ∈ {0, 1, · · · , j},

jδi = j+1δi.
Base case: (j = −1). Thus jδ = −1δ = α. S− and F− must agree everywhere S− is not empty,

and by definition of S−, bdN (S−(p(0,−1))) = ?α0 and for all i ∈ {1, 2, · · · , nα − 1}, bdN (S( −
p(i,−1))) = αi. Thus, for j = −1, for all i ∈ {1, 2, · · · , nα − 1}, bdN (F−(p(i, j))) = jδi and
bdN (F−(p(j + 1, j))) = ?

jδj+1.
Inductive step: I assume that for all i ∈ {0, 1, · · · , j, j + 2, · · · , nα − 1}, bdN (F−(p(i, j))) = jδi

and bdN (F−(j + 1, j)) = ?
jδj+1. I will show that for all i ∈ {0, 1, · · · , j + 1, j + 3, · · · , nα − 1},

bdN (F−(p(i, j + 1))) = j+1δi and bdN (F−(p(j + 2, j + 1))) = ?
j+1δj+2.

Consider row p(. . . , j+ 1). Consider the tile t that attaches in position p(0, j+ 1) (assume for a
second that j 6= 0). By the definition of S−, bdW (F−(p(−1, j + 1))) = #βj+1 and by the inductive
hypothesis, bdN (F−(p(0, j))) = jδ0. Thus t’s east binding domain must be either #0 or #1 and
south binding domain must be either 0 or 1, so t must be a blue tile. Therefore, bdW (t) = bdE(t) =
#βj+1 and bdN (t) = bdS(t) = jδ0. Note that this argument holds for the tile to the west of position
p(0, j + 1), as long as the north binding domain of the tile below does not start with ?, and so
on. By the inductive hypothesis, for all i ∈ {0, 1, · · · , j}, bdN (F−(p(i, j))) = jδi and thus those
binding domains do not start with ?. Thus, for all i ∈ {0, 1, · · · , j}, bdW (F−(p(i, j + 1))) = #βj+1

and bdN (F−(p(i, j + 1))) = jδi = j+1δi. (Note that for j = 0, no blue tiles attach so the earlier
assumption is justified. For j = 0 the argument starts here.)

Observe that for all non-blue tiles (yellow, magenta, and green), looking only at the numerical
value of the binding domains (ignoring the preceding ? and #) the north binding domain is the
result of subtracting the east binding domain from the south binding domain, modulo 2, and the
west binding domain is 1 iff the east binding domain is greater than the south binding domain.

Consider the tile t that attaches in position p(j + 1, j + 1). I just showed that bdE(t) must be
#βj+1. By the inductive hypothesis, bdN (F−(p(j + 1, j))) = ?

jδj+1, so t must be yellow. From
above, a yellow tile’s north binding domain is the difference of its south and east binding domains,
and its west binding domain is 1 iff the east binding domain is greater than the south binding
domain. Thus bdN (t) is jδj+1 − βj+1 = j+1δj+1 and bdW (t) = ?1 if jδj+1 < βj+1, thus “borrowing
a 1” and bdW (t) = ?0 otherwise.

Consider the tile t that attaches in position p(j+2, j+1). I just showed that bdE(t) must be ?0 if
there is no need to borrow a 1 and ?1 otherwise. By the inductive hypothesis, bdN (F−(p(j+2, j))) =
jδj+2, so t must be magenta. Thus bdN (t) is ?

j+1δj+2 and bdW (t) = 1 if there is a need to borrow
a 1 again, and bdW (t) = 0 otherwise.

Consider the tile t that attaches in position p(j+3, j+1). I just showed that bdE(t) must be 0 if
there is no need to borrow a 1 and 1 otherwise. By the inductive hypothesis, bdN (F−(p(j+3, j))) =
jδj+3, so t must be green. Thus bdN (t) is j+1δj+3 and bdW (t) = 1 if there is a need to borrow a 1
again, and bdW (t) = 0 otherwise. The same holds for the tile to west of position p(j+ 3, j+ 1), and
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so on, until position p(nα − 1, j + 1), thus green tiles attach. Also, bdW (F−(p(nα − 1, j + 1))) = 1
if the number being subtracted exceeds j+1δ and bdW (F−(p(nα − 1, j + 1))) = 0 otherwise.

Thus, in row p(· · · , j + 1), for all i ∈ {0, 1, · · · , j + 1, j + 3, · · · , nα− 1}, bdN (F−(p(i, j + 1))) =
j+1δi and bdN (F−(p(j + 2, j + 1))) = ?

j+1δj+2. Also, bdW (F−(p(nα − 1, j + 1))) ∈ {1, ?1} iff the
number being subtracted exceeds j+1δ.

Therefore, α ≥ β =⇒

• Let j = nβ − 1. Since nβ−1δ = δ, in row p(· · · , nβ − 1), for all i ∈ {0, 1, · · · , nα − 1},
bdN (F−(p(i, nβ − 1))) ∈ {δi, ?δi}.

• For all j ∈ {0, 1, · · · , nβ − 1}, bdW (F−(p(nα − 1, j))) ∈ {0, ?0}.

and, α < β =⇒

• There exists j ∈ {0, 1, · · · , nβ − 1} such that bdW (F−(p(nα − 1, j))) ∈ {1, ?1}.

Thus S− is a system that is capable of subtracting numbers. Formally, using the definition of
a tile assembly model deterministically computing a function:

Theorem 4.3.2 Let f : N2 → N be such that for all α, β ∈ N such that α ≥ β, f(α, β) = α − β
and for all other α, β, f(α, β) is undefined. Then S− computes the function f .

Proof: This theorem follows from Lemma 4.3.1, and the fact that for all t ∈ T−, v(t) = bdN (t).

Lemma 4.3.3 The assembly time of S− is Θ(n) steps to subtract an n-bit number from another
n-bit number.

Proof: The lemma follows directly from the assembly time corollary (Corollary 4.1.5).
Figure 4.20 shows sample executions of S−. In Figure 4.20(a), the system subtracts 214 =

110101102 from 221 = 110111012 to get 7 = 1112. The inputs are encoded along the bottom
row (221 = 110111012) and rightmost column (214 = 110101102). The output is on the top row
(7 = 000001112). Note that because 214 ≤ 221, all the west binding domains of the leftmost
column contain a 0. In Figure 4.20(b), the system attempts to subtract 246 = 11110110 from
221 = 110111012, but because 246 > 221, the computation fails, and indicates its failure because
the topmost leftmost west binding domain contains a 1.

This system is very similar to an adding system from Section 4.1.2.3, but not the smallest adding
system from Section 4.1. While this system has 16 tiles, it is possible to design a subtracting system
with 8 tiles, that is similar to the 8-tile adding system from Section 4.1.2.1.

4.3.2 Identity

I now describe a system that ignores the input on the rightmost column, and simply copies upwards
the input from the bottom row. This is a fairly straight-forward system that will not need much
explanation.

Lemma 4.3.4 Let Σx = {x0, x1,#0,#1}, let Tx be the set of tiles defined by Figure 4.21, let
gx = 1, let τx = 2, and let Sx = 〈Tx, gx, τx〉. Let α, β ∈ N. Let Sx be a seed configuration such that
there exists some (x0, y0) ∈ Z2 such that:
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Figure 4.20: An example of S− subtracting numbers. In (a), the system subtracts 214 = 110101102

from 221 = 110111012 to get 7 = 1112. The inputs are encoded along the bottom row
(221 = 110111012) and rightmost column (214 = 110101102). The output is on the top row
(7 = 000001112). Note that because 214 ≤ 221, all the west binding domains of the leftmost col-
umn contain a 0. In (b), the system attempts to subtract 246 = 11110110 from 221 = 110111012,
but because 246 > 221, the computation fails, and indicates its failure with the top- and leftmost
west binding domain containing a 1.
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Figure 4.21: There are 4 tiles in Tx. The value in the middle of each tile t represents that tile’s v(t)
value.

• For all i ∈ {0, 1, · · · , nα − 1}, bdN (Sx(x0 − i− 1, y0)) = xαi.

• For all j ∈ {0, 1, · · · , nβ − 1}, bdW (Sx(x0, y0 + j + 1)) = #βj.

• For all other positions (x, y), (x, y) /∈ Sx.

Then Sx produces a unique final configuration Fx on Sx, and for all i ∈ {0, 1, · · · , nα − 1},
bdN (Fx(x0−i−1, y0+nβ)) = xαi and for all j ∈ {0, 1, · · · , nβ−1}, bdW (F−(x0−nα, y0+j+1)) = x0.

Proof: By the unique final configuration corollary (Corollary 4.1.3), Sx produces a unique
final configuration on Sx. Call that configuration Fx. It is clear that the configuration will fill the
rectangle outlined by the seed, with the exception of the bottom right corner, because for every
possible pair of west-north binding domains of the tiles in Tx and in Sx, there is a tile with a
matching east-south binding domain.

Every tile t ∈ Tx has bdS(t) = bdN (t) so for all i ∈ {0, 1, · · · , nα−1}, bdN (Fx(x0−i−1, y0+nβ)) =
xαi. Every tile t ∈ Tx has bdW (t) = x0 so for all j ∈ {0, 1, · · · , nβ−1}, bdW (F−(x0−nα, y0+j+1)) =
x0.
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Figure 4.22: An example of an Sx execution. The system simply copies the input on the bottom
row upwards, to the top column.
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Figure 4.23: The are 20 tiles in T?. The value in the middle of each tile t represents that tile’s v(t)
value. Unlike the red tiles, the orange tiles do not have unique east-south binding domain pairs,
and thus will attach nondeterministically.

Lemma 4.3.5 The assembly time of Sx is Θ(nα + nβ).

Proof: The lemma follows directly from the assembly time corollary (Corollary 4.1.5).
Figure 4.22 shows a sample execution of the Sx system. The system simply copies the input on

the bottom row upwards, to the top column.

4.3.3 Nondeterministic Guess

In this section, I describe a system that nondeterministically decides whether or not the next Bi
should be subtracted from v. It does so by encoding the input for either the S− system or the Sx

system.

Lemma 4.3.6 Let Σ? = {?, !, 0, 1, x0, x1, ?0, ?1}, let T? be the set of tiles defined by Figure 4.23,
let g? = 1, let τ? = 2, and let S? = 〈T?, g?, τ?〉. Let α ∈ N. Let S? be a seed configuration such that
there exists some (x0, y0) ∈ Z2 such that:

• bdN (S?(x0 − 1, y0)) ∈ {αi, xαi}

• For all i ∈ {1, 2, · · · , nα − 1}, bdN (S?(x0 − i− 1, y0)) ∈ {αi, ?αi, xαi}.

• bdW (S?(x0, y0 + 1)) = ?.

• For all other positions (x, y), (x, y) /∈ S?.

Then S? produces one of two final configurations F? on S?. Either,

• for all i ∈ {0, 1, · · · , nα−1}, bdN (F?(x0−i−1, y0+1)) = xαi and bdW (F?(x0−nα, y0+1)) = x,
or

• bdN (F?(x0−1, y0+1)) = ?αi, and for all i ∈ {1, 2, · · · , nα−1}, bdN (F?(x0−i−1, y0+1)) = αi,
and bdW (F?(x0 − nα, y0 + 1)) = !.
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Figure 4.24: Two examples of S? executions. In (a), the system attaches tiles with ! east-west
binding domains, preparing a valid seed for S−, and in (b), the system attaches tiles with x east-
west binding domains, preparing a valid seed for Sx.

Proof: Because bdW (Sx(x0, y0 + 1)) = ?, only an orange tile may attach in position (x0 −
1, y0 + 1). Suppose an orange tile t attaches such that bdW (t) = x. Then bdS(t) ∈ {α0, xα0} =⇒
bdN (t) = xα0. Further, to the west of that position, only red tiles with west binding domain x can
attach, and for all of those, since their south binding domains ∈ {αi, ?αi, xαi}, their north binding
domains must be xαi. Thus, for all i ∈ {0, 1, · · · , nα − 1}, bdN (F?(x0 − i − 1, y0 + 1)) = xαi and
bdW (F?(x0 − nα, y0 + 1)) = x.

Now suppose an orange tile t attaches at position (x0 − 1, y0 + 1) such that bdW (t) = !. Then
bdS(t) ∈ {α0, xα0} =⇒ bdN (t) = ?α0. Further, to the west of that position, only red tiles
with west binding domain ! can attach, and for all of those, since their south binding domains
∈ {αi, ?αi, xαi}, their north binding domains must be αi. Thus, bdN (F?(x0− 1, y0 + 1)) = ?αi, and
for all i ∈ {1, 2, · · · , nα − 1}, bdN (F?(x0 − i− 1, y0 + 1)) = αi, and bdW (F?(x0 − nα, y0 + 1)) = !.

Lemma 4.3.7 The assembly time of S? is Θ(nα).

Proof: The lemma follows directly from the assembly time corollary (Corollary 4.1.5).
Figure 4.24 shows two possible executions of S?. In Figure 4.24(a), the system attaches tiles

with ! east-west binding domains, preparing a valid seed for S−, and in Figure 4.24(b), the system
attaches tiles with x east-west binding domains, preparing a valid seed for Sx. Only one tile, the
orange tile, attaches nondeterministically, determining which tiles attach to its west.

4.3.4 Deciding SubsetSum

I have described three systems that I will now use to design a system to decide SubsetSum. In-
tuitively, I plan to write out the elements of ~B on a column and v on a row, and the system will
nondeterministically choose some of the elements from ~B to subtract from v. The system will then
check to make sure that no subtracted element was larger than the number it was being subtracted
from, and whether the result is 0. If both conditions are satisfied, a special identifier tile will attach
to signify that 〈 ~B, v〉 ∈ SubsetSum.

Theorem 4.3.8 Let ΣSS = Σ−∪Σx∪Σ?∪{|}. Let TSS = T−∪Tx∪T?∪TX, where TX is defined by
Figure 4.25. Let gSS = 1 and τSS = 2. Let SSS = 〈TSS , gSS , τSS〉. Then SSS nondeterministically
decides SubsetSum with the black X tile from TX as the identifier tile.

Proof: Let n ∈ N, let ~B = 〈B1, B2, · · · , Bn〉 ∈ Nn, and let v ∈ N. Let ΓSS be as defined by
Figure 4.26. Let the seed SSS be as follows (see Figure 4.27(a) for an example of a valid seed):

• For all i ∈ {0, 1, · · · , nv − 1}, SSS(−i, 0) = γtvi .

• SSS(−nv, 0) = γleft.
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Figure 4.26: There are 7 tiles in ΓSS . The value in the middle of each tile t represents that tile’s
v(t) value and each tile’s name is written on its left.

• For all k ∈ {1, 2, · · ·n}, SSS
(

1, 1 +
∑k−1

j=1

(
nBj + 1

))
= γ?.

• For all k ∈ {1, 2, · · ·n}, for all i ∈ {0, 1, · · · , nBk − 1},
SSS

(
1, 2 + i+

∑k−1
j=1

(
nBj + 1

))
= γb(Bk)i

.

• SSS
(

1, 1 +
∑n

j=1

(
nBj + 1

))
= γtop.

• And for all other positions (x, y), (x, y) /∈ SSS .

Because T−, Tx, T?, and TX have disjoint sets of south-east binding domain pairs, and because a
tile attaches to the assembly only when its south and east binding domains match (as described in
the step configuration lemma (Lemma 4.1.1)), only one of those sets contains tiles that can attach
at each position.

SSS(1, 1) = γ?, so tiles from T? may attach in position (0, 1). By Lemma 4.3.6, one of two
things will happen on row 1: either tiles with east-west binding domains ! will attach, or tiles with
east-west binding domains x will attach. Thus one nondeterministic sequence of attachments (case
1) will result in the north binding domains of the tiles in row 1 encoding the bits of v, and the other
nondeterministic sequence of attachments (case 2) will result in the north binding domains of the
tiles in row 1 encoding bits of v with x preceding every bit. In case 1, tiles from T− will attach,
and by Lemma 4.3.1, these tiles will attach deterministically to encode the bits of v − B1 in the
north binding domains of row nB1 + 1. In case 2, tiles from Tx will attach, and by Lemma 4.3.4,
these tiles will attach deterministically to encode the bits of v in the north binding domains of row
nB1 + 1.

Note that SSS (1, nB1 + 2) = γ? so the process can repeat with B2, and so on. Thus for each
nondeterministic sequence of attachments, in the final configuration, the north binding domains
of the tiles in row

∑n
j=1

(
nBj + 1

)
encode v −

∑n
j=1 cjBj , where ~c = 〈c1, c2, · · · , cn〉 ∈ {0, 1}n and

there exists a nondeterministic execution for each of the 2n possible assignments of ~c.
Only lavender tiles can attach in column −nv because their north-south binding domains are

| and thus they can only attach to each other or north of γleft, which only occurs in position
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(−nv, 0). By Lemma 4.3.1, one of the Bj being subtracted is greater than the number it is being
subtracted from iff there exists a q such that the tile t that attaches at position (−nv − 1, q) has
bdW (t) ∈ {1, ?1}. In column −nv, lavender tiles from TX attach only to tiles with west binding
domains x, !, or that contain a 0. Thus a tile attaches in position

(
−nv,

∑n
j=1

(
nBj + 1

))
iff no

subtracted numbers have exceeded the number they were subtracted from. Since that tile must be
lavender, its north binding domain is |.

The black X tile may only attach at position
(
−nv, 1 +

∑n
j=1

(
nBj + 1

))
because that is the

only position with a tile to its south that may have the | north binding domain and the tile to its east
that may have the | west binding domain. The gray tiles in TX attach in row 1 +

∑n
j=1

(
nBj + 1

)
,

starting from column 0, then 1, etc. iff all the north binding domains of row
∑n

j=1

(
nBj + 1

)
contain

0. Thus a tile can attach in position
(
−nv + 1, 1 +

∑n
j=1

(
nBj

)
+ 1
)

only if there exists a choice of
~c ∈ {0, 1}n such that v −

∑n
j=1 cjBj = 0.

Therefore, the black X tile attaches iff there exists a choice of ~c ∈ {0, 1}n such that v =∑n
j=1 cjBj , or in other words, 〈 ~B, v〉 ∈ SubsetSum. Therefore, SSS nondeterministically decides

SubsetSum.
Figure 4.27 shows an example execution of SSS . Figure 4.27(a) encodes a seed configuration with

v = 75 = 10010112 along the bottom row and ~B = 〈11 = 10112, 25 = 110012, 37 = 100101 + 2,
39 = 1001112〉 along the rightmost column. Tiles from TSS attach to the seed configuration,
nondeterministically testing all possible values of ~c ∈ {0, 1}4. Figure 4.27(b) shows one such
possible execution, the one that corresponds to ~c = 〈1, 1, 0, 1〉. Because 11 + 25 + 39 = 75, the X
tile attaches in the top left corner.

I have described configurations that code for the correct ~c to allow the X tile to attach. It is also
interesting to see what happens if improper nondeterministic choices of ~c are made. Figure 4.28(a)
shows a final configuration in which one of the Bi values being subtracted is bigger than v. The
leftmost column of tiles does not complete and the X tile cannot attach. Figure 4.28(b) shows a
final configuration of an execution that never tries to subtract a number that is too big, but the
result does not equal 0. Thus the top row does not complete and the X tile does not attach. Both
these configurations are final, and no more tiles can attach.

Lemma 4.3.9 The assembly time of SSS is linear in the size of the input (number of bits in 〈 ~B, v〉).

Proof: The lemma follows from Lemmas 4.3.3, 4.3.5, 4.3.7, and the facts that

• Θ (
∑n

k=1 nBk) tiles attach in column −nv and

• Θ(nv) tiles attach on row 1 +
∑n

j=1

(
nBj + 1

)
.

Lemma 4.3.10 For all n ∈ N, for all 〈 ~B, v〉 ∈ Nn × N, assuming each tile that may attach to
a configuration at a certain position attaches there with a uniform probability distribution, the
probability that a single nondeterministic execution of SSS succeeds in attaching a X tile if 〈 ~B, v〉 ∈
SubsetSum is at least

(
1
2

)n.

Proof: If 〈 ~B, v〉 ∈ SubsetSum, then there exists at least one choice of ~c ∈ {0, 1}n such that
v =

∑n
j=1 cjBj . When tiles of SSS attach to SSS , only the tiles with the ? east binding domains

may attach nondeterministically, there are two choices of tiles of the ones that do have the ? east
binding domain, and there are exactly n places where such tiles may attach. Thus at least

(
1
2

)n of
the assemblies attach a X tile.
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Figure 4.27: An example of SSS solving a SubsetSum problem. Here, v = 75 = 10010112, and
~B = 〈11 = 10112, 25 = 110012, 37 = 1001012, 39 = 1001112〉. The seed configuration encodes v on
the bottom row and ~B on the rightmost column (a). The fact that 75 = 11 + 25 + 39 implies that
〈 ~B, t〉 ∈ SubsetSum, thus at least one final configuration (b) contains the X tile.
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Figure 4.28: If the execution of SSS does not prove membership in SubsetSum, the X tile does not
attach. If one or more of the Bi values is bigger than the number it is subtracted from, the leftmost
column of tiles does not complete and the X tile cannot attach (a). Similarly, if final result of
subtracting some Bi values does not equal 0, the top row does not complete and the X tile does
not attach (b). Both these configurations are final configurations and no more tiles can attach.
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Lemma 4.3.10 implies that a parallel implementation of SSS , such as a DNA implementation
like those in [12, 88], with 2n seeds has at least a 1− 1

e ≥ 0.5 chance of correctly deciding whether
a 〈 ~B, v〉 ∈ SubsetSum. An implementation with 100 times as many seeds has at least a 1−

(
1
e

)100

chance.
Note that TSS has 49 computational tile types and uses 7 tile types to encode the input.
In Section 4.2, I showed a 50-tile system that factors numbers at temperature three. Because

SubsetSum is NP-complete, the decision version of factoring numbers (〈n, a〉 ∈ Factor iff there
exists a prime factor of n less than a) can be reduced to SubsetSum and solved using SSS , thus
using fewer tiles and executing the model at a lower temperature, although at the cost of having to
execute several instances of SSS (one has to solve polynomially many factoring decision problems
in order to find the actual factors of a number).

4.4 Solving Satisfiability with Tiles

In this section, I will examine a system that decides an NP-complete set called SAT . This system
appears in my paper [28].

The Boolean satisfiability (SAT ) problem is a well-known NP-complete problem. Let n ∈
N, then for all 0 ≤ i < n, let xi be a Boolean variable that can take on values from the
set {TRUE ,FALSE}. Let the set of literals be the set of those variables and their negations
(
⋃
i{xi,¬xi}), where ¬TRUE = FALSE , and ¬FALSE = TRUE . A clause is a disjunction of

literals, e.g., (x0 ∨ ¬x1 ∨ x2). A Boolean formula, in conjunctive normal form (CNF), is a con-
junction of clauses, e.g., (x0 ∨ ¬x1 ∨ x2) ∧ (¬x3 ∨ x2 ∨ ¬x2). If every clause has exactly k literals,
the Boolean formula is said to be in kCNF. A Boolean formula is satisfiable iff there exists some
assignment of each variable to an element of {TRUE ,FALSE} such that the formula evaluates to
TRUE .

The notions of truth assignment and literal selection are in some sense parallel, and I will use
them somewhat interchangeably. Formally, every literal selection corresponds to a truth assignment.
Thus I will sometimes use a literal selection, e.g., x0,¬x1, x2, to specify a truth assignment, in this
case x0 = x2 = TRUE and x1 = FALSE .

The k-SAT problem is, given a kCNF Boolean formula, to determine whether or not it is
satisfiable. It is well known that 1-SAT and 2-SAT can be solved in polynomial time, while each
k-SAT for k ≥ 3 is NP-complete. Formally, k-SAT is the set of all Boolean formula in kCNF that
are satisfiable. To solve k-SAT means to decide the set k-SAT .

The rest of this section discusses solving satisfiability nondeterministically in the tile assembly
model. Section 4.4.1 describes a system that uses Θ(n2) distinct tiles to solve k-SAT for an arbitrary
k ∈ N, where n is the number of distinct variables in the Boolean formula. This system is similar
to the system presented in [69], but I offer formal proofs of the system’s correctness and speed.
Section 4.4.2 describes a system that uses Θ(1) distinct tiles to solve k-SAT for an arbitrary k ∈ N.

4.4.1 Näıve Approach

Lagoudakis et al. proposed a tile system for nondeterministically deciding whether a 3CNF Boolean
formula is satisfiable [69]. This system uses Θ(n2) distinct tiles, for a formula with n distinct
variables, and can be adapted to decide the satisfiability of k-SAT for arbitrary k ∈ N. While
Lagoudakis et al. do not formally define what it means for a tile system to solve a problem or
compute a function and do not formally argue that their system does in fact solve satisfiability, I
believe their system can be made to fit my definitions and proven correct. What I present here is
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Figure 4.29: The concepts behind the tiles in Γ2
n. For every n ∈ N, the set Γ2

n contains 3n+ 3 tiles:
the three bottom-row tiles, 2n left top-row tiles (where `i enumerates over all the 2n literals), and
n right top-row tiles (where 0 ≤ i < n).
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||
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Figure 4.30: The 12 tiles in Γ2
3.

a slight variant of their system, which follows the same basic logic. While it is of some interest to
formally prove this system’s correctness and speed, as I do below, the main reason for including this
system is that it will explain part of the logic of the more complex system presented in Section 4.4.2.

I now describe a family of tile systems that determine whether a Boolean formula with n ∈ N
distinct variables is satisfiable (because the size of the system depends on the number of variables,
there will be a different system for every n, and thus I refer to the systems for all n as a family). I
will refer to these systems as S2

n.
The idea behind encoding the input is to encode the Boolean formula in the 0th row of the seed

configuration with a unique tile for each possible literal, prefixing each clause with a special clause
tile, and to encode the variables in the 0th column with a unique tile for each variable. Figure 4.29
shows the concepts behind the tiles in Γ2

n, used by S2
n. The bottom row shows three helper tiles that

are the same for all n, and the top row shows the two tiles used to encode the Boolean formula (left)
and the variable index (right). Thus, for a given n ∈ N, the set Γ2

n contains the three bottom-row
tiles, 2n left top-row tiles (where `i enumerates over all the 2n literals), and n right top-row tiles
(where 0 ≤ i < n). Thus |Γ2

n| = 3n + 3. For example, for n = 3, Figure 4.30 shows the 12 tiles of
the set Γ2

3.
I will use the tiles in Γ2

n to encode an n-variable Boolean formula in a specific way. Informally, I
will place tiles representing the formula’s literals in the 0th row such that the literals of each clause
are together, place the special clause tile to the east of each clause, place the variable tiles in the
0th column, and place special end tiles in the west-most and north-most positions on that row and
column. I explain the seed set up more formally below. Figure 4.31 shows a sample seed encoding
the 3-variable Boolean formula (x2 ∨ ¬x1 ∨ ¬x0) ∧ (¬x2 ∨ ¬x1 ∨ ¬x0) ∧ (¬x2 ∨ x1 ∨ x0) using the
tiles from Γ2

3. Note that while this example tries to follow some logical order, the order of the
variables, the clauses, and the literals within each clause is not important.

The main idea of the computation is to have tiles attach nondeterministically in column −1
to select either TRUE or FALSE for each variable and then to “sweep” those choices westward,
checking if a literal in a clause evaluates to TRUE . Whenever a literal evaluates to TRUE , that
information propagates northward, and along the top row, tiles attach to ensure that at least one
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Figure 4.31: The seed encoding a 3-variable Boolean formula (x2 ∨ ¬x1 ∨ ¬x0)∧(¬x2 ∨ ¬x1 ∨ ¬x0)∧
(¬x2 ∨ x1 ∨ x0) using the tiles from Γ2

3.
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Figure 4.32: The concepts behind the tiles in T 2
n . For every n ∈ N, the set T 2

n contains 4n2 +
12n+ 4 tiles: the four bottom-row tiles, including the special X tile, 14n middle-row tiles, with `i
enumerating over all the literals and 0 ≤ i < n, and 4n2 − 2n top row tiles, with `i enumerating
over all the literals and `j enumerating over all the literals such that `i 6= `j.

literal in every clause evaluates to TRUE . Iff that is the case, a special X tile attaches in the
northwest corner.

The system S2
n will use the set of computational tiles T 2

n . Figure 4.32 shows the concepts behind
the tiles in T 2

n . The bottom row shows four helper tiles, including the special X tile, that are the
same for all n. For each tile in the middle row there will be Θ(n) tiles in T 2

n , with `i enumerating
over all the literals and 0 ≤ i < n. Finally, the top row shows the concept behind the tile which
will expand to Θ(n2) tiles in T 2

n , with `i enumerating over all the literals and `j enumerating over
all the literals such that `i 6= `j. Thus, for a given n ∈ N, the set T 2

n contains the four bottom-row
tiles, 14n middle-row tiles, and 4n2 − 2n top-row tiles. Thus |T 2

n | = 4n2 + 12n + 4. For example,
for n = 3, Figure 4.33 shows the 76 tiles of the set T 2

3 . Note that Lagoudakis et al. claim that
their systems use 2n2 + 12n + 10 distinct tiles, but after careful analysis, I disagree with their
calculations and believe their systems actually use significantly more tiles, even more than my
system’s 4n2 + 12n+ 4. Most notably, their analysis assumes that there are 2n2 − n tiles identical
to my yellow tiles, whereas in reality there are 4n2 − 2n such tiles.

The tiles of T 2
3 attach to a seed configuration, such as the one in Figure 4.31, to nondeterminis-

tically select a truth assignment of the variables and check if that assignment satisfies the Boolean
formula, as shown in Figure 4.34.

Theorem 4.4.1 For all n ∈ N, let Σ2
n = {c, |, ||, i, xi,¬xi,OK}, where 0 ≤ i < n. Let T 2

n be as
defined in Figure 4.32. Let g2

n = 1 and τ2
n = 2. Let S2

n = 〈T 2
n , g

2
n, τ

2
n〉. Then S2

n nondeterministically
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Figure 4.33: The 76 tiles in T 2
3 .
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Figure 4.34: Tiles from T 2
n attach to the seed to nondeterministically select a truth assignment. Here

φ = (x2 ∨ ¬x1 ∨ ¬x0) ∧ (¬x2 ∨ ¬x1 ∨ ¬x0) ∧ (¬x2 ∨ x1 ∨ x0) and the literal selection is x0,¬x1, x2

meaning that x0 = x2 = TRUE and x1 = FALSE . Tiles attach to allow the X tile to attach in the
northwest corner iff the assignment satisfies the Boolean formula encoded by the seed.

decides k-SAT (for all k ∈ N) with up to n distinct variables per formula with the black X tile from
T 2
n as the identifier tile.

Proof: To show that S2
n nondeterministically decides k-SAT with up to n distinct variables per

formula with the black X tile from T 2
n as the identifier tile, I will first describe how to construct the

seed from a Boolean formula φ with at most n distinct variables, then argue which tiles will attach
to that seed, and finally conclude that the final assembly will contain the X tile iff there exists a
truth assignment that makes φ evaluate to TRUE .

Let φ be a Boolean formula in kCNF, for some arbitrary k ∈ N, with at most n distinct variables.
Without loss of generality, I assume that the distinct variables are x0, x1, · · · , xn−1. Let Γ2

n be as
defined in Figure 4.29. Let m be the number of clauses in φ (numbered 0, 1, · · · ,m− 1).

To assist the readability of this proof, I will define two helper functions: x : N → N and
y : N → N. These functions will help identify positions on the 2-D grid. For all m̂ ∈ N, let
x(m̂) = −m̂(k + 1) − 1. The intuition is that I will use the (k + 1) columns to the west of, and
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including column x(m̂) for clause m̂. For all n̂ ∈ N, let y(n̂) = n̂ + 1. The intuition is that I will
use the row y(n̂) for variable n̂.

I define the seed S2
n that encodes φ as follows:

• S2
n(0, y(n)) = γ||, where γ|| is the tile in Γ2

n with the west binding domain ||.

• For all 0 ≤ n̂ < n, S2
n(0, y(n̂)) = γn̂, where γn̂ is the tile in Γ2

n with the west binding domain
n̂.

• For all 0 ≤ m̂ < m, S2
n(x(m̂), 0) = γc, where γc is the tile in Γ2

n with the north binding domain
c.

• For all 0 ≤ m̂ < m, for all 0 < k̂ ≤ k, S2
n(x(m̂)− k̂), 0) = γ`, where ` is the k̂th literal of the

m̂th clause of φ, and γ` is the tile in Γ2
n with the north binding domain `.

• S2
n(x(m), 0) = γ|, where γ| is the tile in Γ2

n with the north binding domain |.

• And for all other positions (v, w), S2
n(v, w) = empty.

Figure 4.31 shows a sample seed for a 3-SAT formula φ with 3 distinct variables (φ = (x2∨¬x1∨
¬x0) ∧ (¬x2 ∨ ¬x1 ∨ ¬x0) ∧ (¬x2 ∨ x1 ∨ x0)).

Note that because τ2
n = 2, g2

n = 1, and the seed is in the shape of a horizontally-reflected L, a
tile may only attach in the S2

n system when its south and east neighbors are present, and only if its
appropriate binding domains match those neighbors’ appropriate binding domains, by the unique
final configuration lemma (Lemma 4.1.2).

I examine the tiles that can attach in column −1, in positions (−1, y(0)) through (−1, y(n)−1).
Because the west binding domains of the tiles in S2

n to the east of those positions are all n̂, where
0 ≤ n̂ < n, the only tiles that might attach in this column are the orange tiles with n̂ east binding
domains. By induction, because the north binding domain of S2

n(−1, 0) is c, and all the south and
north binding domains for those orange tiles are c, those tiles will match their neighbors on the
south and east sides, and thus will attach. For each n̂, there are 2 possible tiles that may attach
in position (−1, y(n̂)). One of these tiles will have the west binding domain xn̂ and the other the
west binding domain ¬xn̂. These tiles will attach nondeterministically, in some sense “selecting”
only a single literal for each variable. Every set of tile attachments corresponds to a particular
literal selection, and every literal selection has a set of tile attachments associated with it. Given a
particular literal selection, the rest of the assembly will be deterministic (note, as I go through the
proof, that no position in the rest of the assembly will have an east neighbor with a west binding
domain n̂, and that no tile in T 2

n other than those with n̂ as their east binding domain have another
tile with the same east and south binding domain pair). For the remainder of this proof, I fix the
literal selection made in column −1 and refer to it as the fixed assignment.

Examine all the colored (neither black nor gray) tiles in T 2
n . Other than the tiles with n̂ (where

0 ≤ n̂ < n) east binding domains that I just showed can only attach in column −1, these are the
only tiles that may attach in the rectangle defined by, and including, columns −2 and x(m) − 1
and rows y(0) and y(n)− 1. (This fact follows because the gray and black tiles may only attach in
columns with a | north binding domain or rows with a | or || west binding domain, and by induction,
since gray tiles are the only ones with such north and west binding domains, they can only attach
in columns and rows with those binding domains in the seed, and those are column x(m) and row
y(n), by definition of the seed.) Let the set TD contain only those colored tiles with an east binding
domain not equal to some n̂. Now observe that for all the tiles t in TD, bdW (t) = bdE(t) and either
bdN (t) = bdS(t) or bdN (t) = OK. Thus I conclude, by induction, that as these tiles attach to S2

n, as
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long as every column of the rectangle is complete, the west binding domains of the tiles in row i are
the same as the west binding domains of the tiles in row −1, and thus they encode the fixed literal
selection, and that as long as every row of the rectangle is complete, the north binding domain of
the tile in column p is either the same as the north binding domain or the seed’s tile in position
(p, 0) or is OK.

Let ` be the k̂th literal of the m̂th clause of φ. I now prove that the north binding domain of the
tile in position (x(m̂)− k̂, y(n− 1)) is OK iff ` is in the fixed assignment, and thus the m̂th clause
is satisfied. The north binding domain of the tile in position (x(m̂) − k̂, 0) is `, by the definition
of the seed. Let n̂ be such that ` is either xn̂ or ¬xn̂. Then ` cannot match the literals in the
assignment in rows y(0) through y(n̂−1), and thus the north binding domain of the tile in position
(x(m̂) − k̂, y(n̂ − 1)) is `. Iff ` is in the fixed assignment, then the tile that attaches in position
(x(m̂) − k̂, y(n̂)) must have matching east and south binding domains, and thus must be green,
and thus has the north binding domain OK. Otherwise, the east and south binding domains do
not match, and a yellow tile must attach, with the north binding domain `. Since ` cannot match
the literals in the assignment in rows y(n̂ + 1) through y(n) − 1, iff the green tile had attached,
rose tiles attach to the north, propagating the OK binding domain to row y(n)− 1, and otherwise
yellow tiles attach, propagating the ` binding domain. Thus the north binding domain of the tile
in position (x(m̂)− k̂, y(n)− 1) is OK iff ` is in the fixed assignment.

Consider the tiles that attach in column x(m). Because the seed has a north binding domain |
in that column, by induction, the gray tiles with north and south binding domains | may attach.
Since there such a is a tile for every possible literal on its east binding domain, these tiles will
propagate the | binding domain to the north of tile in position (x(m), y(n) − 1). Consider the
tiles that attach in row y(n). Because the seed has the west binding domain || in that row, by
induction the gray tiles with east and west binding domains in the set {|, ||} may attach. I now
show, by induction, that the west binding domain of the tile in position (x(m) + 1, y(n)) is || iff
every clause has at least one literal in the fixed assignment, and is thus satisfied. In the base case,
by the definition of the seed, the west binding domain of the tile in position (x(0) + 1, y(n)) is ||.
Now I assume that the west binding domain of the tile in position (x(m̂) + 1, y(n)) is || and show
that the west binding domain of the tile in position (x(m̂ + 1) + 1, y(n)) is || iff the m̂th clause is
satisfied. Since the north binding domain of the tile in position (x(m̂), y(n− 1)) is c, the gray tile
with the south binding domain c must attach in position (x(m̂), y(n)), and its west binding domain
is |. Since there is a gray tile with every possible literal as its south binding domain and | as its east
and west binding domains, the | will propagate to the west until either position (x(m̂+1)+1, y(n))
or some north binding domain is OK. If the binding domain is OK, then some literal in clause
m̂ is in the fixed assignment and thus this clause is satisfied, the gray tile with the south binding
domain OK and west binding domain || attaches, and the || is propagated to the west by the gray
tiles with literal and OK south binding domains and || east and west binding domains to the tile
in position (x(m̂ + 1) + 1, y(n)). Observe that there is no tile with a south binding domain c and
east binding domain |, thus the west binding domain of the tile in position (x(m) + 1, y(n)) is || iff
every clause has at least one literal in the fixed assignment, and is thus satisfied. If there exists at
least one unsatisfied clause, the position (x(m) + 1, y(n)) will either be empty, or the tile in that
position will have the west binding domain |.

The X tile has an east binding domain || and south binding domain | thus it can only attach in
position (x(m), y(n)) and only if the west binding domain of the tile in position (x(m) + 1, y(n)) is
||. Thus the X tile can attach iff every clause is satisfied by the fixed assignment.

Since every possible assignment will be explored nondeterministically, if any one of them satisfies
every clause, the X tile will attach. If no assignment exists that satisfies every clause, then the X
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Figure 4.35: For some nondeterministic choices of the truth assignment, the Boolean formula
encoded by the seed is not satisfied. Here, φ = (x2∨¬x1∨¬x0)∧(¬x2∨¬x1∨¬x0)∧(¬x2∨x1∨x0)
and the literal selection is x0, x1, x2 meaning that x0 = x1 = x2 = TRUE . The second clause is
not satisfied and the X tile never attaches. Note that this is a final configuration and no more tiles
may attach.

tile will never attach. Thus S2
n nondeterministically decides k-SAT (for all k ∈ N) with up to n

distinct variables per formula with the black X tile from T 2
n as the identifier tile.

Figure 4.35 shows a nondeterministically selected truth assignment that does not satisfy the
Boolean formula. Because the formula is not satisfied, the X tile never attaches.

Lemma 4.4.2 The assembly time of S2
n is linear in the size of the input φ.

This lemma follows directly from the assembly time lemma (Lemma 4.1.4).

Lemma 4.4.3 For all n ∈ N, for all Boolean formula φ on n distinct variables, assuming each tile
that may attach to a configuration at a certain position attaches there with a uniform probability
distribution, the probability that a single nondeterministic execution of S2

n succeeds in attaching a
X tile if φ is satisfiable is at least

(
1
2

)n.

Proof: Only the tiles in column −1 attach nondeterministically, and at each of those positions
there are exactly two tiles that may attach. If φ is satisfiable, then there exists at least one
assignment that satisfies it, and thus a particular choice at each of the n nondeterministic positions
in column −1 will select a satisfying assignment. The probability of the correct tile attaching at
each location is 1

2 , and thus the probability of the whole column attaching to represent the correct
assignment is

(
1
2

)n. Since the rest of the assembly is deterministic,
(

1
2

)n is the probability that a
single nondeterministic execution of S2

n succeeds in attaching a X tile if φ is satisfiable.
In summary, S2

n decides whether a kCNF Boolean formula φ on n variables is in k-SAT , has
4n2 + 12n + 4 = Θ(n2) computational tile types and uses 3n + 3 = Θ(n) tile types to encode the
input. It computes in time linear in the size of the input, and each assembly has the probability of
at least

(
1
2

)n of finding the satisfying assignment, if one exists.

4.4.2 Constant-Size Tileset Approach

I now describe a nondeterministic tile system SSAT , which will follow a logic similar to that of S2
n,

but will use only a constant number of tiles. The idea of SSAT is to encode φ in the same way
S2
n did, but instead of using a single tile for each literal, the literals will be encoded by a tile that

indicates whether the literal is a negation (I place this tile in the east-most position), and a series
of 0 and 1 tiles encoding, in binary, the number of the variable. For example, the literal x5 would
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Figure 4.37: The seed encoding a 3-variable Boolean formula (x2 ∨ ¬x1 ∨ ¬x0)∧(¬x2 ∨ ¬x1 ∨ ¬x0)∧
(¬x2 ∨ x1 ∨ x0) using the tiles from ΓSAT .

be encoded by a v tile, and by a 1 tile, then a 0 tile, and then a 1 tile (101v) because 5 = 1012. The
literal ¬x4 would be encoded by a ¬v tile, and by a 1 tile, then a 0 tile, and then a 0 tile (100¬v)
because 4 = 1002. For consistency, I will use the same number of bits to encode all variables, e.g.,
if my φ has 7 distinct variables, I will need three bits to encode x7, so I will encode x1 as 001v.
Similarly, I will encode the variables in the 0th column using this binary encoding method. The
assemblies in SSAT will be larger in size than the assemblies in S2

n because what used to be encoded
by a single tile will now be represented by a Θ(log n)×Θ(log n) block of tiles, but the overall logic
will remain the same. The key to SSAT is building the logic of the blocks to correctly match literals
without affecting the inherited logic of S2

n.
There are 12 tiles in ΓSAT , no matter how large φ is or how many variables it contains. I will

use the tiles in ΓSAT to encode an n-variable Boolean formula in a specific way. Informally, I will
encode the formula’s literals in the 0th row, as described above, such that the literals of each clause
are together, place the special clause tile to the east of each clause, place the encoded variables
in the 0th column, and place special end tiles in the west-most and north-most positions on that
row and column. I explain the seed set up more formally below. Figure 4.37 shows a sample seed
encoding the 3-variable Boolean formula (x2 ∨ ¬x1 ∨ ¬x0) ∧ (¬x2 ∨ ¬x1 ∨ ¬x0) ∧ (¬x2 ∨ x1 ∨ x0)
using the tiles from ΓSAT . Note that while this example tries to follow some logical order, the order
of the variables, the clauses, and the literals within each clause is not important.

Just as before, the main idea of the computation is to have tiles attach nondeterministically in
column −1 to select either TRUE or FALSE for each variable and then to “sweep” those choices
westward, checking if a literal in a clause evaluates to TRUE . The comparison of literals will take
place within a Θ(logn) × Θ(log n) block of tiles. Whenever a literal evaluates to TRUE , that
information propagates northward, and along the top row, tiles attach to ensure that at least one
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Figure 4.38: The 64 tiles in TSAT .

literal in every clause evaluates to TRUE . Iff that is the case, a special X tile attaches in the
northwest corner.

The system SSAT will use the set of computational tiles TSAT . Figure 4.38 shows the 64 tiles
in TSAT . The colors of the tiles are coordinated with the colors of the T 2

n system — the tiles of the
same colors perform the same functions.

The tiles of TSAT attach to a seed configuration, such as the one in Figure 4.37, to nondeter-
ministically select a truth assignment of the variables and check if that assignment satisfies the
Boolean formula, as shown in Figure 4.39.

Lemma 4.4.4 Let a configuration S (confined to some ν × ν square with the southeast tile at
position (x0, y0)) be such that:

• bdN (S(x0 − 1, y0)) ∈ {v,¬v},

• bdW (S(x0, y0 + 1)) ∈ {v,¬v},

• for all 1 < i ≤ ν, bdN (S(x0 − i, y0)) ∈ {0, 1},

• for all 1 < i ≤ ν, bdW (S(x0, y0 + i)) ∈ {0, 1}, and

• for all positions (x, y) within the square, S(x, y) = empty.

And let g= = 1 and τ= = 2, and S= = 〈TSAT , g=, τ=〉. Then S= produces a final unique
configuration F on S such that:

• bdN (F (x0 − ν, y0 + ν)) contains a ? iff for all 0 < i ≤ ν, bdN (x0 − i, y0) = bdW (x0, y0 + i),

• no other tile in row y0 + ν has a north binding domain that contains a ?, and

• no tile in column x0 − ν has a west binding domain that contains a ?.

Proof: Let a relationship ≈ be defined on binding domains such that given binding domains
a and b, a ≈ b iff the portion of a that is not ? exactly equals the portion of b that is not ?.
For example, 0 ≈ 0 ≈ ?0 6≈ ?1. Observe the for all tiles t ∈ TSAT , either bdN (t) = OK or
bdN (t) ≈ bdS(t), and either bdE(t) =? or bdE(t) ≈ bdW (t). That is to say, other than the tiles with
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Figure 4.39: Tiles from TSAT attach to the seed to nondeterministically select a truth assign-
ment. Here φ = (x2 ∨ ¬x1 ∨ ¬x0) ∧ (¬x2 ∨ ¬x1 ∨ ¬x0) ∧ (¬x2 ∨ x1 ∨ x0) and the literal selection
is x0,¬x1, x2 meaning that x0 = x2 = TRUE and x1 = FALSE . Tiles attach to allow the X tile
to attach in the northwest corner iff the assignment satisfies the Boolean formula encoded by the
seed.

a ?, the east binding domain ≈ the west binding domain, and other than the tiles with an OK,
the north binding domain ≈ the south binding domain. It will become clear in this proof that the
tiles with ? and OK binding domains will never attach to S, thus the west binding domain of all
tiles in row r will ≈ bdW (S(x0, r)) and the north binding domains of all tiles in column c will ≈
bdN (S(c, y0)).

I now show by induction that iff for all µ ≤ ν, for all 0 < i ≤ µ, bdN (S(x0 − i, y0)) =
bdW (S(x0, y0 + i)) then the only tile in row y0 + µ whose north binding domain contains a ? is in
position (x0−µ, y0 +µ) and that no tile in column x0−µ has a west binding domain that contains
a ?. Otherwise, none of those binding domains contain a ?.

First, examine the base case. Let µ = 1. Examine row (y0 + µ). By the definition of S, in
position (x0−µ, y0 +µ), one of the red tiles from TSAT must attach. Iff the east and south binding
domains of that red tile are equal (and thus bdN (S(x0 − µ, y0)) = bdW (S(x0, y0 + µ))) then the
north binding domain of the tile contains a ?. It follows that the yellow tiles will attach in row
(y0 + µ) to the west of that red tile. The yellow tiles contain no binding domains with ?.

Now assume that if for all 0 < i ≤ µ, bdN (S(x0−i, y0)) = bdW (S(x0, y0 +i)) then the only tile in
row y0 +µ whose north binding domain contains a ? is in position (x0−µ, y0 +µ) and that no tile in
column x0−µ has a west binding domain that contains a ?, and that otherwise, none of those binding
domains contain a ?. I will now show that if bdN (S(x0 − (µ+ 1), y0)) = bdW (S(x0, y0 + (µ+ 1))),
then the only tile in row y0 + µ + 1 whose north binding domain contains a ? is in position
(x0−(µ+1), y0 +(µ+1)) and no tile in column x0−(µ+1) has a west binding domain that contains
a ?, and that otherwise, none of those binding domains contain a ?. Examine row (y0 + (µ+ 1)). If
the north binding domain of the tile in position (x0 − µ, y0 + µ) contains a ? (thus the appropriate
north and west binding domains of S have matched up to µ), then a blue tile must attach in
position (x0−µ1, y0 + (µ+ 1)), with a west binding domain containing a ?. Then a green tile must
attach to the west, in position (x0 − (µ+ 1), y0 + (µ+ 1)). Iff the east and south binding domains
of that green tile are ≈ (and thus bdN (S(x0 − (µ + 1), y0)) = bdW (S(x0, y0 + (µ + 1)))) then the
green tile’s north binding domain contains a ?. Yellow tiles attach in column x0 − (µ + 1) below
that green tile. Thus if bdN (S(x0 − (µ + 1), y0)) = bdW (S(x0, y0 + (µ + 1))), then the only tile in
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Figure 4.40: Tiles comparing two inputs. In (a), the comparison is between 1111010v and 1111010v.
Because the two inputs are the same, the northwest tile’s north binding domain contains a ?, and
none of the rest of the exposed binding domains do. In (b), the comparison is between 1111010v
and 1110010v. Because the two inputs do not match, no exposed binding domain contains a ?.

row y0 + µ+ 1 whose north binding domain contains a ? is in position (x0 − (µ+ 1), y0 + (µ+ 1))
and no tile in column x0 − (µ + 1) has a west binding domain that contains a ?, and otherwise,
none of those binding domains contain a ?.

The lemma follows when µ = ν.
Lemma 4.4.4 describes a subset of TSAT attaching to compare two inputs. Figure 4.40(a) shows

a comparison of 1111010v and 1111010v. Because the two inputs are the same, the northwest
tile’s north binding domain contains a ?, and none of the rest of the exposed binding domains
do. Figure 4.40(b) shows a comparison of 1111010v and 1110010v. Because the two inputs do not
match, no exposed binding domain contains a ?.

Theorem 4.4.5 Let ΣSAT = {c, ?, |, ||, v, ?v, ¬v, ?¬v, 0, ?0, 1, ?1, OK}. Let TSAT be as
defined in Figure 4.38. Let gSAT = 1 and τSAT = 2. Let SSAT = 〈TSAT , gSAT , τSAT 〉. Then SSAT

nondeterministically decides k-SAT (for all k ∈ N) with the black X tile from TSAT as the identifier
tile.

Proof: To show that SSAT nondeterministically decides k-SAT with the black X tile from TSAT

as the identifier tile, I will first describe how to construct the seed from a Boolean formula φ, then
argue which tiles will attach to that seed, and finally conclude that the final assembly will contain
the X tile iff there exists a truth assignment that makes φ evaluate to TRUE .

Let φ be a Boolean formula in kCNF, for some arbitrary k ∈ N. Let n be the number of
distinct variables in φ, and let ν = dlg ne + 1. The value ν is the number of tiles used to encode
each variable (lg n tiles to encode the variable’s number in binary and 1 tile to encode whether the
variable is negated). Note that SSAT works for all n, and ν depends on n only to properly encode
the variables in the seed. Without loss of generality, I assume that the distinct variables of φ are
x0, x1, · · · , xn−1. Let ΓSAT be as defined in Figure 4.36. Let m be the number of clauses in φ,
numbered 0, 1, · · · ,m− 1.

To assist the readability of this proof, I will define three helper functions: x : N→ N, v : N→ N
and y : N → N. These functions will help identify positions on the 2-D grid. For all m̂ ∈ N, let
x(m̂) = −m̂(kν + 1)− 1. The intuition is that I will use the (kν + 1) columns to the west of, and
including column x(m̂) for clause m̂. For all k̂ ∈ N, let v(k̂) = k̂ν + 1. The intuition is that I will
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the ν columns to the west of, and including column x(m̂)− v(k̂) for the k̂th literal in the m̂ clause
(where the literals of a clause are `0, `1, · · · , `k−1). For all n̂ ∈ N, let y(n̂) = n̂ν + 1. The intuition
is that I will use ν rows to the north of, and including row y(n̂) for variable n̂.

I define the seed SSAT that encodes φ as follows:

• SSAT (0, y(n)) = γ||, where γ|| is the tile in ΓSAT with the west binding domain ||.

• For all 0 ≤ n̂ < n, SSAT (0, y(n̂)) = γ?, where γ? is the tile in ΓSAT with the west binding
domain ?.

• For all 0 ≤ n̂ < n, for all 0 ≤ i < ν − 1, SSAT (0, y(n̂) + i+ 1) = γz, where z is the ith bit of n̂
(z =

⌊
n̂
2i

⌋
mod 2) and γz is the tile in ΓSAT with the west binding domain z.

• For all 0 ≤ m̂ < m, SSAT (x(m̂), 0) = γc, where γc is the tile in ΓSAT with the north binding
domain c.

• For all 0 ≤ m̂ < m, for all 0 ≤ k̂ < k, SSAT (x(m̂) − v(k̂), 0) = γ¬, where if the k̂th literal in
the m̂th clause is some unnegated variable then γ¬ is the tile in ΓSAT with the north binding
domain v and if the k̂th literal in the m̂th clause is the negation of some variable then γ¬ is
the tile in ΓSAT with the north binding domain ¬v.

• For all 0 ≤ m̂ < m, for all 0 ≤ k̂ < k, for all 0 ≤ i < ν − 1, SSAT (x(m̂)− v(k̂)− i− 1, 0) = γz,
where if w is such that the k̂th literal in the m̂th clause is either xw or ¬xw, then z is the ith

bit of w (z =
⌊
w
2i

⌋
mod 2) and γz is the tile in ΓSAT with the north binding domain z.

• SSAT (x(m), 0) = γ|, where γ| is the tile in ΓSAT with the north binding domain |.

• And for all other positions (v, w), SSAT (v, w) = empty.

Figure 4.37 shows a sample seed for a 3-SAT formula φ with 3 distinct variables (φ = (x2∨¬x1∨
¬x0) ∧ (¬x2 ∨ ¬x1 ∨ ¬x0) ∧ (¬x2 ∨ x1 ∨ x0)).

Note that because τSAT = 2, gSAT = 1, and the seed is in the shape of a horizontally-reflected
L, a tile may only attach in the SSAT system when its south and east neighbors are present, and
only if its appropriate binding domains match those neighbors’ appropriate binding domains, by
the unique final configuration lemma (Lemma 4.1.2).

I examine the tiles that can attach in column −1, in positions (−1, y(0)) through (−1, y(n)−1).
First, consider the positions (−1, y(n̂)), for all 0 ≤ n̂ < n. Because the west binding domains of
the tiles in SSAT to the east of those positions are all ?, the only tiles that might attach in this
column are the orange tiles with ? east binding domains. In the other positions, the orange tiles
with the east and west binding domains 0 and 1 may attach. By induction, because the north
binding domain of SSAT (−1, 0) is c, and all the south and north binding domains for those orange
tiles are c, those tiles will match their neighbors on the south and east sides, and thus will attach.
For each n̂, there are 2 possible tiles that may attach in position (−1, y(n̂)). One of these tiles will
have the west binding domain v and the other the west binding domain ¬v. These tiles will attach
nondeterministically, in some sense “selecting” only a single literal for each variable. Every set of
tile attachments corresponds to a particular literal selection, and every literal selection has a set
of tile attachments associated with it. Given a particular literal selection, the rest of the assembly
will be deterministic (note, as I go through the proof, that no position in the rest of the assembly
will have an east neighbor with a west binding domain ?, and that no tile in TSAT other than those
with ? as their east binding domain have another tile with the same east and south binding domain
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pair). For the remainder of this proof, I fix the literal selection made in column −1 and refer to it
as the fixed assignment.

Examine all the colored (neither black nor gray) tiles in TSAT . Other than the tiles with ?
east binding domains that I just showed can only attach in column −1, these are the only tiles
that may attach in the rectangle defined by, and including, columns −2 and x(m) − 1 and rows
y(0) and y(n)− 1. (This fact follows because the gray and black tiles may only attach in columns
with a | north binding domain or rows with a | or || west binding domain, and by induction, since
gray tiles are the only ones with such north and west binding domains, they can only attach in
columns and rows with those binding domains in the seed, and those are column x(m) and row
y(n), by definition of the seed.) Let the set TD contain only those colored tiles with an east binding
domain not equal to ?. Now observe that for all the tiles t in TD, bdW (t) ≈ bdE(t) and either
bdN (t) ≈ bdS(t) or bdN (t) = OK (using the definition of ≈ from the proof of Lemma 4.4.4). Thus I
conclude, by induction, that as these tiles attach to SSAT , as long as every column of the rectangle
is complete, the west binding domains of the tiles in row i are ≈ the west binding domains of the
tiles in row −1, and thus they encode the fixed literal selection, and that as long as every row of
the rectangle is complete, the north binding domain of the tile in column p is either ≈ the north
binding domain or the seed’s tile in position (p, 0) or is OK.

Let ` be the k̂th literal of the m̂th clause of φ. I now prove that the north binding domain of
the tile in position (x(m̂) − (v(k̂ + 1) + 1), y(n) − 1) is either OK or contains a ? iff ` is in the
fixed assignment, and thus the m̂th clause is satisfied. Examine the ν columns to the west of, and
including column x(m̂) − v(k̂). Those columns’ intersections with the rows y(0) through y(1) − 1
are a ν×ν square matching the description of the ν×ν square in Lemma 4.4.4. The north binding
domains to the south of the square encode `. The west binding domains to the east of the square
encode the literal of the fixed assignment that is either x0 or ¬x0. By Lemma 4.4.4, the north
binding domain of the tile in position (x(m̂) − v(k̂ + 1) + 1, y(1) − 1) contains a ? iff ` is in the
fixed assignment, and thus if the m̂th clause is satisfied. If that binding domain has no ?, then
by induction, ` is compared with each other literal in the fixed assignment in rows y(1) through
y(n) − 1. If ever a north binding domain in column (x(m̂) − v(k̂ + 1) + 1, y(1) − 1) contains a ?

(except in row y(n) − 1), then the tile that attaches to it has the east binding domain either v or
¬v and thus must be rose and has the north binding domain OK. That OK binding domain is
then propagated to row y(n)− 1 by the rose tiles. Thus iff ` is in the fixed assignment, the north
binding domain of the tile in position (x(m̂)− v(k̂ + 1) + 1, y(n)− 1) is either OK or contains a ?.

Consider the tiles that attach in column x(m). Because the seed has a north binding domain |
in that column, by induction, the gray tiles with north and south binding domains | may attach.
Since for every element of {v,¬v, 0, 1}, there is a tile with that east binding domain, these tiles will
propagate the | binding domain to the north of tile in position (x(m), y(n)− 1).

Consider the tiles that attach in row y(n). Because the seed has the west binding domain || in
that row, by induction the gray tiles with east and west binding domains in the set {|, ||}may attach.
I now show, by induction, that the west binding domain of the tile in position (x(m) + 1, y(n)) is
|| iff every clause has at least one literal in the fixed assignment, and is thus satisfied. In the base
case, by the definition of the seed, the west binding domain of the tile in position (x(0) + 1, y(n))
is ||. Now I assume that the west binding domain of the tile in position (x(m̂) + 1, y(n)) is || and
show that the west binding domain of the tile in position (x(m̂ + 1) + 1, y(n)) is || iff the m̂th

clause is satisfied. Since the north binding domain of the tile in position (x(m̂), y(n − 1)) is c,
the gray tile with the south binding domain c must attach in position (x(m̂), y(n)), and its west
binding domain is |. Since there is a gray tile with every element of {v,¬v, 0, 1} as its south binding
domain and | as its east and west binding domains, the | will propagate to the west until either
position (x(m̂ + 1) + 1, y(n)) or some north binding domain is either OK or contains a ?. If the
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Figure 4.41: For some nondeterministic choices of the truth assignment, the Boolean formula
encoded by the seed is not satisfied. Here, φ = (x2∨¬x1∨¬x0)∧(¬x2∨¬x1∨¬x0)∧(¬x2∨x1∨x0)
and the literal selection is x0, x1, x2 meaning that x0 = x1 = x2 = TRUE . The second clause is
not satisfied and the X tile never attaches. Note that this is a final configuration and no more tiles
may attach.

binding domain is OK or contains a ?, then some literal in clause m̂ is in the fixed assignment
and thus this clause is satisfied, a gray tile with the south binding domain OK or containing a ?

and west binding domain || attaches, and the || is propagated to the west by the gray tiles with
{v,¬v, 0, 1, ?0, ?1,OK} south binding domains and || east and west binding domains to the tile in
position (x(m̂+ 1) + 1, y(n)). Observe that there is no tile with a south binding domain c and east
binding domain |, thus the west binding domain of the tile in position (x(m) + 1, y(n)) is || iff every
clause has at least one literal in the fixed assignment, and is thus satisfied. If there exists at least
one unsatisfied clause, the position (x(m)+1, y(n)) will either be empty, or the tile in that position
will have the west binding domain |.

The X tile has an east binding domain || and south binding domain | thus it can only attach in
position (x(m), y(n)) and only if the west binding domain of the tile in position (x(m) + 1, y(n)) is
||. Thus the X tile can attach iff every clause is satisfied by the fixed assignment.

Since every possible assignment will be explored nondeterministically, if any one of them satisfies
every clause, the X tile will attach. If no assignment exists that satisfies every clause, then the
X tile will never attach. Thus SSAT nondeterministically decides k-SAT (for all k ∈ N) with the
black X tile from TSAT as the identifier tile.

Figure 4.41 shows a nondeterministically selected truth assignment that does not satisfy the
Boolean formula. Because the formula is not satisfied, the X tile never attaches.

Lemma 4.4.6 The assembly time of SSAT is linear in the number of bits necessary to describe φ
(i.e., the size of φ).

Proof: For a φ in kCNF with m clauses and n distinct variables, each literal can be described
using Θ(log n) bits. Thus φ can be described using Θ(mk log n) bits. The dimensions of the
rectangle formed by the seed SSAT are Θ(mk log n) × Θ(n log n) and it follows from the assembly
time lemma (Lemma 4.1.4) that the assembly time of SSAT is Θ(mk log n), which is linear in the
size of φ.

Lemma 4.4.7 For all n ∈ N, for all Boolean formula φ on n distinct variables, assuming each tile
that may attach to a configuration at a certain position attaches there with a uniform probability
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distribution, the probability that a single nondeterministic execution of SSAT succeeds in attaching
a X tile if φ is satisfiable is at least

(
1
2

)n.

Proof: The only tiles that attach nondeterministically in SSAT attach in positions (−1, y(n̂))
for all 0 ≤ n̂ < n. At each of those positions there are exactly two tiles that may attach. If φ is
satisfiable, then there exists at least one assignment that satisfies it, and thus a particular choice
at each of the n nondeterministic positions in column −1 will select a satisfying assignment. The
probability of the correct tile attaching at each location is 1

2 , and thus the probability of the whole
column attaching to represent the correct assignment is

(
1
2

)n. Since the rest of the assembly is
deterministic,

(
1
2

)n is the probability that a single nondeterministic execution of SSAT succeeds in
attaching a X tile if φ is satisfiable.

In summary, SSAT decides whether a kCNF Boolean formula φ on n variables is in k-SAT , has
64 = Θ(1) computational tile types and uses 12 = Θ(1) tile types to encode the input. It computes
in time linear in the size of the input, and each assembly has the probability of at least

(
1
2

)n of
finding the satisfying assignment, if one exists.

I have designed two systems that solve well known NP-complete problems k-SAT , for all k ∈ N,
in the tile assembly model. The first system, S2

n, uses Θ(n2) distinct tiles to decide a Boolean
formula with n distinct variables and is closely related to a previously described though unproven
system [69]. The second system, SSAT , uses 64 = Θ(1) distinct tiles to decide a Boolean formula. I
prove the correctness of both systems and analyze their size and time complexities. Both systems
compute in time linear in the input size. Each nondeterministic assembly has a probability of success
of at least

(
1
2

)n, where n is the number of distinct variables. Thus a parallel implementation of
SSAT , such as a DNA implementation like those in [12,88], with 2n seeds has at least a 1− 1

e ≥ 0.5
chance of correctly deciding whether a Boolean formula is satisfiable. An implementation with 100
times as many seeds has at least a 1−

(
1
e

)100 chance.
Tile system solutions to problems that require such unique identifiers on variables, nodes, or

edges have resorted to using Θ(n) tiles to encode the input, and no fewer than Θ(n2) tiles to
compute, for inputs of size n [69]. My proposal is the first constant-size tileset solution that
solves such a problem, and the mechanism I design for uniquely addressing variables is completely
portable to solving other such problems, such as graph problems, many of which are known to be
NP-complete.
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Part II

Software Architectural Style for Internet-Sized Networks
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Chapter 5

Background and Related Work in Software Engineering

The Internet’s growth has created networks with great computing potential without a clear way to
harness that potential to solve memory- and processor time-intensive problems. Networks, such as
the Internet, have the potential to solve NP-complete problems (and other problems for which we
do not know polynomial-time solutions) quickly, but as their individual nodes may be unreliable or
malicious, users may desire guarantees that their computations are correct and are kept confidential.
Mechanisms for distributing computation over such large networks are likely to require a great deal
of collaboration, while the large size of the network is likely to require that collaboration to scale
well.

I propose an architectural style, called the tile style, for discreetly distributing computation over
a large network. This style heavily leverages the self-assembly work presented in this dissertation.

The tile architectural style is particularly applicable to problems that are computationally
intensive and easily parallelizable. Computationally intensive problems are ones that a single
computer is unlikely to solve quickly, while easily parallelizable problems are ones that inherently
yield a large number of parallel threads. For example, all NP-complete problems have both of those
properties [98]. Further, my work is applicable to users who desire discreetness and have access to
large but unreliable networks. By discreetness, I mean that the user does not want others to find
out the input or the algorithm. By large but unreliable network, I mean a network, such as the
Internet, that is partially or entirely outside of the user’s control, and perhaps even hostile.

What follows are three scenarios that are at the heart of the problems the tile architectural
style tackles.

1. A large university wishes to digitally deliver recent graduates’ transcripts to graduate schools
and employers. This information is sensitive, and needs to be encrypted using the recipient’s
public key and digitally signed using the university’s private key. It may take the university’s
transcript department’s computer a long time to encrypt and sign the thousands of requests,
but fortunately it has access to the university’s network of computers. While that network
may be large, the individual nodes are insecure and cannot be trusted with sensitive data
such as the university’s private key or the students’ transcripts.

2. An espionage agency is attempting to break an RSA code sent by an enemy. The agency
wishes to use a large network to factor the enemy’s public key; however, it cannot allow
anyone to know the key’s factors or even whose key it is factoring. Since the agency has
access to the Internet, an incredibly large network of computers, it should be feasible to factor
nondeterministically, or through brute force. However, the problem is to do so discreetly,
without the nodes on the network learning the problem or the input.
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3. A pharmaceutical company has finished running a large clinical trial and has collected data
that need to be analyzed. The data are sensitive and the company does not want that data
to become public prematurely, but it wishes to use a large public network in order to process
the data. Moreover, not only are the data private, some of the analysis algorithms may be
proprietary as well. The company needs a way to distribute the computation on an insecure
network while making neither the data nor the algorithms public.

The above scenarios will each result in a complex distributed software system. It has been shown
that such systems are most effectively approached from an architectural perspective (e.g., [81]). In
particular, software architectural styles present generic design solutions that can be applied to
problems with shared characteristics.

I propose to create a software architectural style that allows distributing problems over a large
network in a discreet, fault-tolerant, and scalable manner. To that end, I will rely on the theoretical
study of self-assembly and a formal model of crystal growth, called the tile assembly model [106].
This model is Turing universal, thus it can compute all the functions that a traditional computer
program can. Systems in this model show remarkable fault tolerance, self-regeneration, distribution
of information among components, and scalability, and a software architecture that implements the
rules of such systems should inherit these properties.

The tile architectural style can be evaluated theoretically, using mathematical analysis of the
architecture, and empirically, using a tile style-based system on a large network solving an NP-
complete problem.

In this chapter, I will discuss software engineering work related to building large distributed
systems. I will overview software architectures and their role in the design and implementation of
large systems and then cover several categories of large distributed systems, such as grid computing,
and systems that ask personal computers to donate their CPU time to computation. Then, I
will discuss theoretical work on how much help one can expect to get from other computational
resources, both in the realm of classical and quantum computing. Finally, I will overview work on
secure multy-party computation.

5.1 Software Architectures

As in all engineering fields, as one builds larger and more complex systems, it becomes impossible to
keep all levels of design in mind at all times. The most effective way of engineering large systems is
breaking them up into subsystems, engineering those, perhaps by recursively breaking those up into
smaller systems, and then abstracting away the details of the underlying systems to combine them
into a large product. It has even been argued that large and complex systems cannot be efficiently
built without a high-level design that describes the elements from which the system is built, the
types and modes of interaction between them, and patterns of their composition [95]. Software
architecture has been identified as an important part of building almost all large systems [81].

A standard software architecture consists of a description of the components of a system, which
includes the data the components handle and the procedures they execute on that data, connectors
that allow interaction between those components, and configurations that describe how the com-
ponents come together to form the system [95]. A single architecture can have several views, each
emphasizing different aspects of that configuration and its underlying system.

The particular goal of software architectures is to facilitate the development of large systems
from smaller systems, encouraging reuse of previously engineered blocks and concepts. When used
correctly, architectures can lead to the ability to use components designed by other architects, for
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purposes far from their original intent, in varying environments, and under different interaction
protocols.

Systems that have a poor underlying software architecture can be disastrous, while a good one
helps to ensure the system’s key properties, such as performance, reliability, portability, scalability,
and interoperability [81].

Architectures provide engineers with a high-level conceptual understanding of a system, creating
clear representations of the system, while abstracting away design, implementation, and deployment
details until a time when those details become relevant. The goal of the architecture is to equip
the engineer with the necessary conceptual tools and abstractions, before forcing her to resort to
using software development tools.

One abstraction is the architectural style. A style is a set of design rules that identify the
kinds of building blocks that may be used to compose a system, together with the local or global
constraints on the composition [95]. Styles encapsulate the best design practices and successful
system organizations [17, 72]. They have also been considered as an economical way of developing
architecture-based systems [79]. Several architectural styles have been in use for a number of years,
including client-server, pipe and filter, blackboard [95], and model-view-controller [66]. Other styles
have emerged in the last decade from the research in software architectures, including C2 [101],
GenVoca [17], and REST [52].

Several overviews of architectural styles exist [52,62,95]. The preliminary classification of styles
given in [94] distinguishes between them on the basis of control and data interactions, as well as
the types of analysis relevant to each style.

Software architecture can be used to “force” a software system to conform to certain rules, thus
resulting in some desired properties. For example, mandating that two components communicate
via implicit invocation can result in systems that are more easily evolvable. However, it is also
possible to provide desired system properties as an emergent behavior of the architecture without
forcing restrictions on the system designer. For example, Mikic-Rakic et al. [77] have argued that
for a system to be self-healing, the system must be self-observant and alter its behavior in hostile
environments. However, in my proposed architectural style, the system will exhibit properties of
self-healing naturally, without observing or altering its behavior. Similarly, Devanbu et al. [47] have
argued that security, a crucial property of most modern software systems, may be implemented
in the connectors mediating the interactions among the system’s components. Accordingly, my
architectural style allows for security in the connectors; however, discreetness, one aspect of security,
is an emergent property of the style.

While there are several definitions of architectural styles (e.g., [16, 41, 95]), I directly leverage
Mikic-Rakic et al.’s [77] definition, in formulating the tile style. They have argued that an archi-
tectural style can be described along five dimensions: external structure, topology rules, behavior,
interaction, and data flow [77]. External structure describes the “outside view” of the compo-
nents in the architectural style; topology rules describe the allowed paths of interaction between
those components; behavior describes the components’ internal function and state; interaction cap-
tures the collaboration between the components; and data flow specifies the structure of the data
exchanged by the components. I will follow this scheme in defining the tile architectural style.

There are several software architectural styles, certain aspects of which I will use in designing
my tile architectural style. I now briefly discuss these styles and their uses.

5.1.1 Client-Server Architectural Style

A client-server architectural style has been in use for years [95]. It classifies the components of
the system as either clients or servers. The clients may present the servers with queries, and the
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Figure 5.1: The client-server architectural style. Some components of a system are designated as
clients and may query the components designated as servers. The servers answer those queries.

servers are charged with answering those queries. Figure 5.1 shows a schematic of the client-server
architectural style. In this schematic, there are two servers and nine clients.

In its purest form, the client-server architectural style keeps no state about the clients at the
servers. Each query must contain all the information necessary to be answered by a server. This
way, the resulting architecture is most scalable because the servers do not have to remember the
clients’ state and can serve the most clients, one query at a time. Some systems may break this
requirement and allow the servers to keep some state about its clients, for example, to minimize
future network traffic (if the components happen to be distributed on a network). This architectural
style allows the data to be distributed on a few components and the clients to be lightweight. All
the data are kept at the servers, and the clients need only to be able to ask the servers and keep
the current user’s state, but do not need to be able to perform much computation on their own.

Note that the client-server style is limited by the number of queries the servers can handle. In
large networks with few servers and many clients, the servers may become overloaded.

5.1.2 REST Architectural Style

The REST (Representational State Transfer) architectural style allows the transfer of client state
between resources. Among the most successful systems that uses the REST architectural style
is the World Wide Web [52]. Using the World Wide Web as an example, a client may access a
resource, such as a URL, which returns a representation of that resource, such as a webpage. A
client may follow a hyperlink on that webpage to another resource, thus transferring the state to a
new state.

Styles can be combined. For example, components in the REST architectural style may be
implemented as components from the client-server style. In such a view of the architecture, it is
possible to describe heavy servers and light servers as well as heavy clients and light clients. A
heavy component includes a lot of functionality, while a light one has only minimal functionality.
Thus servers may deviate from the standard client-server style and store some or even a lot of state
about their clients, becoming heavier and taking some of the load for remembering the state off
the clients. Alternatively, a heavier client may reduce the load on the server, resulting in a more
scalable system that allows the server to handle more clients.

83



Front-End Business Logic Database

Figure 5.2: The three-tier architectural pattern. There are three major components of the system,
the front-end, the business logic, and the database. Each component only talks to the component
next to it, so the front-end cannot interact directly with the database. This architectural pattern
is commonly used by Internet retailers.

5.1.3 Three-Tier Architectural Pattern

The three-tier architectural pattern is a popular pattern [95] among Internet retailers who use this
architecture for business. Figure 5.2 shows a schematic of a three-tier architectural pattern. An
example of a system that uses this patern is an airline ticket reservation system. This system has
a front-end component, such as a web site that users may use to search for tickets or a travel agent
interface, a business logic component that manages the ticket searches, and a database component
that stores information of available and purchased tickets, past customers, etc.

Another example of combining styles, and in this case a pattern, is the airline ticket reservation
system that may consider implementing the interaction between the business logic component and
the database component using the client-server architectural style.

5.1.4 Peer-to-Peer Architectural Style

The peer-to-peer architectural style [102] is perhaps the most relevant to my work. This style allows
for a highly decentralized network, which can be modeled as a swarm of nodes, none of which have
more power on the network than others.

The peer-to-peer architectural style’s main advantage over the client-server style is that it
is even more scalable. This style diminishes some components’ roles as servers, and makes all
components roughly equal. The bandwidth and computational power scale nearly linearly with
the number of components. In fact, early systems based on the peer-to-peer style were closely
related to client-server-style systems, with a single “super node” component, with which each new
component had to register [90] and from which components learn about other components [42].
Once the components know about each other, they interact directly with each other without using
the super node component.

Peer-to-peer networks have been widely used by file-sharing systems (e.g., Napster, Gnutella [90],
and Bittorent [42]). More recently, peer-to-peer telephony has emerged, led by Skype [15]. Skype,
and some newer implementations of Bittorent, distribute the job of the super node over many
components, using the same peer-to-peer style to organize them. Figure 5.4 shows a schematic of
a system with distributed super nodes.
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Figure 5.3: The peer-to-peer architectural style. In this architectural style, every component has
roughly the same power, resulting in a highly decentralized system. Components may leave the
network at any time, and new components may join the network.

5.1.5 Publish/Subscribe Architectural Style

The publish/subscribe architectural style allows the organization of components that have resources
and components that need access to those resources [36]. Every component that needs access to
a resource subscribes by letting the component that provides that resource know. When there is
a change in that resource’s status, such as becoming available, the component responsible for that
resource publishes the status change and that information gets delivered to the subscribing com-
ponents. Often, publish/subscribe architectures use intermediary agents called brokers to manage
the subscriptions and publications.

Figure 5.5 shows an example of a publish/subscribe architectural style. There are three com-
ponents, two of which subscribe to each of the two available resources. Brokers manage those
subscriptions and forward the desired data to the subscribed components.

5.2 Grid Computing

Grid computing, or grid-based computing, is a paradigm with a goal similar to mine: to distribute
computation over a large number of nodes. Grid computing usually does not concern itself with
distributing the computation in a discreet manner, but only with distributing it efficiently and in a
scalable manner. The work on grid systems in the realm of security has focused on authentication
of the individual machines, and not discreetness. Grid computing can be divided into two areas:
computational grids and data grids [76]. The former concerns itself with distributing computational
load over a network, while the latter focuses on delivering large volumes of data to a distributed
user base. The goals of the computational grids are closely related to those of my work. The
overview of grid computing I present here follows closely a grid computing review from [75].

The most widely used solution in the area of computational grids is the Globus Toolkit [54].
Globus is an open-source middleware framework for constructing and deploying grid-based soft-
ware systems. It combines a middleware transport layer (reified in the form of the Simple Object
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Figure 5.4: The peer-to-peer architectural style with distributed super node components. The
super nodes, which components use to join the system, know about parts of the system but not the
entire system. This architectural style is more scalable than one with a single log-in component.

Access Protocol (SOAP) [61]), a suite of grid-services and protocols (e.g., Grid Resource Allocation
Management or GRAM [54], GridFTP [54], and so on) and a web services-based implementation
infrastructure for constructing and deploying grid-based software systems using various program-
ming languages, including Java, C++, and Perl. While Globus is primarily used by the academic
and research communities, IBM, Sun, and Microsoft have begun to adopt Globus as well [56].

Globus organizes the sharing of computing, data, and resources among network nodes, which is
the basic goal of grid computing. However, while Globus goes a long way in achieving the basic goal
of grid computing: the establishment of virtual organizations sharing computing, data, metadata,
and security resources, its adoption and use across a more widespread family of software systems and
environments would likely be improved by the inclusion of some salient features; among them are
(1) integration of architecture-based software development, which has been shown to facilitate and
improve large-scale, distributed software construction, and (2) the decoupling of Globus protocols
and services, such as GridFTP and GRAM, from their heavyweight origins, File Transfer Protocol
(FTP) and Lightweight Directory Access Protocol (LDAP), respectively. The inclusion of these
features would likely allow Globus to become applicable to larger problems. Particularly related to
my work, Globus offers a number of security facilities, but does not explore the issues of distributing
computation to its nodes in a discreet manner.

Alchemi [10], an alternate grid framework, is based on the Microsoft .NET platform and allows
developers to aggregate the processing power of many computers into virtual computers. Alchemi
is designed for deployment on personal computers, similar to the work I discuss in Section 5.3.
The computation takes place only when the personal computer is idle, an approach that could be
employed by my systems.
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The peer-to-peer architectural style, some aspects of which I use in developing my systems,
influenced a grid framework called JXTA [73]. JXTA has a layered architecture that abstracts
away low-level protocols and services, such as host discovery, data sharing, and security. Here, just
as with Globus, the computation is not distributed across the network in a discreet way.

5.3 Nondiscreet Distributed Computational Systems

The growth of the Internet in the 1990s has made it possible for researchers to use public computers
to distribute computation to willing hosts. A barrage of software designed to solve computationally
intensive problems has emerged to take advantage of this phenomenon, enticing users to devote
their computers’ otherwise idle cycles to some academically or otherwise worthy cause. Three
related systems that concentrate on distributed computation are SETI@home, Folding@Home, and
Rosetta@home.

SETI@home (SETI stands for Search for Extraterrestrial Intelligence, a scientific area with the
goal of detecting intelligent life outside Earth) is a distributed system, run out of the University of
California at Berkeley, that processes radio signals headed toward Earth from outer space. Radio
telescopes collect these radio signals from outer space. Some believe that finding a radio signal that
is not known to occur naturally would indicate the existence of intelligent life on other planets.
Originally, the radio signals were processed on special-purpose supercomputers, but in 1995, David
Gedye proposed distributing the computation over the Internet [65,92].

The SETI problem is to scan the radio signals received by a radio telescope to identify if there are
any narrow-bandwidth signals. Claiming that if we were to try to communicate with other planets,
we would use narrow-bandwidth signals (also our own loose communication signals are narrow-
bandwidth signals), it makes sense to search for such signals in the broad-range signals captured
by the telescopes. Searching for signals in a data stream is an easily distributed task: the data
are broken down into frequency bands by using fast Fourier transforms and individual computers
can examine the perhaps slightly overlapping bands independently. Further, data from different
telescopes, and thus from different parts of the sky can be examined virtually independently. The
SETI@home system distributes a small portion of the signal to each of its volunteer computers
around the Internet, and each computer executes the exact same algorithm on the entire input it
receives and reports the results back to the central node. As of October 2000, the project had
processed nearly 39 terabytes of data by 2.4 million users, with up to a million of them working at
any given time [65].

Figure 5.6 shows a schematic of the SETI@home network, indicating one possible break up of
the data over the nodes. Apart from their inability to decide on a common capitalization scheme for
the project names, the creators of the systems I describe below (Folding@Home and Rosetta@home)
use almost identical network setups to the SETI@home setup. Of course the data, and thus the
types of data ranges, are different for these different projects.

Folding@Home [53,70], run out of Stanford University, and Rosetta@home [86], run out of the
University of Washington, are similar distributed systems to SETI@home, but they attempt to
solve instances of the protein-folding problem. The protein-folding problem is, given the sequence
of amino acids that make up a given protein, to determine that protein’s secondary structure. This
problem, like the SETI problem, is easily parallelizable, and while it only takes microseconds in
our cells for a protein to fold, we know of no fast (polynomial-time) algorithms to determine the
secondary structure. In fact, the protein-folding problem has been shown to be NP-complete [20].
Each possible fold of the protein can be examined for stability using the known properties of
hydrophilicity and hydrophobicity, and its free energy can be determined in polynomial time,
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Figure 5.6: SETI@home distributes computation over a large network. There is a single log-in server
that decides which data to send to each node. The nodes perform the necessary computations and
send their results back to the server.

independently of such analysis of other potential folds. Thus it is possible to distribute such
computation over independent nodes. The Folding@Home and Rosetta@home projects have in
some way been a success, resulting in numerous scientific publications regarding protein secondary
structures.

A number of other similar projects exist, including ones that work to factor numbers. Dis-
tributing computation, for some algorithms, is quite powerful, and for some special algorithms,
one can even execute those algorithms more than m times faster on m machines than on a single
machine [96] (due to memory sharing and caching). The problems I have called highly parallelizable
(e.g., NP-complete problems) are of the class of problems for which we know algorithms, most of
which can achieve linear speed up via distribution.

While the work presented in this section displays the ability to distribute certain types of
computation over large networks, that computation is neither discreet nor scalable. The individual
nodes know the entire algorithm and portions of the data large enough to be used as an input to that
algorithm (e.g., entire narrow radio bands as oppose to small portions of individual frequencies).
Further, a single client computer distributes all the work to the individual nodes, so as the network
grows, the client computer would have to communicate with more computers. Discreetness and
scalability are two properties my distributed systems will posses.

5.4 Discreet Nondistributed Computational Systems

Some research [1, 50, 51] has gone into devising strategies for getting computational help without
disclosing the input to the computation. This work has focused on asking a single other computer
for help, and thus does not directly extend to distributed systems. However, the theoretical results
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Figure 5.7: In the quantum computing setting, Alice, who cannot or chooses not to do universal
quantum computation, may get help from Bob, who can do universal quantum computation, with-
out revealing the algorithm or the input to Bob via the mechanism of entanglement. In the classic
computing setting, getting such help is not possible [40].

related to the amount of information one can hide when asking a single computer for help is directly
related to the amount of information one can hide from an entire network when asking it for help.

Childs [40] has shown that in classical computing, for NP-complete problems (as well as many
others), it is not possible to ask a single entity for help and receive useful feedback without disclosing
at least some information about the entire input and the problem one is trying to solve. He also
points out that it may be possible to disguise some fairly insignificant information. For example,
in getting help in solving 3-SAT , one could randomly negate every occurrence of some of the
variables in a Boolean formula and get help solving the modified formula without disclosing the
original. However, except for the final Boolean assignment, the rest of the information, such as
the relationship and frequency of the variables, is preserved. Childs [40] has also shown that using
quantum computing, one can get help solving computationally intensive problems without sharing
specific input or problem data by using entanglement. Figure 5.7 illustrates, on a high level, the
approach in getting help in a quantum setting. Alice, who cannot perform universal quantum
computation, asks Bob, who can, for help.

My work lies in the middle of these two findings. I stick to classical computing and do not rely
on quantum computing, which, to date, is not a viable technique in practice. I also accept the
finding that it is impossible to get help without sharing your data with the entire network, but
devise a mechanism that allows distributing the data and algorithm around the network such that
every sufficiently small group of nodes knows neither the algorithm nor the input.

Some proposals for distributing computational problems over the Internet point out that solving
NP-complete problems has the extra advantage that a small certificate could be provided with the
answer allowing the client to check the correctness of the computation quickly [18]. My approach
can take advantage of this observation to help the client ensure that the solution is correct. What
I will show, however, is that such a certificate may be an overkill because the fault tolerance
properties of my systems will allow the user to set an arbitrarily high probability that no malicious
or faulty node may cause the outcome of the computation to be incorrect.
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5.5 Secure Multi-party Computation

After Diffie and Hellman posed the problem of secure multi-party computation [48], Yao suggested
and solved the millionaire problem: two millionaires wish to learn who of them is the richest
without sharing their worth [110]. In [111], Yao generalized the problem to what is now known
as multi-party computation protocols. In these protocols, there are n parties, each with a piece of
private information. Their goal is for every party to gain access to the value of some function of
those pieces of information without sharing the private data.

Yao’s garbled circuit protocol is a well-known result in multi-party computation protocols. It
states that for every polynomial-time computable function on two inputs, there exists a polynomial-
time protocol that allows two parties, each with access to one of the inputs, to compute the value
of that function on those inputs without either party learning the other’s input. The result follows
from the fact that for every polynomial-time computable function, there exists a polynomial-size
circuit, and each party can compute a garbled form of this circuit [110].

The first party, for every wire w in the circuit, chooses two random strings Sw,0 and Sw,1. These
random strings represent the values of 0 and 1, on the wire w. The first party then computes a
garbled truth table for each gate, using a symmetric encryption scheme E and each wire’s random
string values. For example, if wires 1 and 2 are the inputs to an AND gate and wire 3 is its output,
the truth table’s entry for the value 0 on wire 1 and value 1 on wire 2 would be ES1,0

(
ES2,1 (S3,0)

)
.

To prevent the second party from learning the logic of the truth table, the first party permutes the
table entries and then sends these garbled truth tables to the second party, along with its garbled
inputs via oblivious transfer. Oblivious transfer is a primitive operation of sending information
while remaining oblivious as to what is being received and is critical to the correctness of almost all
multi-party computation protocols. The second party can then use its own inputs and the garbled
truth tables to compute the garbled value of the circuit.

If both parties are honest, Yao’s garbled circuit protocol is guaranteed to compute the correct
answer without sharing the private data [71]. In a model with malicious parties, Yao’s protocol is
not secure; however, it can be made secure with the use of zero-knowledge compilers [59,60].

In the generalized problem, with n parties, Ben-Or et al. [19] have shown that a function on n
inputs, each of which is on a different host, can be computed by a complete network on n processors
such that if no fault occurs, no set of size t < n

2 processors gets any additional information, other
than the function value, and that if Byzantine faults may occur, no set of size t < n

3 can either
disrupt the computation or get additional information.

While the secure multi-party computation protocols try to solve a problem that in many ways
is similar to mine, it is also in many ways orthogonal. These protocols must deal with data being
distributed on different nodes, whereas inputs to my computations are known on a single node.
Further, as these protocols require complete communication networks on n nodes, they are unlikely
to scale to Internet-sized networks — a primary goal of my work. At times, however, my systems
will need pairs of nodes to compute simple functions of their private data without sharing that
data. In those cases, Yao’s garbled circuit will provide the necessary infrastructure.

Multi-party computation protocols have led to solutions in the fields of zero-knowledge proofs,
distributed voting, private bidding and auctions, sharing of signature or decryption functions,
private information retrieval, secure poker play, and many others [21,45,93,97]. Goldreich provides
an excellent in-depth discussion of secure multi-party computation protocols in [58].
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Chapter 6

The Tile Architectural Style

In this chapter, I will explain how the tile architectural style allows distributing computation over
a network. The work presented in this chapter appears in my papers [25,31–33]. To distinguish tile
systems and software systems based on the tile style, I will refer to the former as “tile assemblies”
in this and the next chapters.

A tile-style architecture is based on a tile assembly. The components of the architecture are
instantiations of the tile types. While a system based on such an architecture will have a large
number of components, there is a comparatively smaller number of different types of components
(e.g., 8 types for adding and 64 types for solving 3-SAT ). Nodes on the network will contain these
components, and components that are adjacent in a crystal can recruit other components to attach
by sampling nodes until they find one whose side labels, or interfaces, match. Note that many tile
components can run on a single physical node, as I will further elaborate below.

In addition to defining the tile types, a tile assembly also directs the architecture how to encode
the input to the computation. The input consists of a seed, which is a small connected collection
of tiles, such as the clear tiles along the right and bottom edges in Figure 4.39. The seed replicates
on the network to create many copies.

For exposition purposes, I will first summarize the tile style using the characterization proposed
by Mikic-Rakic et al. [77]. I will then elaborate on the key facets of the style in the remainder of this
chapter. Each component’s externally visible structure comprises the four interfaces, i.e., side labels
(shown on the sides of each tile). The topology is a 2-D grid of components that allows neighbors on
the grid to interact. The components exhibit four behaviors: identifying other nodes on the network
that deploy particular types of tiles (as described in Section 6.2.2), replicating to create copies of
themselves on other nodes (as described in Section 6.2.3), cooperating with neighbors to recruit
suitable new components to attach (as described in Section 6.2.4), and reporting the solution to
the user. The interaction consists of exchanging data about a component’s sides in order to recruit.
Finally, the data flow is limited to the components’ interfaces, allowing components to inform their
neighbors of their side interfaces, but provide no other information.

6.1 Using the Tile Style

A user who wishes to solve a computationally intensive and easily parallelizable problem, e.g., an
NP problem, and has access to a large unreliable network, may use the tile style to design a system
to solve her problem. The user has two options: (1) use the tile style to design her own architecture
based on the tile assembly that solves her particular problem, or (2) reduce her problem to 3-SAT ,
using a standard polynomial-time reduction [98], and use the 3-SAT tile assembly (or other such
tile assembly, e.g., the SubsetSum assembly).
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Figure 6.1: Overview of tile style node operations.

The two options have clear analogs in the traditional computing realm. When presented with a
computational problem, one can either (1) write a program to solve that problem or (2) relate the
problem to one for which an established program already exists. Option 1 can be expensive and
error-prone and will require intricate design and verification, though may result in the most efficient
program possible. Option 2 can save significant time and effort and provides the user with more
confidence in the final solution. For these reasons, I advocate the second option. At the same time,
I acknowledge that using the same tile assembly for all computation may compromise discreetness,
because an adversary may discover that the user always uses the 3-SAT tile-style system. A
compromise is the design of several tile assemblies, each to solve a different NP-complete problem,
and selecting among these assembly-based systems at random every time the user is presented with
an NP problem to solve. This approach allows the user to reuse existing systems while retaining
some discreetness of the algorithm. Only the algorithm’s discreetness can be compromised by
reusing systems and not the input’s; a user who is more concerned with the discreetness of the
algorithm may choose option 1. For simplicity, I restrict my discussion to 3-SAT in this chapter.

Whichever tile assembly the user chooses will serve as the template for the architecture, with
the assembly’s tile types defining the types of components. Part of a tile assembly is the description
of seeds that encode inputs (e.g., the clear tiles in Figure 4.39 are the seed for that 3-SAT computa-
tion). The user sets up a seed to encode her input and assigns computers, or nodes, on the network
to deploy the seed tile components. Once the initialization is complete, starting with the seed tile
components, adjacent components deploy on other network nodes to represent fitting components
and eventually produce the solution. The solution tile components (e.g., the X component for the
3-SAT assembly) then report their state to the user. Figure 6.1 summarizes the steps nodes take
to perform the computation. I will now elaborate on those steps.

6.2 Node Operations

Systems built using the tile style are self-assembling software systems. That is, the nodes par-
ticipating in the computation are in some ways self-sufficient and require no central controlling
entity. In this section, I describe four operations performed by the nodes that allow self-assembly:
initiation, discovery, replication, and recruitment.

6.2.1 Initiating Computation

When a client computer wishes to initiate a computation, it creates a tile type map. A tile type
map is a mapping from a large set of numbers (e.g., all 128-bit IP addresses) to tile types. It
determines the type of tile components a computer with a given IP address deploys. The tile type
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map breaks up the set of numbers into k roughly equal-sized regions, where k is the number of
types of tiles in the tile assembly. For the 3-SAT example from Section 4.4, there are 64 different
tile types, so the tile type map would divide the set of all 128-bit numbers into 64 regions of size
2122. The exact mapping is not important, but it may be convenient to simply map the first 2122

numbers to tile type 1, the next 2122 to tile type 2, and so on. Thus the tile type map maps each
IP address (or other unique identifier), passed through a hash function, to a tile type. The hash
function ensures an even distribution of tile types. The size of the tile type map, which will later
be sent to all the nodes on the network, is small. For a tile assembly with k tile types, the tile type
map is k 128-bit numbers. Below, I describe how nodes learn to what tile types their IPs map.

The tile type map will uniformly distribute the tile types over the network, and also ensure
that unless a computer can control more than a single IP address, it will not be able to learn of
more than one tile type. Note that in some networks, it may not be prohibitively difficult for an
adversary to have a single machine control a large number of IP addresses. If that is a concern,
it is possible to use other unique identifiers, such as network card MAC addresses, that are more
expensive to control in bulk.

I assume that the network is such that each computer is connected to a constant number of
other computers (say p computers), distributed roughly randomly. This is a first-order approx-
imation of the Internet, but my analysis will extend to more accurate models. Every computer
may contact its neighbors directly, via their IP addresses, and may also query its neighbors for
their lists of neighbors, thus discovering more nodes. A number of my algorithms are designed
specifically to work on such a distributed network, on which no single node knows a large portion
of the network. For completeness, I will discuss how these algorithms will perform on more highly
connected networks, and how the algorithms could be improved for such networks.

For each tile type, the client computer sends the tile type map and that tile type’s description
to at least one node whose IP maps to that tile type. A tile type’s description consists of the four
tile component interfaces, which can be described using just a few bits. For discussion purposes,
I will overestimate and use 32 bits to describe the four interfaces. To accomplish this initial task,
the client first contacts its neighbors and sends them the tile type map and their appropriate tile
type descriptions. If no neighbors map to a certain tile type, the client requests from the neighbors
their neighbor lists using a small request (a few bits), and receives back the IPs of more neighbors,
and so on, until at least one node of every tile type knows its type. For a system with k tile types,
the client will have to “collect” at least one of each of the k types, which means that it will have
to sample Θ(k log k) computers. Specifically, after sampling ck log k computers, where c < 2, the
probability that a node has not found all k tile types is 1

2 . After sampling 2ck log k nodes, that
probability is

(
1
2

)2. The probability continues to drop exponentially, so after sampling 20ck log k,
the probability of not having located a node of each needed type is only

(
1
2

)20
< 10−6. For the 3-

SAT example, 20ck log k will be fewer than 15,000 packets, which for typical UDP packets amounts
to only 750 kilobytes. This analysis, and the value of c, come from the solution to a well-known
coupon collector problem [80].

The nodes that learn their types from the client computer propagate the information to their
neighbors whose IPs map to the same tile types, and so on, until every computer on the network
learns the type of tile component that computer will deploy. Thus every computer receives the
tile type map and the description of its own tile type. Each computer might receive its tile type
information and the tile type map several times, up to as many times as it has neighbors. I assumed
earlier that every computer in my network of N nodes has only a few (p) neighbors. Thus, the total
amount of data sent by each node is Θ(p), because roughly 1

k of a node’s p neighbors will have to

be sent the 128k bits
(

128kp
k = Θ(p)

)
. If the network is a highly connected one, e.g., every node
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Figure 6.2: A network with six nodes. I assume that every node in my underlying network has p
neighbors (here p = 3).

is connected to every other node, the amount of data sent by each node may be a concern, as it
would be Θ(N), where N is the number of nodes on the network. However, the problem on such a
network becomes far simpler. Each computer could send the information to only p of its neighbors
(resulting in Θ(p) data sent from each node), or the client computer could send all the information
itself (resulting in Θ(Nk) data sent from a single node and no data from others). The diameter of
a network of N nodes with randomly distributed connections is Θ(logN) [80], so the tile type map
and the tile types will propagate through the network in Θ(logN) time.

I now help clarify the procedure for delivering the tile type map and tile types to each node on
the network with the use of an example. Figure 6.2 shows an example network on six nodes, A, B,
C, D, E, and F. Note that in this network, p = 3, meaning that every node is connected to 3 other
nodes. I assumed earlier that the underlying network is such that every node has p neighbors, but
should note that it is straightforward to convert most networks into these special networks: nodes
that have too few neighbors can discover more via their neighbors, and nodes that have too many
can simply ignore those. I assume such a regular network only for ease of analysis; my algorithms
work on more typical networks with nodes of various degrees.

If node A is the client, it decides on the tile type map, and then tells its neighbors (B, C, and
D) the tile type map and descriptions of their particular tile types. Suppose that in this small
example there are four tile types, and the tile type map chosen by A maps A itself to tile type 1, B
and D to tile type 2, C to tile type 3, and E and F to tile type 4. A informs B, C, and D of their tile
types, but knows of no nodes that map to tile type 4. Then A requests from B its neighbors, and
B returns A, D, and F. A recognizes that F is a newly discovered node and records it on the list
of its neighbors. It also uses the tile type map to identify F as a tile type 4 node and informs it of
the tile type map and the description of tile type 4. Node A is now satisfied, and each of the nodes
B, C, D, and F check their neighbors for ones of the same tile type as themselves. Nodes B and D
recognize that they are both of type 2 and send each other the tile type map and the description
of tile type 2. Note that this information is redundant because both nodes already know it. Node
F recognizes that it and E are both of type 4 and sends E the tile type map and the description of
tile type 4. At this point, all nodes are finished sending information and know the tile type map
and the descriptions of their particular tile types.

Until now, I have ignored the case of a network with fewer nodes than the number of types of
tiles. If the network is that small, it is possible to create multiple virtual nodes on each machine
and proceed as before, though a single physical node will have knowledge of more than one tile
type, compromising discreetness. In the limit, for a network with a single node, it has been
analytically shown that discreetness is not possible [40]. The tile style is intended to be used on
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large networks, and while it can be made to work on small ones as well, the discreetness properties
may be compromised. I will return to this issue in the discussion of my empirical evaluation in
Section 7.2.

6.2.2 Discovery

After the computation has been initiated, nodes will perform a discovery operation, which will
be used in replication and recruitment, discussed below. The discovery operation, given a tile
type, returns a uniformly-random IP of some computer deploying tile components of that type,
meaning that if a node performs this operation repeatedly, the frequencies of the IP addresses it
returns asymptotically approach the uniform distribution. Thus, every suitable computer has an
equal chance of being returned, in the long run. My algorithm for discovery will guarantee uniform
randomness, which in turn will guarantee that all nodes on the network perform a similar amount
of computation. The algorithm will use a property of random walks to ensure uniform randomness.

In order to quickly return the IP address of a computer that deploys tile components of a certain
type, each node will keep a table, called the node table, of three IP addresses of each component
type. I explain the reason for this below. For 3-SAT , the size of this table will be 64×3 = 192 IPs.
The table contains only an identifier for each tile type, and not the details about the side labels,
thus preserving the discreetness of the algorithm. The preprocessing necessary to create the node
table is simple: first a node fills in the table with all its neighbors and then gets help from neighbors
(by requesting their neighbor lists). The analysis of this procedure is identical to the analysis of
the client computer finding nodes that deploy tile components of each type in Section 6.2.1; this
preprocessing procedure will take Θ(k log k) time per node (happening in parallel for each node),
for k different tile types. The amount of data sent by each node is limited to Θ(k log k) packets.
For 3-SAT ’s k = 64, that is fewer than 300 packets, which for typical UDP packets amounts to
only 15 kilobytes.

After the preprocessing, when queried for the IP of a computer that deploys tile components
of a given type, the node performs two steps: (1) it selects one of the three entries in the node
table for that tile type, at random, and (2) it replaces its list of three entries in the table with the
selected node’s corresponding three entries. The reason for the replacement is that the selection
of IPs should emulate a random walk on the node graph [80]. The request packet only needs to
contain the tile type (e.g., a 32-bit number) and the answer packet must contain three IPs (three
128-bit numbers). This entire procedure takes Θ(1) time.

I now help clarify the preprocessing and discovery operations with the use of an example.
Suppose the small six node network in Figure 6.2 is part of a larger network, but happens to be
the connectivity of six nodes that all map to the same tile type. In creating its node table, A first
checks its neighbors B, C, and D, and records them in the three slots for that tile type. A’s node
table (for that tile type) is now complete, but had A not found three valid nodes to fill its table, it
would expand its neighbor list by querying one of its neighbors for its neighbors, until it discovered
a sufficiently large portion of the network. B follows the same procedure as A and creates a node
table and records its neighbors A, D, and F as the three nodes deploying the same tile type. When
A needs a node of that type later (for reasons discussed below), it selects a random node from its
three entries. Suppose it selects B. A then replaces its node table entries with B’s entries (A, D,
F). Note that it is possible for a node to store itself on its node table.

Theorem 6.2.1 On a network on N nodes, after filling only Θ(logN) requests for an IP of a
computer that deploys a certain tile type using the above-outlined procedure, the probability of each
valid IP being returned is uniformly distributed.
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Proof: Because the node table keeps independent lists of three nodes of each type, it is sufficient
to prove the theorem for a single tile component type. Consider the directed graph G formed by
representing every node as a vertex with three outgoing edges to the vertices representing the nodes
on the node table. Now consider a sequence of nodes derived by the above-outlined procedure of
picking a random node from the three entries, and replacing those three entries with that node’s
entries. That sequence corresponds to a random walk on G. From [80], a random walk on G
mixes rapidly, which means that if selecting nodes via this random walk after Θ(logN) steps, the
probability of getting the IP of each node becomes proportional to that node’s in degree. Thus on
a uniform graph, every IP is equally likely to be returned.

I have discussed how to convert a random network into one such that each node has exactly
three neighbors. Again I emphasize that this simplification is made to aid my analysis, and in fact
the random walk theorem from [80] holds for all graphs with nodes having three or more neighbors,
so this result is directly applicable to all reasonable distributed networks.

I again make a note of the implications of using the tile style on small networks. A small network
may not have enough nodes to deploy every tile component type on at least three machines, thus
making the creation of the node table impossible, unless I allow initial duplication of nodes. The
reason for the more intricate algorithm, such as ours, is to ensure that every node that deploys
each tile component type is used uniformly. If there are two or fewer nodes that deploy a given
tile component type, returning those with uniform probability is trivial. Thus for small networks,
discovering the entire network does not pose computational difficulty, and selecting nodes uniformly
randomly is trivial.

6.2.3 Replication

After the computation initiation step, the client sets up a single seed on the network, as described
in Section 6.1. Each tile component knows of its neighbors. The seed tile components then replicate
twice, to create two additional copies of the seed on the network. The reason for replicating twice is
that after t time steps, the number of seeds on the network is Θ

(
2t
)
. Note that that are no known

algorithms to solve NP-complete problems without requiring an exponential number of parallel
executions, thus every fixed-size network can be overwhelmed by a large enough input. In the
example from Section 4.4 with 3 variables, the algorithm would need to explore at least 23 = 8
possible scenarios. A goal of the tile architectural style is to distribute the computation across
many physical nodes to execute in parallel, but for a given network size and input size, one can set
bounds on the number of components deployed on each physical node to prevent overloading those
nodes.

To replicate, each node X uses its node table, as described in Section 6.2.2, to find another
node Y on the network that deploys the same type components as itself, and sends it a replication
request. A replication request consists of up to four IP addresses (four 128-bit numbers) of X’s
neighbors. X lets its neighbors know that Y is X’s replica (by sending Y ’s IP to its neighbors).
Those neighbors, when they replicate using this exact mechanism, will send their replicas’ IPs to
Y . Thus, the entire seed replicates.

After creating two copies of the seed, the tile components begin the recruitment process de-
scribed in Section 6.2.4. The newly created seeds will also each replicate twice, thus creating a
number of seeds exponential in time. The seeds continue to replicate and self-assemble until one of
the assemblies finds the solution, at which time the client broadcasts a signal to cease computation
by sending a small “STOP” packet to all its neighbors, and they forward that packet to their
neighbors, and so on. As discussed above, the diameter of a large connected network of N nodes
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Figure 6.3: Tile components that have both a north and a west neighbor (highlighted in the
diagram) can recruit new components to attach to their northwest.

with randomly distributed connections is Θ(logN) [80], so the “STOP” message will propagate in
Θ(logN) time.

6.2.4 Recruitment

In a temperature two computational tile assembly (such as the assembly described in Section 4.4
that solves 3-SAT ), a tile that has both a north and a west neighbor recruits a new tile to attach
to its northwest. Figure 6.3 indicates several places in a sample crystal where tile components are
ready to recruit new tiles.

A recruiting tile component X (highlighted in Figure 6.3), for each tile type, picks a node Y of
that type from its node table, as described in Section 6.2.2, and sends it an attachment request. An
attachment request consists of X’s north neighbor’s west interface and X’s west neighbor’s north
interface. If those interfaces match Y ’s east and south interfaces, respectively, then Y can attach.
At that point, X informs Y of the IPs of its two new neighbors, and those neighbors of Y ’s IP.
Note that X can perform this operation without ever learning its neighbors’ interfaces by using
Yao’s garbled protocol [111], which is crucial for discreetness.

In the example 3-SAT system, the successful crystal recruits 310 tile components (non-clear
tiles in Figure 4.39). An unsuccessful crystal, which I discuss further in Sections 6.3 and 7.1.2 can
recruit fewer, but no more than 310 tiles.

6.3 Answering 3 -SAT in the Negative

A crystal that finds the proper truth assignment that satisfies the Boolean formula reports the
success to the client computer. Since for NP-complete problems the answer is always “yes” or
“no,” the notification is only a few bits. Deciding that there is no satisfying assignment is more
difficult. No crystal can claim to have found the proof that no such assignment exists. Rather, the
absence of assemblies that have found such an assignment stands to provide some certainty that it
does not exist. Because for an input on n variables there are 2n possible assignments, if 2n assemblies
find no suitable assignment, then the client knows there does not exist such an assignment with
probability at least

(
1− e−1

)
. After exploring m · 2n assemblies, the probability grows to at least

(1− e−m). Thus as time grows linearly, the probability of error diminishes exponentially. Given
the network size and bandwidth, it is possible to determine how long one must wait to get the
probability of an error arbitrarily low.

In the example from Section 4.4 with 3 variables, the probability of exploring 23 = 8 assemblies
and not finding the solution is no more than e−1. After exploring 80 assemblies, that probability
drops to e−10 < 0.00005. Note that no crystal can be larger than 310 tiles, so 80 assemblies would
require fewer than 25 thousand tile components. Because the tile components are lightweight (each
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one is far smaller than 1 KiB), there is little reason why even a single computer could not deploy
that many components.
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Chapter 7

Analysis and Evaluation of the Tile Architectural Style

In this chapter, I will present my analysis of discreetness, scalability, and fault and adversary
tolerance of tile-style-based systems. The work presented in this chapter appears in my papers [25,
31–33]. Section 7.1 will cover the theoretical analysis, and Section 7.2 will cover the empirical
analysis.

7.1 Theoretical Analysis of the Tile Architectural Style

Underneath the tile architectural style lies a formal mathematical model of self-assembly, the tile
assembly model. That formal foundation allows me to reason formally about systems built using
the tile style. In particular, I can evaluate the systems’ discreetness, scalability or efficiency, and
fault and adversary tolerance.

7.1.1 Discreetness

I call a distributed system discreet if, with high probability, for all time, for all nodes on the network,
each node can discover neither the algorithm the network is executing nor the entire input to that
algorithm.

I make five arguments in showing that tile style-based systems are discreet. The first three
deal with the discreetness of the algorithm: (1) given one tile type of a tile assembly one cannot
determine any information about the function that assembly computes, (2) it is difficult to control
enough computers to learn all the tile types, and (3) even if an adversary controls enough computers
to learn all the tile types, that adversary cannot determine the algorithm the assembly is executing,
in the general case. The last two arguments deal with the discreetness of the input: (4) given a
single tile in a crystal, it is not possible to learn any information about the input and (5) controlling
enough computers to learn the entire input is prohibitively hard on a large public network. I will
then discuss what kind of information one may be able to learn about the input and argue that it
can be greatly limited by properly encoding the input.

1. First, I show that given a single tile type in an assembly, it is not possible to determine what
function that assembly computes.

Theorem 7.1.1 Let S be a tile assembly with the tileset T . For all t ∈ T , knowing t gives
no information about the function S computes.

Proof: The labels of the sides of a tile t are elements of a finite alphabet. The particular
labels themselves have no meaning other than matching or not matching labels on other tiles’
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sides. Thus, given a bijection from labels to labels, it is possible to relabel the sides of all the
tiles according to that bijection without changing the function the assembly computes. Thus
given a tile t from assembly S, for all computable functions f , there exists a tile assembly
S′ such that S′ computes f and t is in the tileset of both S and S′. Therefore, for every
computable function, there exists a tile assembly with t in its tileset and it is not possible to
deduce any information about the function given only t.

Since the tile architectural style is designed so that each node is only aware of a single tile
type, it follows that no single node on the network may know the algorithm the network is
computing. Note that at the start of the computation, the client computer creates a tile type
map that maps each computer, using its IP address or another unique identifier, to a single
tile type and that nodes only disclose the description of the tile types to other nodes that
map to the same tile type. In both recruiting and replicating, the nodes never learn their
neighbors’ interfaces, and thus cannot learn other tile types.

2. I now investigate how many nodes an adversary must control on a network in order to learn
all the tile types. Since the algorithm the client uses at the start of the computation to assign
one tile type to each node employs a hash function to ensure that this assignment is made
randomly, with a uniform probability distribution over all tile types, no node can trick its
way into being a specific tile type. Thus, based on the coupon collector problem, one must
control at least Θ(k log k) unique identifiers to be able to learn the k tiles types [80].

Thus in order to learn all 64 tile types of a 3-SAT solving tile assembly, an adversary must
control several hundred computers on the network.

3. In general, given a computer program, it is not possible to tell what that program does, or
even if it will halt. A similar statement can be made about tile assemblies, as it is not possible
to determine what function a tile assembly computes, in the general case.

Theorem 7.1.2 Let S be a tile assembly and f be a function. Then in the general case, one
cannot determine whether S computes f .

Proof: Winfree has shown that temperature two tile assemblies (such as the ones I use to
compute functions) are Turing universal, and further, how to design a tile assembly that
simulates a given Turing machine. Assume that for each tile assembly, one can determine
whether that tile assembly computes some function f . Then, given a Turing machine, one
could create a tile assembly to simulate that Turing machine, thus gaining the ability to learn
whether the Turing machine computes f . But Rice’s Theorem [98] says that given a Turing
machine, one cannot tell whether it computes some function f . That is a contradiction, so it
is not possible to know whether a tile assembly computes any given function, in the general
case.

4. For a tile assembly, such as the one solving 3-SAT , each tile type encodes no more than one
bit of the input. A special tile encodes the solution, but has no knowledge of the input. If
every tile component in the crystal were deployed by a different node on the network, it would
be trivial to argue that the computation was discreet. However, since a single node on the
network may deploy several tile components of the same type, the argument relies on the fact
that each component is unaware of its location in the crystal, and thus does not know the
location of the bits of the input. Thus every node on the network may be aware of either some
bits of the input or the solution, but not both, and a node cannot use the partial information
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it has about the bits of the input to recompose that input in its entirety. That is, the nodes
can learn information such as “there is at least one 0 bit in the input,” but no more.

5. It is clear that if an adversary controls or can see the internal data of the entire network, that
adversary can learn the input to the problem. However, the likelihood of such a scenario on
a very large public network is exceptionally low. An interesting question becomes how much
of the network an adversary must control in order to learn the n-bit input.

Theorem 7.1.3 Let c be the fraction of the network that an adversary has compromised, let
s be the number of seeds deployed during a computation, and let n be the number of bits (tiles)
in an input. Then the probability that the compromised computers contain an entire input
seed to a tile-style system is 1− (1− cn)s.

Proof: If an adversary controls a c fraction of the network nodes, then for each tile in a seed,
the adversary has a probability c of controlling it. Thus for a given n-bit seed, distributed
independently on the nodes, the adversary has probability cn of controlling all the nodes that
deploy the tiles in the seed, and thus the probability that the seed is not entirely controlled
is 1− cn. Since there are s independent seeds deployed, the probability that none of them are
entirely controlled is (1− cn)s. Finally, the probability that the adversary controls at least
one seed is 1− (1− cn)s.

Let me examine a sample scenario. Suppose I deploy a tile-style system on a network of 217 ≈
100,000 machines to solve a 17-variable 3-SAT problem. Let me also suppose a powerful
adversary has gained control of 12.5% of that network. In order to solve this problem,
the system will need to deploy no more than 217 seeds, thus the adversary will be able to
reconstruct the seed with probability 1−

(
1− 2−51

)217

< 10−10. Note that as the input size
increases, this probability decreases. The probabilty decays exponentially for all c < 1

2 (that
is, as long as the adversary controls less than one half of the network). In the above example,
control of 25% of the network gives the adversary a probability of reconstructing the input
below 10−5, and control of 33% of the network yields a probability no greater than 10−3. An
adversary who controls exactly half the network has a 1

e ≈ 37% chance of learning the input,
and one who controls more than half the network is very likely to be able to learn the input,
which is why my technique is geared towards large public networks.

One possible challenge to discreetness on large public networks is botnets [46]. The Internet
is home to several 20,000-machine botnets, and botnets as large as 100,000 machines exist,
although they are extremely expensive to maintain [46]. A randomly selected portion of
the Internet is highly unlikely to be dominated by a botnet (e.g., have more than 1% of
its computers be part of any one particular botnet). However, if a network is composed of
self-selecting machines, one must take care to ensure the network is large enough that no
one botnet controls a large fraction of the nodes. A likely scenario on a network such as the
Internet is that no adversary will be able to control a constant fraction of that network. If c is
replaced with a function inversely proportional to the size of the network (consistant with an
adversary controlling a constant number of machines regardless of the size of the network),
the probability of learning the input will decay exponentially as the network grows.

The analysis of Theorem 7.1.3 dictates that the probability of reconstructing the entire input
is low. It is interesting to ask how much information about the input one can discover. While
an adversary who controls some portion of the network is unlikely to reconstruct the whole input,
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that adversary may be able to collect enough information to determine, with some certainty, the
frequency with which 0 and 1 bits occur in the input. Similarly, that adversary may be able to collect
pairs (and triplets, etc.) of tiles deployed on compromised nodes to determine the frequencies of 00,
01, 10, and 11 sequences in the input. The analysis of Theorem 7.1.3 also applies to reconstructing
constant fractions of the input (such as half or 10%) and thus the probability of learning a contant
fraction of the input also decays exponentially. It is somewhat easier to reconstruct constant-
sized tuples such as pairs and triplets. However, the amount of information one can learn from
the frequencies of these tuples is limited by the informational entropy [44] within the frequencies.
Thus one can encode inputs to maximize that entropy by making sure that the numbers of small
equal-length subsequences (e.g., 00, 01, 10, and 11) in the input are equal, thus greatly limiting the
information that an adversary can obtain from such subsequences. The field of DNA sequencing
contains some work on the related problem of reconstructing long sequences from short overlapping
subsequences. Typically, these reconstruction algorithms require the subsequences to be of length
around 100 [37,82], much longer than the sequences likely to be recovered by an adversary who has
compromised less than half of the network.

Each tile component in the 3-SAT system handles at most a single bit of the input. Theoreti-
cally, this is sufficient for solving NP-complete problems; however, practically, handling more than
a single bit of data at a time would amortize some of the cost of communication. Thus each tile
component can be made to represent several bits. This transformation would result in a trade-off
between discreetness and efficiency, as faster computation would reveal larger segments of the input
to each node.

7.1.2 Efficiency and Scalability

The tile style is aimed at large networks and for solving computationally intensive problems. For
small inputs, the overhead of using the tile style may dominate the benefit of parallelization.

When a client wishes to solve a highly parallelizable problem and needs discreetness, she may
choose to do so on her own single computer, perhaps on a small private network of trustworthy
computers, or using the tile style on a large insecure network. The disadvantage of computing on a
network is that, by various estimates, remote communication can be 100 to 1000 times slower than
local communication. The computation is further slowed down by the fact that tiles may have to
perform more basic operations than a program that is not restricted by the components of the tile
style. For instance, the example in Figure 4.39 uses 352 tiles, whereas a simpler program could
simply try all possible truth assignments to the three variables and check whether at least one of
the three literals in each of the three clauses is TRUE , using 23 · 3 · 3 = 72 operations. The upside
is that the tile style distributes the work over the network, parallelizing computation. For small
inputs, there is only so much parallelization of which the tile style can take advantage; however, for
large inputs, the style can significantly speed up computation. For a 3-SAT problem with seventeen
variables and 100 clauses, a single computer would have to perform 217 ·100 ·3 ≈ 3.9 ·107 operations.
On the other hand, a network of 1.3× 105 nodes, such as an existing TeraGrid computational grid
network, would deploy no more than 352 components on each node, resulting in a system that
takes between 1000 · 352

217·100·3 ≈ 9.0 × 10−3 as much time as a single computer (assuming network
communication is 1000 times slower than local communication) and 9.0 × 10−4 as much time
(assuming it is 100 times slower). In other words, the resulting tile style-based distributed system
computes over a hundred to over a thousand times faster than the custom-built single-computer
system.

Suppose now that a user needs to solve a 3-SAT problem with 47 variables and 180 clauses.
A single 2.5GHz computer would require over one year to solve that problem, whereas a tile-style
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system deployed on TeraGrid would take between eight hours and four days. Note that this larger
problem does not benefit from any more potential parallelism than the 17-variable problem because
TeraGrid has roughly 217 nodes. If the underlying network were larger, as the networks I target
are likely to be, the tile-style system would perform even faster. In Section 7.1.1, I discussed a way
to further bring down the overhead of the tile style significantly, by having each tile represent more
than just a single bit of data. One could represent 32-bit or even 1024-bit words, speeding up the
system by 32 and 1024 times, respectively, assuming that sending a 1-bit packet on the network
takes roughly as much time as a 1024-bit packet, which is a reasonable assumption for small packet
sizes.

Based on such analysis, I assert that systems built using the tile style will be highly scalable.
Every tile component in a crystal requires a constant amount of communication to attach. Once
attached, it can only participate in recruiting of two other tiles. Thus, the communication associated
with each tile is bounded. The recruiting process cannot take more than k steps, for a system with
k computational tile types, as described in Section 6.2.4. For the example 3-SAT tile system, a tile
has to sample no more than 64 other nodes to either find a tile that can attach or know that no
such tile exists. Thus, no node representing a component will need more than a constant amount
of communication originating from it to recruit an attachment.

7.1.3 Fault and Adversary Tolerance

The tile style abstracts the properties of fault and adversary tolerance away from the computational
aspects of the system. My goal is a system that does not require the designer to put effort into
making the system fault- or adversary-tolerant. Once designed using the tile style, a system’s
architecture allows the designer to specify two parameters: the fraction of nodes on the network
that may be faulty or malicious, and the acceptable rate of system failure. For example, a designer
may say that 1

4 of the network is malicious but the client can only accept a failure rate of 2−10. The
system then automatically self-adapts to produce the proper failure rates, without the designer,
or anyone else, having to write code. This approach requires an estimate of an upper bound on
the fraction of faulty or malicious nodes. Calculating such a bound depends on the nature of the
system, as the faults may be related to hardware or environmental factors. While the bound needs
only to be an estimate, the guarantees provided by the tile style will only be as accurate as this
estimate.

First, I will give the definition of fault and adversary tolerance in Section 7.1.3.1. I will then
provide an intuitive explanation of how the tile style achieves the fault and adversary tolerance
properties in Section 7.1.3.2. The intuition is not entirely accurate, but goes a long way toward
making the technique more understandable. Then, I will more formally explain the tile style’s
emergent tolerance and how it leverages work on error correction within the tile assembly model
in Section 7.1.3.3. Finally, I will discuss the types of faults and attacks the tile style tolerates in
Section 7.1.3.4.

7.1.3.1 Definition of Tolerance

I call a distributed system fault-tolerant (adversary-tolerant) if, given a fraction of the network
nodes failing (acting in a malicious fashion), the probability of successful computation can still be
bounded arbitrarily close to 1 without paying an exponential cost in speed. In particular, systems
designed using the tile style allow the architect to slow down the system linearly while lowering the
failure rates exponentially.
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7.1.3.2 Intuition Behind Tolerance

Computer science has long used redundancy to induce fault tolerance in systems. The basic idea is
that if a component has a probability p of failure, if the failures are independent, two components
performing the same task have only a p2 probability of failure. The above calculation depends
heavily on the assumption of independence of failures. In my realm, this assumption implies that
a node’s failure must have no dependence on another node’s failure, which can be achieved by
ensuring that either the implementation of the components or the attacks on them differ.

If the failure is a crash failure (component either returns the correct answer or crashes returning
no answer), then k components performing the same tasks reduces the probability of failure of the
entire system to pk. A similar result can be achieved for Byzantine failures (component, possibly
colluding with other components, either returns the correct answer or an incorrect answer but no
indication that it has failed) by employing a system of voting. In this case, Θ(k) components are
necessary to perform the same task to reduce the probability of failure of the entire system to pk.
In essence, the tile style can employ a redundancy approach. In the “basic” tile style, each tile
component of the assembly is deployed on some network node. If that node is malicious, or faulty,
it may attach incorrectly or attempt to recruit other tile components incorrectly and break the
entire computation. It is possible to have multiple nodes be responsible for deploying each tile,
checking each others’ computations, and thus correcting crash errors and voting to avoid Byzantine
errors.

7.1.3.3 Error Correction for Tolerance

While direct redundancy is one way to accomplish the goal of fault tolerance, it is possible to use
nodes more wisely to correct each other by exploring the field of error correction in self-assembly.
I have discussed some of this work in Section 2.6, and I will in particular refer to work by Winfree
et al. [108] described in Figures 2.8 and 2.9. They have shown that given a tile assembly and a
certain fraction of malicious tiles, one can increase the number of tiles (e.g., break each tile into a
2 × 2 grid and represent it with four tiles), and bring the probability of error exponentially close
to 0. For example, increasing the number of tiles by a constant factor c, from k to ck in [108], (or
from k to ck2 in [83]) would bring the previous error probability of ε to εΘ(c). In some sense, they
have developed “smart redundancy.”

By applying tile assembly model error correction techniques to the tile style, I have begun a new
exploration of these techniques because software faults differ from the faults traditionally examined
in the study of self-assembly. This exploration is leading to ways of classifying the techniques, as
well as modifying them to be robust to a larger class of faults.

Several other researchers have done work on error correction in the tile assembly model [39,83,99,
107], looking at increasing accuracy without increasing the assembly size, and healing catastrophic
errors such as the death of a large portion of the assembly at once. This work may be useful
for errors such as large portions of the network failing and massive attacks or failures that target
geographically close tiles, but the exact exploration of that area is beyond the scope of my work.

7.1.3.4 Fault Scenario Analysis

The error correction work proposed in [83, 108] applies directly to tile assemblies. As the tile as-
sembly model is a model of biological systems, these error correction techniques safeguard against
errors commonly found in biology (e.g., what are called nucleation and growth errors). A tile as-
sembly that employs such error correction techniques may be resilient to mismatched tiles attaching
in the wrong places, which is an accurate model of incorrect molecular attachment. However, the
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tile architectural style allows computers to represent tiles, and the types of errors that may occur
are likely to differ from the biological variety. While it is not too difficult to show that these error
correction techniques, applied to the tile architectural style, would correct some particular types of
faults, the key aspect of this work is showing that neither faulty nor malicious nodes on a network
can break these particular error correction techniques. (It may be worthwhile to note that some
other tile assembly model error correction techniques described in [39, 99, 107] would not be as
helpful for the tile style as the ones I have selected.)

By applying the error correction mechanism from [83,108] to the tile style, I foresee countering
such attacks as nodes pretending to host foreign tile components, attempting to report incorrect
computation results, and overwhelming the client or other nodes on the network with traffic. The-
orem 7.1.4 summarizes that result.

Theorem 7.1.4 Let T be a computational tile assembly that computes the function f , and let S be
the software system with the architecture derived by the tile style from T. Let ρ be the probability
of S failing on network N with some faulty and some malicious nodes. Then for all j ≥ 2, it is
possible to design a tile assembly T′ that also computes f such that the software system with the
architecture derived by the tile style from T′ has the probability of failing on network N of ρj.

The proof of Theorem 7.1.4 is a combination of proofs of theorems in [83,108], the fact that each
tile component does not know its location in the assembly, and the observation that when a tile is
represented by a k × k block of tiles, as long as there are fewer than k improper tiles, that block
either assembles completely correctly or will not complete. Theorem 7.1.4 is a stronger statement
than the theorems in [83, 108] because those theorems assume only the presence of tiles allowed
by the tile assembly, whereas I assume all possible tiles, as well as the presence of tiles conspiring
together to break the assembly. While I outline the proof here, it remains part of my future work
to formally prove Theorem 7.1.4, as well as empirically verify this result.

The implication of Theorem 7.1.4 is that given a software system designed using the tile style,
and a network with faulty or malicious nodes, if the system has a failure rate of 25%, by using smart
redundancy as described in Figure 2.9(b) with k = 5, the probability of the system failing decreases
to 2−10, while slowing down the execution speed only by a factor of 5, because

(
1
4

)5 = 2−10.
While this discussion appears promising for implementing fault and adversary tolerance in tile-

style systems, the details of the implementation remain future work and I discuss then briefly in
Chapter 8.

7.2 Empirical Analysis of the Tile Architectural Style

To empirically demonstrate the utility, efficiency, scalability, and discreetness of the tile style, I
created an implementation of a distributed software system whose architectural style is faithful to
the descriptions of the algorithms of the tile style. To do this, I have leveraged Prism-MW [74], a
Java-based middleware platform intended specifically for style-driven implementation of software
architectures in highly-distributed and resource-constrained environments. Prism-MW is an ac-
curate fit for style-driven design, but it was neither intended nor previously applied to solving
computationally complex, such as NP-complete, problems. It provided explicit implementation-
level constructs for declaring components, interfaces, interactions, network communication, etc., as
well as the ability to encode stylistic constraints as first-class middleware-level constructs.

I do not focus on the details of the implementation because it closely reflects the design outlined
in Chapter 6. The implementation is lightweight, contains under 3000 lines of code, and the
compiled binaries are only 78KiB. A host may deploy multiple Prism-MW Architecture objects,
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each of which represents a virtual network node, thus allowing the simulation of large logical
networks on comparatively smaller physical networks; when deploying a tile style-based system on
a large network, each physical node is intended to run a single Prism-MW Architecture object.
The Prism-MW Architecture forms a “sandbox,” or a virtual machine, within which all of the code
deployed on a remote node executes. The use of system resources on each participating hardware
host is hence restricted and can be released at any time. The tile components are deployed inside
the Architecture objects and perform their functionality outlined in Chapter 6 via their interfaces,
which are implemented as Prism-MW Ports (which can, in turn, be either local or distribution-
enabled).

The user who is interested in solving an NP-complete problem only has to provide a description
of the set of tiles for that problem and the input to the computation (the tiles for solving two
NP-complete problems, SubsetSum and 3-SAT , are included). The implementation takes this
information and automates the remaining steps of building a distributed tile style-based system.

I have performed a number of empirical measurements of my tile-style implementation in solving
SubsetSum and 3-SAT problems. My evaluation was challenged by the number of networked
computers under my complete control. It would have been relatively easy for me to install the tile
style implementation on, and “borrow” execution cycles from, a large number of computers, such
as those available in the USC Center for Systems and Software Engineering Laboratory. However,
while the tile style implementation is in fact intended to be used on computers busy with unrelated
tasks, variations in computer load would have prevented me from distinguishing the impact of
that load on my evaluation results. Note that when demonstrating the tile style’s functionality on
small problems and small networks, I am penalized by the network communication cost, but do
not benefit from the high parallelization available on large networks. Thus it makes sense to look
at the relative speeds of execution as the network grows, rather than the absolute speeds.

I have used a heterogeneous network of 11 Pentium 4 1.5GHz nodes with 512MiB of RAM, some
running Windows XP and others Windows 2000. Some had fresh operating systems installed for my
experiments, while others had been in service for years with no antivirus protection, thus more ac-
curately representing some nodes on the Internet. One node had a wired connection to the Internet
while the others were on wireless networks. As an example of using my tile-style implementation,
Figure 7.1 shows the mean completion times for solving a 21- and a 32-bit SubsetSum problem
on networks comprising between 2 and 11 nodes. Because the executions are nondeterministic, I
performed each computation five times and then calculated the mean completion time.

These preliminary empirical results verify that the tile architectural style can be used to solve
NP-complete problems, that my algorithms result in correct computations, and that as the underly-
ing network grows, the computation time decreases roughly inversely proportionally to the network
size, which agrees with intuition as more computation can happen in parallel on larger networks.
For example, execution on 6 nodes was roughly 1.6 times faster than execution on 3 nodes (52

36 for
21-bit input and 110

60 for 32-bit input), and execution on 10 nodes was roughly 1.6 times faster than
execution on 5 nodes (43

27 for 21-bit input and 71
48 for 32-bit input). To further verify the system’s

correctness, I executed the system with inputs that returned a negative answer. As expected, the
system executed indefinitely. It is possible to implement a progress bar to report the confidence in
that negative answer; that confidence would grow exponentially quickly, as described in Section 6.3.

In my largest experiments to date, I have deployed the tile-style system on an 186-node subset
of USC’s Pentium 4 Xeon 3GHz High Performance Computing and Communications cluster. For
example, when using half the cluster (93 nodes), solving a 20-variable 20-clause 3-SAT problem
took 220 minutes, whereas the full cluster completed the same job in 116 minutes (i.e., 1.9 times
faster). Again, this confirmed my estimated expected running times and provided confidence in
my theoretical analysis. It remains future work to demonstrate the efficiency and robustness of the
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Figure 7.1: The execution time of a tile-style program solving two SubsetSum problems on networks
of varying sizes. Each point represents the average of five executions.

tile style on systems distributed on large public networks and solving computationally intensive
problems.
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Chapter 8

Contributions and Future Work

In this chapter, I will summarize the contributions of my work presented in this dissertation,
briefly describe several additional attempts at using self-assembly to solve interesting problems I
have explored, and present future directions and variants of my research, some of which I have
begun or intend to follow.

8.1 Contributions

When engineers compare biological and software systems, the former come out ahead in the majority
of dimensions. For example, the human body is far more complex, better suited to deal with faulty
components, more resistant to malicious agents such as viruses, and more adaptive to environmental
changes than your favorite operating system. Thus it follows that we, the engineers, may be able to
build better software systems than the ones we build today by borrowing technologies from nature
and injecting them into our system design process.

In this dissertation, I have developed an architectural style for building large distributed software
systems that allow large networks, such as the Internet, to solve computationally intensive problems.
This architectural style, the tile style, is based on nature’s system of crystal growth, and thus
inherits some of nature’s dependability, fault and adversary tolerance, scalability, and security.
The tile style allows one to distribute computation onto a large network in a way that guarantees
that unless someone controls the majority of that network, they cannot learn the private data
within the computation or force the computation to fail. The resulting software systems allow a
large number of processors to come together to help solve NP-complete problems by parallelizing
the computation. These systems are highly scalable, capable of dealing with faulty and malicious
nodes, and are discreet since every sufficiently small group of nodes knows neither the problem nor
the data.

As the tile style is based on a formal mathematical model, I have been able to verify and prove
the properties of discreetness, fault and adversary tolerance, and scalability for software systems
built using the tile style. I have further created an implementation of such a system and distributed
computations on a network to empirically demonstrate the tile style’s utility.

Along the way to developing the tile style, I explored the tile assembly model, a formal math-
ematical model of self-assembly. I contributed to that field by defining a notion of computation
within that model and developing systems that compute functions such as adding, multiplying, fac-
toring, and solving the NP-complete problems SubsetSum and SAT . For each system, I proved that
the system computes its intended function, analyzed the running time and tileset size (two measures
previously identified as important in tile systems [4]) and probability of successful computation (a
measure I identified as important for nondeterministic computation). I have also developed a set
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of techniques for designing tile systems to solve computational and other problems that can be
applied by others.

8.2 Connecting Self-Assembly and System Design

Along the path to defining my particular area of contribution, I explored several subfields of self-
assembly and molecular computation and made minor but important additions to those subfields.
These contributions are directly related to self-assembly and molecular computation. I include
here a brief summary of these contributions and references to publications describing them in more
detail.

8.2.1 DNA Complexes

The theory of self-assembly is driven largely by the scientists who have developed molecular im-
plementations of the tile assembly model. One of the original DNA complexes was the double
crossover [55], and it has been used in several implementations of the tile assembly model [12, 88].
Together with collaborators, I worked on designing two other DNA complexes, a triangle com-
plex [38], and a double double crossover complex [84], as well as generalizing the ideas in these
complexes to create paradigms for assembling other complexes [30]. This work goes toward imple-
menting tile systems using DNA, thus possibly being able to solve much larger problems within a
single test tube than we can solve on computers today.

8.2.2 Amorphous Computing

Artificial intelligence researchers have explored a notion of amorphous computing [2], known by
many other names, for example, swarm robotics, active self-assembly [11], and paintable comput-
ing [35]. Most of these researchers strive to show that simple components can come together to
exhibit complex behavior. My work in this area, in collaboration with Dustin Reishus, includes tile
assembly systems with components that are in some ways as simple as they can be, coming together
to perform many of the jobs that the more complex components have been shown to do, such as
finding and repairing paths on graphs and forming shapes [34]. This work may lead to biologically
inspired algorithms for robotics or sensor networks that are more powerful or are cheaper and easier
to implement than existing algorithms.

8.2.3 DNA Logic Gates

I have explored models other than the tile assembly model that allow DNA to compute complex
functions. Together with Manoj Gopalkrisnan, I have developed a series of binary logic gates that
use exclusively DNA. Theoretically, such gates can be used in diagnosis and treatment of cancer
cell-by-cell, allowing one to treat only those cells affected by cancer, and not the healthy ones [29].
This approach to computation can be described as a silicon computing-based biological system,
and is somewhat opposite to the approach of the tile style. Implementing logic gates using DNA
is largely less efficient, less reliable, and less accurate than doing so in silicon; however, the power
of this approach lies in being able to deliver these small and partially reliable machines to places
silicon computers would have a hard time reaching, such as individual cells within living human
tissues.
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8.3 Future Work

In this section, I will describe the work that remains to be done in the areas of the tile assembly
model and the tile architectural style, as well as some future directions for biologically inspired
software.

8.3.1 Implementing Fast Algorithms

I have described how the tile style, based on tile assembly model systems such as the ones from
Chapter 4, can implement the most direct algorithms for solving NP-complete problems. These
algorithms execute via Θ (2n) parallel assemblies, for inputs of size n. The implication of that fact
is that if the size of the problem is far larger than the network, the system will require Θ (2n) time
to find the solution. While we are unaware of subexponential-time algorithms to solve NP-complete
problems, there are algorithms that perform in exponential time but with a base smaller than 2.
Woeginger [109] provides a fairly complete survey of such algorithms, organized by the different
techniques they employ. I will briefly describe a few of these algorithms for SAT and SubsetSum
and argue that they can be implemented using the tile assembly model, and then converted into
distributed software systems either directly via the tile style or with minor modifications to the tile
style. While my arguments here will be intuitive, brief, and incomplete, it remains future work to
develop the tile systems and tile style modifications necessary to implement such algorithms into
large discreet distributed software systems.

For the discussion of the algorithms, I will need to define the O? notation, which is similar to
the O notation but ignores not only constant factors but also polynomial factors. Thus I will say
O?(m(x)) for a complexity of the form O(m(x) · poly(x)). The justification for this notation is
that the exponential growth of m(x) will dominate all polynomial factors for large x. For example,
if f is a function such that f(x) = O(1.4142xx4), then I write f(x) = O?(1.4142x). Note that
the exponential term dominates and one could say f(x) = O(1.4143x) and forgo the O? notation
altogether; however, that would not most accurately describe the functions.

8.3.1.1 Pruning the Search Tree

One technique used to improve the time complexity of algorithms is the pruning technique. For
example, the algorithm described in Section 4.4 for the 3-SAT problem explores each of the possible
2n truth assignments to the n variables. A more intricate algorithm can explore a subset of those
assignments by noting the following fact: if the Boolean formula contains a clause (x1 ∨ ¬x2 ∨ x3),
then the algorithm need not explore any of the 2(n−3) assignments with x1 = x3 = FALSE and
x2 = TRUE because this clause would not be satisfied by any of those assignments. This type
of approach results in an O?(1.8393n) algorithm [109]. Slight improvements in the branching step
can result in an O?(1.6181n) algorithm [78]. Using quantitative analysis of the number of resulting
2-clauses from such branching improves the time complexity to O?(1.5783n) [91]. The champion
algorithm using this technique achieves a time complexity of O?(1.4963n) [67,68]. Note that there
are somewhat faster algorithms for SAT that use other techniques, but I now wish to briefly argue
that it is possible to implement the tree pruning ideas in the tile assembly model, and thus in the
tile style.

The system described in Section 4.4 nondeterminically branches on each variable’s assignment.
Thus it creates 2n distinct assemblies. The seed encodes the Boolean formula in a row and the
variables in a column. Each distinct assembly encodes one possible assignment in a column next
to the variables and then “sweeps” that assignment across the formula to check if each clause
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is satisfied. Instead of trying each possible assignment for each variable, one could make the
assignments based on the clauses. For example, if the first clause is of the form (A ∨B ∨ C), where
A, B, and C are literals, then the assignments the system should explore are:

• A = 1,

• A = 0 and B = 1, and

• A = B = 0 and C = 1.

It is reasonable to imagine a tile system that examines the first clause and nondeterministically
chooses one of the above-outlined three options. The system then sweeps the assignment across
the formula and simplifies it, abandoning the computation if any clause contains three false literals.
Repeating these steps recursively would solve 3-SAT . Figure 8.1 demonstrates the preliminary
ideas of how a hypothetical tile system assembly implementing this algorithm might look. While I
have worked out some of the details of such a system and have ideas of how it would work, it remains
future research to formally define the system and prove its correctness. One deduction that should
be true is that the number of distinct nondeterministic assemblies should fall to O?(1.8393n) for
this algorithm, and to O?(1.4963n) for the more intricate algorithms, reducing the time complexity
of the tile-style software systems.

8.3.1.2 Data Preprocessing

The tile system described in Section 4.3 explores each possible subset of the input numbers to
solve SubsetSum. As there are 2n possible subsets, the tile system creates 2n distinct assemblies.
Suppose I were to split the n numbers into two equal-sized subsets and then compute the 2(n2 )

sums of the elements of each set. The problem would then become to check whether the sum of
one element from each set of computed sums equals the target number. This algorithm performs in
O?
((√

2
)n) ≈ O?(1.4142n) time. It is possible to use this technique to improve the algorithm for a

similar NP-complete problem, the Exact-Hitting-Set problem, to O?(1.2494n) time complexity [49].
This type of preprocessing and algorithm may seem to pose a greater challenge to implement in

a tile system than the search tree pruning idea. However, since the tile assembly model is universal,
it should be possible to implement this algorithm in it, and my intuition says that one can do it
without using too many tiles. One possibility is to nondeterministically select a subset of the first
half of the numbers and add them, and then to check if there exists the proper complement in the
second half. Another possibility is to abandon the notion of nondeterministic computation, and
rather have a single large assembly compute all the sums of the two subsets and check if proper
complements exist. If one selects the second path, the tile style will likely need to be adjusted
slightly because the resulting tile system will not be a temperature two system; at the very least
it will need to have some strength 2 binding domains to grow a seed that is polynomially large in
the input size into an assembly that is exponentially large.

More work is needed to develop these tile systems and to adjust the tile style to work with these
new systems, but my experience indicates that it is possible to implement these algorithms using
a close variant of the tile style.

8.3.1.3 Other Techniques

There are numerous other techniques for solving NP-complete problems, such as local search
and dynamic programming. The former technique produces an algorithm for SAT that runs in
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Figure 8.1: Outline of a tile system implementing a fast algorithm for 3-SAT . Here, in deciding
whether the Boolean formula φ = (x2 ∨ ¬x1 ∨ ¬x0) ∧ (¬x2 ∨ ¬x1 ∨ ¬x0) ∧ (¬x2 ∨ x1 ∨ x0) might
be satisfiable, the algorithm chooses at least one of the literals in the first clause to be true and
simplifies the rest of the formula before moving on to the second and later clauses. This hypothetical
system could decide 3-SAT using O?(1.8393n) assemblies, and these ideas can be used to reduce
the number of assemblies even further.

O?(1.3302n) [63]. The tile assembly model should be able to implement all such algorithms but the
question remains as to just how efficient in terms of the size of the tileset these implementations
can be. Answering that question will go a long way toward making the tile style a fierce competitor
to other parallelization techniques.

8.3.2 Fault Tolerance

In Chapter 7, I spoke about fault tolerance and began to argue that the tile architectural style can
be used to create fault-tolerant software systems. However, I have only scratched the surface of
exploring fault tolerance in these systems. In order to implement some of the ideas presented in
Chapter 7, the tile style has to be modified to allow reversible attachment of tiles (tiles are allowed
to attach with a probability proportional to the attachment strength and detach with probability
inversely proportional to the attachment strength). This modification will require slight changes to
the algorithms involved in the tile style, and thus discreetness and scalability must be argued with
respect to the new algorithms, though I envision those arguments would not change much from
their current state.

113



Slightly alternate versions of fault tolerance mechanisms may prove to be more powerful than
those I have described. In particular, the most basic 2× 2 proofreading mechanism converts each
tile type into four distinct tile types; however, it may be possible to simply require three tiles of
a type to attach to every location, thus allowing the detection of a single error (five attachments
allowing detection of two errors, and 2n+ 1 attachments allowing detection of n errors). This type
of a mechanism may be implementable in a 3-D version of the tile assembly model but can be
much more directly implemented in the tile style. The exact implications of this mechanism remain
future work.

8.3.3 Exploring Underlying Computational Models

In creating the tile style, I have used the tile assembly model as the underlying computational model.
It is possible to create similar architectural styles on top of cellular automata, Turing machines, or
other universal computational models. Each computer on the network could represent a single cell
in the automaton or on the tape and communicate with neighbors to compute. Such architectural
styles would also likely result in scalable, fault-tolerant, and discreet software systems. To me, the
tile assembly model seems to have some benefits over Turing machines because Winfree’s proof
that the tile assembly model is Turing-universal [105] uses tiles to simulate 1-D cellular automata
that are capable of simulating Turing machines. The resulting tile systems, in effect, compute the
states of the Turing machine’s tape at every step in the computation. Thus at the very least,
the tiles can compute functions in the same number of steps as Turing machines (and for the
same reasons, 1-D cellular automata). While Turing machines, cellular automata, and tile systems
are all polynomially related with respect to their running times, it is not at all clear (though
entirely possible) that Turing machines can simulate tile systems in the same number of steps.
I have demonstrated some tile systems that compute functions more efficiently than tile systems
simulating Turing machines computing the same functions. Thus, there may be an advantage to
using the tile assembly model as the underlying computational model of the tile style. However, it
may prove fruitful to explore other computational models to create related but new architectural
styles.

8.3.4 Other Biologically Inspired Software

Biological systems are far more complex than systems we design and build today. The human
body alone has orders of magnitude more complexity than our most intricate designed systems.
Further, biological systems are decentralized in such a way that allows them to benefit from built-
in error correction, fault tolerance, and scalability. Despite added complexity, human beings are
more resilient to failures of individual components and injections of malicious bacteria and viruses
than engineered software systems are to component failure and computer virus infection. Other
biological systems, for example worms and sea stars, are capable of recovering from such serious
hardware failures as being cut in half (both worms and sea stars are capable of regrowing the missing
pieces to form two nearly identical organisms), yet we envision neither a functioning desktop, half
of which was crushed by a car, nor a machine that can recover from being installed with only half
of an operating system. It follows that if we can extract certain properties of biological systems
and inject them into our software design process, we may be able to build complex self-adaptive
software systems. Work outlined here has developed software systems by looking to biology for
inspiration. I plan to involve biological inspiration to an even greater degree and it is my long-term
goal to develop an understanding of how to build software systems that function the way biological
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systems do, and to design appropriate architectures, design tools, and programming tools to create
such systems.

While studying biological systems is likely to have a positive effect on many different types of
software systems, one of the areas that I believe can benefit most by borrowing nature’s techniques
is distributed Internet-sized systems. While we have some experience and knowledge in how to
build software to be executed on a single processor, the notions of “programming the Internet” or
“running an operating system or a virtual machine in a distributed fashion on a large network”
are fairly new. Such distributed systems will likely require a great deal of collaboration, while
the large size of the network is likely to require that collaboration to scale well. Further, since
no single entity controls the Internet, and the nodes may join or leave the network at any time,
the collaboration must be fault-tolerant and resilient to dynamic node addition, removal, and
failure. Finally, if these systems are to perform important computations, they must be resilient to
malicious attacks from the network’s nodes. In nature, systems often deal with constant component
birth, death, and failure, as well as attacks from malicious components within the system, while
allowing well-scaling collaboration between the components. The need for the development of
design and implementation tools for these large distributed software systems together with the
apparent similarities in requirements between these systems and large-scale natural systems make
large distributed software systems an ideal target for future research. Thus, I believe our goal
for the next decade should be to concentrate on developing a toolkit of techniques, architectures,
and design tools for Internet-sized decentralized distributed software systems for (1) computation,
(2) security, and (3) data storage and retrieval, and the tile architectural style presented in this
dissertation is a first step in that direction.
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