
Mining Temporal Invariants from Partially Ordered Logs

Ivan Beschastnikh Yuriy Brun Michael D. Ernst Arvind Krishnamurthy Thomas E. Anderson

Computer Science & Engineering
University of Washington

Abstract

A common assumption made in log analysis research is that the
underlying log is totally ordered. For concurrent systems, this as-
sumption constrains the generated log to either exclude concurrency
altogether, or to capture a particular interleaving of concurrent events.
This paper argues that capturing concurrency as a partial order is
useful and often indispensable for answering important questions
about concurrent systems. To this end, we motivate a family of event
ordering invariants over partially ordered event traces, give three
algorithms for mining these invariants from logs, and evaluate their
scalability on simulated distributed system logs.

1. Introduction
Most log analysis research and tools consider totally ordered (TO)

logs of events. A total order has important advantages, such as
the ability of humans to directly inspect and understand the logged
information and the applicability of simple and powerful log analysis
techniques. Further, many well-established logging formats are TO.

However, in domains with concurrent executions, such as dis-
tributed systems, events are partially ordered (PO) rather than TO.
Concurrency is increasingly used for improving performance on
clusters and multi-core architectures. Even simple applications are
becoming concurrent, with more functionality migrating into the
cloud and with widespread use of Ajax to mask latency.

Because of the widespread concurrency of modern software, we
propose that log analysis researchers should take up the challenges
and opportunities offered by PO logs. This paper focuses on such
logs in the context of distributed systems, which are inherently
concurrent.

A PO log has more concurrency information than a TO log, mak-
ing it more useful when studying concurrent system behavior. For
example, consider a simple distributed system with two communicat-
ing processes. One of the processes generates event a, and the other
process generates event b. If the events are logged in a TO log (say,
a log in which the order of events in the log file implicitly defines the
ordering), then it is unclear whether a necessarily preceded b or just
happened to be logged before b. Even if a and b appear in different
orders in different traces, it is still possible that they can never occur
concurrently. Unlike a TO log, a PO log makes concurrency explicit:
the log indicates whether a and b have some order — in which case

Extended with permission from a version that previously appeared in the proceedings
of SLAML’11. Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SLAML’11, October 23, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0978-3/11/10 ...$10.00.

they are not concurrent — or they are not ordered — in which case
they are concurrent.

A PO log contains more information, and is therefore more com-
plex, than a TO log. It is often infeasible to analyze it manually.
Prior work on automated PO log analysis has concentrated on visu-
alization to simplify analysis [5, 24]. In this paper, we define a set of
event-ordering invariant templates that capture interesting patterns
in PO logs. We then describe algorithms for efficiently mining these
invariants from PO logs. In addition to helping developers better
understand their systems and detect erroneous behavior, the mined
invariants can also be used to infer higher-level system properties
of interest to developers. For example, invariants could be com-
bined with performance information to determine whether there is
correlation between slow executions and the ordering of events in
the system. As well, invariants can help diagnose distributed dead-
lock, which typically occurs because of an anomalous ordering of
distributed events.

We have implemented the algorithms described in this paper and
integrated them with Synoptic [3], our open-source, log-analysis tool
that is available for download at http://synoptic.googlecode.
com.

The next section describes an example PO log to introduce the
concepts that Section 3 defines more formally. Section 4 formalizes
invariants and presents three mining algorithms for extracting invari-
ants from PO logs. Section 5 evaluates the algorithms’ performance
and scalability. Section 6 discusses future work, while Section 7
overviews related work. Finally, Section 8 concludes the paper.

2. Motivating example
As a motivating example, consider the PO log in Figure 1a. This

log captures five executions of a web application in which two clients
access a server to buy airplane tickets. Unfortunately, there is only
one ticket available. The log captures several scenarios in which the
clients and the server interact: different orders of checking for ticket
availability, attempts to buy a ticket, and so on.

It is difficult to piece together the various behaviors just by looking
at a PO log. Even if one considers the corresponding time-space
diagrams in Figure 1b the overall behavior of the system remains
obscure. However, the system has definite patterns in its logs, and
these patterns can be mined and shown to a developer to aid the
developer’s understanding of how the system behaves.

Figure 1c lists a subset of the invariants that our Synoptic tool
mines from the log in Figure 1a. One mined invariant is that the
server cannot sell a ticket after it has sold out of tickets. That is,
the sold-out server event is never followed by the sold server event
(sold-outs �→ solds in Figure 1c). This temporal property helps to
elucidate the server’s operation, but it is also simple enough to find
and check manually by considering all the server’s timelines in the

39

[1,0,0] client 0: search for tickets to Portugal for 23/10/11
[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[1,0,1] server: there is a ticket available for 505P
[1,1,2] server: there is a ticket available for 505P
[2,0,1] client 0: buy ticket
[2,1,3] server: sold
[1,2,2] client 1: buy ticket
[2,2,4] server: tickets sold out

[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[1,0,0] client 0: search for tickets to Portugal for 23/10/11
[0,1,1] server: there is a ticket available for 505P
[1,1,2] server: there is a ticket available for 505P
[0,2,1] client 1: buy ticket
[1,2,3] server: sold
[2,1,2] client 0: buy ticket
[2,2,4] server: tickets sold out

[1,0,0] client 0: search for tickets to Portugal for 23/10/11
[1,0,1] server: there is a ticket available for 505P
[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[1,1,2] server: there is a ticket available for 505P
[1,2,2] client 1: buy ticket
[1,2,3] server: sold
[2,0,1] client 0: buy ticket
[2,2,4] server: tickets sold out

[1,0,0] client 0: search for tickets to Portugal for 23/10/11
[1,0,1] server: there is a ticket available for 505P
[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[1,1,2] server: there is a ticket available for 505P

[1,0,0] client 0: search for tickets to Portugal for 23/10/11
[1,0,1] server: there is a ticket available for 505P
[2,0,1] client 0: buy ticket
[2,0,2] server: sold
[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[2,1,3] server: tickets sold out

buy

search

search

available

sold-out

sold

available

buy

S1

S2

S3

S4

S5

S1

client 0 client 1 server

buy

search search

available

sold

sold-out

availablebuy

S2

client 0 client 1 server

buy

search

search

available

sold

sold-out

available

buy

S3

client 0 client 1 server

search

search
available

available

S4

client 0 client 1 server

search

sold

available

S5

client 0 client 1 server

buy

search

sold-out

(a) (b) (c)

Mined invariants

searchc0 ‖ searchc1

sold-outs �→ solds

sold-outs �→ buyc0

sold-outs �→ buyc1

solds ← sold-outs

buyc0 ← sold-outs

availables ← buyc0

availables ← buyc1

buyc0 → sold-outs

buyc1 → sold-outs

buyc0 ‖ buyc1

...

Figure 1: (a) Five system traces (S1–S5) for a web application that sells airplane tickets. Each trace consists of log lines and corresponding vector clock
timestamps. In the traces, two clients access a single server. (b) A visualization of the five system traces as space-time diagrams. Time flows down, and events at
each host are shown in a single column. (c) A partial list of ordering invariants mined from the traces (ci stands for client i, and s stands for the server). The
three invariants at the bottom (in red) are examples of false positives.

time space diagrams in Figure 1b. A less apparent mined invariant is
that the clients’ buy operations are always concurrent (buyc0

‖ buyc1
in Figure 1c). That is, if both clients issue a buy command, then a
buy at client 0 is always concurrent with a buy at client 1.

To verify that the system is working properly, a developer can
mine the invariants from the log of the captured system executions
and verify that the mined invariants are consistent with the devel-
oper’s understanding of how the system is supposed to behave. The
more complex ordering invariants over PO logs allow developers to
do this for concurrent systems, such as the example ticket selling
system. It is possible, however, that the mining algorithm reports
an invariant that is not intended to be true of the system (e.g., the
three bottom invariants in Figure 1c) but is only true of the observed
executions, such as those induced by a test suite. In this case, the
developer knows to write more diverse test cases to exercise more
system behavior.

Before explaining invariants in more detail, we first provide a few
formal definitions, and explain the vector clock timestamps shown
in the example log (in the left column of Figure 1a).

3. Definitions
We assume a distributed system that is composed of h hosts,

indexed from 0 to h−1. Each host generates a TO sequence of event
instances, each of which has an event type from a finite alphabet of
host event types.

Definition 1 (Host event types). For all hosts i, the host event types
set Ei ⊇ {STARTi, ENDi} is a finite set (alphabet) of event types
that can be generated by host i.

Definition 2 (System event types). The set E of all possible system
event types is ∪Ei, for all hosts i.

Definition 3 (Event instance). An event instance is the triple t =
〈e, i,k〉, where e ∈ Ei, i is a host index, and k is a non-negative
integer that indicates the order of the event instance, among all event
instances on host i.

A host trace (Definition 4) is the set of all event instances gen-
erated at host i. This includes event instances of type STARTi, and
ENDi, which respectively start and end the host trace.

As the example in Figure 1 illustrates, order is an important
property of a distributed execution. Event instances are ordered in
two ways. First, the host ordering (Definition 5) orders any two
event instances at the same host. Second, the interaction ordering
(Definition 6) orders dependent event instances at different hosts.
For example, if hosts use message passing to communicate, a send
message event instance is ordered before a receive message event
instance for the same message. Both orderings are partial orderings,
otherwise the distributed system can be more simply modeled as a
serial execution.

Definition 4 (Host trace). For all hosts i, a host trace is a set Ti of
all event instances t = 〈e, i,k〉, such that an event of type e was the
kth event generated on host i. The host trace Ti includes two event
instances 〈START, i,0〉 and 〈END, i,n〉, such that n is the largest k
for all t ∈ Ti. The k induces a total ordering of event instances in Ti.
We denote this total ordering as <i. More formally, ∀ê1=〈e1, i,k1〉∈
Ti, ê2=〈e2, i,k2〉∈Ti, (ê1 <i ê2⇐⇒k1<k2).

Definition 5 (Host ordering). A host ordering ≺host is the union
∪<i.

Definition 6 (Interaction ordering). An interaction ordering ≺interact
orders pairs of event instances 〈e1, i,k1〉 and 〈e2, j,k2〉 such that i �= j.

A system trace is the union of a set of host traces (one per host),
which corresponds to a single execution of the system. This union
respects the host ordering and the interaction ordering.

Definition 7 (System trace). A system trace is the pair S = 〈T,≺〉,
where T = ∪Ti, and ≺ = ≺host ∪ ≺interact .

Definition 8 (Log). A log L is a set of system traces.

A common way of ordering event instances in a system trace is
to associate a vector timestamp with each event instance. These

40

timestamps make the partial order, ≺, of event instances in the
system trace explicit. We now explain the algorithm using which
the vector timestamps are maintained. This explanation corresponds
to a system that uses message passing, though vector timestamps
can be used for ordering event instances in a system that uses other
mechanisms for inter-host communication, such as shared memory.

3.1 Ordering events with vector time
Vector time [9, 20] is a logical clock mechanism that provides

a partial ordering of event instances. In a distributed system of h
hosts, each host maintains an array of clocks C = [c0, c1, . . ., ch−1],
in which a clock value c j records the local host’s knowledge of
(equivalently, dependence on) the local logical time at host j. We
denote a timestamp’s C clock value for host j as C[j].

The hosts update their clocks to reflect the actual ordering of event
instances in the system with the following three rules:

1. All hosts start with an initial vector clock value of [0, . . ., 0].

2. When a host i generates an event instance, it increments its
own clock value (at index i) by 1, i.e., Ci[i]++.

3. When a host h communicates with a host h′, h shares its
current clock Ch with h′, and h′ updates its local clock Ch′ so
that ∀i, Ch′ [i] = max(Ch[i],Ch′ [i]). The host h′ also updates its
local clock value as in (2), since message receipt is considered
an event.

Note that the above procedure assumes that each host knows the set
of participating hosts in the system, and that this set does not change
over time.

Using the above procedure, each event instance in the system is
associated with a vector timestamp — the value of C immediately
after the event instance occurred. Vector timestamps can be partially
ordered with the relation ≺, where C ≺C′ if and only if each entry
of C is less than or equal to the corresponding entry of C′, and at
least one entry is strictly less. More formally: C ≺C′ iff ∀i,C[i]≤
C′[i] and ∃ j,C[j] < C′[j]. This ordering is partial because some
timestamp pairs cannot be ordered (e.g., [1,2] and [2,1]).

The vector timestamp ordering allows us to partially order all
the event instances in the system. Figure 1b shows five time-space
diagrams1, each of which represents the ≺ ordering for each of the
system traces in the log in Figure 1a. For example, in system trace S1
a search event instance at client 0 has a timestamp of [1,0,0], which
immediately precedes the first available event instance at the server,
timestamped with [1,0,1]. The time-space diagram encodes this
precedence information as a directed edge between the two events.
However, the same search event instance at client 0 is not ordered
with the search event instance at client 1, which has a timestamp of
[0,1,0]. Correspondingly, there is no path in the time-space diagram
between these two event instances.

The next section formally defines a few kinds of event order-
ing invariants that hold across all system executions, and gives an
algorithm to infer these from a log.

4. Mining temporal invariants
Prior work [3, 8, 11, 32] has shown that invariants of software

systems are useful across a range of application domains. A common
feature of all the prior work on invariant mining is that it only
considers TO sequences of event instances. In this section, we first
extend temporal invariants to PO logs, and then give three algorithms
for mining these invariants.

1For compactness, the diagrams in Figure 1b bundle message receipt, message
processing, and message send events into one event.

4.1 Temporal invariants in PO logs
We consider five temporal ordering invariants that relate pairs

of host event types. All the invariants are defined in terms of the
≺ partial ordering, which was introduced in Definition 7 and oper-
ationalized in Section 3.1. Throughout, we use the notation ei to
represent an event e ∈ Ei, and we use êi to represent a corresponding
event instance 〈e, i,k〉 ∈ L.

Definition 9 (Event invariant). Let L be a log, and let ai and b j be
two host event types whose corresponding event instances, âi and
b̂ j, appear at least once in some system trace in L. Then, an event
invariant is a property that relates ai and b j in one of the following
five ways, and evaluates to true in each of the system traces in L.

ai → b j : An event instance of type a at host i is always followed by

an event instance of type b at host j. Formally: ∀âi ∃ b̂i, âi ≺
b̂ j.

ai �→ b j : An event instance of type a at host i is never followed by

an event instance of type b at host j. Formally: ∀âi � ∃ b̂ j, âi ≺
b̂ j.

ai ← b j : An event instance of type a at host i always precedes an
event instance of type b at host j. Formally: ∀b̂ j ∃ âi, âi ≺ b̂ j .

ai ‖ b j : An event instance of type a at host i is always concur-

rent with an event instance of type b at host j. Formally:
∀âi, b̂ j(âi �≺ b̂ j ∧ b̂ j �≺ âi).

ai ∦ b j : An event instance of type a at host i is never concur-

rent with an event instance of type b at host j. Formally:
∀âi, b̂ j(âi ≺ b̂ j ∨ b̂ j ≺ âi).

We omit the never precedes invariant because it is equivalent to
the �→ invariant. The →, �→, and ← invariants capture particular
kinds of ordering dependency. For example, Figure 1c lists the
“availables ← buyc0

” invariant, which means that a client can only
make a ticket purchase if the server indicated ticket availability.

The ‖ and ∦ invariants are more general. The ‖ invariant captures
the lack of ordering, and ∦ captures the presence of some ordering.
An example of a ‖ invariant is “searchc0 ‖ searchc1 ” in Figure 1c,
which means that ticket search requests from the two clients are
never ordered. The ‖ and ∦ invariants are also commutative — e.g.,
ai ‖ b j iff b j ‖ ai.

The →, �→, and ← invariants are analogs of the most frequently
observed specification patterns in Dwyer et al. [7], with scope con-
strained to a trace (i.e., global scope). The translation is not one-
to-one: ai → b j is Dwyer’s Existence pattern when ai is STARTi,
and is otherwise Dwyer’s Response pattern. Another example is
∀b j,ai ← b j, which is Dwyer’s Universality pattern. A key differ-
ence, however, is that Dwyer et al. [7] study specification patterns
of sequential, rather than concurrent, systems.

For each of the five invariants, the event instances may occur on
different hosts or on the same host. We term invariants that relate
host event types on the same host (i.e., i = j) as local, and those that
relate host event types on different hosts (i �= j) as distributed. Local
invariants can be evaluated independently of event instances on other
hosts, solely by using the total ordering of event instances on the
host (i.e., <i). In contrast, distributed invariants capture dependency
between event types on different hosts — their evaluation requires
the use of the partial ordering.

Some invariants are trivially true, such as STARTi → ENDi. Oth-
ers are trivially false, such as STARTi �→ ENDi. However, determin-
ing the truth value of most invariants requires log analysis, which
we take up next.

41

4.2 Mining temporal invariants
The task of mining invariants involves taking a log (e.g., Figure 1a)

as input, and outputting the set of invariants that are true of the log
(e.g., Figure 1c). To process the log, we assume that the user also
inputs a set of regular expressions so that each line in the input log
can be parsed into a vector timestamp and an event instance.

To simplify our discussion of invariant mining algorithms, we use
the directed acyclic graph (DAG) representation of a system trace.
The time-space diagrams in Figure 1b illustrate the basic idea of the
DAG representation (except that in these diagrams, edges between
events generated at the same host are implicit). Formally, a system
trace 〈t,≺〉 can be represented as a DAG with nodes corresponding
to event instances in t, and an edge from e to e′ iff e is a direct
predecessor of e′ (i.e., iff e ≺ e′ and � ∃ e′′, e ≺ e′′ ≺ e′).

4.2.1 Transitive-closure-based algorithm
One invariant-mining algorithm computes the forward and reverse

transitive closures of each trace DAG in L and then determines which
invariants are valid from those transitive closures as follows:

• ai → b j iff in each forward DAG transitive closure, every âi

node (instance of event type ai) has an edge to a b̂ j node.

• ai �→ b j iff in each forward DAG transitive closure, every âi

node has no edge to a b̂ j node.

• ai ← b j iff in each reverse DAG transitive closure, every b̂ j
node has an edge to a âi node.

• ai ‖ b j iff there are no edges between âi and b̂ j nodes in the
forward DAG transitive closure, and the two kinds of nodes
both occur in some trace DAG.

• ai ∦ b j iff there is an edge between each âi node and some b̂ j
node, and vice versa, in the forward DAG transitive closure
for DAGs where both nodes occur.

This algorithm performs poorly on sparse DAGs, for which tran-
sitive closure construction is expensive. Next, we describe two
algorithms that do not explicitly generate the transitive closures,
but instead mine invariants implicitly by collecting event type co-
occurrence counts.

4.2.2 Co-occurrence counting algorithm v1
The idea behind both co-occurrence counting algorithms (v1 and

v2) is to avoid explicit construction of the trace DAGs’ transitive
closures. Instead, the algorithms walk through the trace DAGs
and count specific values, such as the number of times an event
instance of type ai is followed by an event instance of type b j . After
counting, the algorithms use a set of rules (derived from the invariant
definitions in Section 4.1) to infer the invariants. The first version of
the algorithm (v1) uses the following rules:

• ai → b j iff the number of âi occurrences is equal to the number
of times that âi was followed by b̂ j.

• ai �→ b j iff the number of times that âi was followed by b̂ j
was 0.

• ai ← b j iff the number of b̂ j occurrences is equal to the num-
ber of times b̂ j was preceded by âi.

• ai ‖ b j iff âi and b̂ j co-occurred at least once in a system trace
(otherwise calling the two event types concurrent does not
make sense); and the number of times that âi followed b̂ j and
the number of times b̂ j followed âi was 0 (the events were
never ordered).

1 Input: event log L, as a set of event instance DAGs
2
3 for dag ∈ L {
4 let dagOcc[] // Maintains DAG event counts per event type
5 // Traverse the DAG in the forward direction:
6 foreach node ∈ dag, in topological order:
7 let node.predecessors = ∪p∈node.parentsp.predecessors
8 let b j = node.type
9 dagOcc[b j]++

10 let seenTypes = {}
11 for nodeP ∈ node.predecessors:
12 let ai = nodeP.type
13 PrecPairs[ai][b j]++
14 if ai /∈ seenTypes:
15 CoOcc[ai][b j] = true
16 Prec[ai][b j]++
17 seenTypes = seenTypes∪{ai}
18
19 // Traverse the DAG in the reverse direction:
20 foreach node ∈ dag, in reverse topological order:
21 let node.successors = ∪c∈node.children c.successors
22 let ai = node.type
23 let seenTypes = {}
24 for nodeS ∈ node.successors:
25 let b j = nodeS.type
26 FollowsPairs[ai][b j]++
27 if b j /∈ seenTypes:
28 Follows[ai][b j]++
29 seenTypes = seenTypes∪{b j}
30
31 // Accumulate this DAG’s event instance counts:
32 for ai ∈ dagOcc.keys:
33 Occ[ai]+ = dagOcc[ai]
34 for b j ∈ dagOcc.keys:
35 TraceCountProductsSum[ai][b j]+=
36 (dagOcc[ai]∗dagOcc[b j])
37 }
38
39 // Use the counts to derive the invariants:
40 let invariants = []
41 for ai,b j ∈ eventTypes :
42 if Follows[ai][b j] = Occ[ai]:
43 invariants.append(ai → b j)
44 if Follows[ai][b j] = 0:
45 invariants.append(ai �→ b j)
46 if Prec[ai][b j] = Occ[b j]:
47 invariants.append(ai ← b j)
48 if CoOcc[ai][b j]∧Follows[ai][b j] = 0∧Follows[b j][a] = 0:
49 invariants.append(ai ‖ b j)
50 if CoOcc[ai][b j]∧TraceCountProductsSum[ai][b j] =
51 PrecPairs[ai][b j]+FollowsPairs[b j][ai]:
52 invariants.append(ai ∦ b j)
53
54 Output: invariants

Figure 2: The co-occurrence counting algorithm v1 described in Sec-
tion 4.2.2.

3 for dag ∈ L {
4 // Traverse the DAG in the forward direction:
5 foreach node ∈ dag, in topological order:
6 let node.typePred = ∪p∈node.parentsp.typePred
7 let b j = node.type
8 Occ[b j]++
9 for ai ∈ node.typePred:

10 CoOcc[ai][b j] = true
11 Prec[ai][b j]++
12
13 // Traverse the DAG in the reverse direction:
14 foreach node ∈ dag, in reverse topological order:
15 let node.typeSucc = ∪c∈node.children c.typeSucc
16 let ai = node.type
17 for b j ∈ node.typeSucc:
18 Follows[ai][b j]++
19 }

Figure 3: A different for loop body for the pseudocode in lines 3–29 of
Figure 2, which generates a simpler and more efficient algorithm that mines
all of the invariant types except ∦. This algorithm is the co-occurrence
counting algorithm v2, described in Section 4.2.3. As well, this algorithm
omits lines 50–52 in Figure 2.

42

• ai ∦ b j iff âi and b̂ j co-occurred at least once in a system trace;
and in every trace each âi instance is followed or preceded by
every b̂ j instance. That is, in a trace the number of âi followed
by b̂ j pairs plus the number of âi preceded by b̂ j pairs must
equal the count of âi in the trace times the count of b̂ j in the
trace.

The pseudocode in Figure 2 outlines this procedure. The algo-
rithm starts by building a set of data structures to hold the various
occurrence counts:

• Occ[ai] : the count of âi across all traces.

• CoOcc[ai][b j] : whether or not âi and b̂ j co-appeared in a
trace.

• Prec[ai][b j] : the count of b̂ j instances that were preceded by
at least one âi.

• Follows[ai][b j] : the count of âi instances that were followed
by at least one b̂ j.

• FollowsPairs[ai][b j] : the count of all (âi, b̂ j) pairs for which
âi was followed by b̂ j.

• PrecPairs[ai][b j] : the count of all (âi, b̂ j) pairs for which âi

precedes b̂ j.

• TraceCountProductsSum[ai][b j] : the sum across all traces of
the product of the number of âi in a trace and the number of
b̂ j in a trace.

To collect these counts, the trace DAG is first traversed in the for-
ward (lines 6–17 in Figure 2) and then in the reverse directions (lines
20–29). Both traversals are in topological order (e.g., on the forward
traversal a node is visited after all of its parents). The topological
order guarantees that all the nodes that precede (respectively follow)
the node’s parents (respectively children) are aggregated correctly
(lines 32–36). Once the DAG is traversed in both directions, the al-
gorithm infers invariants from the data structures. Each if statement
on lines 42–52 of the pseudocode infers a single type of invariant
and corresponds to one of the informal rules given above.

Because the algorithm traverses each edge once, its base traversal
time for a single trace DAG is Θ(|E|), where E is the set of edges in
the DAG. On traversing an edge, the algorithm needs to merge two
sets whose sizes are at most |V |, where V is the set of nodes in the
DAG. Therefore, in processing a single trace DAG, the algorithm has
a running time of Θ(|E||V |). Because it does not need to explicitly
maintain a transitive closure, this algorithm performs especially well
on sparse trace DAGs.

4.2.3 Co-occurrence counting algorithm v2 (w/o ∦)
In both of the previous algorithms, the cost of computing the ∦

invariant is significantly higher than that of computing each of the
other invariant types. This is because evaluating the invariant ai ∦ b j

requires an algorithm to consider every pair of instances (âi, b̂ j).
This overhead prompted us to consider an algorithm that mines all
of the invariants except the ∦ invariant.

Figure 3 lists a different for loop body for the pseudocode in lines
3–29 of Figure 2. The resulting algorithm — co-occurrence counting
algorithm v2 — is significantly faster (see Section 5). The reason
for this is that instead of maintaining the set of all event instances
that precede (respectively follow) a node, the algorithm maintains
only the set of event types that precede (respectively follow) a node.
Because of this, the per-edge cost drops from Θ(|V |) to Θ(|ETypes|)
where ETypes is the set of event types in the trace DAG. Therefore,
this algorithm’s running time is Θ(|E||ETypes|).

5. Evaluation
This section compares the performance of the transitive-closure-

based algorithm with the performance of the two co-occurrence
counting algorithms. We evaluate the algorithms on synthetic PO
logs that we generated using a discrete-time simulator that simulates
a set of concurrent communicating hosts. We first describe the
simulator, and then present and discuss the results.

5.1 Log-generating system simulator
The simulator is parameterized by the number of hosts, number

of events types, number of events per execution, and the number of
executions. For each event, the simmulator chooses the host that will
execute the event and the event’s type, both with uniform probability.
The simulator also decides to either associate the event with sending
a message to some other random node (with probability 0.3); or,
if the node has messages in its queue, to associate the event with
receiving a message (with probability 0.4); or to make the event
local to the selected host (remaining probability). Any outstanding
messages in the receive queues are flushed when the simulation
ends.

The simulator maintains vector clocks, following the procedure
from Section 3.1. The simulator outputs a log of multiple execu-
tions, or system traces, composed of events; each event has a vector
timestamp.

5.2 Methodology
We implemented the three invariant mining algorithms in Java and

ran experiments on an Intel i7 (2.8 GHz) OS X 10.6.7 machine with
8GB RAM. Our implementation used the Floyd-Warshall [10] algo-
rithm to compute the transitive closure. As part of our future work,
we plan to implement a more efficient transitive closure algorithm
specific to DAGs (e.g., [14]).

Our evaluation goal was to measure how the two versions of the
co-occurrence counting algorithm scale, as compared to the transi-
tive-closure-based algorithm, in four dimensions: (1) with the length
of the system trace, (2) with the number of traces in the log, (3) with
the number of hosts, and (4) with the number of event types. For
each of the dimensions, we first used the simulator to generate a
set of logs, varying that dimension and keeping the others constant.
The constant values were: 30 hosts, 50 host event types per host
(= 1,500 total since event types at different hosts are considered
different), 1,000 events per execution, and 50 executions. We ran
each algorithm 5 times and report the median value.

5.3 Results from generated logs
Figure 4 plots the results from our experiments. Figure 4(a)

illustrates the algorithms’ scalability with respect to the length of
the system trace and Figure 4(b) with respect to the length of the
log (i.e., the number of traces). In both cases, the transitive-closure-
based algorithm outperformed the co-occurrence counting algorithm
v1. The co-occurrence counting algorithm v2 (without ∦) performed
best.

Figure 4(c) illustrates the algorithms’ scalability with respect to
the number of hosts and Figure 4(d) with respect to the number
of event types. In both cases, the transitive-closure-based algo-
rithm underperformed the co-occurrence counting v1. Again, the
co-occurrence counting algorithm v2 performed best.

6. Discussion and future work
To simplify presentation, we omitted certain details about the

mining algorithms. For instance, some invariants are logically equiv-
alent, such as STARTi → xi and xi ← ENDi. Others, such as the
local versions of ‖ and ∦ are trivial. Also, some invariants may be

43

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500

T
im

e
(s

)

Length of an execution trace

Transitive Closure

Co-occurrence Counting v1

Co-occurrence Counting v2

(a)

 20

 40

 60

 80

 100

 120

 140

 20 40 60 80 100 120 140 160 180 200

T
im

e
(s

)

Number of executions

Transitive Closure

Co-occurrence Counting v1

Co-occurrence Counting v2

(b)

 50

 100

 150

 200

 250

 300

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Nodes in the system

Transitive Closure

Co-occurrence Counting v1

Co-occurrence Counting v2

(c)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 20 40 60 80 100 120 140

T
im

e
(s

)

Number of event types

Transitive Closure

Co-occurrence Counting v1

Co-occurrence Counting v2

(d)

Figure 4: Invariant mining time for the transitive closure and the co-occurrence counting algorithms on logs generated by the simulator described in Section 5.1.
In each of the figures, a single log feature is varied: (a) number of hosts, (b) execution length, (c) number of executions, and (d) number of event types. The other
log features were held constant in the same figure, and were identical across figures: 30 hosts, 50 host event types per host (= 1,500 total since event types at
different hosts are considered different), 1,000 events per execution, and 50 executions.

subsumed by others. For example, the distributed versions of →
and ← invariants make stronger claims about event ordering and
therefore subsume distributed ∦ invariants. The mining algorithm im-
plementations detect such duplicate, trivial, and subsumed invariants
and filter them out.

We have implemented and compared three invariant mining al-
gorithms that pre-process the log into DAGs to mine invariants.
However, it is also possible to mine invariants directly from a log L
by first enumerating all the possible invariants based on event types
in L, and then traversing each of the system traces in L and checking
each invariant to eliminate the false invariants. Algorithm developed
by Sen et al. [23] for efficiently checking certain kinds of temporal
predicates over consistent cuts of a distributed execution could be
used for this. However, efficient traversal of the traces without an
explicit DAG structure is non-trivial. We plan to implement this
more direct algorithm in our future work. More generally, other
approaches such as those based on graph reachability could be used
for mining invariants [4]. Counting seems to capture the minimum
information necessary for our invariant types, but we want to explore
other approaches in our future work.

Also, our evaluation concentrated on mining scalability since
system size and log size are a major concern for log analysis in
practice. However, we did not evaluate the fundamental assumption
that PO log invariants are useful to developers. Although invariants
mined from example logs we’ve considered, like the one given in
Section 2, have been helpful to us for improving our own intuition
about the logs, further study is necessary. We plan to evaluate the

utility of mined invariants and the relevancy of our invariant types
with a case study in future work.

We assume the availability of logs, annotated with vector times-
tamps. A drawback to using vector timestamps in large systems
is their performance penalty — vector length scales linearly with
the number of hosts in the system and exchanging them may nega-
tively impact network performance. Though more efficient vector
clock mechanisms exist [2], we believe that their application can be
made practical by limiting their use to short time periods on large
systems, or by using vector clocks exclusively for debugging and
during development and testing.

7. Related Work
In this section, we summarize three areas of research relevant to

ours: invariant mining, distributed system debugging via log analysis,
and other types of distributed system debugging techniques.

7.1 Invariant mining
Javert [11] is a specification mining tool that infers complex spec-

ifications by composing simpler patterns into larger ones. Javert’s
invariants are more complex than ours (e.g., it handles invariants
over three events). Similarly, Perracotta [32] mines and visualizes
temporal properties of event traces. These invariants have been used
to study program evolution [31]. All of these systems require TO
logs (or observed executions), whereas our work concentrates on PO
logs, common in distributed systems.

Daikon [8] observes system executions and mines data structure

44

invariants as method pre- and post-conditions. Our work concen-
trates on temporal invariants.

Jiang et al. [17] proposed approximately mining certain types of
invariants that relate flow intensities (e.g., traffic volume) in dis-
tributed systems. These invariants capture non-temporal properties.
In contrast, our proposal is exact, not approximate, and captures
temporal properties. Yabandeh et al. [29] describe Avenger, which
mines invariants that hold most of the time. These almost-invariants
are helpful for finding bugs that manifest infrequently. Avenger
mines a rich set of data invariant types; it does not mine temporal
properties.

Finally, Lou et al. [19] define a set of event dependencies that
range over events in interleaved traces of independent processes.
These include what they term forward and backward dependen-
cies. Our temporal invariants consider communicating processes, as
opposed to dependent ones.

7.2 Debugging distributed systems via log
analysis

One area in which log analysis is helpful is debugging. Bugs can
manifest themselves via anomalous executions. Detecting anomalies
in distributed systems is a popular research area [28, 16, 33]. The aim
of our invariants is broader: to aid understanding efforts. However,
our invariants can also be used for debugging. In fact, temporal
invariants mined from systems that generate TO logs have been
shown to be helpful for debugging and understanding [3].

Bates et al. [1] developed an event definition language that caused
programs to generate logs with deep semantics information, such as
hierarchical relationships between events. Their approach requires
access to the source code. In contrast, our approach does not need
access to the source code, and works on the already generated logs.
We do require the developer to express a set of regular expressions.
However, this set may be mined automatically [27, 34].

MapReduce-specific research — SALSA [25] and Mochi [26]
— has created visualizations helpful to performance debugging of
Hadoop [15] node logs. Our approach, of course, is generic and
applicable to a wide range of systems.

7.3 Other types of distributed systems
debugging

Quality specification can aid debugging, but the process of spec-
ifying systems with tools like CADP [12] is difficult and has not
gained wide adoption by system builders. Automatically mined
invariants can serve as partial specifications and can be used to com-
pare the system’s implementation to the developers’ understanding
of the system.

A set of mined invariants can also be leveraged by tools, such
as runtime checkers, which ensure that the system conforms to the
developer’s expectations. Violated invariants can be reported to the
developer [22, 13, 18, 6], or the system may automatically attempt
to steer away from the violation [30, 21]. Many existing distributed
system debugging tools assume that the developer is willing to
write down a set of specifications. Invariants mined from a log, as
described in this paper, can help to relieve this specification burden
and make prior work that relies on specifications more practical.

8. Conclusion
Mining invariants from totally ordered logs has proven helpful

for system debugging and understanding (e.g., [3, 8, 11, 32]. In this
paper, we proposed to extend invariant mining to partially ordered
logs, which are common in the distributed systems setting. We for-
mally defined relevant invariants for PO logs and described efficient

algorithms for mining such invariants. The resulting tool is available
for download at http://synoptic.googlecode.com

Acknowledgments

This work is supported by the National Science Foundation under
grant CNS-0963754 and under grant #0937060 to the Computing
Research Association for the CIFellows Project. We also thank the
SLAML’11 reviewers and attendees for their constructive feedback.

References

[1] BATES, P. High-level Debugging of Distributed Systems: The
Behavioral Abstraction Approach. Journal of Systems and Soft-
ware 3, 4 (Dec. 1983), 255–264.

[2] BECKER, D., RABENSEIFNER, R., WOLF, F., AND LINFORD,
J. C. Scalable Timestamp Synchronization for Event Traces
of Message-Passing Applications. Parallel Comput. 35 (Dec.
2009), 595–607.

[3] BESCHASTNIKH, I., BRUN, Y., SCHNEIDER, S., SLOAN, M.,
AND ERNST, M. D. Leveraging Existing Instrumentation to Au-
tomatically Infer Invariant-Constrained Models. In Proceedings
of the the 8th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The founda-
tions of software engineering (2011), ESEC/FSE ’11.

[4] CHEN, Y., AND CHEN, Y. An Efficient Algorithm for An-
swering Graph Reachability Queries. In Proceedings of the
2008 IEEE 24th International Conference on Data Engineer-
ing (Washington, DC, USA, 2008), IEEE Computer Society,
pp. 893–902.

[5] CONSENS, M. C., HASAN, M. Z., AND MENDELZON, A. O.
Debugging Distributed Programs by Visualizing and Querying
Event Traces. In Applications of Databases, First International
Conference, ADB-94 (1993), vol. 819, pp. 181–183.

[6] DAO, D., ALBRECHT, J., KILLIAN, C., AND VAHDAT, A. Live
Debugging of Distributed Systems. In Proceedings of the 18th
International Conference on Compiler Construction: Held as
Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009 (Berlin, Heidelberg, 2009), CC ’09,
Springer-Verlag, pp. 94–108.

[7] DWYER, M. B., AVRUNIN, G. S., AND CORBETT, J. C. Pat-
terns in Property Specifications for Finite-State Verification. In
Proceedings of the 21st international conference on Software
engineering (New York, NY, USA, 1999), ICSE ’99, ACM,
pp. 411–420.

[8] ERNST, M. D., COCKRELL, J., GRISWOLD, W. G., AND
NOTKIN, D. Dynamically Discovering Likely Program Invari-
ants to Support Program Evolution. IEEE Transactions on Soft-
ware Engineering 27, 2 (Feb. 2001), 99–123.

[9] FIDGE, C. J. Timestamps in Message-Passing Systems that
Preserve the Partial Ordering. In 11th Australian Computer
Science Conference (University of Queensland, Australia, 1988),
pp. 55–66.

[10] FLOYD, R. W. Algorithm 97: Shortest path. Commun. ACM 5,
6 (June 1962), 345+.

[11] GABEL, M., AND SU, Z. Javert: Fully Automatic Mining of
General Temporal Properties from Dynamic Traces. In Pro-
ceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering (New York, NY, USA,
2008), SIGSOFT ’08/FSE-16, ACM, pp. 339–349.

[12] GARAVEL, H., LANG, F., MATEESCU, R., AND SERWE, W.
CADP 2010: A Toolbox for the Construction and Analysis of
Distributed Processes. In Tools and Algorithms for the Construc-
tion and Analysis of Systems, P. Abdulla and K. Leino, Eds.,
vol. 6605 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, Berlin, Heidelberg, 2011, ch. 33, pp. 372–387.

45

[13] GEELS, D., ALTEKAR, G., MANIATIS, P., ROSCOE, T., AND
STOICA, I. Friday: Global Comprehension for Distributed Re-
play. In Networked Systems Design and Implementation (NSDI)
(2007).

[14] GORALČÍKOVÁ, A., AND KOUBEK, V. A Reduct-and-Closure
Algorithm for Graphs. In Mathematical Foundations of Com-
puter Science 1979, J. Becvár, Ed., vol. 74 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 1979, pp. 301–
307.

[15] Welcome to Apache Hadoop! http://hadoop.apache.org/.
Accessed April 6, 2011.

[16] JIANG, G., CHEN, H., UNGUREANU, C., AND YOSHIHIRA,
K. Multi-resolution Abnormal Trace Detection Using Varied-
length N-grams and Automata. In Proceedings of the Second
International Conference on Automatic Computing (Washington,
DC, USA, 2005), IEEE Computer Society, pp. 111–122.

[17] JIANG, G., CHEN, H., AND YOSHIHIRA, K. Efficient and Scal-
able Algorithms for Inferring Likely Invariants in Distributed
Systems. IEEE Transactions on Knowledge and Data Engineer-
ing 19, 11 (Nov. 2007), 1508–1523.

[18] LIU, X., GUO, Z., WANG, X., CHEN, F., LIAN, X., TANG,
J., WU, M., KAASHOEK, M. F., AND ZHANG, Z. D3S: De-
bugging Deployed Distributed Systems. In Proceedings of the
5th USENIX Symposium on Networked Systems Design and Im-
plementation (Berkeley, CA, USA, 2008), NSDI’08, USENIX
Association, pp. 423–437.

[19] LOU, J. G., FU, Q., YANG, S., LI, J., AND WU, B. Mining
Program Workflow from Interleaved Traces. In Proceedings of
the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining (New York, NY, USA, 2010), KDD
’10, ACM, pp. 613–622.

[20] MATTERN, F. Virtual Time and Global States of Distributed
Systems. In Parallel and Distributed Algorithms (1989), pp. 215–
226.

[21] PERKINS, J. H., KIM, S., LARSEN, S., AMARASINGHE, S.,
BACHRACH, J., CARBIN, M., PACHECO, C., SHERWOOD,
F., SIDIROGLOU, S., SULLIVAN, G., WONG, W.-F., ZIBIN,
Y., ERNST, M. D., AND RINARD, M. Automatically Patching
Errors in Deployed Software. In Proceedings of the 21st ACM
Symposium on Operating Systems Principles (Big Sky, MT,
USA, Oct. 2009), pp. 87–102.

[22] REYNOLDS, P., KILLIAN, C., WIENER, J. L., MOGUL, J. C.,
SHAH, M. A., AND VAHDAT, A. Pip: Detecting the Unexpected
in Distributed Systems. In Proceedings of the 3rd conference
on Networked Systems Design & Implementation - Volume 3
(Berkeley, CA, USA, 2006), NSDI’06, USENIX Association,
p. 9.

[23] SEN, A., AND GARG, V. K. Detecting Temporal Logic Predi-

cates on the Happened-Before Model. In Proceedings of the 16th
International Parallel and Distributed Processing Symposium
(Washington, DC, USA, 2002), IPDPS ’02, IEEE Computer
Society.

[24] STONE, J. M. A Graphical Representation of Concurrent Pro-
cesses. SIGPLAN Not. 24 (Nov. 1988), 226–235.

[25] TAN, J., PAN, X., KAVULYA, S., GANDHI, R., AND
NARASIMHAN, P. SALSA: Analyzing Logs as State Machines.
In Proceedings of the First USENIX conference on Analysis of
system logs (Berkeley, CA, USA, 2008), WASL’08, USENIX
Association, p. 6.

[26] TAN, J., PAN, X., KAVULYA, S., GANDHI, R., AND
NARASIMHAN, P. Mochi: Visual Log-analysis based Tools
for Debugging Hadoop. In Proceedings of the 2009 conference
on Hot topics in cloud computing (Berkeley, CA, USA, 2009),
HotCloud’09, USENIX Association, p. 18.

[27] VAARANDI, R. A Breadth-First Algorithm for Mining Frequent
Patterns from Event Logs. In Proceedings of the 2004 IFIP
International Conference on Intelligence in Communication
Systems (2004), vol. 3283, pp. 293–308.

[28] XU, W., HUANG, L., FOX, A., PATTERSON, D., AND JOR-
DAN, M. I. Detecting Large-Scale System Problems by Mining
Console Logs. In Proceedings of the ACM SIGOPS 22nd sym-
posium on Operating systems principles (New York, NY, USA,
2009), SOSP ’09, ACM, pp. 117–132.

[29] YABANDEH, M., ANAND, A., CANINI, M., AND KOSTIĆ,
D. Finding Almost-Invariants in Distributed Systems. In Pro-
ceedings of the 30th IEEE Symposium on Reliable Distributed
Systems (Oct. 2011).

[30] YABANDEH, M., KNEZEVIC, N., KOSTIĆ, D., AND KUNCAK,
V. CrystalBall: Predicting and Preventing Inconsistencies in De-
ployed Distributed Systems. In Proceedings of the 6th USENIX
symposium on Networked systems design and implementation
(Berkeley, CA, USA, 2009), USENIX Association, pp. 229–244.

[31] YANG, J., AND EVANS, D. Automatically Inferring Temporal
Properties for Program Evolution. In Proceedings of the 15th
International Symposium on Software Reliability Engineering
(Washington, DC, USA, Nov. 2004), IEEE Computer Society,
pp. 340–351.

[32] YANG, J., AND EVANS, D. Dynamically Inferring Temporal
Properties. In Proceedings of the 5th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineer-
ing (New York, NY, USA, 2004), PASTE ’04, ACM, pp. 23–28.

[33] YUAN, D., MAI, H., XIONG, W., TAN, L., ZHOU, Y., AND
PASUPATHY, S. SherLog: Error Diagnosis by Connecting Clues
from Run-Time Logs. SIGPLAN Not. 45 (Mar. 2010), 143–154.

[34] ZHU, K. Q., FISHER, K., AND WALKER, D. Incremental
Learning of System Log Formats. SIGOPS Oper. Syst. Rev. 44
(Mar. 2010), 85–90.

46

