
Fault and Adversary Tolerance as an Emergent Property of
Distributed Systems’ Software Architectures

Yuriy Brun and Nenad Medvidovic
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781, USA

{ybrun, neno}@usc.edu

ABSTRACT
Fault and adversary tolerance have become not only desirable but
required properties of software systems because mission-critical
systems are commonly distributed on large networks of insecure
nodes. In this paper, we describe how the tile style, an architectural
style designed to distribute computation, can inject fault and adver-
sary tolerance. The result is a notion of tolerance that is entirely ab-
stracted away from the functional properties of the software system.
The client may specify what fraction of the network is faulty or
malicious (e.g., 25%) and the acceptable system failure rate (e.g.,
2−10), and the system’s architecture adjusts automatically to en-
sure a failure rate no higher than the one specified. The technique
is entirely automated and consists of a “smart redundancy” mecha-
nism that brings the failure rate exponentially close to 0 by slowing
down the execution speed linearly.

1. INTRODUCTION
With the growth of distributed systems, fault tolerance has ad-

vanced from being a desired non-functional property to an absolute
requirement for system stability. Software architecture had been
identified as one approach to ensuring fault tolerance in a system.
Traditionally, there have been two, perhaps complimentary, meth-
ods to providing fault tolerance within an architecture: (1) with the
support of a fault-tolerant component whose job is to oversee the
functional components of a system, detecting and correcting faults,
and (2) by requiring the individual components and connectors of
the system to themselves be fault-tolerant. More recently, a third
method has become evident: providing fault tolerance as an emer-
gent property of the software architecture. In contrast to the former
two, this third method requires no particular component to take care
of its own fault tolerance nor of the fault tolerance of the entire sys-
tem, but the component and connector interactions ensure that the
system recovers seamlessly from failures.

Fault tolerance as an emergent property of the software archi-
tecture is in some ways preferable to alternate methods because it
requires no design and implementation of separate components or
connectors. The cost, however, may include a more complex than
otherwise necessary architecture. One important question becomes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EFTS’07 September 4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM 978-1-59593-725-4/07/09 ...$5.00.

what is the trade-off between complexity of the architecture and
complexity of the components and connectors of that architecture
to ensure fault tolerance, and whether placing all the burden on the
architecture is an acceptable price to pay for large distributed sys-
tems. In this paper, we present the tile style, an architectural style
that ensures fault tolerance as an emergent behavior and argue that
this style carries a low cost.

With the growth of the Internet as a computational medium, dis-
tributed software systems have begun to require not only fault toler-
ance but also adversary tolerance: the ability to cope with powerful
and malicious network nodes attempting to mislead or break com-
putations, as well as learn computation’s private and sensitive data.
As with fault tolerance, adversary tolerance may be implemented
in a system via a single component, within each component and
connector, or as an emergent property of the architecture. The tile
style, the architectural style we present in this paper, provides ad-
versary tolerance as an emergent behavior without any additional
cost over providing fault tolerance.

Let us explore example scenarios to which the tile architectural
style can be applied to ensure fault and adversary tolerance. The
Human Genome Project processed a tremendous amount of data
and required the collaboration of hundreds, if not thousands, lab-
oratories around the world. A single laboratory could have misdi-
rected the project by providing bad data, leading to only a partially
correct genome sequence. Other projects may be more sensitive
to failure, where a single faulty or malicious node may derail the
computation in a way that will result in a fully incorrect output.
Solving a problem such as that of the Human Genome Project in
a distributed software system would require a high level of com-
plexity. It has been shown that such systems are most effectively
approached from a software architectural perspective (e.g., [17]).
In particular, architectural styles [21] present generic design solu-
tions that can be applied to problems with shared characteristics.

Biological systems often exhibit properties such as fault and ad-
versary tolerance, and surpass those properties in complex human-
engineered systems. For example, the human being is an immen-
sely more complex system, with orders of magnitude more compo-
nents and more behaviors, than today’s most complex engineered
systems. And still, human beings are more resilient to failures
of individual components and injections of malicious bacteria and
viruses than engineered software systems are to component failure
and computer virus infection. Other biological systems, for ex-
ample worms and sea stars, are capable of recovering from such
serious hardware failures as being cut in half (both worms and sea
stars are capable of regrowing the missing pieces to form two nearly
identical organisms), yet we envision neither a functioning desk-
top, half of which was crushed by a car, nor a machine that can
recover from being installed with only half of an operating system.

EFTS 2007

38

In some ways, the tile architectural style is an architecture of the
biological systems, which brings forward many of the fault and ad-
versary tolerant features of biology and allows software systems to
benefit from nature’s achievements. More formally, the tile style
is based on the tile assembly model [19], a formal mathematical
study of self-assembly, which attempts to encompass nature’s abil-
ity to self-assemble with a formal mathematical model.

In order to produce software systems based on the tile assem-
bly model, we have developed and analyzed systems that compute
complex functions within that model. In particular, we have con-
structed tile based-systems that solve NP-complete problems [7].
We have then proposed the tile style, an architectural style based on
the tile assembly model, and argued briefly that it provides proper-
ties of discreetness, fault tolerance, and scalability [8, 9]. In this
paper, we leverage this work and explore the properties of fault and
adversary tolerance, which emerge from using the tile style with-
out explicit engineering or designing of fault or adversary-tolerant
components or connectors. We propose and begin the analysis of
the tile style, while a more complete analysis, including empirical
evidence remain future work.

In a sense, the tolerance behaviors come for free from the tile
style, though a closer analysis reveals that there is a slight overhead
evident in a linear slowdown of the system, as well as, of course,
somewhat of a learning curve to using the tile style in the first place,
though the latter cost is a necessity for every new architectural style.

The rest of this paper is structured as follows: Section 2 will
discuss work in software architectures and fault tolerance that is
related to our work. Section 3 will discuss some relevant details
and intuition of the tile architectural style, although we refer the
reader to [9] for a more complete tile style definition. Section 4 will
describe how the tile style provides emergent fault and adversary
tolerance. Finally, Section 5 will summarize our contributions.

2. RELATED WORK
In this section, we describe related work in software architec-

tures and in fault and adversary tolerance.

2.1 Software Architectures
Software architecture has been identified as an important part of

building almost all large systems [17]. A poor underlying software
architecture can be disastrous, while a good one helps to ensure the
system’s key properties, such as performance, reliability, portabil-
ity, scalability, and interoperability.

Software architecture can be used to “force” a software system
to conform to certain rules, thus resulting in some desired proper-
ties. For example, mandating that two components communicate
via implicit invocation can result in systems that are more easily
evolvable. However, it is also possible to provide desired system
properties as an emergent behavior of the architecture without forc-
ing restrictions on the system designer. For example, Mikic-Rakic
et al. have argued that for a system to be self-healing, the sys-
tem must be self-observant and alter its behavior in hostile environ-
ments [16]. However, in our proposed tile architectural style, the
system exhibits properties of self-healing naturally, without observ-
ing or altering its behavior. Similarly, Devanbu et al. have argued
that security, a crucial property of most modern software systems,
may be implemented in the connectors mediating the interactions
among the system’s components [12]. Accordingly, the tile style, in
principle, allows for security in the connectors; however, discreet-
ness, one aspect of security, is an emergent property of the style.

While there are several definitions of architectural styles (e.g., [3,
11, 21]), we directly leverage Mikic-Rakic et al.’s [16] definition in
formulating the tile style. Mikic-Rakic et al. have argued that an

architectural style can be described along five dimensions: exter-
nal structure, topology rules, behavior, interaction, and data flow.
External structure describes the “outside view” of the components
in the architectural style; topology rules describe the allowed paths
of interaction between those components; behavior describes the
components’ internal function and state; interaction captures the
collaboration between the components; and data flow specifies the
structure of the data exchanged by the components. We will follow
this scheme in defining the tile architectural style in Section 3.

2.2 Fault and Adversary Tolerance
Gärtner has attempted to structure the field of fault tolerance by

formalizing and standardizing the definitions used in the field [13].
He separates the process of fault tolerance into two phases: detec-
tion and correction. The tile architectural style presented in this
paper performs both phases simultaneously, much in the same way
coding theory has allowed one to encode data in a way that if part
of that data is lost or corrupted, the errors can be detected and cor-
rected. Gärtner argues that redundancy is necessary for fault toler-
ance. Coding theory uses redundancy to allow integrated detection
and correction of errors. Similarly, the tile style uses an efficient
notion of redundancy to detect and correct errors.

Seo et al. have argued that an effective way to ensure fault tol-
erance in complex software systems is to employ the principles of
software architectures [20]. They also argue that the complexity of
pervasive software systems creates challenges in maintaining the
desired fault tolerance properties and that software architectures,
in some way, can help create an abstraction barrier between the
functional properties of a software system and the fault tolerance
ensuring components. A key aspect of the tile style is that fault
and adversary tolerance are emergent properties of the architectural
style, and once a system’s architecture is designed using the tile
architectural style, the architecture itself takes care of the redun-
dancy necessary to ensure tolerance automatically. Thus, the tile
style provides the ultimate abstraction barrier between functional
properties of the system and the tolerance aspects of the system.

3. TILE ARCHITECTURAL STYLE
This section describes the tile style, parts of which have been

previously introduced in [5, 8, 9], but we repeat that information
here for completeness.

Adleman first proposed solving NP problems using DNA [1].
Rothemund and Winfree has generalized Adleman’s ideas to use
an exponential number of independent nodes, forming a formalized
mathematical model of self-assembly, the tile assembly model [19].
The tile assembly model is a model of crystal growth, in which indi-
vidual components are square tiles with special labels on their four
sides. Tiles can stick together under certain conditions when their
abutting sides’ labels match. The tile assembly model has been
shown to be Turing universal [2, 23]. The tile assembly model is a
computational model that is somewhat similar to cellular automata,
but instead of being able to switch state, the individual square “au-
tomata” (called “tiles” precisely because they cannot change state)
attach to other tiles following simple matching rules. We have ex-
tended their work to explore efficient computation within the tile
assembly model [4, 6, 7].

In [8, 9], we explain how one can design efficient tile systems to
solve computational problems. In particular, we describe a system
to solve SubsetSum, an NP-complete problem (a formal descrip-
tion of this system originally appeared in [7]). While we refer the
reader to [9] for a full description of the tile style, we will present
an example of solving a SubsetSum problem to ground the reader.

Figure 1 shows a sample execution of the tile system that solves

EFTS 2007

39

SubsetSum. The example asks the question whether or not the
sum of some subset of the set {11, 25, 37, 39} equals 75. The sys-
tem encodes the input in binary using the white tiles along the bot-
tom row and right-most column, e.g., 75 = 10010112. The colorful
tiles then self-assemble (attach when their sides match) to the white
tiles. Because 75 = 11 + 25 + 39, one nondeterministic execution
of the tile system finds the proper selection of numbers and attaches
the special � tile in the top left corner. If there were no subset of
numbers whose sum equaled 75, no such tile could attach. We refer
the reader to [7] for a formal proof of correctness of the system that
solves SubsetSum.

The basic idea of the tile style is to have individual nodes on a
network represent the tiles, and communicate with each other to
self-assemble, as shown in Figure 1, to solve NP-complete prob-
lems. There are a number of details to the tile style, including
algorithms to discover nodes deploying particular tile types and
to replicate input seeds to perform nondeterministic computation,
which we do not describe here. A complete description of the tile
style can be found in [9]. For the purposes of this paper, it is suf-
ficient for the reader to understand that nodes on a network can
represent tiles to perform arbitrary computations (because the tile
assembly model has been shown universal), and in particular, solve
NP-complete problems efficiently.

Finally, we describe how a client would use the tile style. The
tile style is an architectural style for the architecture of a system
that distributes computation on a large network. Given a compu-
tational problem, there are three ways to use the tile style to solve
that problem. The most complex way is to “write a tile program”
(design a set of tiles) to solve your problem and then use the tile
style to design the architecture of a system based on that tile pro-
gram. This approach requires programming with tiles, and while
that process is not unlike traditional computer programming (one
can design abstractions, subroutines, etc.), the learning curve and
the lack of proper design tools may make this process inefficient
and error-prone. A simpler approach arises from the fact that one
can write a compiler that takes an arbitrary universal language pro-
gram, e.g., a Java program, and compiles it into a set of tiles. While
no such compiler exists at the moment, the theory behind building
one has been worked out, in part in [23], and in part in our heads.
This approach would open the tile style to a wide variety of prob-
lems; however, it is unlikely to be as efficient as designing your
own tile system to solve a problem because we do not know of ef-
ficient ways to parallelize code, in the general case. Finally, we
recommend the third approach, which consists of translating your
problem to one with a known tile system solution and using that
tile style system to solve your problem. In particular, given an NP-
complete problem1 a client wishes to solve, she can translate that
problem to SubsetSum via a polynomial-time reduction, and then
solve SubsetSum using the system from Figure 1 and described
in [7]. The third approach is only applicable to NP-complete prob-
lems, which is a large and important class of computationally in-
tensive problems, and has the great advantage that the client never
has to program using tiles.

We have argued in [9] that the tile style allows distributing infor-
mation discreetly (without telling individual nodes on the network
the algorithm or the input to the computation) and that the system
is scalable. We also allude to possible properties of fault and adver-
sary tolerance, which we explore further and more formally now.
The notions of the complexities of tile computation are interesting

1We have demonstrated how the tile style can be used to solve all
NP-complete problems via polynomial-time reductions [9]. How-
ever, the technique extends directly to problems that are P-SPACE-
complete, and other complexity classes.

*1

1

! ?1
1

1

! !1
0

0

! !0
1

1

! !1
0

0

! !0
0

0

! !0
1

1

! !1

0

*0

*0 #00

0

*1

*0 #10

0

0

#0#0 0
0

0

#1#1 0
*0

0

0 *00
*1

1

0 *01
0

0

0 00
1

1

0 01
0

0

0 00
0

0

0 00
1

1

0 01

0

*1

*0 #10
1

1

0 01
0

0

0 00
0

0

0 00
1

1

0 01

0

0

#0#0 0
*1

1

0 *01
0

0

0 00
0

0

0 00
1

1

0 01

0

0

#1#1 0
0

0

#1#1 0
0

0

#1#1 0
0

*1

*0 #10
*0

0

0 *00
0

0

0 00
1

1

0 01

*0

0

! ?0
1

1

! !1
0

0

! !0
0

0

! !0
0

0

! !0
0

*0

! !0
0

0

! !0

1

*0

*1 #11
*1

0

1 *11
1

0

1 11
1

0

1 11
1

0

1 11
1

0

1 11
0

1

0 10

1

1

#0#0 1
1

*1

*0 #01
*1

1

0 *01
1

1

0 01
1

1

0 01
1

1

0 01
0

0

0 00

1

1

#0#0 1
1

1

#0#0 1
1

*1

*0 #01
*1

1

0 *01
1

1

0 01
1

1

0 01
0

0

0 00

1

1

#1#1 1
1

1

#1#1 1
1

1

#1#1 1
0

*1

*0 #10
*1

1

0 *01
1

1

0 01
0

0

0 00

1

1

#1#1 1
1

1

#1#1 1
1

1

#1#1 1
0

0

#1#1 0
0

*1

*0 #10
*1

1

0 *01
0

0

0 00

x1

1

x ?1
x1

1

x x1
x0

0

x x0
x1

1

x x1
x0

0

x x0
x1

*1

x x1
x0

0

x x0

x0

x0

#0 #00
x1

x1

#0 #01
x1

x1

#0 #11
x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x0

x0

#0 #00

x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x0

x0

#0 #00

x0

x0

#0 #00
x1

x1

#0 #01
x1

x1

#0 #11
x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x0

x0

#0 #00

x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x0

x0

#0 #00

x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x0

x0
#0 #00

x0

x0

#0 #00
x1

x1

#0 #01
x1

x1

#0 #11
x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x0

x0
#0 #00

*1

x1

! ?1
1

x1

! !1
0

x0

! !0
1

x1

! !1
0

x0

! !0
1

x1
! !1

0

x0

! !0

0

*1

*0 #10
*1

1

0 *01
1

1

0 01
0

0

0 00
0

0
0 00

1

1

0 01
0

0

0 00

0

0

#1#1 0
0

*1

*0 #10
*1

1

0 *01
0

0
0 00

0

0

0 00
1

1

0 01
0

0

0 00

0

0

#1#1 0
0

0

#1#1 0
0

*1
*0 #10

*0

0

0 *00
0

0

0 00
1

1

0 01
0

0

0 00

0

0

#0#0 0
0

0

#0#0 0
0

0
#0#0 0

0

*0

*0 #00
*0

0

0 *00
1

1

0 01
0

0

0 00

0

0

#0#0 0
0

0
#0#0 0

0

0

#0#0 0
0

0

#0#0 0
0

*0

*0 #00
0

0

0 00

0

0
#1#1 0

0

0

#1#1 0
0

0

#1#1 0
0

0

#1#1 0
0

0

#1#1 0
0

*1

*0 #10
*1

1

0 *01

*0

0

0 *00

|

|

0

|

|

!

|

|

x

|

|

#0

0

| |

|

|

0

|

|

0

|

|

0

|

|

0

|

|

!

|

|

0

|

|

0

|

|

0

|

|

0

|

|

0

|

|

#0

|

|

#0
|

|

#0
|

|
#0

|

|
#0

|

|

!

|

|

0

|

|

0

|

|

0

|

|

0

|

|

0

0

| |

0

| |

0

| |

0

| |

0

| |

*0

| |

|

|

?
#0 0

#1 1

0
0

1
1

|

|

0
0

1
1

0
0

1
1

1
1

#1 1

#1 1

?
#1 1

#1 1

#0 0

#0 0

#1 1

?
#1 1

#0 0

#0 0

#1 1

#0 0

#1 1

?
#1 1

#0 0

#0 0
#1 1

#1 1

#1 1

Figure 1: An example execution of the tile system that solves
SubsetSum. The clear tiles encode the input: a set of numbers:
{11 = 10112, 25 = 110012, 37 = 1001012, 39 = 1001112}
along the right column, and a target number 75 = 10010112

along the bottom row. Because 75 = 11 + 25 + 39, one nonde-
terministic execution of the tile system finds the proper selec-
tion of numbers and attaches the special � tile. If there were
no subset of numbers whose sum equaled 75, no such tile could
attach.

EFTS 2007

40

and clearly integral to this paper. We refer the reader to [7] and [9]
for descriptions of these complexities.

4. EMERGENT TOLERANCE
The tile style abstracts the properties of fault and adversary tol-

erance away from the computational aspects of the system. Our
goal is a system that does not require the designer to put effort into
making the system fault or adversary-tolerant. Once designed using
the tile style, a system’s architecture allows the designer to specify
two parameters: the fraction of nodes on the network that may be
faulty or malicious, and the acceptable rate of system failure. For
example, a designer may say that some fraction of the network is
malicious,2 but the client can only accept a failure rate of 2−10. The
system then automatically self-adapts to produce the proper failure
rates, without the designer, or anyone else, having to write code.

First, we will give our definition of fault and adversary tolerance
in Section 4.1. We will then provide an intuitive explanation of how
the tile style achieves the fault and adversary tolerance properties
in Section 4.2. The intuition is not entirely accurate, but goes a
long way to making the technique more understandable. Then, we
will more formally explain the tile style’s emergent tolerance and
how we leverages work on error-correction within the tile assembly
model in Section 4.3. Finally, we will discuss the types of faults and
attacks the tile style tolerates in Section 4.4.

4.1 Definition
We call a distributed system fault-tolerant (adversary-tolerant)

if, given a fraction of the network nodes failing (acting in a mali-
cious fashion), the probability of successful computation can still
be bounded arbitrarily close to 1 without paying an exponential cost
in speed. In particular, systems designed using the tile style allow
the architect to slow down the system linearly while lowering the
failure rates exponentially.

4.2 Intuition
Computer science has long used redundancy to induce fault tol-

erance in systems. The basic idea is that if a component has a
probability p of failure, if the failures are independent, two com-
ponents performing the same task have only a p2 probability of
failure. The above calculation depends heavily on the assumption
of independence of failures. In our realm, this assumption implies
that a node’s failure must have no dependence on another node’s
failure, which can be achieved by ensuring that either the imple-
mentation of the components or the attacks on them differ.

If the failure is a crash failure (component either returns the cor-
rect answer or crashes, returning no answer), then k components
performing the same tasks reduces the probability of failure of the
entire system to pk. A similar result can be achieved for Byzantine
failures (component either returns the correct answer or an incor-
rect answer but no indication that it has failed) by employing a
system of voting. In this case, Θ(k) components are necessary to
perform the same task to reduce the probability of failure of the
entire system to pk. In essence, the tile style can employ a redun-
dancy approach. In the “basic” tile style, each tile component of
the assembly is deployed on some network node. If that node is
malicious, or faulty, it may attach incorrectly or attempt to recruit
other tile components incorrectly and break the entire computation.

2Our approach requires an estimate of an upper bound on the frac-
tion of faulty or malicious nodes. Calculating such a bound de-
pends on the nature of the system, as the faults may be related to
hardware or environmental factors. While the bound needs only to
be an estimate, the guarantees provided by the tile style will only
be as accurate as this estimate.

a

c

bd

a1

11'

11d1

11'

c1

21d2

21'

c2

b221

a2

21'

b111 a1

11'

11d1

11'

c1

21d2

21'

c2
b221

a2

21'

b111
(a)

a

c

bd

a1

11'

11d1

1k-1'

c1

k1dk

2k-1'

c2
k2k1

a2

21'

1211

11'

12'

21d2

21'

22'

2221

kk-1'

ck

bk

kk-1

ak

k1'

b1

1k-1

k1'

k2'
b2

2k-1

a1

11'

11d1

1k-1'

c1

k1dk

2k-1'

c2

k2k1

a2

21'

1211

11'

12'

21d2

21'

22'

2221

kk-1'

ck

bk

kk-1

ak

k1'

b1

1k-1

k1'

k2'

b2

2k-1

(b)

Figure 2: A 2×2 smart redundancy mechanism (a) transforms
each tile type in a system into four tile types, such that the four
can attach uniquely to each other. In general, a k × k smart re-
dundancy mechanism (b) transforms each tile type in a system
into k2 tile types that can all uniquely attach to each other.

It is possible to have multiple nodes be responsible for deploying
each tile, checking each others’ computations, and thus correcting
crash errors and voting to avoid Byzantine errors.

4.3 Error-Correction
While direct redundancy is one way to accomplish the goal of

fault tolerance, it is possible to use nodes more wisely to correct
each other by exploring the field of error-correction in self-assem-
bly.

Winfree et al. [25] and Reif et al. [18] have shown that given a tile
system and a certain fraction of malicious tiles, one can increase the
number of tiles (e.g., break each tile into a 2× 2 grid and represent
it with four tiles), and bring the probability of error exponentially
close to 0. For example, increasing the number of tiles by a constant
factor c, from k to ck in [25], (or from k to ck2 in [18]) would
bring the previous error probability of ε to εO(c). In some sense,
they have developed “smart redundancy.”

Figure 2(a) shows an example of a tile being represented by four
tiles, arranged in a 2 × 2 square, with unique internal binding do-
mains. The new 2×2 square contains essentially all the information
the original tile contained. It follows that if all tile types are trans-
formed as we described, the assemblies made by the new system
will be four times larger (two times larger in each of the two di-
mensions) than the original system’s assemblies, but will otherwise
encode the same information. Note that this transformation can be
done entirely automatically: given a tile system S with n tiles, one
can create another tile system S

′ with 4n tiles that performs the
same computation.

A tile can be represented by a k × k square, in a similar fashion,
and shown in Figure 2(b) and described in [25]. By transform-
ing n tile types into k2n tile types, the k × k smart redundancy
mechanism linearly increases the size of the assemblies (an n tile
assembly becomes a k2n tile assembly), while raising the proba-
bility of a growth error to the power k. For the complete details
and the formal proofs of the error rate improvements, we refer the
reader to [25].

By applying tile assembly model error-correction techniques to
the tile style, we have begun a new exploration of these techniques
because software faults differ from the faults traditionally examined

EFTS 2007

41

in the study of self-assembly. This exploration is leading to ways of
classifying the techniques, as well as modifying them to be robust
to a larger class of faults.

Several other researchers have done work on error-correction in
the tile assembly model [10, 18, 22, 24], looking at increasing accu-
racy without increasing the assembly size, and healing catastrophic
errors such as the death of a large portion of the assembly at once.
This work may be useful for errors such as large portions of the
network failing at once and massive attacks or failures that target
geographically close tiles, but the exact exploration of that area is
beyond the scope of this paper.

4.4 Fault Scenario Analysis
The error-correction work proposed in [18, 25] applies directly to

tile assembly model systems. As the tile assembly model is a model
of biological systems, these error-correction techniques safeguard
against errors commonly found in biology (e.g., what are called
nucleation and growth errors). A tile system that employs such
error-correction techniques may be resilient to mismatched tiles at-
taching in the wrong places, which is an accurate model of incor-
rect molecular attachment. However, the tile architectural style al-
lows computers to represent tiles, and the types of errors that may
occur are likely to differ from the biological variety. While it is
not too difficult to show that these error-correction techniques, ap-
plied to the tile architectural style, would correct some particular
types of faults, the key aspect of this work is showing that nei-
ther faulty nor malicious nodes on a network can break these par-
ticular error-correction techniques. (It may be worthwhile to note
that some other tile assembly model error-correction techniques de-
scribed in [10, 18, 22, 24] would not be as helpful for the tile style
as the ones we have selected.)

By applying the error-correction mechanism from [18, 25] to the
tile style, we foresee countering such attacks as nodes pretending
to host foreign tile components, attempting to report incorrect com-
putation results, and overwhelming the client or other nodes on the
network with traffic. Theorem 4.1 summarizes that result.

THEOREM 4.1. Let T be a computational tile system that com-
putes the function f , and let S be the software system with the ar-
chitecture derived by the tile style from T. Let ρ be the probability
of S failing on network N with some faulty and some malicious
nodes. Then for all j ≥ 2, it is possible to design a tile system
T

′ that also computes f such that the software system with the ar-
chitecture derived by the tile style from T

′ has the probability of
failing on network N of ρj .

The proof of Theorem 4.1 is a combination of proofs of theorems
in [18, 25], the fact that each tile component does not know its
location in the assembly, and the observation that when a tile is
represented by a k×k block of tiles, as long as there are fewer than
k improper tiles, that block either assembles completely correctly
or will not complete. Theorem 4.1 is a stronger statement than
the theorems in [18, 25] because those theorems assume only the
presence of tiles allowed by the tile system, whereas we assume all
possible tiles, as well as the presence of tiles conspiring together
to break the assembly. While we outline the proof here, it remains
part of our future work to formally prove Theorem 4.1, as well as
empirically verify this result.

The implication of Theorem 4.1 is that given a software system
designed using the tile style, and a network with faulty or malicious
nodes, if the system has a failure rate of 25%, by using smart re-
dundancy as described in Figure 2(b) with k = 5, the probability
of the system failing decreases to 2−10, while slowing down the

execution speed only by a factor of 5, because
(

1
4

)5
= 2−10.

5. CONTRIBUTIONS
We have previously argued that the tile style is an architectural

style for distributing computation on a large network in a discreet,
efficient, and scalable manner. Here, we have explored the prop-
erties of fault and adversary tolerance, which are emergent proper-
ties of the tile style. The designer need not worry about fault and
adversary tolerance when designing the system. As long as she
uses a tile style architecture, she can specify the fraction of nodes
that are faulty or malicious (e.g., 25%) and the acceptable system
failure rate (e.g., 2−10), and the system’s architecture adjusts au-
tomatically to guarantee that failure rate via a smart redundancy
mechanism.

While we have provided formal arguments for the tile style’s dis-
creetness, efficiency, scalability, and now fault and adversary tol-
erance, it remains our future work to verify these properties em-
pirically. We are currently in the process of developing a dis-
tributed computing platform for implementing and deploying tile-
style architectures. To this end, we are leveraging Prism-MW, our
light-weight architectural middleware platform [14], as well as the
lessons learned from NASA JPL’s OODT grid platform in whose
construction we participated [15]. Once complete, the resulting
middleware will allow us to deploy tile style-based systems on vir-
tual and real networks, study their properties, and provide specific
optimizations to account for real-world scenarios.

6. ACKNOWLEDGMENTS
This work is sponsored in part by the National Science Founda-

tion under Grant number ITR-0312780. The authors wish to ac-
knowledge Leonard Adleman, Dusting Reishus, and David Wool-
lard for helpful discussions of this work. Finally, the authors wish
to thank the anonymous reviewers for their insightful comments
and suggestions.

7. REFERENCES
[1] L. Adleman. Molecular computation of solutions to

combinatorial problems. Science, 266:1021–1024, 1994.

[2] L. Adleman, J. Kari, L. Kari, and D. D. Reishus. On the
decidability of self-assembly of infinite ribbons. In
Proceedings of the 43rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS02), pages
530–537, Ottawa, Ontario, Canada, November 2002.

[3] L. Bass, P. Clements, and R. Kazman. Software architecture
in practice. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1998.

[4] Y. Brun. Arithmetic computation in the tile assembly model:
Addition and multiplication. Theoretical Computer Science,
378:17–31, June 2006.

[5] Y. Brun. A discreet, fault-tolerant, and scalable software
architectural style for internet-sized networks. In
Proceedings of the Doctoral Symposium at the 29th
International Conference on Software Engineering
(ICSE07), pages 83–84, Minneapolis, MN, USA, May 2007.

[6] Y. Brun. Nondeterministic polynomial time factoring in the
tile assembly model. Technical Report
USC-CSSE-2007-707, Center for Software Engineering,
University of Southern California, 2007.

[7] Y. Brun. Solving NP-complete problems in the tile assembly
model. Technical Report USC-CSSE-2007-703, Center for
Software Engineering, University of Southern California,
2007.

[8] Y. Brun and N. Medvidovic. An architectural style for
solving computationally intensive problems on large

EFTS 2007

42

networks. In Proceedings of Software Engineering for
Adaptive and Self-Managing Systems (SEAMS07),
Minneapolis, MN, USA, May 2007.

[9] Y. Brun and N. Medvidovic. Discreetly distributing
computation via self-assembly. Technical Report
USC-CSSE-2007-714, Center for Software Engineering,
University of Southern California, 2007.

[10] H.-L. Chen and A. Goel. Error free self-assembly with error
prone tiles. In Proceedings of the 10th International Meeting
on DNA Based Computers (DNA04), Milan, Italy, June 2004.

[11] P. Clements, R. Kazman, and M. Klein. Evaluating Software
Architectures: Methods and Case Studies. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[12] P. T. Devanbu and S. Stubblebine. Software Engineering for
Security: A Roadmap, pages 225–239. ACM Press, 2000.

[13] F. C. Gärtner. Fundamentals of fault-tolerant distributed
computing in asynchronous environments. ACM Computing
Surveys, 31(1):1–26, 1999.

[14] S. Malek, M. Mikic-Rakic, and N. Medvidovic. A
style-aware architectural middleware for
resource-constrained, distributed systems. IEEE
Transactions on Software Engineering, 31(3):256–272, 2005.

[15] C. A. Mattmann, D. J. Crichton, N. Medvidovic, and
S. Hughes. A software architecture-based framework for
highly distributed and data intensive scientific applications.
In Proceedings of the 28th international conference on
Software engineering (ICSE06), pages 721–730, Shanghai,
China, 2006. ACM Press.

[16] M. Mikic-Rakic, N. R. Mehta, and N. Medvidovic.
Architectural style requirements for self-healing systems. In
Proceedings of 1st Workshop on Self-Healing Systems,
Charleston, SC, USA, November 2002.

[17] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. ACM SIGSOFT Software Engineering
Notes, 17(4):40–52, 1992.

[18] J. H. Reif, S. Sahu, and P. Yin. Compact error-resilient
computational DNA tiling assemblies. In Proceedings of the
10th International Meeting on DNA Based Computers
(DNA04), Milan, Italy, June 2004.

[19] P. W. K. Rothemund and E. Winfree. The program-size
complexity of self-assembled squares. In Proceedings of the
ACM Symposium on Theory of Computing (STOC00), pages
459–468, Portland, OR, USA, May 2000.

[20] C. Seo, S. Malek, G. Edwards, N. Medvidovic, B. Petrus,
and S. Ravula. Exploring the role of software architecture in
dynamic and fault tolerant pervasive systems. In Proceedings
of the Workshop on Software Engineering of Pervasive
Computing Applications, Systems and Environments
(SEPCASE07), Minneapolis, MN, USA, May 2007.

[21] M. Shaw and D. Garlan. Software architecture: perspectives
on an emerging discipline. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1996.

[22] D. Soloveichik and E. Winfree. Complexity of compact
proofreading for self-assembled patterns. Lecture Notes in
Computer Science, 3892:305–324, 2006.

[23] E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis,
California Insitute of Technology, Pasadena, CA, USA, June
1998.

[24] E. Winfree. Self-healing tile sets. Nanotechnology: Science
and Computation, pages 55–78, 2006.

[25] E. Winfree and R. Bekbolatov. Proofreading tile sets: Error
correction for algorithmic self-assembly. In Proceedings of
the 43rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS02), volume 2943, pages 126–144,
Madison, WI, USA, June 2003.

EFTS 2007

43

