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Abstract—In collaborative design, architects’ individual design
decisions may conflict and, when joined, may violate system con-
sistency rules or non-functional requirements. These design con-
flicts can hinder collaboration and result in wasted effort. Proac-
tive detection of code-level conflicts has been shown to improve
collaborative productivity; however, the computational resource
requirements for proactively computing design conflicts have hin-
dered its applicability in practice. Our survey and interviews of
50 architects from six large software companies find that 60%
of their projects involve collaborative design, that architects con-
sider integration costly, and that design conflicts are frequent and
lead to lost work. To aid collaborative design, we re-engineer
FLAME, our prior design conflict detection technique, to use
cloud resources and a novel prioritization algorithm that, to-
gether, achieve efficient and nonintrusive conflict detection, and
guarantee a bound on the time before a conflict is discovered. Two
controlled experiments with 90 students trained in software ar-
chitecture in a professional graduate program, demonstrate that
architects using FLAME design more efficiently, produce higher-
quality designs, repair conflicts faster, and prefer using FLAME.
An empirical performance evaluation demonstrates FLAME’s
scalability and verifies its time-bound guarantees.

I. INTRODUCTION

Consider the following scenario, described to us by a divi-

sion director in a multinational software services company. A

team of software architects is designing a large system. While

the team is distributed across three sites, a core group of senior

architects physically collocates with the product manager for

initial requirements analysis and architectural design. Once

satisfied that the remaining design activities are appropriately

divided, the core group rejoins their original subteams. Each

subteam proceeds to refine the design of its portion of the

system, while, in parallel, development teams proceed with

the system’s implementation. The architect teams capture the

design using an in-house software modeling tool. All design

changes are saved into a shared version control system (VCS)

repository. The architects work on design tasks alone or in

small local groups. Design consistency is encouraged both lo-

cally, through daily status meetings and regular communication,

and team-wide, through weekly video-conferences. Despite

the senior architects’ best efforts initially and the subsequent

regular discussions by the team, the division director reported

two types of issues that arose regularly, requiring significant

additional coordination among the architects and rework:

1) Architects modify the design in a mutually-inconsistent way.
An example involved an architect making the type of an

attribute in a utility component more general because many

of the components in his portion of the system needed to

use it. During the same time frame, a senior architect made

the attribute type more specific because a development team

alerted her to a security issue involving an off-the-shelf

library. The architects discovered the conflict only when

the VCS reported it and was unable to merge their changes.

2) Architects make local modifications that, when merged, vio-
late a critical non-functional property. An example involved

two teams trying to reduce message latency, respectively, via

smart caching and via piggybacking multiple payloads onto

a single message. An analysis of the merged design showed

that, together, these solutions sometimes increased latency

and introduced unacceptably high memory consumption.

Scenarios like these occur frequently in practice and directly

motivate our work. Software systems are often collaboratively

designed by multiple architects. During collaborative design,

architects make decisions, reify those decisions into software

models [54], and evolve the models as a team [32]. To sup-

port collaborative evolution of software models, architects have

adapted to using traditional copy-edit-merge-style VCSs [2], re-

sulting in individual workspaces that allow architects to design

in parallel and synchronize their work on demand.

However, this loose synchronization exposes architects to

the risk of introducing two types of design conflicts. Synchro-
nization design conflicts (exemplified by scenario #1 above)

are design decisions that are mutually inconsistent and hence

cannot be merged automatically by the VCS. High-order design

conflicts (exemplified by scenario #2) are decisions that can be

merged automatically, but once merged, violate a consistency

rule, non-functional requirement, or another system constraint.

Unfortunately, VCSs help to discover synchronization design

conflicts only when the architects synchronize, and high-order

design conflicts after synchronization and after the architects

elect to run their analyses. This can lead to design and im-

plementation work that repeatedly needs to be corrected, even

abandoned, which becomes more difficult when engineers for-

get the context of their initial decisions because of the time lag.

Collaboration is both common and often causes conflicts [5],

[12], [13], [29]. Prior research on proactive detection of code-
level conflicts [12], [26], [51] using speculative analysis [10],

[12], and on continuously making code-level analysis results

available to developers [39], [40], [47], [57] has shown great

benefits, reducing conflict lifetime and improving develop-

ers’ ability to make well-informed decisions. Unfortunately,

unlike code-level conflict detection, continuous proactive con-

flict detection (PCD) at the design-level may be prohibitively

expensive. Many design analyses are highly computation in-
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tensive, including, e.g., discrete-event simulation [52], Markov-

chain-based reliability analysis [59], queueing-network-based

performance analysis [4], and symbolic model checking [15].

Running such analyses locally on an architect’s machine may

slow the architects’ tools, and delayed conflict discovery may

lead to decisions that must be reversed later. Slow analyses

further exacerbate the problem by allowing more pending anal-

ysis instances to queue up. Thus, for PCD to be useful, it

must prioritize and distribute the computational load (1) to

deliver analysis results quickly and (2) to avoid detrimentally

impacting the architect’s use of her tools.

In this paper, we propose FLAME, a framework that in-

terfaces with architects’ modeling tools and design analyses

to efficiently, continuously, and proactively detect design con-

flicts. We do not develop new architectural analyses that may

identify new kinds of conflicts. Instead, we rely on existing

architectural analyses (e.g., [4], [15], [21], [48], [52], [59]).

Building on prior work, including our own [5], [6], this paper

introduces four original contributions:

1) An algorithm for prioritizing merged designs that guarantees

an upper bound on conflict detection time. (Section II)

2) A dynamic analysis and synchronization engine that dis-

tributes conflict detection onto cloud resources to avoid

impacting the load on an architect’s machine. (Section II)

3) Two controlled user studies involving 90 engineers studying

software architecture in a professional graduate program,

demonstrating that with PCD, architects design more effi-

ciently, produce higher-quality designs, and repair conflicts

faster. This evaluation significantly extends preliminary

results from a small pilot study [6]. (Section III)

4) An empirical performance evaluation. (Section IV)

II. FLAME: CONFLICT DETECTION

As a solution to the challenges of collaborative design, we

have designed and built FLAME, the Framework for Logging

and Analyzing Modeling Events. We publicly release FLAME:

http://flamedesign.org. FLAME integrates with architects’

modeling and analysis tools, and provides a novel event-based

VCS. While the ideas behind and design of FLAME are

general, our implementation is built for the popular Generic

Modeling Environment (GME) [30] and uses the XTEAM [19],

[20] architecture modeling and analysis framework.

FLAME fundamentally re-architects and re-engineers an ear-

lier version by the same name [6]. The earlier version did

not support distribution (Section II-C) or guaranteed bounds

on conflict prediction (II-D). FLAME also differs from prior

tools in its extensibility and operational granularity. FLAME

is extensible by providing explicit extension points through

which it can interact with custom aspects of the architects’ en-

vironments, including off-the-shelf modeling tools, languages,

and analyses, such as consistency checkers. FLAME’s oper-

ational granularity is that of modeling operations. FLAME’s

internal version control tracks every operation the architects

enact (e.g., create, update, or remove modeling elements) and

can detect conflicts after every operation. While traditional

version control approaches rely on coarse-grained textual dif-

ferences between model states, FLAME’s finer granularity

enables more precise conflict detection and allows identifying

specific actions responsible for conflicts. FLAME tracks and

synchronizes all modeling operations and makes the resulting

synchronized models available for consistency analyses.

In a real collaborative design setting, FLAME will capture

and process thousands of modeling operations, performed by

varying numbers of architects. For the purpose of the discus-

sion in this section, we offer a simplified, illustrative scenario

involving nine such operations (O1–O9) collaboratively per-

formed by three architects (A1–A3). For example, O1 may be

the addition of a component to a hardware host by A1; O2 may

be the addition of an interface to the newly added component

by A1; O3 may be the addition of a second component to the

same host by A2; O4 may be the removal of the first component

by A3 from the system model in her local workspace; mean-

while, O5 may be the modification of the first component’s

interface by A2 in his local workspace; and so forth.

FLAME detects two kinds of conflicts: synchronization

and high-order conflicts. Synchronization conflicts arise when

multiple architects work on models in parallel and the sets of

operations they perform cannot be synchronized, or merged, to

form a single model. For example, operations O4 and O5 above

cannot be synchronized at least in architect A3’s workspace: she

removed the same component that architect A2 had concurrently

modified. High-order conflicts arise when the operations can

be synchronized, but the resulting model violates a consistency

rule, non-functional property requirement, or another system

constraint. For example, the addition of two components in

the above scenario (operations O1–O3) may violate a memory

or energy usage constraint [21] on the host in question.

Synchronization conflicts are also called context-free con-

flicts [58] in design, and are analogous to textual conflicts [13]

and direct conflicts [18], [26], [51], [60] at the level of source

code. High-order conflicts are also called context-sensitive

conflicts [58] in design, and are analogous to higher-order

conflicts [13] and indirect conflicts [18], [26], [51], [60] at

the code-level. By definition, all possible conflicts are either

synchronization (version control can detect them) or high-order

(version control cannot detect them). FLAME detects both

these kinds of conflicts and can detect all possible high-order

conflicts for which there exists an analysis implementation that

computes whether a model satisfies the rule, requirement, or

constraint potentially violated by the conflict.

Figure 1 depicts FLAME’s architecture. To be used with a

new modeling tool and analysis, one needs to write an editor
adapter for the modeling tool and an analysis adapter for the

analysis. The editor adapter plugs into the modeling tool and

captures all model-editing operations performed by an architect;

the analysis adapter applies the model-editing operations to the

analysis tool’s internal representation of the model. The rest

is handled automatically by FLAME. We have implemented

these adapters for the editors and analyses implemented within

the XTEAM modeling framework [19], [20] built on top of

GME [30], including energy consumption, memory usage, and
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Fig. 1: FLAME architecture.

message latency analyses. This required a total of fewer than

6,500 lines of Java and C++ code. Creating new adapters is

greatly simplified by the existence of frameworks that capture

architects’ operations and make them available via APIs (e.g.,

Solstice [39] for Eclipse). Aside from capturing and applying

these operations, FLAME automatically manages operation

version control, synchronization, and conflict detection: The

editor adapters capture the operations, and the FLAME Clients

communicate the operations to the Client Manager on a server.

The Detector Manager gets the operations from the Client Man-

ager and distributes them to conflict Detection Engines. Each

Detection Engine has its own merging strategy (Section II-B )
and can provide different conflict awareness to architects. For

example, one Detection Engine may synchronize all modeling

operations for a small set of architects working closely together,

while another may synchronize all architects’ modeling opera-

tions, but only once those architects have formally committed

them. The Detection Engine synchronizes the architects’ oper-

ations to detect synchronization conflicts and uses the analysis

adapters to run the analyses on the successfully synchronized

models, detecting high-order conflicts. Worker Managers may

automatically offload the analysis computation onto worker

nodes, such as clouds (Section II-C). Finally, FLAME’s anal-

ysis adapters collect and consolidate the analysis results and

report conflict information back to the architects.

Next, we describe the details of FLAME’s version control

(Section II-A), merging strategies (II-B), conflict detection

distribution (II-C), and detection prioritization algorithm (II-D).

A. Version Control in FLAME

Modern version control (e.g., Git, Mercurial, and Subver-

sion) stores differences in textual representations of files (e.g.,

source code or architectural models) and requires manual check-

pointing, producing a coarse-grained history [41]. Automated,

fine-grained version control records every developer action, but

still uses textual differences, albeit with metadata [14], [34],

[41], [45], [61]. FLAME introduces a real-time version control

that automatically records every architect operation and enables

immediate synchronization. This real-time synchronization en-

ables (1) continuous analysis execution even when an architect

is the only one working and (2) continuous proactive detection

of synchronization and high-order conflicts.

FLAME encapsulates both modeling and manual synchro-

nization operations (e.g., importing another architect’s changes)

in Design Event objects, which capture the operation, the per-

forming architect, and a unique, sequentially ordered event

ID. For example, in our scenario above, two Design Event

objects would be {O4 : RemoveComponent(C1), A3, E4} and

{O5 : ModifyInterface(C1.I1), A2, E5}. In real-time, FLAME

shares the Design Events with all FLAME Clients and Detec-

tion Engines, each of which stores the Design Events in Event

Queues, one queue per architect. That enables the architects to

import others’ operations and the Detection Engines to synchro-

nize the relevant architects’ operations to detect potential con-

flicts. FLAME’s version control can export the per-operation

history of the architects’ modeling operations, and these op-

erations can be used to examine, replay, and manipulate the

history, e.g., by selectively undoing operations [14], [41], [61].

FLAME’s version control, in effect, combines two ap-

proaches to collaborative editing: real-time operation-based

group editing [23], [53] (used by, e.g., Google Docs [25]) that

continuously handles fine-grained conflicts; and traditional ver-

sion control (e.g., Git, Mercurial, and Subversion) that supports

individual editing workspaces and subsequent, coarse-grained

merging.

B. Merging Strategies

FLAME’s Detection Engines can employ a variety of merg-

ing strategies for their proactive conflict detection (PCD). For

example, an architect may be interested if her design conflicts

with specific colleagues, if merging all operations by all the ar-

chitects in her group leads to a conflict, or if merging formally

committed versions will lead to a conflict. Different merging

strategies aid different kinds of collaborative awareness and

are appropriate for different collaborative scenarios.

As exemplars, we developed two merging strategies, captured

in two Detection Engines: Global Engine and Head-and-Local

Engine. The Global Engine merges all operations performed

by all architects locally, whether formally committed or not.

For example, in our scenario above, this would mean all nine

operations (O1–O9). The result is the most current design that

may give PCD the most predictive power, albeit at the risk of

detecting false-positive conflicts that do not materialize because

the architects may revert uncommitted operations. The Head-

and-Local Engine merges an architect’s latest operations with
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all the other architects’ committed operations. For example, in

our scenario, this may include only the operations performed

by architects A1 and A2, if A3 has not yet committed her

operations (e.g., O4). This strategy reduces false positives, but

delays the detection of some conflicts (e.g., the synchronization

conflict between O4 and O5 discussed above).

We use these two merging strategies in our evaluation (Sec-

tions III and IV), but FLAME also allows many other strategies.

C. Conflict Detection Offloading

Because continuously executing model analyses can be ex-

pensive, FLAME may need to use external resources (e.g., the

cloud). An overtaxed Detection Engine may delay processing

analyses and reporting conflict detection results back to the

architects, especially when the team size or system complexity

grow. We observed this in our user experiments (Section III).

FLAME mitigates this risk by splitting the work onto multi-

ple Detection Engines, which may be offloaded from the server,

and allowing each engine to execute the analysis computation

locally or remotely. FLAME does not parallelize each analysis

execution (unless the analysis implementation is already paral-

lelized), but can offload multiple analysis executions, one for

each version of a model, onto multiple worker nodes.

Figure 2 summarizes the Detection Engine’s architecture and

conflict detection’s control flow. The engine follows its merg-

ing strategy to apply architect operations to the model (e.g.,

operations O1–O5 in our scenario above), generates model

representations for the Worker Manager to deploy analyses on,

and, once it receives the result, communicates the conflict infor-

mation back to the Detector Manager (recall Figure 1), which

then communicates it with the architect via the Client Manager.

The Worker Manager uses queue prioritization (Section II-D)

to select a model representation, deploys its analysis onto a

worker node, and relays the result to the Detection Engine.

D. Queue Prioritization

When architects work actively, the rate of new operations

may be high and the queues of model representations may get

long. Given an unlimited number of workers, these representa-

tions can be processed in parallel. However, practical limits on

the worker pool are likely, and processing the representations

in the order of the operations that produce them may introduce

a significant delay before conflicts are discovered. If the fre-

quency of operations is higher than the frequency with which

analyses can be computed, this delay will grow with time.

FLAME implements a novel prioritization algorithm for

selecting which representations to analyze first. This algo-

rithm bounds the time required to detect the high-order de-

sign conflicts to twice the running time of the analysis that

finds the conflict. The algorithm takes advantage of FLAME’s

operation-based granularity and processes the chronologically

newest conflict detection instances first, without any loss of

the collaboratively generated design information.

In our scenario above, let us assume that all nine operations

(O1–O9) are relevant to a Detection Engine, and that O7 causes

a high-order conflict with an earlier operation. The Detection

Engine will generate nine representations (R1–R9, where R1

has only O1 applied, R2 has O1 and O2 applied, etc.), but if

the Worker Manager only has one worker node at its disposal,

its options are to simultaneously start the analysis of all nine

representations, simultaneously start the analysis of a subset

of the representations, or analyze one representation at a time,

in some order. The former two options delay learning about

the conflict result. Analyzing k representations in parallel

may take kt time to complete, where t is the average time

the analysis takes to compute (ignoring the context switching

overhead). Moreover, for k < 7, this analysis may miss the

conflict (if R7, R8, and R9 are not in the chosen subset). On the

other hand, the time to discover the conflict when analyzing the

representations serially in some order depends on the order. The

R1, R2, R3, . . . order will take 7t time to discover the conflict.

Instead, FLAME reverses the order of the representations, and

analyzes R9 first. (After completing the R9 analysis, FLAME

analyzes R8 if no new operations have taken place, or the newest

representation, i.e., R9+n, if there were n new operations.) Two

outcomes are possible when analyzing R9. Either FLAME

discovers the conflict in total time t, or one of O8 and O9 (or

O8 and O9 together) already resolved the conflict, in which

case FLAME will avoid reporting the false positive conflict.

In this scenario, prioritizing the newest representation com-

puted the conflict in the minimal time t necessary for just

one analysis. Generally, because interrupting ongoing analy-

ses could result in livelock, FLAME must finish an ongoing

analysis computation before starting a new one. Thus, in the

worst case, this queue prioritization scheme results in time 2t
before a conflict is discovered. This scheme scales well with

the available worker pool, always guaranteeing the 2t bound.

Section IV-C evaluates this bound with real-world workloads.

100



task measure control PCD

CMAC
energy consumption (MJ) 8.18 8.55
memory usage (MB) 729 748

BOINC subcomputations completed 593 600

Fig. 3: PCD’s effect on design quality, as defined by throughput,
and proxied by energy and memory usage, and subcomputations
completed. (Higher measures represent higher quality.)

III. UTILITY EVALUATION

We conducted two controlled user experiments to measure

if proactive conflict detection (PCD) has a positive effect on

(1) design quality and (2) design activity efficiency. All exper-

imental data can be found at http://flamedesign.org.

The two experiments included 90 participants, all profes-

sional Masters students at the University of Southern California

taking a Software Architectures course. In each experiment,

students worked in pairs to perform a design task. All teams

used FLAME, but a randomly selected half of the teams (ex-

perimental group) had PCD notifications activated, while the

other half (control group) had them disabled. Having all teams

use FLAME controlled the design environment variables that

could affect the collaboration and allowed us to detect when

conflicts occurred, even if the architects were not notified.

The two experiments differed in design tasks and FLAME’s

merging strategies (recall Section II-B). Both design tasks

involved a real-world, open-source system. The architects were

asked to improve the throughput of a partial system model while

being mindful of the system’s energy consumption, memory

usage, and message latency. The two participants in each team

worked on two non-overlapping parts of the model (e.g., one

architect worked on the server and the other on the client).

The first experiment had 42 participants, used the NASA

CMAC system [35], [42], and relied on the Global merging

strategy. CMAC is a climate analysis framework used to inform

stakeholders who make policy decisions involving the weather,

climate, tourism, water resources management, food manage-

ment and security, etc. CMAC combines remotely sensed obser-

vations from space with climate model simulation. The second

experiment had 48 participants, used the BOINC system [56],

and relied on the Head-and-Local merging strategy. BOINC

is a popular open-source system for volunteer-computing and

grid-computing used for SETI@home, Folding@home, and

similar projects [3]. Both CMAC and BOINC are well-known,

popular systems with publicly available source code and design

documents. The three system properties — energy consump-

tion, memory usage, and latency — are integral to both systems.

The XTEAM analysis framework [21] integrated into FLAME

implements analyses for all three properties.

No participant had prior experience with FLAME, CMAC,

or BOINC, but all participants spent four weeks leading up to

the experiment performing two software design exercises using

the CMAC- or BOINC-specific modeling environment and

XTEAM to gain familiarity with its simulation-based analyses.

This yielded comparable familiarity of participants with the

modeling environment and target system domain [17]. A pre-

task measure (per team) control PCD

CMAC
modeling operations 48.2 60.8
communication activities 11.0 19.5
synchronizations 6.3 8.0

BOINC
modeling operations 29.6 38.5
communication activities 14.3 15.0
synchronizations 5.3 7.3

Fig. 4: PCD’s effect on architect efficiency.

experiment survey of participants’ industrial experience showed

no difference between the experimental and control groups.

Each team participated in a 2-hour session: a 1-hour FLAME

tutorial, a 30-minute design session (all design activities were

recorded and all communication logged), and a 30-minute

design session for the participants to experience the alternative

FLAME mode (i.e., participants without PCD experienced such

notification, and vice versa). The alternative-mode session

was not recorded, but it enabled an exit survey to collect the

participants’ preferences and assess experience differences.

A. Results

We answered three research questions regarding the effect

of PCD on design quality and design activity efficiency.

RQ1: How did PCD affect resulting design quality? Both

experimental tasks used throughput as the measure of qual-

ity, but they required measuring throughput differently. The

CMAC task’s throughput was proxied by energy consump-

tion and memory usage; higher measures indicated higher

throughput. The BOINC task’s throughput was proxied by the

number of subcomputations completed in a fixed amount of

time. Figure 3 shows that groups with PCD had uniformly

higher-quality designs for all tasks. For each team and quality

proxy, we selected the team’s best design. The CMAC teams

with PCD, as compared to the control teams, on average, had

statistically significantly higher memory usage with a large1

effect size (Welch test p = 0.037, Cohen’s δ = 0.880), as well

as higher energy consumption, although the latter difference

was not statistically significant. The BOINC teams with PCD,

on average, completed a higher number of subcomputations.

This difference was not statistically significant. However, one

of the PCD teams neglected to use FLAME’s conflict notifica-

tions (their design activity reflected no increase in modeling

operations). Excluding that team from the data showed that

BOINC teams with PCD had a statistically significantly higher

model quality with a medium effect size (Welch test p = 0.076,

Cohen’s δ = 0.612) than the control group.

RQ2: How did PCD affect architect efficiency? Figure 4

summarizes PCD’s effect on architect efficiency. We measure

efficiency in three ways, via numbers of modeling operations,

communication activities, and model synchronizations in the

30-minute session. The PCD teams had uniformly higher

efficiency for all tasks. The CMAC teams with PCD, on

1We use the standard Cohen’s definition for what effect sizes are considered
small (≥ 0.2), medium (≥ 0.5), and large (≥ 0.8). [16]
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task measure control PCD

CMAC

Detected conflicts at synchronizations per team 1.27 2.40

Teams with unresolved conflicts at session end 3/11 0/10

High-order conflict lifetime (sec.) 671 363

BOINC

Detected conflicts at synchronizations per team 2.50 0.92

Teams with unresolved conflicts at session end 4/12 2/12

High-order conflict lifetime (sec.) 256 150

Conflicts resolved without synchronizing 28% 40%

Fig. 5: PCD’s effect on high-order design conflicts.

average, performed a higher number of modeling operations

with a medium effect size (Welch test p = 0.085, Cohen’s

δ = 0.645) and communicated more frequently with a medium

effect size (Welch test p = 0.066, Cohen’s δ = 0.697) than the

control teams. The number of synchronization activities, while

higher for PCD teams, was not statistically significantly higher.

The BOINC teams with PCD, on average, performed a higher

number of modeling operations with a large effect size (Welch

test p = 0.031, Cohen’s δ = 0.800) than the control teams. The

amount of communication and the number of synchronization

activities, while higher for PCD teams, were not statistically

significantly higher. The increase in communication frequency

is consistent with a prior study of source-code conflicts [49].

In the exit survey, the architects from both experiments

remarked on PCD’s effect on their productivity: “[PCD] in-
creased productivity as we were able to try more combinations
[of modeling operations] in same amount of time.” and “By
comparison, [in the PCD mode] we have tried more combina-
tions of the options (modeling operations) [. . . ], and I think it
means that our working efficiency has been improved.”

The increase in the number of performed operations can be

explained by the increase in the participants’ confidence in

making new changes. Fear of conflicts could cause an engineer

to avoid performing new operations [13]. Two participants

remarked: “Our confidence that the combined design would
meet the requirements was much higher when using PCD.” and

“[PCD] helps me focus more on the design and modeling rather
than worrying about the effect of a single change.” The par-

ticipants identified fear as a deterrent to progress: “Without
PCD, deciding when to commit local changes was a chal-
lenge. . . None of us wanted to commit a change which would
cause the merged model to violate requirements.”

RQ3: How did PCD affect resolving high-order design
conflicts? Figure 5 summarizes PCD’s effect on high-order

conflicts. While the CMAC teams with PCD dealt with more

conflicts on average, no conflict was left at the last commit and

at the end of the session, whereas three control teams left such

conflicts. The average lifetime of the conflicts was shorter for

the PCD group than for the control group, although the differ-

ence was not statistically significant. The BOINC teams with

PCD also had a shorter average conflict lifetime, although again

not statistically significantly shorter. However, not all conflicts

are created equal. Some high-order conflicts require more effort

to resolve than others. Figure 6 summarizes the distributions

of these hard conflicts whose lifetimes exceeded 100 seconds.

(Because these distributions were not normal, we relied on
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Fig. 6: Distribution of lifetimes of conflicts that lived longer than
100 seconds. Boxes show first, second (median), and third quar-
tiles; whiskers show lowest and highest points within 1.5 times the
interquartile range of lower and upper quartiles.

nonparametric tests.) For both the CMAC and the BOINC ex-

periments, the teams with PCD were able to resolve these hard

conflicts faster, on average, than the control teams (for CMAC

teams, 539 vs. 912 seconds, statistically significant difference

and large effect size, Mann-Whitney-Wilcoxon test p = 0.036,

common language effect size 0.836; for BOINC teams, 218 vs.

551 seconds, statistically significant difference with a medium

effect size, Mann-Whitney-Wilcoxon test p = 0.050, common

language effect size 0.794). These results are consistent with

those reported for source-code conflicts [26], [49]. Architects

observed: “It was quicker and easier to detect conflicts and
fix them immediately.” and “[PCD was] making it easier to
identify errors and fix them before further changes are made.”

For BOINC, teams with PCD resolved conflicts without

synchronizing their models more often than the control group,

although the difference was not statistically significant. We

attribute this phenomenon to the Head-and-Local merging strat-

egy (recall Section II-B), which provides architects with aware-

ness about conflicts involving their own uncommitted oper-

ations. This allows the architect to foresee conflicts in the

working copy before committing and to resolve them (or aban-

don the conflicting operations) quickly. One architect observed:

“We can see whether an individual’s atomic step can produce a
high-order conflict and quickly rollback that operation.”

Finally, our exit survey asked the architects about their

preferences regarding and against PCD, using the 7-point Likert

scale (Figure 7). The participants overwhelmingly preferred

using PCD (mean of 6.22; 7 indicates strong agreement), and

Question mean σ

I preferred the FLAME mode with PCD. 6.22 1.25

FLAME’s PCD helped me deal with design
conflicts.

6.15 1.03

It was difficult to understand the conflict de-
tection information that FLAME provided.

2.80 1.60

Early detection of conflicts eased resolution. 6.07 0.88

The FLAME GUI was distracting. 2.48 1.44

Fig. 7: Five Likert-scale questions asked of the architects in an exit
survey. The scale ranged from 1 (strongly disagree) to 7 (strongly
agree). The standard deviation is denoted σ.
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felt that it helped deal with conflicts (mean of 6.15) and made

resolution easier (mean of 6.07). The participants were also

favorable to FLAME’s interface, but less strongly than to PCD.

Overall, teams with PCD designed higher-quality models,

more efficiently, resolving more high-order conflicts faster.

B. Threats to Validity

Our study subjects were students. We mitigated this by

relying on students in a professional graduate program and pro-

viding four weeks of training in the design environment and the

subject systems. The design tasks may not generalize. We miti-

gated this by using popular, open-source projects with available

design documents, and by creating realistic collaborative design

scenarios based on those design documents. We used resource
consumption to approximate throughput and operations, com-
munication, and synchronizations to approximate productivity.
These are reasonable proxies in the context of our studies. We
limited team sizes to two architects to help control task complex-
ity. This may not generalize to large-team design, but was nec-

essary for the feasibility of the controlled experiment. We did
not vary the time FLAME analyses took to complete consistency
checks, while in a real-world setting, variation may influence

the architects’ reactions to PCD. Our experiments used a single
design environment and a small number of consistency analy-
ses, while a real-world setting may include many environments

and analyses. We mitigated this in part by using three different

consistency checking tools and by using a popular GME-based

design environment. The 30-minute design session length hides
long-surviving conflicts. However, this means that our measure-

ments of the conflict lifetime are conservative underestimates,

and the actual benefit of PCD may be greater than demonstrated.

IV. PERFORMANCE EVALUATION

This section describes the evaluation of FLAME’s perfor-

mance, including how much FLAME’s conflict detection of-

floading reduces detection time, FLAME’s scalability to large

architect teams, and effects of FLAME’s queue prioritization

algorithm with respect to the theoretical worst-case bound.

A. Conflict Detection Offloading

FLAME’s Detection Engines adapt to the variation in work-

load by offloading conflict detection to worker nodes (recall

Section II-C). This reduces the delay that occurs when there

are multiple model representations queued up to be analyzed.

To evaluate the effect of offloading on the delay, we con-

ducted a study varying the number of worker nodes and measur-

ing the conflict detection time — the time from the moment the

operation is made until the analysis of the model representation

including that operation completes — using the same set of

model representation analyses. To properly measure the effect

of offloading, we disabled the queue prioritization algorithm

(recall Section II-D). Section IV-C evaluates that algorithm.

We used the collaborative architect behavior recorded dur-

ing the BOINC experiment (recall Section III) to accurately

represent the workload. FLAME’s version control allowed us

to record and replay the design activities, varying the size of
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Fig. 8: Optimal conflict detection times for the 1,339 model repre-
sentation analyses during the BOINC experiment from Section III.
Mean time was 26.8s. Box shows first, second (median), and third
quartiles; whiskers show lowest and highest points within 1.5 times
the interquartile range of lower and upper quartiles. (Lower whisker
overlaps with first quartile.)

the worker pool. Overall, the recorded behavior had 1,339

operations, and thus model representation analyses. We used

the Google Compute Engine (GCE) [24] as the worker pool

with nodes that had 2 virtual cores and 1.80 GB of memory.

We measured the optimal conflict detection time by manipu-

lating the recorded design activity to ensure that all prior model

representation analyses had finished processing before each new

design operation. Figure 8 shows the distribution of optimal

conflict detection times. The mean was 26.8s, median 27.0s,

and maximum 30.0s, constituting a baseline for comparison.

Given that the longest analysis computation took 30s, we

checked all 30s intervals of the recorded design activities and

found that the architects never performed more than 9 opera-

tions, a rough upper limit on the number of workers needed to

maximize parallelization. To be sure that extra workers would

not help, we ran four experiments, giving FLAME access to

2, 4, 8, and 12 GCE worker nodes.

We sequentially replayed the recorded design activity from

each of the 24 teams in the BOINC experiment on FLAME

with access to each of the four worker pools. Figure 9 shows

histograms of the detection times for different worker pool sizes.

As expected, larger worker pools led to faster computations.

There are two measures one may wish to minimize: maxi-

mum detection time and mean detection time. The maximum

detection time decreases from 133s for 2 workers, to 54s for

4 workers, and to 32s for 8 workers; there was no benefit for

worker pools larger than 8. This suggests that reducing the

maximum detection time to the optimal detection time requires

using nearly as many workers as the maximum number of

operations that take place within the time it takes to complete

one analysis. However, reducing the mean detection time re-

quires far fewer resources. The mean detection time decreases

from 36.9s for 2 workers, to 27.5s for 4 workers; there was no

benefit for worker pools larger than 4. Here, 4 workers were

sufficient to reach nearly the optimal mean detection time.

This experiment demonstrates that FLAME’s conflict detec-

tion offloading works as expected and that the mean detection

time can be reduced to nearly the optimal with fairly few extra
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Fig. 9: Conflict detection times with varying worker pools.

computational resources. Since architect activity may be hard

to predict in some domains, and since cloud resources are

elastic, FLAME’s mechanisms for dynamically adding worker

nodes at runtime are likely to be helpful in those domains.

B. Scalability

We used the recorded design activity of the 48 architects

involved in the BOINC experiment to measure how FLAME’s

worker node management overhead scales to large collaborative

teams. The rate of modeling operations grows with the size

of the architect team. Since each operation generates a model

representation for analysis, larger teams are likely to lead to

more PCD computations. As Section IV-A showed, a larger

node worker pool can help manage this computation and keep

the conflict detection time low; however, managing the larger

worker pool may increase FLAME’s overhead, potentially

introducing additional delay in conflict detection. Again, to

properly measure the effect of scaling, we disabled the queue

prioritization algorithm (recall Section II-D) for this evaluation.

Section IV-C will evaluate that algorithm.

Using the recorded design activity, we randomly selected

12 of the 24 teams and merged their activity. We repeated

this process ten times to generate ten logs, each representing

a collaborative design scenario of a team of 24 architects. The

logs included mutually incompatible modeling operations re-

sulting in synchronization and high-order conflicts. Since our

focus was on high-order conflicts, and since synchronization

conflict detection is far less computationally costly, we replaced

synchronization-conflict-causing operations with no-ops, which

still created new model representations, preserving the total
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Fig. 10: Combined conflict detection times for the ten scenarios
involving 24-architect teams, with FLAME using 48 GCE worker
nodes. Mean time was 27.4s and maximum time was 33s. Box shows
first, second (median), and third quartiles; whiskers show lowest and
highest points within 1.5 times the interquartile range of lower and
upper quartiles.

number of operations (and model representations) FLAME

had to process. This approach provided a reasonable trade-off

between the logistics of running and recording a 24-architect

study and generating fully artificial activity logs. The resulting

logs included real architect behavior and, if anything, overes-

timated how much activity may take place in a 24-architect

team, as extra coordination in such a team is likely to reduce

the activity, as compared to twelve 2-architect teams.

We replayed the resulting logs in FLAME with a 48-GCE-

node (2 virtual cores and 1.80 GB of memory each) worker

pool to measure the overhead FLAME’s cloud management

creates for a large team of architects using FLAME with many

cloud nodes. To compare the conflict detection times to those

for the 2-architect scenarios from Section IV-A, Figure 10

shows the distribution and histogram of the conflict detection

times for the ten 24-architect scenarios. While the numbers

of analyses and worker nodes were much higher, the mean

and maximum conflict detection times were very similar to the

optimal times for the 2-architect scenarios (recall Figure 8).

This suggests that FLAME’s additional cloud management

overhead is negligible for teams of up to 24 architects, as long

as sufficient cloud resources are available. The availability

of commodity cloud infrastructures makes FLAME’s use of

third-party worker nodes practical and inexpensive.

C. Queue Prioritization

FLAME prioritizes the order in which it analyzes model

representations to minimize conflict detection time (recall Sec-

tion II-D). This section empirically analyzes the effect of

prioritizing newer representations vs. analyzing the represen-

tations in their chronological order. Section II-D argued that

the newest-first policy had a worst-case bound of 2t on the

conflict detection time, where t is the time it takes to ana-

lyze a single representation. Meanwhile, the oldest-first policy

(chronological order) has no theoretical bound.

To measure the effect of prioritization on the conflict de-

tection time, we replayed the workloads from the BOINC

experiment (recall Section III) on two FLAME configurations,

one with newest-first prioritization and the other with oldest-

104



0
10

20
30

pe
rc

en
t

20 40 60 80 100 120 140 160 180 200 220 240 260
time to detect a conflict (sec)

newest-first oldest-first

(a) 1 worker node
newest-first: mean: 38.7s median: 39s max: 53s
oldest-first: mean: 92.5s median: 77s max: 267s

0
10

20
30

pe
rc

en
t

20 40 60 80 100 120
time to detect a conflict (sec)

newest-first oldest-first

(b) 2 worker nodes
newest-first: mean: 31.5s median: 27s max: 45s
oldest-first: mean: 40.9s median: 35s max: 128s

Fig. 11: Histograms of the conflict detection times using (a) 1 and (b) 2 worker nodes. Theoretical worst-case bound on the conflict detection
time using the newest-first prioritization is 2t = 60s.

first prioritization (i.e., no prioritization). The configurations

were otherwise identical. We ran these experiments with a

pool of 1 worker node, and a pool of 2 worker nodes. Since

Section IV-A showed that using only 2 worker nodes causes sig-

nificant delays in conflict detection time (and this delay would

be even greater for a single worker node), these configurations

are sufficient to reveal the effects of prioritization.

Figure 11 shows that the newest-first prioritization substan-

tially decreases the conflict detection times with a medium or

large effect size, compared to the chronological, oldest-first pri-

oritization scheme (Mann-Whitney-Wilcoxon tests, p < 0.001

and common language effect size 0.812 for 1-worker scenario,

p= 0.023 and common language effect size 0.640 for 2-worker

scenario). For the 1-worker scenario, mean time decreases from

92.5s to 38.7s (58% improvement), and the maximum time

decreases from 267s to 53s (80% improvement). For the 2-

worker scenario, mean time decreases from 40.9s to 31.5s

(23% improvement), and maximum time decreases from 128s

to 45s (65% improvement). The positive benefits of prioriti-

zation increase in more resource-constrained scenarios. In all

cases, the maximum conflict detection times with newest-first

prioritization — 53s and 45s — were well below the 2t = 60s

theoretical worst-case bound from Section II-D.

Conflict detection with newest-first prioritization may iden-

tify conflicts in model representations subsequent to the first

representation that reveals the conflict (recall Section II-D). In

the 1-worker scenario, this happened for 60.5% of the conflicts,

and in the 2-worker scenario, for 32.6% of the conflicts. This is

more likely to occur in resource-constrained scenarios because

more analyses are delayed in those scenarios.

Overall, the newest-first queue prioritization scheme yielded

significant benefit in resource-constrained environments, and

incurred virtually no cost even for unconstrained environments.

V. RELATED WORK

Source-code conflicts are common in collaborative develop-

ment [12], [13], [26], [50]. FLAME is the first to tackle design-

level conflicts. CollabVS [18], Palantı́r [51], Safe-commit [60],

Crystal [11], [12], [13], WeCode [26], and Syde [27], [28],

[33] have shown the positive impact of proactive, continuous

code-level conflict detection. FLAME uses speculative analy-

sis [10], [12] to predict architects’ actions and to inform the

architects of consequences of those actions early.

General-purpose VCSs work poorly for software design mod-

els [31], [36], [44]. They are inflexible, inextensible, and lim-

ited to specific design environments [1]. Operation-based, real-

time group editors [7], [25] provide a shared workspace, but

this discourages collaboration: operations that prevent model

analysis completion prevent all collaborators from analyzing the

model. By contrast, FLAME provides an individual workspace

to each architect. Operation-based conflict detection tech-

niques monitor the sequence of performed modeling opera-

tions to detect design conflicts [7], [8], [31]. However, these

techniques target cheap-to-compute conflicts, while FLAME’s

focus is on computationally expensive design conflict detection.

These techniques are complementary and can be integrated

into FLAME. Finally, AMOR [1], [9] is a VCS that aids

collaborative design but does not proactively detect conflicts.

Automatically merging design models may reduce synchro-

nization conflicts [43], [55], but not necessarily high-order

conflicts. This paper focused on using model analyses from

prior work [4], [15], [22], [37], [48], [52], [59]. FLAME

natively extends to all analyses implemented for XTEAM [21],

and its ideas apply to all architectural analyses.

Our work has been inspired by techniques that continuously

perform software analyses in the background. Argo/UML’s [46]

critics provide continuous design review and improvement sug-

gestions as architects make modeling changes. Argo/UML

throttles CPU resources used for model analysis to avoid drain-

ing the local computation resources, which may delay com-

puting the analysis results and is not ideal for long-running

analyses. Codebase Replication [38], [39] is a framework

for turning offline analyses into continuous ones in Eclipse

by maintaining an up-to-date replica of the source code on

which to perform the analyses. By contrast, FLAME targets

often computationally expensive design-level conflicts caused

by modeling changes made by multiple architects in parallel,

as opposed to local inconsistencies.

VI. CONTRIBUTIONS

FLAME, a proactive, continuous design conflict detection

framework, informs software architects of newly arising design

conflicts that would otherwise remain hidden. This enables

well-informed decisions and early conflict resolution while

relevant details are fresh in the architects’ minds, and prevents

undoing and redoing work. FLAME uses cloud resources and
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detection prioritization to guarantee a bound on the conflict

detection time, without disturbing the ongoing collaborative

design activities. Two controlled experiments demonstrate that

architects who use FLAME produce higher-quality designs,

repair conflicts faster, and enjoy using FLAME. Empirical

evidence supports claims that FLAME efficiently uses cloud

resources, scales to large architect teams, and complies with the

theoretical worst-case bound on conflict detection time. Our

results suggest that practitioners may benefit from FLAME.
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